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Abstract

In this brief article we give an elementary proof of the following
alternative for the Cauchy problem associated with the KdV and the
mKdV equations: Either there exists no T > 0 such that the solution
map u0 7→ u associated with mKdV is continuous at the origin from
Hs(R), s < 0, into D′(]0, T [×R) or there exists no T > 0 and no R > 0
such that the solution map associated with KdV is continuous from
the ball B(0, R) of Hs(R), s < −1, into D′(]0, T [×R).

1 Statement of the result

The KdV and mKdV equations are physical relevant equations that respec-
tively read

vt + vxxx + 6vvx = 0 (1.1)

and
ut + uxxx ∓ 6u2ux = 0 , (1.2)

where u(t, x) and v(t, x) are real valued functions.
One distinguishes between two different mKdV equations depending on the
sign in front of the nonlinear term. The sign ”+” corresponds to the fo-
cussing mKdV equation whereas the sign ”-” corresponds to the defocussing
mKdV. Equations (1.1) and (1.2) are known to be completely integrable. In
the end of the sixties, Miura discovered that the KdV equation is related to
the mKdV equations by the now so-called Miura transforms. Indeed, the
Miura transforms Φd : v 7→ vx + v2 and Φf : v 7→ vx + iv2 map respectively
a smooth solution of the defocussing mKdV to a solution of the real-valued
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KdV equation and a smooth solution of the focussing mKdV equation to a
solution of the complex valued KdV equation.

The Cauchy problem, in Sobolev spaces, associated with these equa-
tions has been extensively studied since the end of the eighties. The lowest
Sobolev index reached for the well-posedness theory is su(KdV ) = −3/4
for the KdV equation (cf. [8] or [3]) and su(mKdV ) = 1/4 for the mKdV
equations (cf. [7]). Note that the difference of one derivative between these
two results agrees with the lost of one derivative in the Miura transforms.
These indexes have been proved to be optimal if one requires moreover the
solution-map to be uniformly continuous on bounded set (cf. [7], [1]). How-
ever, one may expect that the solution-map associated with these equations
can be continuously extended below these indexes especially since they are
far above the critical Sobolev indexes for the dilatation symetrie that are
respectively sd(KdV ) = −3/2 and sd(mKdV ) = −1/2. It is worth empha-
sizing that such results have been proved in the periodic case by Kappeler
and Topalov (cf. [5], [4]). More precisely, they proved the existence of such
continuous extensions in H−1(T) for KdV and L2(T) for mKdV. Note that,
in the periodic setting, the associated flow-maps are known to be non uni-
formly continuous on bounded sets for respectively s < −1/2 and s < 1/2.

In this note we combine the Miura transforms and the so-called local
Kato smoothing effect to prove that at least one of the solution-map asso-
ciated with theses equations cannot be continuously extended till its associ-
ated critical index sd. More precisely we prove the following alternative on
the Cauchy problem associated with these equations.

Theorem 1.1. One at least of the following assertions is true :

i) Let s < 0 be given. There exists no T > 0 such that the solution map
u0 7→ u associated with the defocussing mKdV is continuous at the ori-
gin from H∞(R), equipped with the Hs(R)-topology, into D′(]0, T [×R).

ii) Let γ ≥ 0 and s < −1 be given. There exists no T > 0 and no
R > 0 such that the solution map associated with the (real-valued)
KdV equation is continuous from the ball B(0, R) of Hγ(R) , equipped
with the Hs(R) topology, into D′(]0, T [×R).

In the same way, one at least of the following assertions is true :

iii) Let s < 0 be given. There exists no T > 0 such that the solution map
u0 7→ u associated with the focussing mKdV is continuous at the origin
from Hs(R) into D′(]0, T [×R).
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iv) Let γ ≥ 0 and s < −1 be given . There exists no T > 0 and no R > 0
such that the solution map associated with the complex-valued KdV
equation is continuous from the ball B(0, R) of Hγ(R), equipped with
the Hs(R) topology, into D′(]0, T [×R).

2 Proof.

The idea of the proof is the following: The Miura transformation being
discontinuous from Hs(R) into Hs−1(R) as soon as s < 0, we can find a se-
quence of initial data, bounded in L2(R), that converges to 0 in Hs(R) but
which Miura transform converges in Hs−1(R) to some non identically van-
ishing element of H∞(R). On the other hand, thanks to the Kato smoothing
effect, the Miura transformation is continuous for the D′(]0, T [×R)-topology
on sequences of solutions to (1.2) that emanate from sequences of initial data
that are bounded in L2(R). Assuming that i) (resp. iii) ) does not hold,
this will ensure that ii) (resp. iv)) holds.

Let {hN} ⊂ H∞(R) be the sequence defined by

ĥN (ξ) = χ[N,N+1](|ξ|) .

Clearly {hN} is bounded in L2(R) and tends to 0 in Hs(R) for any s < 0.
Let us fix 0 < ε < 1 .

Straightforward calculations lead to

Φd(εhN ) = ε2θ + εh′N + ε2αN and Φf (εhN ) = iε2θ + εh′N + iε2αN ,

where
θ̂(ξ) = (1− |ξ|)χ[0,1](|ξ|)

and α̂N (ξ) =
(

1−
∣

∣

∣
|ξ| − 2N − 1

∣

∣

∣

)

χ[0,1](||ξ| − 2N − 1|) .

Clearly θ ∈ H∞(R) with ‖θ‖Hγ . 1 for any γ ∈ R . αN → 0 in H−1(R) and
h′N → 0 in Hs(R) for s < −1. In particular, for any s < −1,

Φd(εhN ) → ε2θ and Φf (εhN ) → ε2θ in Hs(R) as N → +∞ . (2.1)

Since hN ∈ H∞(R) it follows from classical well-posedness results for mKdV
(see for instance [2]) that the solution uN := u(·, εhN ) of (1.2) emanating
from εhN exists for all times and belongs to C(R;H∞(R)). Moreover, it is
well known that the L2-norm of the solution is a contant of the motion and
that the so-called Kato smoothing effect holds. For sake of completeness
we give hereafter a version of this smoothing effect that is suitable for our
purpose (see for instance [2] for a general setting).
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Proposition 2.1. Let u0 ∈ H∞(R). Then for any T > 0 and R > 0 there
exists C(T,R) > 0 such that the emanating solution of (1.2) safisfies

∫ T

−T

∫ R

R
|∂xu(t, x)|

2dx dt ≤ C(R,T )(‖u0‖
2
L2 + ‖u0‖

4
L2)

Proof. Let φ ∈ C∞

0 ([−2, 2]) with φ ≡ 1 on [−1, 1] and 0 ≤ φ ≤ 1 on [−2, 2].
For R > 1 we set h′(x) := φ(x/R) and h(x) :=

∫ x
−∞

h′(t) dt. Integrating
(1.2) against hu one obtains

d

dt

∫

R

hu2 + 3

∫

R

h′(ux)
2 −

∫

R

h
′′′

u2 ∓

∫

R

h′u4 = 0

Using that h′ has compact support and Schwarz inequality, we get

‖h′u2‖L∞ ≤

∫

R

|(h′u2)′| ≤

∫

R

|h′′u2|+ 2

∫

R

|h′uux|

≤ C‖u‖2L2 + ‖u‖L2

(

∫

R

h′(ux)
2
)1/2

Hence, by Schwarz and Young inequalities,

∣

∣

∣

∫

R

h′u4
∣

∣

∣
≤ ‖u‖2L2‖h

′u2‖L∞ ≤ C‖u‖4L2 + 2

∫

R

h′(ux)
2

and, since the L2-norm is conserved by the flow of (1.2), we get

d

dt

∫

R

hu2 +

∫

R

h′(ux)
2 ≤ C(‖u0‖

2
L2 + ‖u0‖

4
L2) .

Integrating this inequality in (−T, T ) and using the properties of h′, we thus
infer that

∣

∣

∣

∫ T

−T

∫ R

−R
(ux)

2
∣

∣

∣
≤

∣

∣

∣

∫ T

−T

∫

R

h′(ux)
2
∣

∣

∣
≤ C(T +R)

(

‖u0‖
2
L2 + ‖u0‖

4
L2

)

.

Let us now assume that the assertion i) (respectively iii)) of Theo-
rem 1.1 is false, i.e. there exists s < 0 and T > 0 such that the so-
lution map u0 7→ u associated with the defocussing mKdV is continu-
ous at the origin from H∞(R), equipped with the Hs(R)-topology, into
D′(]0, T [×R). We claim that Φd(uN ) ⇀ 0 (respectively Φf (uN ) ⇀ 0) in
L∞(0, T ;H−1(R)). Indeed, first by the conservation of the L2-norm, {uN}
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is bounded in L∞(0, T ;L2(R)). Second, by the equation, {∂tuN} is bounded
in L∞(0, T ;H−3(R)). Third, from Proposition 2.1, {∂xuN} is bounded in
L2
loc(] − T, T [×R). It thus follows from Aubin-Lions compactness theorem

that there exists u ∈ L∞(0, T ;H−1) ∩ L2
loc(]0, T [×R) and an increasing se-

quence of integers {Nk} such that

uNk
→ u a.e. in ]0, T [×R,

∂xuNk
⇀ ∂xu in L∞(0, T ;H−1(R)),

u2Nk
⇀ u2 in L∞(0, T ;H−1(R)).

On the other hand, since we assumed that u0 7→ u is continuous at the origin
from H∞(R) equipped with the Hs(R)-topology into D′(]0, T [×R), we must
have that uN ⇀ 0 in D′(]0, T [×R). This ensures that u = 0 and that
actually the whole sequence {uN} (and not only a subsequence) converges
to 0 in all the senses above. This shows that

Φd(uN ) ⇀ 0 (respectively Φf (uN ) ⇀ 0) in L∞(0, T ;H−1(R)) (2.2)

as claimed.
Conclusion : Let us fixed s < −1 and ε > 0. From (2.1), Φd(εhN ) →

ε2θ 6= 0 in Hs(R) and the solution v(·, ε2θ) to (1.1) emanating from ε2θ
satisfies ‖v(t, ε2θ)‖L2 = ε2‖θ‖L2 = ε2

√

2/3 for all t ≥ 0. On the other hand,
assuming that assertion i) is false, (2.2) shows that the sequence of solutions
{v(·,Φd(εhN ))} = {Φd(u(·, εhN ))} of KdV emanating from {Φd(εhN )} tends
weakly to 0 in L∞(0, T ;H−1(R)) for some T > 0. Hence, the flow-map
associated with KdV is not continuous at ε2θ from H∞(R) equipped with
the Hs(R)-topology into D′(]0, T [×R) and thus assertion ii) holds.
Finally, the fact that one at least of the assertions iii) and iv) holds, follows
exactly in the same way.
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