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Abstract

We consider the Cauchy problem&f, n > 1, for a semilinear damped wave equation with nonlinear menigbal
existence and asymptotic behaviotas o of small data solutions have been established in the case Wwhen < 3.
Moreover, we derive a blow-up result under some positiva daany dimensional space.
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1. Introduction

This paper concerns with the Cauchy problem for the dampeé equation with nonlinear memory

t
Ut — AU+ U = f(t—s)‘7|u(s)|pds t>0,xeR",
0 (1.2)

u(0, X) = Up(x), ut(0, X) = uz(x) xeR",
where the unknown functiomis real-valuedn > 1, 0 <y < 1 andp > 1. Throughout this paper, we assume that
(Uo, Uy) € HY(RM) x L2(R™) (1.2)

and
suppy € B(K) :={xeR": | <K}, K>0,i=0,1 (1.3)

For the simplicity of notations|: [l; and||-[ls: (1 < g < oo) stand for the usual%(R")-norm andH(R")-norm,
respectively.
The nonlinear nonlocal term can be considered as an appativimof the classical semilinear damped wave
equation
Ut — AU+ Up = [u(t)P
since the limit 1
lim ————s.” = 6(s
y—1 F(l — 'y) * ( )
exists in distribution sense, whdrds the Euler gamma function.
It is clear that this nonlinear term involves memory typdistdraction and can be considered as Riemann-Liouville

integral operator
1

t
J59() = @ fa (t— 9 g(s)ds
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introduced witha = —co by Liouville in 1832 and witha = 0 by Riemann in 1876 (see Chapter V Eh [4]). Therefore,
(L.1) takes the form

Ut — Au+ U = Jg, (1UlP) (0), (1.4)

wherea = 1-v.

In recent years, questions of global existence and blowfgplotions for nonlinear hyperbolic equations with
a damping term have been studied by many mathematicianfl 3e£2,[1f [2R[ 44] and the references therein. To
focus on our motivation, we shall mention below only someiltegelated to Todorova and Yordandv][24]. For the
Cauchy problem for the semilinear damped wave equationtivétiorcing term

U — AU+ U = [ul®, u(0) = uop, W(0)=uy, (1.5)

it has been conjectured that the damped wave equation halfithge structure as — oo (see e.g. [||1|j6]). This
suggests that probler@) should havepe(n) := 1+ 2/n as critical exponent which is called the Fujita exponent
named after FujitaﬂS], in general space dimension. Indéediprova and Yordano%j] have showed that the critical
exponentis exactlypc(n), that is, if p > pc(n) then all small initial data solutions are global, while if 1< p <
pe(n) then all solutions of[(B) with initial data having positive average value blow-nginite time regardless of the
smallness of the initial data. Moreover, they showed th#héncase op > pc(n), the support of the solution o@)
is strongly suppressed by the damping, so that the soludieoncentrated in a ball much smaller than< t + K,
namely

[[Du(t, - )”LZ(]R”\B(tl/Z*")) = O(e“m), ast— oo,

whereD := (d, Vx). Furthermore, they proved that the total energy of the smhstiof ) decays at the rate of the
linear equation, namely
IDU(t, - Yllizny = O+ Y2),  ast — c.

Our goal is to apply the above properties founded by Todoena Yordanov to our problen@ with the
same assumptions on the initial data. The method used t@ phevglobal existence is inspired from the weighted
energy method developed {n]24]. On the other hand, theuestibn method (se¢][§, B, 7.]14) 15] L8, [L9, 25] and the
references therein) is the key to prove the blow-up resut déhote that our global existence and asymptotic behavior
ast — oo for small data solutions are obtained in the case whemnl< 3, due to the nonlocal in time nonlinearity.
While the blow-up result is done in any dimensional space usgresent our main results.

First, the following local well-posedness result is needed

Proposition 1. Let1 < p < n/(n—2)for n > 3, and pe (1, «) for n = 1,2. Under the assumption.2)-(L.3) and
v € (0,1), the problem@) possesses a unique maximal mild solutiopnes satisfies the integral equatic()
below, such that

u € C([0, Tmay, HY(R") N CY([0, Tmax). L2(R")),

where0 < Tmax < c0. Moreover, W, - ) is supported in the ball @ + K). In addition:
either Tnax=o00 orelse Thax< oo and [[u(t)|ln: + [[u(t)ll2 = 0 as t— Thax (1.6)

Remark 1. We say thau is a global solution of[(l]) if Tmax = oo, while in the case o mayx < oo, we say thau
blows up in finite time.

NOW,Set
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this imply, in the case whem(- 2)/n < y, thatp, = max1/y; p,} < n/(n—2). Moreover,p, < MiNi<n<3(Pn).
We note that

PyP1— 1+2/n=pc(n), p2—(2y+1)/(2y-1)>p(2) and p3 —>2>p(3) asy—1
Our global existence result is the following

Theorem 1. Letl <n<3,p>1ve(1/2,1)forn=12andy € (11/16,1) for n = 3. Assume that the initial
data satisfy([L.2)-(L.3) such that|ug|l: + [|ugll.2 is syficiently smalll. If p < p then the problenfL.]) admits a unique
global mild solution

u € C([0, o0), HY(RM) N C([0, o), LAR™)).

Note that, the requirememte (11/16, 1) is just to assure that; < n/(n— 2) whenn = 3.

The second result is the finite time blow-up of the solutiodersome positive data which shows that the assump-
tion on the exponentin the above theorem (fer 1 andy — 1) is critical and it is exactly the same critical exponent
to the semilinear heat equatiop— Au = |u|P. Moreover, we conjecture that will be the critical exponent 01@)
which is the critical one to the corresponding semilineaathegjuationu; — Au = fot(t - 9)7”|u(s)|P ds founded by
Cazenave, Dickstein and Weisslgr [2] and Fino and Kirgihe [7]

Theorem 2.
i) Letl<p<n/(n-2)forn> 3, and pe (1, ) for n = 1,2. Assume thafn — 2)/n < y < 1 and (ug, u;) satisfy

(L.2)-([L.3) such that
f u(x)dx>0, i=01 1.7)
RI’I
If p < p,, then the mild solution of the probleffh.1) blows up in finite time.

i) Letn> 3andl < p < n/(n-2). Assume thay < (n— 2)/n and(uo, uy) satisfy(f.4) and (L.7), then the mild
solution of the problendfL.1) blows up in finite time.

As the by-product of our analysis in Theonﬂ’n 1, we have tHevidhg result concerning the asymptotic behavior
ast — oo of solutions.

Theorem 3. Under the assumptions of Theorﬂnhe asymptotic behavior of the small data global solutiotf @)
is given by

IDUCE, - Yllzm sy = O(€™),  t— oo, (1.8)
that is the solution decays exponentially outside everyB@l/%+°), § > 0. Moreover, the total energy satisfies
IDU(t, - llz@ny = OE™*27),  t > o, (1.9)
forn=1,
IDU(t, -)llzgeny = OY%?), t— oo, (1.10)
forn=2and
IDUt, llLzwny = Ot™), t— oo, (1.11)
forn=3.

As we have seen, we are restricted ourselves in the case glambinsupported data. This restriction leads us to
the finite propagation speed property of the wave which pdaysnportant role in the proof of the global solvability.
The blow-up result and the local existence theorem couldrbeeggl removing the requirement for the compactness
assumptions on the support of the initial data. For the dlekiatence without assuming the compactness of support
on the initial data, we refer the reader {d [9] {0} [[3, PO, 2ipre we have to takey € HY(R") n L}(R") and
up € L2(R™ N LY(RM).

Remark 2. Itis still open to show corresponding global existence ddisons, with small initial data, fop, < p <
pn(L<n<3)andforp, < p(n=4).



This paper is organized as follows: in Sectﬂn 2, we presentesdefinitions and properties concerning the
fractional integrals and derivatives. Sect@n 3 contdmesproofs of the global existence theorem (Theoﬂem 1) and
the asymptotic behavior of solution (Theorﬂm 3). Secﬂosleﬂeivoted to the proof of the blow-up result (Theo%bm 2).
Finally, to make this paper self-contained, we shall skétetproof of the local existence of solution (Propositipn 1)

in Appendix A.

2. Preliminaries

In this section, we give some preliminary properties on thetfonal integrals and fractional derivatives that will
be used in the proof of Theordin 2.
If AC[O,T] is the space of all functions which are absolutely contiion [QT] with 0 < T < oo, then, for

f € AC[0O, T], the left-handed and right-handed Riemann-Liouville fiatil derlvatlvesDo‘tf(t) andDUTf(t) of order
a € (0,1) are defined by
1 T .
O\If(t) = 6t‘]0|t f(t) and DIIT f(t) = —mat\[ (S— t) f(S) ds te [0, T], (21)
where
= [a- 99 2.2)
J5:9(t) == = -9 g(s)ds .

is the Riemann-Liouville fractional integral, for ajl € LY0,T) (1 < g < o). We refer the reader td [[L3] for the
definitions above. Furthermore, for evelryg € C([0, T]) such thalDOltf(t) DﬁTg(t) eX|st and are continuous, for all
te€[0,T], 0 < a < 1, we have the formula of integration by parts (se®42 p. 46 in ])

T
j(; ( ot )(t)g(t) dt = \f; f(t) (DHTg) (t) dt. (2.3)

Note also that, for alf € AC™![0, T] and all integen > 0, we have (see (2.30) in [13])
(-1)'6{.Df; f = D, (2.4)

where
AC™0,T]:= {f : [0, T] - R andd}f € AC[0, T]}

andaf is the usuah times derivative. Moreover, for all £ q < o, the following formula (se€[13, Lemma 2.4 p.74])
DgeJor = 1diaom) (2.5)

holds almost everywhere on,[D].
In the proof of Theorerﬂz the following results are usefilwi(t) = (1 -t/T)7,t>0, T > 0, 0 > 1, then

Dirwi(t) = CT7(T - )77, D{ﬁlwl(t) =CT (T -t)7 1, Dﬁ;zwl(t) =CT (T )72, (2.6)
forall @ € (0, 1); so
(Dfyw1)(T) =0, (Dfrwa)(0)=C T, (Dff'wy)(T)=0 and (Djf'ws)(@)=C T  (27)
For the proof of this results, seE [5, Preliminaries]. Ferthore, the following lemma is useful to prove Theo@m 1.

Lemma 1. ([, Lemma 4.1] Supposethdd < 6 <1, a> 0and b> 0. Then there exists a constantC0 depending
only on @b andé such that fot all t 0,

C(1 + t)~Min@+6.0) if max@+6,b)> 1,
t
f (-0 @+t-0) 1+ Pdr<{ CAL+) ™ D@2+ 1) if max@+6,b) =1
0
C(L+t)tae>b if max@+#6,b) < 1.

Throughout this paper, positive constants will be denote@ land will change from line to line.
4



3. Global existence and asymptotic behavior

In view of the Propositioﬂ 1, global existence of a solutiolfdiws from the boundedness of its energy at all times.
To obtain such a priori estimates, we shall proceed our graséd on the weighted energy method recently developed
in Todorova and Yordanoy [P4]. We begin by defining

w(xt) = %(t + K- Vt+K)Z-|x?), [X<t+K. (3.8)
Itis easily checked thag; < O,
0 <y(xt) < g (3.9)

and, since
Vit + K2 -2 <t + K = [x%/[2(t + K)],

the functiony satisfies the inequality
IX2

V6D 2 2Ry

Proof of Theorem [l. Let u be the local solution of the probler.@) in [0, Tmay. Let us introduce the energy
functional

(3.10)

W(t) := (1 +1)[IDut, -)llz. (3.11)

where
ji=n/4-1/2+vy (n=1), ji=y=-1/2 (n=2) and j:=y (n=23)

We will show thatW(t) < Clo, wherelp := ||ug|l4: + [Juall2 is small enough. This not only gives the global existence
but also shows that, far= 1 andy — 1, the solution decays at least as fast as that of the lineauparsu + u; = 0.
For the rate of the linear problem, s¢e2@) below.

The estimate[(37) will be done by the following lemmas.

Lemma 2. Letl<n<3,ye(1/2,1)forn=1,2andy € (11/16,1)forn = 3. Forall 6 > Oand all t € [0, Trmax)>
the following weighted energy estimate holds

(1 +t)IDu(t, -)ll2 < Clo + C(%%Kl + 7T, - )llzp) P, (3.12)

whereB > n/4p+ (2—-vy)/pforn=1,3andg > (2—y)/pforn= 2.

Lemma 3. ([4, Proposition 2.4] Leté(q) = n(1/2 - 1/q) and0 < 6(q) < 1, and let0 < o < 1. If u € HL(R) with
suppuc B(t+ K),t > 0. Then

€7 ®ulg < Cr (1 + D2 wy|3o e Svulg, . (3.13)
wherey(t, x) is the weight function fror(B.g).

We postpone the proof of Lemrﬂa 2 to the end of this section.
It follows from Lemmd P that
WD < Clo + C(max(1 + YT u(r, - llzp)P. (3.14)

On the other hand, Lemr'rﬂa 3 with= 2p ando = § < 1 gives

1€/, lzp < CL+ )2 vz le’vully
< C(L+7)&tCI2-iw(r), (3.15)
where we have usefl (8.9).
Using (313), we obtain from [314)
) p
W(t) <Clo+C T)%)(l + 7)) | (3.16)

5



SetB=n/4p+ (2-y)/p+vforn=1,3andB = (2-vy)/p+vforn=2,v > 0, then if we compute the exponent of
(r + 1) in the right side of[(3), we obtain

v—%nm—arwwm—rem—meinmL
5+ (1-62p))/2— ] = v—ﬁﬂMLJu—wmr4—42wwm, if n=2, (3.17)
v 4% [P(L+2(2y - 1)/n)—2—4(2—y)/n], ifn=3.

As p > pn, We deduce, choosingsmall enough, that the quantities ) are negative. Hence, we can rewrite

(B-19) like
r’[rg?]xW(T) <Clg+ C(r’[rg?]xW(r))p. (3.18)

Now, write lg = ||Uglln: + [Juillz = Ce, for smalle > O which is determined later, and put
T" =supt=>0: W() < 2C¢}.

Then, [318) impliesW(t) < Ce + CeP. Therefore, taking sma#l such thaCe + CeP < 2Ce we conclude thal* = oo
( For details we refer the reader {o][11, Proposition 2.1] @3 Proposition 2.1]), i.e.

W(t) = (1L +))Du(t,-)llz < Ce, t=0. (3.19)
Thus we have completed the proof of Theor@m 1. O

Proof of Theorem B The estimate@) - () follows directly from ). Next, it follows from inequality
(B.9)-(B.10) and estimatd (29) that

. .12 1425
Ce > [1"™IDut, - llizgny > €74 ODU, - Yl zmpuzey = € AERNDUCL, - lLzgam gz

where we have used the fact thjat 0, which implies ). O

To show Lemmé]2we need a linear estimates for the fundamental solutioneofatiowing linear damped wave
equation

Wi — AW +w; =0, wW(0,X) = up(x), wW(0,x) = usi(x), (3.20)
fort € (0, 00) x R". Let Ko(t), K1 (t) be
t t i V
o) i= ot cottal,  Ka() =t SR

where

Jle?—1/4, 18> 172,
i\J1/4- g2, l¢l < 1/2

Note thatKo(t) + 1/2K1(t) = d;:K1(t). Then the solution of[ (@) is given (cf. [1}7]) through the Fourier transform by
Ko(t) andKy(t) as

Fla(ViI(e) = a) =

W(t, X) = Ko(t) * Ug + Kl(t) * (%Uo + U]_) . (321)
The Duhamel principle implies that the solutioft, X) of nonlinear equatio) solves the integral equation
t
u(t, X) = w(t, X) + I'(a) f Ki(t— 1) = JgIT(|U|p)(T) dr, (3.22)
0

wherea :=1-y anng“ is given by ). We can now state Matsumura’s result, on the estimat& @) andK;(t),
as follows:



Lemma 4. ([L7]) If f € L™R") n H*M-YR") (1 < m < 2), then
0KVEK (1) * flla < C(L+ )4 P2 [l 411 Fllgienis gmy)-

Proof of Lemmaﬂ. We begin to estimate the linear teff@w(t, - )||o. It is not difficult to see, using Lemnﬂt 4 with
m = 1, that

IDW(L, - )ll2 < C(L + )™ Y2(||uglls + llUolls + lluallz + lluglla) < Clo(L + )™+ Y2 < Clo(1 + 1)), (3.23)

To estimate the nonlinear term in.23), we have to distinguish two cases:

e Case oin =1, 3: Apply Lemmaﬂl withm = 1 to get

A

t t
| = fo IDKa(t - 7) # I (UP)(7)ldr < C fo (t—7+ 172 (135, (uP) @l + 195, (UP)(@)ll2) de
t

IA

C f (t—7+ 174 12(3 )b + ngruu(r)ugp) dr. (3.24)
0

To transform the.P-norm into a weighted ?*-norm, we use the Cauchy inequality

f lu(r, X)|P dx
B(r+K)
1/2 1/2
( f g 2P dx) ( e2PveR|y(z, X)|2P dx) :
B(r+K) B(r+K)
for § > 0. From (31Q), we havey(, x) > [x?/4(r + K) for x € B(r + K), so the first integral is estimated as follows

n/2
f g 2PUd) gy < f e PIXE/26 K g < f e PIXE/204) = (ﬁ) (r + K)"2.
B(r+K) B(r+K) n poé

Thus, for the norniu(z, - )l|p in ) we obtain the weighted estimate
u(z, lp < Cro(r + 1)1, - )llg,, 6> 0. (3.25)

llucz. - )lip

IA

Next, asy > 0, the normj|u(z, - )ll2p in ) can obviously be estimated by
Uz, Y5, < Colr + 1)z, - Il (3.26)
Combining [324) - (B.26), we obtain

t T
| C f (t—7+1)V412 f (r - o) (o + 1)V TIy(a, -)lpp)P dor dr
0 0

IA

IA

t T
C(T)%)(T + 1P (- Yll2p)P f (t— 7+ 1)V412 f (t- )71+ o) 2@ dodr.
A 0 0

Using Lemmd]JL, we conclude that

I<CA+ t)*i(rfg)%x(f + 1PV u(r, - )llzp) P (3.27)
Combining [323) and [327), we obtain [313). This complete the proof fan = 1, 3.

e Case oin = 2: Apply here Lemmﬂ4 withm = 2, we obtain

t t
Ji= fo IDK1(t = 7) * Jg (IUP) (7)ll2 @ fo (t—7+1) 2135 (uP) @)l dr

IA

IA

t T
C f (t—-71+ 1)71/2fv (r-— 0')77’||u(0')||gp do dr.
0 0
7



Then

t T
J< C(rgg?(r + 1P (- Yl|2p)P f (t—7+1)y Y2 f (t-0)?(1+0) 2N dodr. (3.28)
, 0 0
By Lemmall, [&9) implies '
J< CL+ 97 (maxr + 1P u(r, - izp)P- (3.29)
Combining [323) and [29), we obtain [313). This complete the proof fan = 2. 0

4. Blow-up result

In this section we devote ourselves to the proof of Thecﬂewestart by introducing the definition of the weak

solution of [17)).
Definition 1. (Weak solutioh Let T > 0,y € (0,1) and w,u; € Llloc(R”). We say that u is a weak solution if
ue LP((0,T),LP (RM) and satisfies

loc

i
r@) [ [ soumedxte [ ue@dx [ w0900 - a0.9)dx

T T T
=f f ththdt—f f qutdxdt—f f UAp dx dt (4.1)
0 n 0 n 0 n

for all compactly supported functigne C3([0, T] x R") such thatp(-, T) = 0and¢(-, T) = 0, wherea = 1 — .

Next, the following lemma is useful for the proof of Theor(ﬂn Phe proof of this lemma is much the same
procedure as in the proof dﬂ[S, Lemma 2].

Lemma 5. (Mild -» WeaR Let T > Oandy € (0,1). Suppose that < p < n/(n-2),ifn > 3, and pe (1, ), if
n=1,2 Ifue C(0,T], HY(R")) N CX([0, T], L3(R") is the mild solution offL.q), then u is a weak solution ¢f.1).

Remark. We need the mild solution to use, in the proof of Theoﬂam 2 atternative @). Without this properties,
we say that we have a nonexistence of global solution and blotaup result.

Proof of Theorem[?. We assume on the contrary, usifgd)l thatu is a global mild solution of[(Zl)). So, from
Lemmgp we have

)
o3 9] —
@ [ o, U0 pxats I. PRTCECRLIE I. oy IO~ (00) 0x

T T T
=f f u%dxdt—f f u<ptdxdt—f f uAgpdxdt (4.2)
0 Jsupm 0 Jsupm 0 Jsuppy

for all T > 0 and all compactly supported test functiore C%([0, T] x R") such thatp(-, T) = 0 andg(-, T) = 0,
wherea = 1-7y. Letg(x.t) = DIy (B(x.1) := Di; (¢{(¥)ea()) with g1(x) := @ (XI/B), ¢a(t) := (1-t/T), where
Dir is given by [21), ¢, > 1 and® € C*(R,) be a cut-& non-increasing function such that

1 ifosr<1
q’(r)z{ 0 ifr>2

0< ® < 1and®'(r)| < Cy/r forall r > 0. The constanB > 0 in the definition ofp; is fixed and will be chosen later.
In the following, we denote b§2(B) the support ofp; and byA(B) the set containing the support &, which are
defined as follows:

Q(B)={xeR": [x<2B}, A(B)={xeR": B<|x < 2B}

8



We return to @), which actually reads

-
F(a)fo fg( OIt(|u|P)Dt|T<pdxdt+ fQ(B) U1 (X) Dyr (0, x)dx+f( Uo(X)(Dyr#(0, X) — 9:Dyj74(0, X)) dx

T T T
=f f uatzDﬁTngdxdt—f f uatDﬁTngdxdt—f f u AD{;dxdt (4.3)
0 JQ(B) 0 JQ(B) 0 JA(B)

From (23), 2.4) and [27), we conclude that
T
f f Do Joe(lUP)p dx dt+ C T‘“f ur(X)@f(X) dx+ C(T™* + T~ 1)f Uo(X) (X) dx
o Jam)

(¢
-C f f ( )u(DﬁW D) dxdt-C f f U A(g})Dir ez dxdt (4.4)
0 Q(B

whereDg, is defined in [2). Moreover, using[(&) and the fact thaf (f) implies [, o ¢{(ui(x) > 0,i = 0,1, it

follows
T
ff |ulP@ dx dt
0 JoB)

IA

.
C f f |ulf (DF3* 2 + Dy p2) dx dt
0 Jam)

)
+C fo f o 28l VP e
A
= |1 + |2, (45)

where we have used the formuk{gol) Lol Apy + €(€ — 1) ?Vea? and g1 < 1. Next we observe that by
introducing the ternp®PZ1/P in the right side of@) and applying Young'’s inequality we have

1 < z_pf f( )|u|p<p dxdt+ Cf f © 9021/(13 l)((D2+a<p2)p + (Dtlﬁ“épz)p)dth (46)
Q(B

wherep’ = p/(p— 1). Similarly,

1 (T . T r2p )
<& f f uPg dx dt+ C f f S G V(AP 4 Vi) (D) dxdt (4.7
2p Jo Jam) 0 Jap

Combining [46) and [47), it follows from (&.§) that

f f uP@dxdt < C f f 01, P (D2 p2)" + (D "2)P) dxdt
Q(B) Q(B)
o[ [ Nl 9 O dxat (@8)
Q(B)
At this stage, to prove, we have to distinguishes 2 cases.

e Case ofp < p,: in this case, we takB = T%2. So, using[(&) and the change of variables:= T, y = T-1/2x,
we get from [@) that

T
f L(TUZ) |U|pt;7dthS C(T—(w+2)p’+n/2+l + T—(a+l)p’+n/2+l)’ (49)

whereC is independent of . Letting T — oo in @), thanks top < p, and the Lebesgue dominated convergence

theorem, it is yielded that
f f uPdxdt= 0
0 n
9



which impliesu(x, t) = 0 for allt and a.ex. This contradicts our assumptidﬂ).

e Case ofp = p,: let B = R"¥2TY2 where 1« R < T is such that whelf — oo we don’t haveR — oo at the same
time. Moreover, from the last case and the fact ghat p,, there exist a positive constabtindependent o such

that .
f uPdxdt< D,
0 RN

.
f f uPpdxdt—0 asT — oo. (4.10)
0 JARUY2TLZ)

On the other hand, using Holder’s inequality instead ofgs one, we estimate the integialin @) as follows:

which implies that

T 1/p T o0 /o1 1
I, < c(f f |u|P¢) (f f o7 P PGP + [V PP ) (D) dx dt) . (411)
0 JARY2TY2) 0 JORL2TY2)

Similarly to the last case, substituting. @ and [411) into (48), taking account op = p, and the scaled variable
s=T7U, y=RY2T-Y2x, we get

T T 1/p
f f uPdxdt< C(TPR™2 4+ R2) 4+ CRI-@P) ( f f |u|P¢) .
0 JOR12T12) 0 JAR2TY2)

Letting T — oo, using (410Q), we get

00

luPdxdt< CR™?,
0 RN

which implies a contradiction, wheR — co, with (fL.7). This completes the proof of Theordini2
For the proof ofii), we have two possibility.

o If y <(n-2)/n: let B = R with the sameR introduced in the casp = p,. Then, taking the scaled variables
s=T1, y = R 1x it follows from (&.§) that

.
f f P dx dt< CR(T-@ P+l T-(ra)p+ly | cR-20T-ep+L,
0 JoR

Asy < (n—2)/nimpliesp < n/n—2 < 1/y, we get a contradiction wit (7)) by letting the following limits: first
T — o0, NextR — .

o If y =(n-2)/n: we havep < n/(n-2) = 1/y = p,. Using the first two cases, we get the contradiction. This
completes the proof of Theor(ﬂniQ). O

Appendix A.

In this appendix let us sketch the proof of Proposiﬁbm&t us define a semigroup(t) : HY(R") x L2(R") —

HY(R") x LA(R") by
so: 4]~ w |

wherew e C([0, o), H{(R")) n C}([0, ), LAR")) is the linear solution of{(29) given by [321). So, view of (323),
a mild solution of the nonlinear problefn.f) is equivalent to following integral equation:

U(t) = S(t)Uo + fot S(t- 9F(9)ds (A.1)
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where
u@) =

u(t,-) | w | O
u(t,-) ] Yo ‘[ Uy ] FE ‘[ 32 (UP)(S ]

It sufficient now to prove the local existence of a solution@h in HY(RM) x L?(R"). Let T > 0 and consider the
following Banach space

E:={U="%uu): (uv)eC(0,T], HY(R") x L>(RM), supp(t, ) c B(K +t) and||U|lze < CM},

where
IUlle = llullcqo, T Hrrny) + lbllcqo.myzryy  and M = [[uolly + [ugl2.
In order to use the Banach fixed point theorem, we introdueéaliowing map® on E defined by

t
D[U](t) := S(t)Uo + f S(t-9F(s)ds
0
Now, forU = (u,v) € E, we have
196 (UP)Y(B)llz < CEu(t, -)Il5, < CEIIU, I, < CEIUIE,  te [0, Tl

where we have used the Sobolev imbedditidR") c L2P(R"). Next, using Matsumura’s result (Lemrfla 4) with
m = 2 and the finite propagation speed phenomena, we deduceevi2atiach fixed point theorem that there exists
a local solutionJ € E on a small interval [OT] satisfies @). For details, we refer the reader @ [7, Theorem 3.2]
and [}, Theorem 6]. By consequence, there exist a localisalute C([0, T], HL(R")) n CL([0, T], L3(R") satisfies
(@) and supp(t, -) c B(t + K). However, since our equatio@ is nonautonomous, we prefer apply Gronwall's
inequality to get the uniqueness (cf] [2, Theorem 3.1]).eldi ifu,» € C([0, T], HY(RM) n C([0, T], L3(RM) are
two mild solutions (i.e. satisfy[(22)) for someT > 0, we have

t
) =l < C [ IKa(t= 1) B, 0uP = )oYl
t
< C fo L+t —7) 3135, (Ul = olP)(7)ll2 dr
t
< C [ 133.0uP - )l (A2)

where we have used again Matsumura’s result (Lerﬂma Aywith 2. As ||ul® — [v]P| < CJu — v|(Jul® + [v|P), so by
Holder's inequality abil> < [|all2plibll2py) with p’ = p/(p— 1) and Sobolev’s imbeddindd¢ c L?P), we obtain

t t
fo 135, (uP - bP)(@lldr < C fo 35 (lu = ol (Il + ol ) (7) e

IA

IA

t T
CIOIO(T—s) Mu(s.-) - ofs. s ds o

t t
Cfo fs(r—s) u(s.-) - ofs.-)lls dr ds

Cfot(t - 97NIu(s ) - o(s - )ll: ds (A.3)
Combining &.3) and A.3), we get

lu(®) —v®llh: < C fot(t - 9"7lu(s -) — o(s -l ds
Using Gronwall’s inequality, it follows thai(t) = v(t). As a consequence of this uniqueness result, we can extend our

solutionu on a maximal interval [T may). Moreover, if Tmax < oo, then|ju(t, - )|z + [[u(t, - )ll2 — oo ast — Tmax FOr
details, se€[]2, Theorem 3.1] afdi [7, Theorem 3.2].
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