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Abstract

We consider the Cauchy problemiif, n > 1, for a semilinear damped wave equation with nonlinear men®igbal
existence and asymptotic behaviotas o of small data solutions have been established in the case Whe < 3.
Moreover, we derive a blow-up result under some positiva daany dimensional space.
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1. Introduction

This paper concerns with the Cauchy problem for the dampeé equation with nonlinear memory

t
Ut — AU+ U = f(t—s)‘7|u(s)|pds t>0,xeR",
0 (1.2)

u(0, X) = Up(x), ut(0, X) = uz(x) xeR",
where the unknown functiomis real-valuedn > 1, 0 < ¥ < 1 andp > 1. Throughout this paper, we assume that
(Uo, Ur) € HY(R") x LZ(R") (1.2)

and
suppi € B(K) :={xeR": | <K}, K>0,i=0,1 (1.3)

For the simplicity of notations|: [l and |- [ls: (1 < g < oo) stand for the usual9(R")-norm andH(R")-norm,
respectively.
The nonlinear nonlocal term can be considered as an appatigimof the classical semilinear damped wave
equation
Ut — Au+ ug = |u(t)[P

since the limit

1
im ———s” =6
I fa=ps =0

exists in distribution sense.

It is clear that this nonlinear term involves memory typdistdraction and can be considered as Riemann-Liouville
integral operator

t
J5.9() = Tla) £ (t—9)*1g(s)ds
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introduced witha = —co by Liouville in 1832 and witha = 0 by Riemann in 1876 (see Chapter V in [3]). Therefore,
(1.1) takes the form

Ut — Au+ U = Jg, (UP) (1), (1.4)

wherea = 1-v.

In recent years, questions of global existence and blowfigplotions for nonlinear hyperbolic equations with
a damping term have been studied by many mathematiciangl@etl, 16, 21, 23] and the references therein. To
focus on our motivation, we shall mention below only someiitsgelated to Todorova and Yordanov [23]. For the
Cauchy problem for the semilinear damped wave equationtivtiorcing term

U — AU+ Ug = [ulP, u(0) = uo, u(0) = uy, (1.5)

it has been conjectured that the damped wave equation hatifihge structure as — oo (see e.g. [1, 15]). This
suggests that problem.g) should havepe(n) := 1 + 2/n as critical exponent which is called the Fujita exponent
named after Fujita [7], in general space dimension. Indéediorova and Yordanov [23] have showed that the critical
exponentis exactlyp(n), that is, if p > pc(n) then all small initial data solutions of &) are global, while if 1< p <
pc(n) then all solutions of (B) with initial data having positive average value blow-ofginite time regardless of the
smallness of the initial data. Moreover, they showed th#técase op > pc(n), the support of the solution of &)
is strongly suppressed by the damping, so that the soludieoncentrated in a ball much smaller than< t + K,
namely

[IDu(t, - )||L2(]Rn\B(t1/2+d)) = O(e_tzm), ast— oo,

whereD := (04, Vx). Furthermore, they proved that the total energy of the smhstof (15) decays at the rate of the
linear equation, namely
IDUCt, )l z@ny = O™+ ?),  ast— oo

Our goal is to apply the above properties founded by Todoema Yordanov to our problem (1) with the
same assumptions on the initial data. The method used t@ phevglobal existence is inspired from the weighted
energy method developed in [23]. On the other hand, thedestibn method (see [4, 5, 6, 13, 14, 17, 18, 24] and the
references therein) is the key to prove the blow-up resuit déhote that our global existence and asymptotic behavior
ast — oo for small data solutions are obtained in the case whemnl< 3, due to the nonlocal in time nonlinearity.
While the blow-up result is done in any dimensional space usgresent our main results.

First, the following local well-posedness result is needed

Proposition 1. Let1l < p < n/(n—2)forn > 3, and pe (1, o) for n = 1, 2. Under the assumption(4.2)-(1.3) and
v € (0, 1), the problem(1.1) possesses a unique maximal mild solutighes satisfies the integral equatidB.22)
below, such that

U € C([0, Tmag), H'(R™) N CH([0, Tmay), L(RM),

where0 < Tmax < co. Moreover, ft, -) is supported in the ball @ + K). In addition:
either Tnax=o00 orelse Thax< oo and [[ut)llg: + lu®)ll2 = © as t— Tmax (1.6)

Remark 1. We say thau is a global solution of (1) if Tmax = oo, while in the case o max < o0, we say thau
blows up in finite time.

Now, set 22— ) 2(3-2)
-y -y
= 1 —_— = 1 —_— = 1
P1 * (n-2+2y),’ P2 * (N-2+2y), and ps *

4(3-2y)
As
(pr=n/(n-2)=1/y) & (y = (n-2)/n),
this imply, in the case whem(- 2)/n < y, thatp; = max1/y; pi} < n/(n-2). Moreover,p; < min(pz, pPs).
We note that
P1, p2 = 1+ 2/n = pe(n) and ps — 1+ 4/n> pe(n) asy — 1.

Our global existence result is the following



Theorem 1. Letl<n<3,p>1landye (1/2,1)forn=1,2andy € (7/8,1) for n = 3. Assume that the initial data
satisfy(1.2)-(1.3) such thaf|uo||: + [lu1]lL2 is syficiently small. If p < pforn=1and g < p for n= 2, 3, then the
problem(1.1) admits a unique global mild solution

u € C([0, ), HY(RY)) n CL([0, o), L3(RY)).

Note that, the requirememte (7/8, 1) is just to assure thaz < n/(n— 2) whenn = 3.

The second result is the finite time blow-up of the solutiodemsome positive data which shows that the assump-
tion on the exponentin the above theorem (fer 1 andy — 1) is critical and it is exactly the same critical exponent
to the semilinear heat equation— Au = |u|P. Moreover, we conjecture that will be the critical exponent of (1)
which is the critical one to the corresponding semilineaatheguationu; — Au = fot(t — 9)7Yu(s)|Pds founded by
Cazenave, Dickstein and Weissler [2] and Fino and Kirane [6]

Theorem 2.
i) Letl < p<n/(n—2)forn > 3,and pe (1, ) for n = 1,2. Assume thatn — 2)/n < y < 1 and(up, u;) satisfy
(1.2)-(1.3) such that

f u(x)dx>0, i=0,1 a.7)
Rn

If p < p1, then the mild solution of the proble¢h.1) blows up in finite time.
i) Letn>3andl < p < n/(n-2). Assume thay < (n— 2)/n and(up, u;) satisfy(1.2) and (1.7), then the mild
solution of the problen{l.1) blows up in finite time.

As the by-product of our analysis in Theorem 1, we have tHeviahg result concerning the asymptotic behavior
ast — oo of solutions.

Theorem 3. Under the assumptions of Theorénthe asymptotic behavior of the small data global solutior (1d.)
is given by
_125/4
IDU(t, lizm gy = O(€7 ), t— oo, (1.8)

that is the solution decays exponentially outside everyB@l/%*°), § > 0. Moreover, the total energy satisfies
IDU(t, - llzgny = O™+ Y27),  t— oo, (1.9)

forn=1and
IDU(t, - lle@ny = O(tY%7),  t— oo, (1.10)

forn=2,3.

As we have seen, we are restricted ourselves in the case glambijnsupported data. This restriction leads us to
the finite propagation speed property of the wave which pdaysnportant role in the proof of the global solvability.
The blow-up result and the local existence theorem couldrbeeggl removing the requirement for the compactness
assumptions on the support of the initial data. For the dlekiatence without assuming the compactness of support
on the initial data, we refer the reader to [8, 9, 10, 19, 20]thiat case, we have to takg € HY(R") n L}(R") and
up € L2(R") N LY(R").

This paper is organized as follows: in Section 2, we presentesdefinitions and properties concerning the
fractional integrals and derivatives. Section 3 contaivesgroofs of the global existence theorem (Theorem 1) and
the asymptotic behavior of solution (Theorem 3). Sectiosdevoted to the proof of the blow-up result (Theorem 2).
Finally, to make this paper self-contained, we shall skéttehproof of the local existence of solution (Proposition 1)
in Appendix.



2. Preliminaries

In this section, we give some preliminary properties on thetfonal integrals and fractional derivatives that will
be used in the proof of Theorem 2.
If AC[O,T] is the space of all functions which are absolutely contision [QT] with 0 < T < oo, then, for
f € AC[0, T], the left-handed and right-handed Riemann-Liouville fiatl derivativeng“ f(t) andD;"T f(t) of order
a € (0,1) are defined by

.
Dg f(t) = AL f(t) and Dif(t) = —ﬁatf(s—t)wf(s)ds te[0,T], (2.1)

whererl is the Euler gamma function, and

t
3900 = fla) [ =99 s 2.2)

is the Riemann-Liouville fractional integral, for al € L90,T) (1 < g < ). We refer the reader to [12] for the

definitions above. Furthermore, for evelryg € C([0, T]) such thangltf(t), DﬁTg(t) exist and are continuous, for all

te[0,T], 0 < a < 1, we have the formula of integration by parts (se®42 p. 46 in [22])

T T
[ esnosoe = [ oo o 2:3)

Note also that, for alf € AC™'[0, T] and all integen > 0, we have (see (2.30) in [12])
(-1)"97.Dyr f = Dyrf, (2.4)

where
AC™[0,T]:={f :[0,T] — R andd?f e AC[O, T]}

anddy is the usuah times derivative. Moreover, for all £ g < co, the following formula (see [12, Lemma 2.4 p.74])
DG ot = 1diaom) (2.5)

holds almost everywhere on,[0].
In the proof of Theorem 2, the following results are usefilvi(t) = (1 -t/T)7,t >0, T > 0, o > 1, then

Dirwi(t) = CT™(T = )77, Dg'wa(t) = CT (T -)7"%,  DffPwa(t) = CT(T - )72, (2.6)
forall @ € (0, 1); so
(Dfrwa)(T) =0, (Drwa)(@)=C T, (Dff'wy)(T)=0 and (Dgf'wa)(@)=C T  (2.7)
For the proof of this results, see [4, Preliminaries]. Ferthore, throughout this paper, positive constants will be
denoted byC and will change from line to line.
3. Global existence and asymptotic behavior

In view of the Proposition 1, global existence of a solutiolidws from the boundedness of its energy at all times.
To obtain such a priori estimates, we shall proceed our graséd on the weighted energy method recently developed
in Todorova and Yordanov [23]. We begin by defining

w(xt) = %(t + K- t+K)Z-|x?), [X<t+K. (3.8)
Itis easily checked that; < O,
0 < y(xt) < g (3.9)

4



and, since
Vit + K2 = X2 < t+ K — [x?/[2(t + K)],

the functiony satisfies the inequality
|x2

VD = 2Ry

Proof of Theorem 1. Let u be the local solution of the problem.{} in [0, Tmay. Let us introduce the energy
functional

(3.10)

W(t) := (1+1)]IDu(t, -)ll2. (3.11)

wherej :=n/4-1/2+vyforn=1andj:=-1/2+yforn=23.
We will show thatW(t) < Clo, wherelp := ||ug|l4: + [Juall2 is small enough. This not only gives the global existence
but also shows that, far= 1 andy — 1, the solution decays at least as fast as that of the lineaupariiu + u; = 0.
For the rate of the linear problem, seeX3) below.
The estimate (31) will be done by the following lemmas.

Lemma l. Letn> landy € (1/2,1)forn=1,2andy € (7/8,1)forn = 3. Forall § > O and all t € [0, Tiay), the
following weighted energy estimate holds

(1 +t)/|IDu(t, -)ll» < Clo + C(r[rg)%x(l + 7 (r, - )llzp) P, (3.12)

whereB > n/4p+ (2-vy)/pforn=1landB > (2—y)/pforn=2,3.

Lemma 2. ([23, Proposition 2.4] Letd(q) = n(1/2 - 1/g) and0 < 6(g) < 1, and let0 < o < 1. If u € HY(R") with
suppuc B(t+ K),t > 0. Then

€7 g < Ci (1 + D2 vy 3o Mvulg, . (3.13)
wherey(t, X) is the weight function fron(3.8).

We postpone the proof of Lemma 1 to the end of this section.
It follows from Lemma 1 that
W(D) < Clo+ C(max(1 + YT, - llzp)P. (3.14)

On the other hand, Lemma 2 with= 2p ando = § < 1 gives

U, Yop < C(L+ )2 vu; e vl
< C(1L+ r)&o@I2Z-iw(r), (3.15)
where we have used (3.9).
Using (315), we obtain from (3L4)
) p
W(t) <Clp+C T)%)(l + 7)Y 2miw(7) | (3.16)

Setf=n/4p+ (2-vy)/p+vforn=1ands = (2-y)/p+vforn=23, v >0, so if we compute the exponent of
(r + 1) in the right side of (3.6), we obtain

- Zip [p(1-2@-y)/M)—1-2@-y)/m)], ifn=1,
B+(1-0(2p)/2-] = N (3.17)
V—4—p[p(1—4(1—y)/n)—1—4(2—y)/n)], ifn=2,3.

As p> pzforn=1andp > psz for n = 2,3, we can deduce, choosimgmall enough, that the quantities in13) are
negative. Hence, we can rewrite18) like

P
r[T(])%XW(T) <Clo+ C(TB%XW(T)) . (3.18)
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Now, write lg = ||Ug|lx: + [Juall2 = Ce, for smalle > O which is determined later, and put
T" =supt=0: W() < 2C¢}.

Then, (318) impliesW(t) < Ce + CeP. Therefore, taking small such thatCe + CeP < 2Ce we conclude thal * = oo
( For details we refer the reader to [10, Proposition 2.1][@4d Proposition 2.1]), i.e.

W(t) = (L +t)![IDut, )l < Ce, t>0. (3.19)

Thus we have completed the proof of Theorem 1. O

Proof of Theorem 3. The estimate (B) follows directly from (319). Next, it follows from inequality (3)-(3.10)
and estimate (39) that

Ce > &IDu(t, - llzgery > lle"/4HODUC, - YllLoam sy = € “CRDUGE, - )llzgen ).
where we have used the fact tHat 0, which implies (18). O
To show Lemma Jwe need a linear estimates for the fundamental solutioneofdliowing linear damped wave

equation
Wit — AW+ W =0,  W(0,x) = Ug(x), W(0, %) = ur(x), (3.20)

fort € (0, 00) x R". Let Kog(t), K1 (t) be

; sin(ta(v))}
a(v)

VIEP =174, 1& > 1/2,

i\J1/4- g2, l¢l < 1/2

Note thatKg(t) + 1/2K4(t) = 0:K1(t). Then the solution of (20) is given (cf. [16]) through the Fourier transform by
Ko(t) andKy(t) as

Ko(t) := gz codta(|V])}, Kit) := €

where

Fla(VDI(¢) = al) =

W(t, X) = Ko(t) = ug + Kq(t) = (%uo + ul). (3.22)

The Duhamel principle implies that the solutioft, xX) of nonlinear equation (1) solves the integral equation

u(t, X) = w(t, X) + I'(@) L‘ t Ki(t — 1) = J&T(|u|p)(r) dr, (3.22)

wherea '=1-vy anngn is given by (22). We can now state Matsumura’s result, on the estimat& ) andK(t),
as follows:

Lemma 3. ([16]) If f € L™(R") n H*M-YR") (1 < m < 2), then
0KVLK () * flla < C(L + t)Y 4 COM2K( |0 4[| [z ny)-

Proof of Lemma 1. We begin to estimate the linear tetfPw(t, - )|J.. It is not difficult to see, using Lemma 3 with
m = 1, that

IDW(L, - )ll2 < C(L + t) ™4 2(|lugllye + IlUolly + lluallz + lluglls) < Clo(L + )42 < Clo(1 + 1)~ (3.23)

To estimate the nonlinear term in.22), we decompose it as follows

t
[ 10Kt =) 5, QU = 1y 51z (3.24)
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where U2 .
Iy o= f IDKy(t = 7) % I (uP) (Dl dr, 15 3= f IDKs(t - 7) = Ig, (UP)(@)Il2 dr.
0 t/2

We have to distinguish two cases:

e Case ofnh = 1: Apply Lemma 3 withm = 1, we have

A

IDKy(t - 7) + I (UP)@lle < (t=7+ 172 (138 (U@l + 195, (uP)(D)Il2)
(t—7+2)™*Y2(35 @I + I u@I,) - (3.25)

IA

To transform the.P-norm into a weighted ?P-norm, we use the Cauchy inequality

f lu(r, X)[P dx
B(r+K)

1/2 1/2
( f g 2P g x) ( ePvE|y(z, x)?P d x) ,
B(r+K) B(r+K)

llucz. - )lip

IA

for 6 > 0. From (310), we havey(r, X) > |x2/4(r + K) for x € B(r + K), so the first integral is estimated as follows

n/2
f g 2Pv() gy < f e PIXE2049 gy < f e P29 gy = (ﬁ) (r + K)"2.
B(r+K) B(r+K) n po

Thus, for the norntiu(z, - )|l in (3.25) we obtain the weighted estimate
Iz, -)lIp < Cs(r + DM u(z, - )Ii5,, 6> 0. (3.26)
Next, asy > 0, the normju(z, - )ll2p in (3.25) can obviously be estimated by
llu(z, 5, < Cslr + 1)1, - I, (3.27)

Now, using (325) to estimate; andl,, we get

t/2 T
lh<C | (t-7+1)y V422 f (r = )7 ((o + 1)VEP IV y(o, - lpp)P dor dr = T4 + 112
0 0
and . .
lb<C | (t-7+1yV+¥2 f (t = o) (o + 1)V Iy(o, - )lpp)P dordT = 121 + 2,
t/2 0
where
t/2 7/2
l11:=C (t—7+1)y4-12 f (r = )Y ((o + 1)V Iy(cr, - )||2p)P o di,
0 0
t/2 T
li,:=C (t—7+ 1)V 2 [ (- )7 (o + 1)VEP (o, - )llap)P do dr,
0 7/2
t T/2
loy:=C | (t—7+1)V4Y2 (r — o) ((o + 1)V I(cr, - )||2p)P dor dr
t/2 0
and

t T
lp:=C | (t—7+1)yV4+12 f (r - o) (o + 1)VUP) U Iy(or, - )||p)P dor dr.
t/2 7/2



It remains to estimath 1, 112, 121 andl,,. We have

IA

t/2 7/2
ln < C(L+t)y W12 f 7 f (o + )P Iu(or, - )l|zp)P dor dr
0 0

IA

t/2 7/2
C(L+t)™V41/2 f 7 f (@ + 1)@ ((o + 1Y€ u(o, - )llz2p)P do dr
0 0

IA

t/2 7/2
CL+ O™ 2 maxz + 110, )lp)? f T ( f (o + 1)@ do-) dr
’ 0 0
C(L+ i M2 (manr + 1Y 1€ u( )lzp) P,

IA

=
N
A

t/2 T
C(1+t) Va2 fo (Mmax(o + 1)”/‘4">||e‘5‘”<”*>u(a,-)||2p)p( f (T=a)” drr) dr
T/4,T T/

IA

t/2
O+ ™42 (max(e + Y1 (e Yegl? [ (4 27 @ de
’ 0

IA

C(L+ )12 (maxtz + Y11 u(r, )lzp)

Next,

t 7/2
C| (t—7+1)y"+12ry f (o + 1)VEPU@Iy(qr, - ) lap)P dor dr
t/2 0

IA

121

IA

t T/2
Ct*y(rgg)%xr + 1PV (- Yll2p)P f (t—7+1)yWa12 ( f (o + 1)@ do-) dr
) t/2 0

IA

t
C(L+8)7(maxr + 1Y€ ™u(r, - )llp)P f (t—7+1)"4+124r
A t/2

IA

C(1+ t)‘”/4+1’2‘7(qg%>(r + 111 u(, - )llzp)P

for larget. Finally,

t T
C | (t—r+1ymet? f (r = o) (o + DN, llop)P dor dr
t/2 7/2

IA

122

IA

t T
Cmaxt + 1)V Eu(r, )P | (t-7+ 1)V 2 [ (r-0) 7 do| dr
[t/4.4] t/2 /2

IA

C(1+ t)’l(rgg%xr + 1)1 u(r, - Yll2p)P ft/ tz(t -7+ 1)V 2gr

< C+y T mad + 11 utr - llzp)”

< CEL+ O™ (max + 1P UG llzo)
Combining (323) - (3.24) and (328) - (3.31), we obtain (312). This complete the proof far = 1.
e Case oin = 2, 3: Apply here Lemma 3 withn = 2, we obtain

IDKa(t —7) * I (UPY@llz < (t =7+ 1)2135, (UP) @Il < (= 7+ 1) Y235 Ilu(@)I5,

As above, using (32) to estimateé; andl,, we get

t/2 T
lh<C | (t-v+1)"? f (v = o) 1€ (o, II5, dodr = Jua + iz
0 0
8

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)



and

where

and

We have

t T
l,<C f (t—7+1)2 f (r - ) 71uU(o, - li5, dodr = o1 + oo,
t/2 0
t/2 7/2
dai=C [ [ o) 1@ o i, dor
0 0
t/2

Jo=C | (t—-t+1)? f (r - o) Iu(o, - )II5, do- dr,
0 7/2

t T/2
Jni=C f (t—7+1)2 f (r - o) 71I€¥u(o, - )IIg, do-dr
t/2 0

t T
Jop:=C f (t—7+1)22 f (r = o) 1€ u(o, I, dodr.
t T/2

/2

t/2 T/2
Ju < C@+t)™2 f 7 f 1€u(ar, - I3, do dr
0 0
t/2 T/2
< C(l+t Y2 f 7 f (o + 1) (o + 1P1€7u(0, - )l|2p)P dor dr
0 0
t/2 7/2
< C(1+ t)-l/z(r[rg%xr + 1)1 TIu(r, - )ll2p)P f 7 ( f (o + 1) do-) dr
A 0 0
< C(1+ t)”Z*Y(r[rg)%xr + 111, - llzp) P,
t/2 T
Jo < Cl+t)Y? f ([rr/léi)](||e§¢(”")u(0',-)||2p)p( f (t—o)” do-) dr
0 T/&T. 7/2
t/2
< Cc@+yY 2‘7(%?(7 + 11U, - llzp)P f (r+ 1)@ dr
4 0
< C(+ t)”Z*Y(r[g%xr + 1P, - )lizp)P.
t T/2
b1 < C| (t—-t+1) Y3 f ||e‘5‘”("")u(a,-)llgp do dr
t/2 0
t 7/2
< cry(%%xf + 1P u(r, - Yll2p)P f (t—7+1)y Y2 ( f (c+1)®Mdo| dr
\ t/2 0
t
< Cl+7(maxr+ P uCr lizs)” f (t-7+1)y"2dr
s t/2
<

C(1+ t)”Z*Y(r[g%Kr + 1Pz, - )ll2p) P,

for larget. Finally,

IA

t T
Joo C| t-r+1)'? f (r — o) IV u(o, - )|I5 dordr
t/2 7/2 P

IA

t T
C(max|Ie™u(z, - )ll2p)P f (t—7+ 1)1/2( (t-0)” do-) dr
[t/41] t/2 7/2
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(3.33)

(3.34)

(3.35)



IA

t
C(L+ 0 (maxz + ¥ 11 u(r, lzp)” f (t-7+1)"2dr
? t/2

C1+ t)*”z(qg%xr + 1711 u(r, - )ll2p)P

IA

IA

Cca+Y 2*7(%?(7 + 1PV, - )llap) . (3.36)

Combining (323)- (3.24) and (333) - (3.36), we obtain the desired estimate. This complete the proof fel2, 3. [

4. Blow-up result

In this section we devote ourselves to the proof of TheorelV@ start by introducing the definition of the weak
solution of (11).

Definition 1. (Weak solutioh Let T > 0,y € (0,1) and w,u; € Llloc(R”). We say that u is a weak solution if
ue LP((0,T), LY (R") and satisfies

loc

)
@) [ [ Furedxdt | ne@xdxs [ w09 -0 ) dx

T T T
=f f u<pndxdt—f f u<ptdxdt—f f UApdxdt (4.1)
0 n 0 n 0 n

for all compactly supported functigne C3([0, T] x R") such thatp(-, T) = 0andg(-, T) = 0.

Next, the following lemma is useful for the proof of Theorem Bhe proof of this lemma is much the same
procedure as in the proof of [4, Lemma 2].

Lemma 4. (Mild - Weall Let T > Oandy € (0,1). Suppose that < p < n/(n—2),ifn > 3, and pe (1, ), if
n= 12 IfueC(0,T], HY(RM) n CL([0, T], L>(R")) is the mild solution of1.1), then u is a weak solution ¢1.1).

Remark. We need the mild solution to use, in the proof of Theorem 2atternative (16). Without this properties,
we obtain just a nonexistence of global solution and not elp result.

Proof of Theorem 2. We assume on the contrary, using6l thatu is a global mild solution of (1.). So, from
Lemma 4 we have

)
o3 9] —
@ [ o, U0 pxats I. ITCECRLI I. oy IO~ (00) 0x

T T T
=f f u%dxdt—f f u<ptdxdt—f f uAgpdxdt (4.2)
0 Jsupm 0 Jsupm 0 Jsuppy

forall T > 0 and all compactly supported test functioe C2([0, T] x R") such thatp(-, T) = 0 andg(-, T) = 0. Let

¢(x1) = Di (1) = Dy (¢4 (ea()) with @2(x) :=  (1XI/B), @a(t) := (1 t/T)!, whereD, is given by (21),
¢,n> 1 and® € C*(R,) be a cut-& non-increasing function such that

1 ifosr<1
q’(r)z{ 0 ifr>2

and 0< @ < 1, |®'(r)| < Cy/r forall r > 0. The constanB > 0 in the definition ofp; is fixed and will be chosen later.
In the following, we denote b§2(B) the support ofp; and byA(B) the set containing the support &, which are
defined as follows:

Q(B)={xeR": [x<2B}, A(B)={xeR": B<|x < 2B}.

10



We return to (4&), which actually reads

-
F(a)fo f( ‘|t(|u|p)Dt|T‘Pdth+ f(B) u1(X) Dyr (0, x)dx+f( Uo(X)(Dyr#(0, X) — 9:Dy74(0, X)) dx
Q(B Q

T T T
=f f uatDﬁTdvdxdt—f f uatDﬁTtpdxdt—f f u ADjr¢ dx dt (4.3)
0 JoB) 0 JoB) 0 JA(B)

From (23), (2.4) and (27), we conclude that
T
f f DatJat(|u|p)¢dxdt+CT’ f ul(x)gol(x)dx+ C(T*+T™* 1)f uo(x)gol(x)dx
0 JQB) QB

N
:Cfo fQ(B) U(Dﬁ?"é ilﬁ'_”@)dxdt cf f uA(tpl)Dtchpdedl; (4.4)

whereD?

o or 1S defined in (21). Moreover, using (3) and the fact that (T) impliesz(B) Pi(ui(x) > 0,i = 0,1, it
ollows

.
ff |ulP@ dx dt
0o Jom)

IA

]
C f f |ulf (D@2 + Dyy®e2) dxdt
0 Q(B)
T
e f f Ul 2(1A 1] + Vg1 Dy ez dx dit
o Jam)
= 11+ (4.5)

where we have used the formuby() = (@i Ap1 + €(¢ — 1)pi?|Ve1l? and 1 < 1. Next we observe that by
introducing the ternpPZ1/P in the right side of (%) and applying Young'’s inequality we have

I < Z)f L(B)|u|p"0dth+Cf f ¢ 9021/(13 l)((Dﬁ-T—QQDZ)p/ + (Dtl‘-T—a‘,Dz)p/)dXdl; (4.6)

wherep’ = p/(p— 1). Similarly,

1 (T . T o ,
<~ f f UPg dx dt+ C f f S G V(AP 4 VP (Dlren) dxdt (4.7
2p Jo Jam) 0 Jap

Combining (46) and (47), it follows from (4.5) that

T T
fo L(B)Mp"zd)(dt < C fo fﬂ o ey PI(DE )P + (DEp2)) dxdt
T
+ Cfo f(B) l/(p 1)(|A901|p + [V | )(DI‘T‘PZ)p’ dx dt 4.8)
Q

At this stage, to prova, we have to distinguishes 2 cases.

e Case ofp < p,: in this case, we takB = T2, So, using (3) and the change of variables:= T,y = T-¥2x,
we get from (48) that

T
f L(Tm) |U|pt;7dthS C(T—(a+2)p’+n/2+1 + T—(a+1)p’+n/2+l)’ (49)

whereC is independent of . Letting T — oo in (4.9), thanks top < p, and the Lebesgue dominated convergence

theorem, it is yielded that
f uPdxdt=0
0 R"

11



which impliesu(x, t) = O for all t and a.ex. This contradicts our assumption T}

e Case ofp = p,: let B = R"¥2TY2 where 1« R < T is such that whelf — oo we don’t haveR — oo at the same
time. Moreover, from the last case and the fact that p,, there exist a positive constabtindependent o such

that .
f uPdxdt< D,
0 RN

.
f f uPgdxdt—=0 asT — oo. (4.10)
0 JAaRVeT12)

On the other hand, using Hélder’s inequality instead of \@sione, we estimate the integtalin (4.5) as follows:

which implies that

T 1/p T rooy 1 L 1/p
|ZSC( f f |u|P¢) ( f f 7 VO D(AG Y + [Vier PP )(Difrgo) dxdt) NRT)
0 JarreTie o Jowrrerie)

Similarly to the last case, substituting.§}#and (411) into (45), taking account op = p, and the scaled variable
s=TU, y=RY2T-12x we get

T T 1/p
f f luPdxdt< C(TPR™? + R?) 4+ CRE@P) (f f uPg| .
0 JOR12T12) 0 JARY2TY2)

Letting T — oo, using (410), we get
f luPdxdt< CR™?,
0 RN

which implies a contradiction, wheR — oo, with (1.7). This completes the proof of Theoremip
For the proof ofii), we have two possibility.

o If y <(n-2)/n: let B = R with the sameR introduced in the casp = p,. Then, taking the scaled variables
s= T4, y = R 1x, it follows from (4.8) that

.
f f luP@ dx dt< CRY(T @@+l 4 T-(+a)p'+1y | cR-20 T-ap+1
0 Jom

Asy < (n—2)/nimpliesp < n/n-2 < 1/y, we get a contradiction with (I) by letting the following limits: first
T — o0, NextR — oo.

o If y =(n-2)/n: we havep < n/(n-2) = 1/y = p,. Using the first two cases, we get the contradiction. This
completes the proof of Theoremip). O

5. Appendix

In this appendix let us sketch the proof of Propositiohét us define a semigrou@(t) : HY(R") x L?(R") —
HL(R") x L2(R") by
.| Uo w
oo [2]-[%)

wherew e C([0, «), HY(R")) N CY([0, o), L3(RM) is the linear solution of (20) given by (321). So, view of (322),
a mild solution of the nonlinear problem.q} is equivalent to following integral equation:

U(t) = S()Uo + j: S(t-9F(s)ds (5.1)

12



where
u() =

u(t,-) | uo |10
u(t,-) ] Yo ‘[ Uy ] F ‘[ 3 (uP)(S ]

It sufficient now to prove the local existence of a solution ofLf5n HY(R") x L?(R"). Let T > 0 and consider the
following Banach space

E:={U="%u0): (uv)eC(0,T], HY(R") x L>(RM), supp(t,-) c B(K +t) and||U|lze < CM},

where
IUlle = llullcqo,mHrrny) + lbllcqo.myeryy  and M = [[Uolly + [ugl2.
In order to use the Banach fixed point theorem, we introdueéatiowing map® on E defined by

t
D[U](t) := S(t)Uo + f S(t-9F(s)ds
0
Now, forU = (u,v) € E, we have
196 (UP)Y(B)llz < CElu(t, -)ll5, < CEIIU, I, < CEIVIE,  te [0, Tl

where we have used the Sobolev imbeddiifR") ¢ L2P(R"). Next, using Matsumura’s result (Lemma 3) with
m = 2 and the finite propagation speed phenomena, we deduceevizathach fixed point theorem that there exists
a local solutiond € E on a small interval [0T] satisfies (51). For details, we refer the reader to [6, Theorem 1]
and [4, Theorem 2]. By consequence, there exist a localisalute C([0, T], H}(R")) n C1([0, T], LA(R")) satisfies
(3.22) and supp(t, - ) c B(t + K). However, since our equation.() is nonautonomous, we prefer apply Gronwall's
inequality to get the uniqueness (cf. [2, Theorem 3.1]).ekuti ifu,» € C([0, T], HY(RM) n CY([0, T], L?%(R")) are
two mild solutions (i.e. satisfy (22)) for someT > 0, we have

t
lu® - o®lk < © fo IKa(t = 7) + 35, (UP = BIP)(O)lhse e
t
< C fo (1 +t=)"Y2135 (U = IP) (D)2 dr
t
< C [ 135.0uP - Pl (5.2)

where we have used again Matsumura’s result (Lemma 3)with 2. As |[u|P — [v|P] < Clu — v|(JulP + [v|P), so by
Holder's inequality abil> < [lall2plibll2y) with p’ = p/(p— 1) and Sobolev’s imbeddinddt c L?P), we obtain

t
fo 13 (P — oP)(2)l dr

IA

t
C f I3 (lu = vllz (Ul + 0P H)(x) de
0

IA

c [ =975 - ols s dser
= o[- 97105 )~ uls s oeds
= C fot(t - 9'7NIu(s,-) - v(s. )l ds (5.3)
Combining (52) and (53), we get
lu(t) —o®llh: < C fot(t - 9"u(s -) — v(s.-)lluz ds
Using Gronwall’s inequality, it follows thai(t) = v(t). As a consequence of this uniqueness result, we can extend our

solutionu on a maximal interval [T may). Moreover, if Tmax < oo, then|ju(t, - )|z + [[u(t, - )ll2 — oo ast — Tmax FOr
details, see [2, Theorem 3.1] and [6, Theorem 1].
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