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Critical exponent for damped wave equations with nonlimeamory
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Abstract

We consider the Cauchy problem&f, n > 1, for a semilinear damped wave equation with nonlinear menigbal
existence and asymptotic behaviotas o of small data solutions have been established in the case Whe < 3.
Moreover, we derive a blow-up result under some positiva @iat in any dimensional space. It turns out that the
critical exponent indeed coincides with the one to the apoading semilinear heat equation.

Keywords: Nonlinear damped wave equation, Global existence, Blow@upical exponent, Large time asymptotic
behavior
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1. Introduction

This paper concerns with the Cauchy problem for the dampeé equation with nonlinear memory

t
Ut — AU+ Uy = f(t—s)’ﬂu(s)l”ds t>0,xe R",
0 (1.1)

u(0, X) = Up(x), ut(0, X) = uz(x) xeR",
where the unknown functionis real-valuedn > 1, 0 < ¥ < 1 andp > 1. Throughout this paper, we assume that
(Uo, Ur) € HY(R") x LZ(R") (1.2)

and
suppi € B(K) :={xeR": | <K}, K>0,i=0,1 (1.3)

For the simplicity of notations|: [l and||- [ls: (1 < g < oo) stand for the usual9(R")-norm andH(R")-norm,
respectively.

In recent years, questions of global existence and blowfgplations for nonlinear hyperbolic equations with a
damping term have been studied by many mathematiciandde,[1B[ [ 0] and the references therein. To focus
on our motivation, we shall mention below only some resudtated to Todorova and Yordan20]. For the Cauchy
problem for the semilinear damped wave equation with theifigrterm

Ut — AU+ Uy = |ul®, u(0) = ug, Ww(0)=uy, (1.4)

it has been conjectured that the damped wave equation hafifiage structure as — oo (see e.g. [[1[32]). This
suggests that proble@ should havepe(n) := 1+ 2/n as critical exponent which is called the Fujita exponent
named after FujitaﬂG], in general space dimension. Indéedorova and Yordanoy [R0] have showed that the critical
exponent is exactlyp.(n), that is, if p > pc(n) then all small initial data solutions are global, while if 1< p <
pe(n) then all solutions of[(#) with initial data having positive average value blow-oginite time regardless of the
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smallness of the initial data. Moreover, they showed th#héncase op > pc(n), the support of the solution o@)
is strongly suppressed by the damping, so that the soludieoncentrated in a ball much smaller than< t + K,
namely

IDU(, - YliLzgen sz = O™, as t — oo,

whereD := (04, Vx). Furthermore, they proved that the total energy of the suhstof ) decays at the rate of the
linear equation, namely
IDUCt, )l z@ny = O3, ast— co.

Our goal is to generalize the above properties founded byGw and Yordanov to our proble@ with the
same assumptions on the initial data. The method used t@ phevglobal existence is the weighted energy method
developed in[[20]. On the other hand, the test function ne(see [B[K{]5, 14, 15] and the references therein) is the
key to prove the blow-up result. We denote that our globaitexice and asymptotic behaviortas oo for small data
solutions are obtained in the case wheg fi < 3, due to the nonlocal in time nonlinearity. While the blow-@sult
is done in any dimensional space. Let us present our maiftsesu

First, the following local well-posedness result is needed

Proposition 1. Let1 < p < n/(n—2)for n > 3, and pe (1, ) for n = 1,2. Under the assumption.2)-(.3) and
v € (0,1), the problerr@) possesses a unique maximal mild solutighes satisfies the integral equatid )
below, such that

u € C([0, Tmax). H*(R™) N CH([0, Tmax), LA(R"),

where0 < Tmax < c0. Moreover, W, - ) is supported in the ball @ + K). In addition:
either Thax=o00 orelse Thax< oo and [[u(t)lx: + |[u(t)ll2 = o and t— Tmax (1.5)

Remark 1. We say thau is a global solution of@) if Tmax = o0, while in the case o max < o0, we say thau
blows up in finite time.

Now, set

o 2(2-7) - {}. }
o ._1+7(n_2+27)+ and p*=max y,py.

Our global existence result is the following

Theorem 1. Let p" < p<n/(n-2)forn=3,and p < p < oo for n = 1,2. Assume thal/3 < y < 1/2 and the
initial data satisfy(L.9)-(.3) such that|uoll: + [lusll 2 is syficiently small. Then the problegfi.q]) admits a unique
global mild solution

u € C([0, ), HY(RM) N CL([0, o), L3(RM).

The second result is the finite time blow-up of the solutiodemsome positive data which shows that the assump-
tion on the exponent in the above theorem is critical andeiectly the same critical exponent to the corresponding

semilinear heat equatian — Au = fot(t — 9)77u(s) dsfounded by Cazenave, Dickistein and Weissﬂar [2] and Firb an
Kirane [$].

Theorem 2. Letl < p<n/(n—2)forn > 3, and pe (1, ) for n = 1,2. Assume thafn — 2)/n < y < 1 and(uo, Uz)
satisfy(fL.4) such that

f u(x)dx>0, =01 (1.6)
Rn
If p < px, then the mild solution of the problef.]) blows up in finite time.

Since ¥y < p*, so we have the following

Corollary 1. Letn> 3and1 < p < n/(n— 2). Assume thag < (n— 2)/n and(uo, uy) satisfy(fL.d) and (L.§), then the
mild solution of the problerfL.1) blows up in finite time.



As the by-product of our analysis in Theor(ﬂn 1, we have thewahg result concerning the asymptotic behavior
ast — oo of solutions.

Theorem 3. Under the assumptions of Theorﬂnhe asymptotic behavior of the small data global solutiot @)
is given by
_t20/4
IDUt, -l 2@m By = O ), t— e, (1.7)

that is the solution decays exponentially outside everyBét'%+°), 5§ > 0. Moreover, the total energy decays at the
rate of the linear equation
IDU(t, llz@ny = Ot™*Y?),  t— oo, (1.8)

where D:= (at, Vy).

As we have seen, we are restricted ourselves in the case glambinsupported data. This restriction leads us to
the finite propagation speed property of the wave which pdaysnportant role in the proof of the global solvability
together with the weighted energy method. The blow-up temudi the local existence theorem could be proved
removing the requirement for the compactness assumptiotiesupport of the initial data. For the global existence
without assuming the compactness of support on the inititd,dve refer the reader g [[4,[$,[9] {6 17]. In that case,
we have to takep € HY(R™ N LY(R") andu; € L2(R") N LY(R").

This paper is organized as follows: in Sectﬂn 2, we presentesdefinitions and properties concerning the
fractional integrals and derivatives. Sect@n 3 contdmesproofs of the global existence theorem (Theoﬂem 1) and
the asymptotic behavior of solution (TheorEm 3). Secﬂosleﬂeivoted to the proof of the blow-up result (Theo%bm 2).
Finally, to make this paper self-contained, we shall skétetproof of the local existence of solution (Propositipn 1)
in Appendix.

2. Preliminaries

In this section, we give some preliminary properties on thetfonal integrals and fractional derivatives that will
be used in the proof of Theordin 2.
If AC[O,T] is the space of all functions which are absolutely contimion [QT] with 0 < T < oo, then, for
f € AC[0, T], the left-handed and right-handed Riemann-Liouville fiatl derivativeng“ f(t) andD;"T f(t) of order
a € (0,1) are defined by

.
DE f(t) = 5o f(t) and D () = —ﬁ&tft(s—t)wf(s)ds te[0,T], (2.1)

wherel is the Euler gamma function, and

t
34 = ﬁla) fo (t- 97 (9 ds 2.2)

is the Riemann-Liouville fractional integral, for al € L9(0, T) (1 < q < o). We refer the reader td]ll] for the

definitions above. Furthermore, for everyg € C([0, T]) such thangltf(t), D;TTg(t) exist and are continuous, for all

t € [0,T],0< a < 1, we have the formula of integration by parts (se€42 p. 46 in [19])

T T
[ a0 eugds = [ 1909 s (2.3)
Note also that, for alf € AC™[0, T] and all integen > 0, we have (see (2.30) in [13])
(-1)"9.Dg; f = Dyr“f, (2.4)

where
AC™0,T]:= {f : [0, T] - R andd} f € AC[0, T]}
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anddf is the usuah times derivative. Moreover, for all £ g < oo, the following formula (see [Lemma 2.4 p.@ll])

Dgedor = 1dusom) (2.5)

holds almost everywhere on,[D].
In the proof of TheorerﬂZ the following results are usefilvi(t) = (1-t/T)7,t>0, T > 0, o >> 1, then

Dirwi(t) = CT™(T - )77, Dffwa(t) = CT (T -t)7*%,  Dgr’wa(t) = CT (T -7, (2.6)
forall @ € (0, 1); so
(Dfyw1)(T) =0, (Dfrwa)(0)=C T, (Dff'wy)(T)=0 and (Djf'ws)(Q)=CT "  (27)
For the proof of this results, seE [3, Preliminaries]. Femthore, throughout this paper, positive constants will be
denoted byC and will change from line to line.
3. Global existence and asymptotic behavior

In view of the Propositioﬂ 1, global existence of a solutioltdws from the boundedness of its energy at all times.
To obtain such a priori estimates, we shall proceed our graséd on the weighted energy method recently developed
in Todorova and Yordanoy [R0]. We begin with the identity

d (2D _
PN AU+ w) = (o (wf + VU - div@*Iu)
eZW(Xt) 2, 2_ 2

m (VU= V)~ + +1VYl” = ¥p), (3.8)

which holds for each functiom(x, t) and allx € R", t > 0. In order to get good estimates, we would like to have

Y <0 ya+ VY -yi =0 (3.9)
For this purpose we choose

1
Y(xt) = E(t + K= /(t+K)2Z-|x2?), [X<t+K. (3.10)

It is easily checked that the following phase function $’mx's) and has the advantage of being regular on the
support of the solution. We also note that, since

Vit + K2 = X2 < t+ K — [x?/[2(t + K)],

the functiony satisfies the inequality
X

VY = 2y

Proof of Theorem |] Let u be the local solution of the probler@h in [0, Tmay. Let us introduce the weighted
energy functional

(3.11)

W() = (1+ )Y 2Dut, - )ll2 + 1€ Dut, - )lo. (3.12)

We will show thatW(t) < Clo, wherelp := ||ug|l4: + [Juall2 is small enough. This not only gives the global existence
but also shows that the solution decays at least as fast asftthee linear part; — Au + u; = 0. For the rate of the
linear problem, sed (37) below.

The estimate of the first term ifi. (@) will be done by the following lemmas.

Lemma l. Forall 8 > n/4p+ (2-v)/p, 6 > 0and all t € [0, Tmay, the following weighted energy estimate holds

(1 + )Y Du(t, - ||, < Clo + C(rggztif(l + 7)1 uU(r, - )ll2p)P. (3.13)

4



Lemma 2. ([0, Proposition 2.4] Let#(q) = n(1/2 - 1/q) and0 < 6(q) < 1, and let0 < o < 1. If u € HL(R") with
suppuc B(t+ K),t > 0. Then

1€ il < Cie (1 + D2 vulz e’ Ivulg, (3.14)
wherey(t, x) is the weight function frorB.10).
The estimate of the second term [n13) is implied by the following lemma.

Lemma 3. For all t € [0, Tmax), the following estimate holds
le“®)Du(t, - )l < Clo + C MaxW(r)(max1 + 7)@NP I y(z, - Ylop)P. (3.15)

We postpone the proofs of Lemnﬁs 1 ﬂwd 3 to the end of thiosecti
It follows from Lemmag]L anf] 3 that

W() < Clo -+ C(max(1 + PN, - llzp)P + C MaxW(r)(max(1 + )2 P Yz, - Ylgp)P. (3.16)

On the other hand, Lemr'rﬂa 2 with= 2p ando = 6§ < 1 gives

1€, Yy < C(L+ 1) "2 vy ¢Vl
< C(l + T)(l—9(2p))/2(1 + T)—(l—&)(n/4+l/2)W(T)1—6W(T)6
= C(1+ T)(1_9(2')))/2_(1_6)(n/4+1/2)W(T). (3.17)
Similarly, we have
||e71)‘/’(7*')u(7-, . )||2p <C(l+ T)(l—H(ZP))/Z—(l—l/P)(n/4+1/2)W(T)‘ (3.18)

Using {317) and [318), we obtain from [(314)
p
Wi < Cl max(L 4 1)HA-6@R) 2-(1-5) n/a+1/2)\
® < Clo+Clmatsn @
p
(2=y)/p+(1-6(2p))/2—-(1-1/ p)(n/4+1/2)
+C|’B%XW(T) (I’B%)(1+T) W(T)) . (3.19)

Set8 = n/4p+ (2-y)/p+v, v > 0, so if we compute the exponent af € 1) in the right side of[(3d), we obtain
B+(1-02p)/2-(1-06)(n/4+1/2) = [v+6(n/4+1/2)] - n(p - 1-2(2-v)/n)/(2p) (3.20)

and
2-7)/p+(1-062p)/2-(1-1/p)(n/4+1/2) = -n(p—1-1/n-2(2-7)/n)/(2p). (3.21)
So,asy < 1/2 < (7- V9 +4n)/4impliesp > p, > 1+1/n+2(2—-y)/nforl <n< 3,andasp > p* > 1+2(2-y)/n,
we can deduce, choosimgmall enough, that the quantity in.28)-({323) are negative. Hence, we can rewrftel@®
like
p p+1
TB%XW(T) <Clo+ C(r’[%%xW(T)) + C(r’[%%xW(T)) . (3.22)
Now, write lg = ||Ugllx: + [Juill2 = Ce, for smalle > O which is determined later, and put
T" =supt>0: W(t) < 2Csg}.

Then, [323) impliesW(t) < Ce + CeP. Therefore, taking smail such thaCe + CeP + CeP*1 < 2Ce we conclude that
T* = oo ( For details we refer the reader f¢ [9, Proposition 2.1] i) Proposition 2.1]), i.e.

W(t) = (1 + )42 Du(t, -)|lo + 1€C)Dut, - )|l < Ce,  t> 0. (3.23)
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Thus we have completed the proof of Theov@m 1. O
Proof of Theorem[3. The estimate[(H) follows directly from [323). Next, it follows from inequality [(3L3) and
estimate [23) that
Ce 2 &IDU(t,  llLzgery > 1€/ 4HODU, - YllLoam sy 2 € DU, - )llzen ez,
which implies {17). O
To show Lemmﬂ,lwe need a linear estimates for the fundamental solutioneofdtiowing linear damped wave

equation
Wi —AW+W =0, wW(0,X) = ug(X), wW(0,Xx) = uz(X), (3.24)

fort € (0, 00) x R". Let Ko(t), K1 (t) be

S _ o4 Sinta(IvI)}
Ko(t) := €72 coqta(|VI)}, Ka(t) :=¢€ av)

JleP—1/4, 18> 172,
i\J1/4- g2, l¢l < 1/2

Note thatKo(t) + 1/2K1(t) = ;K1 (t). Then the solution of[(24) is given (cf. [1B]) through the Fourier transform by
Ko(t) andKy(t) as

where

Fla(VDI(¢) = al) =

W(t, X) = Ko(t) * Ug + Kl(t) * (%Uo + U]_) . (325)

The Duhamel principle implies that the solutioft, X) of nonlinear equatior@) solves the integral equation

t
u(t, X) = W(t, X) + ['(@) fo Ka(t - 7) * 33 (UP)(x) dr, (3.26)

wherea '=1-vy anngn is given by ). We can now state Matsumura’s result, on the estimat& () andK;(t),
as follows:
Proposition 2. ([L3]) If f € L™(R") n H*M-L(R") (1 < m < 2), then

8¢ VK () * Fllz < C(L + 4 EMPIZAC 4 [1F s )

Proof of Lemmaﬂ. We begin to estimate the linear tefiidw(t, - )|,. It is not difficult to see, using Propositicﬂw 2 with
m = 1, that

C(1+ )™+ 2(||ugllyz + lIUollx + lluall2 + [lugllz)
Clo(1 + t)~v4-1/2, (3.27)

IDW(t, - )ll2

IAN A

For the nonlinear term i (34), we apply again Propositidih 2 with = 1, and obtain

IA

t t
fo IDKa(t = 7) + I (UP)(7)ll2ds fo (t— 7+ 172 (135, (UP) @)l + 195, (UP)(@)ll2) de

IA

t
fo (t— 7+ 17" (35 M@l + I u()lp,) dr. (3.28)

To transform the.P-norm into a weighted ?*-norm, we use the Cauchy inequality

f lu(z, X)[P dx
B(r+K)

12 12
( f g 2Pvei g x) ( 2P|y (, X)|?P d x) ,
B(7+K) B(7+K)

6
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foré > 0. From ), we havey(r, X) > |x?/4(r + K) for x € B(r + K), so the first integral is estimated as follows

n/2
f e 2PU dx < f e PIXE/204) ¢ < f e PIXE/204) ¢ = (ﬁ) (r + K2
B(r+K) B(r+K) n pé

Thus, for the normju(z, - )|l in (B.28) we obtain the weighted estimate
Iz, - )lIp < Cs(r + DM u(z, - )Ii5,, 6> 0. (3.29)
Next, asy > 0, the normjju(r, - )Ilzp in (B.28) can obviously be estimated by
llu(z, )II5, < Cs(r + 1)1 u(z, - I, (3-30)
It follows from (3.28)-(334) that

t
f IDKs(t - 7) + 32, (UP) (D)l ds
0
t T
<C f (t—7+1)yva12 f (t-0)” ((0’ + 1)VER) e y(g, - )||2p)p do-dr
0 0

p t T
<C (%%KT + 1)1 u(r, - )||2p) f (t—7+ 1)y V412 f (t-0)"(c+1)®Mdodr  (3.31)
E 0 0
(3.32)
for anyB > n/(4p) + (2 —y)/p. Since

t T
f (t—7+1)"412 f (t—0) (e +1)y®dodr
0 0

t T 1/2 T 1/2
< f (t—7+1) 412 ( f (r—o)? do-) ( f (o +1)2@ do-) dr
0 0 0

t
<C(1+t)Yx f (t—7+ 1) V21 4 1) gr
0

1/2

t 1/2 t
<C(1+t/z ( f (t—7+ 1)yt d‘r) ( f (A+7)3 df) = C(L+t) V412 (3.33)
0 0

we find . p
f IDK1(t - 7) * I (UP)(7)ll2ds < C(1 + t)~V4172 (r[g%xr + 1Y) u(, - )||2p) : (3.34)
0 :
Finally, (3.28), (3.27) and [334) imply the desired estimate. O

Proof of Lemma 3. The proof of this lemma will be done along the line as|if [2@p@rsition 2.3] except for some

changing on the estimate of the nonlinear part. Indeed slassume, for the moment, thag C2([0, Tmay), L2(R™).

Multiplying (IL.1) by €, using [3§) and [39), we get
d e

w(X.t) &2
a( > (el + IVulz)) — div(e?®Yy,vu) -

W(X,t)
Ut

(VU = WVy)? = T(@) I, (uP)e uy.

Integrating over [0t] x R", we have

A

t
1€/®)Du(t,-)l2 < Clg+C f f 35 (UP) ()€ u(r, X) dx dr
0 JR"

IA

t
Clo+C f 19, (UP) (D)l X [z, -l i
0

IA

t
C|0+CTE8%XW(T) f 1195 (ulP) (1)’ ]| dir. (3.35)
> 0
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Actually, the above estimate holds for any solution fromehergy space by the density argument.
Next, let us estimate the integral term in the right sidg &84} Sincey: < 0, we conclude from the definition of

ngt that

t
fo 195, (uIP) ()"l dr

IA

t T
f f (= )" Nu(o, - )IPll, dor dr
0 0

t T . p
f f (r=0) (o + 17 (o + DN PRI, Ylgp) derdlr
0 JoO

IA

P At T
(TS%)(l + T)(Z_V)/p||e%‘/’(7")u(r, ) )||2p) f f (r-0) (o + 1)_(2_7) dodr. (3.36)
A 0 JO

Moreover, it follows from Holder’s inequality that

t T
f f (t-0) (o +1) @ dodr
0 JO

Finally (3.38)-(33%) imply (318), which completes the proof of Lemrfia 3

T 12 p~r 12
fo t ( fo (T—a)%o—) ( fo (o +1)2@" do-) dr

t
C(L+t)l2 f (r+1)Y¥@Ngr = C. (3.37)
0

IA

IA

4. Blow-up result

In this section we devote ourselves to the proof of Thedileltv@ start by introducing the definition of the weak

solution of [11)).

Definition 1. (Weak solutioh Let T > 0,y € (0,1) and w,u; € L,loc(R”). We say that u is a weak solution if
ue LP((0,T),LP (RM) and satisfies

loc

)
@) [ [ Faunedxdt | n(de@xdxs [ w09 -0 ) dx

T T T
=f f ththdt—f f qutdxdt—f f UAp dxdt (4.1)
0 n 0 n 0 n

for all compactly supported functigne C3([0, T] x R") such thatp(-, T) = 0ande(-, T) = 0.

Next, the following lemma is useful for the proof of Theorén Phe proof of this lemma is much the same
procedure as in the proof df[3, Lemma 2].

Lemma 4. (Mild -> Weal Let T > Oandy € (0,1). Suppose that < p < n/(n—2),ifn > 3, and pe (1, ), if
n=1,2 Ifue C(0,T], HL(R")) n CL([0, T], L3(R") is the mild solution offL.1]), then u is a weak solution ¢fL.1).

Remark. We need the mild solution to use, in the proof of Theoﬂam 2 atternative @). Without this properties,
we obtain just a nonexistence of global solution and not elp result.

Proof of Theorem[?. We assume on the contrary, usifg)l thatu is a global mild solution of[(Zl)). So, from
Lemmg} we have

.
@ <« p 3
() fo fs o J5:(ulP) e dx dt+ fs - u1(X)¢(0, X) dx + L . uo(X)(©(0, X) — ¢1(0, X)) dx

T T T
=f f Utptthdt—f f u<ptdxdt—f f uAgpdxdt (4.2)
o Jsupm o Jsupm 0 Jsupp\e



forall T > 0 and all compactly supported test functipr C%([0, T] x R") such thatp(-, T) = 0 andgy(-, T) = 0. Let

e(x.1) = D (F(x. 1) 1= Dir (¢L(e2(t)) With ¢2() = ® (1X/B). ¢2(t) = (1~ t/T)”, whereDg; is given by [21),
¢,n > 1 and® € C*(R,) be a cut-& non-increasing function such that

1 ifosr<1
(D(r):{ 0 ifr>2

and 0< @ < 1, |®'(r)| < Cy/r forall r > 0. The constanB > 0 in the definition ofp; is fixed and will be chosen later.
In the following, we denote bf2(B) the support ofp; and byA(B) the set containing the support &f; which are
defined as follows:

QB)={xeR": [x<2B}, A(B)={xeR": B<|x <2B}.

We return to ), which actually reads
T
F(a)f f t(|u|P)D T dx dt+f u1(X) D7 &(0, X) dx+ f( Uo(X)(Dyr&(0, X) — 9:Dyj74(0, X)) dx
T
f f ua? Diré dxdt- f f u o HT&dxdt—f f u ADjr ¢ dx dt (4.3)
Q(B) Q(B) 0 Ja@®)
From (23), @.4) and [27), we conclude that

.
f f DG Jg(luP)gdxdt+C T~ f ur(X)¢f(X) dx+ C(T™ + T“"l)f Uo(X)¢; (X) dx
0 JaB) Q(B) Q(B)

T
=C f f u(D{F*@ + D7) dxdt— C f f u A(¢})Dff g2 dx dt (4.4)
0 Jo)
whereDj, is defined in [(2l). Moreover, using[(8}) and the fact tha{ (§) impIiesz(B) gLui(x) > 0,i = 0,1, it
follows
T T
f f uPpdxdt < cf f |ul{ (DF3* 2 + Dy p2) dx dt
0 Jom)
+C f f Ul 2(1Aga + V1) Dips dx it
= |1 + |2, (45)
where we have used the formuM<p1) T Ay + (€ — 1) % Vea? and g1 < 1. Next we observe that by
introducing the ternp PP in the right S|de of@) and applying Young'’s inequality we have
s 5 f J o Ppaxatsc f J g oA + Ol (4.6)
Q(B

wherep’ = p/(p— 1). Similarly,
1 (7 p T =2y’ 1/(P 1) p’ 2p P
o< — luP@dxdt+C ¢’ (1A@1l” + [Ver | )(Dr2)” dxdt (4.7)
2p Jo Ja) o Jap)
Combining [46) and [47), it follows from (&) that
T T Lot / /
[ wredxat < e [ [ el P03 + O e dxet
0 JapB) Q(B)

+ Cf f p 1/(p 1)(IA<,01|P +|V9"1|2p)(Dt|T902)p dxdt (4.8)
Q(B)



At this stage, for the choice &, we have to distinguishes 3 cases.

« Case ofp < p,: in this case, we takB = TY/2. So, using[(&) and the change of variables= T-t, y = T-%2x,

we get from [@) that

T
f f |U|pt;7dthS C(T—(w+2)p’+n/2+l + T—(a+l)p’+n/2+l)’ (49)
0 JoTY?)
whereC is independent of . Letting T — oo in @), thanks top < p, and the Lebesgue dominated convergence
theorem, it is yielded that
f uPdxdt=0,
0 Jmn
which impliesu(x, t) = O for allt and a.ex. This contradicts our assumptiﬂ).

e Case ofp = p,: Let B = R'Y/2T%2 where 1< R < T is such that wheif — oo we don't haveR — o at the same
time. Moreover, from the last case and the fact ghat p,, there exist a positive constabtindependent o such

that .
f uPdxdt< D,
0o Jrn

.
f f uPpdxdt—0 asT — oo. (4.10)
0 JARV2T1Z)

On the other hand, using Holder's inequality instead ofnfps one, we estimate the integitalin @) as follows:

which implies that

T P T (-2p 1 1 v
I, < c(f f |u|P¢) (f f o7 P PGP + [V PP ) (D) dx dt) . (411)
0 JARY2TY2) 0 JORL2TY2)

Similarly to the last case, substituting.@ and [411) into (45), taking account op = p, and the scaled variable
s=T1, y=RY2T-12x we get

T T 1/p
f f luPdxdt< C(T"PR™2 + R™2) + CR-V@) ( f f uPe| .
0 JoRr2Tie) 0 JARY2TLZ)

Letting T — oo, using (41Q), we get

luPdxdt< CR™?,
0 RN

which implies a contradiction, wheR — co, with (@).

e Case ofp < (1/y): Let B = Rwith the sameR introduced in the casp = p,. Then, by taking the new variables
s=T%, y=Rx, it follows from () that

.
f f PG dx dt< CR(T-@ap L T-(ra)p'+ly 4 CR-2P Tep+L,
0o Jamr

Finally, we get a contradiction Wit@) by letting the following limits: firsfT — oo, nextR — 0. Precisely, in the
case ofp = 1/y, we have to use the condition> (n - 2)/n to obtain the desired convergence. This completes the
proof of Theorenj]2
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Appendix

In this appendix let us sketch the proof of Proposiﬂ)m&t us define a semigroup(t) : HY(R") x L2(R") —

HL(R") x L2(RM) by
o3[

wherew e C([0, o), H{(R")) N C}([0, ), LAR")) is the linear solution of{(24) given by [32]). So, view of (326),
a mild solution of the nonlinear proble@ is equivalent to following integral equation:

U(t) = S(t)Uo + fot S(t- 9F(9)ds (4.12)

where
u) =

u(t,-) | uo | O
u(t,-) } Yo ‘[ Uy } FE ‘[ 32 (UP)(S ]

It sufficient now to prove the local existence of a solution[ol® in HY(R") x L?(R"). Let T > 0 and consider the
following Banach space

E:={U="u0): (uv)eC(0,T], HYR") x L3(RM), supp(t, ) c B(K +t) and||U|le < CM},

where
IUlle = llullcqo,mHrrny) + lWllcqo.myeryy  and M = [[Uolly + [luall2.
In order to use the Banach fixed point theorem, we introdueédtiowing map® on E defined by

t
O[U](t) := S(t)Uo+f S(t— s)F(s)ds
0
Now, forU = (u,v) € E, we have
136 (UP)(B)ll2 < CEluct, IS, < CElut, I, < CEIUIE,  te[0,T],

where we have used the Sobolev imbeddiIgR") c L2P(R"). Next, using Matsumura’s result (Propositﬂn 2) with
m = 2 and the finite propagation speed phenomena, we deduceevizatach fixed point theorem that there exists
a local solutionU € E on a small interval [0T] satisfies ). For details, we refer the reader Iﬂ [5, Theorem 1]
and [, Theorem 2]. By consequence, there exist a localisalute C([0, T], HL(R")) n C([0, T], L%(R") satisfies
(@) and supp(t, -) c B(t + K). However, since our equatio is nonautonomous, we prefer apply Gronwall’'s
inequality to get the uniqueness (cf] [2, Theorem 3.1]).ekd ifu,» € C([0, T], HY(R") n C([0, T], L3(R") are
two mild solutions (i.e. satisfy[ (28)) for someT > 0, we have

A

t
@ - ol < C fo IKa(t = 7) % 35 (U — o) (©)lly: dr

IA

t
C f (1+t =) Y23 (uP - P)(D)ll> dr
0

IA

t
¢ [ 135.0uP - POl (4.13)

where we have used again Matsumura'’s result (Proposﬂtiwitﬁ)m = 2. As[Jul® = [v|P| < Clu—v|(JulP + |v|P), so by
Holder's inequality (abil, < |lallzplibllzp) With p’ = p/(p — 1) and Sobolev’s imbeddingi¢ c L?P), we obtain

A

t t
f 195 (UlP = o) (D)l ke < C f 33 (lu = ol QP + ol ) (7) dr
0 0

IA

t T
CIOIO(T—s) Mu(s.-) - ofs. Yl ds
11



t t
c fo f (= 97IU(S ) — oS -l dr ds

t
C [(t- 97l ) - ofs e ds (4.14)
0
Combining [413) and [414), we get

t
() — 0@l < C fo (t- 9IS ) — (s il ds

Finally, using a variation type of Gronwall’s inequalityfollows thatu(t) = v(t). As a consequence of this uniqueness
result, we can extend our solutianon a maximal interval [T may). Moreover, if Tmax < oo, then|u(t, - )|l +
lue(t, - )|z — oo ast — Thax FOr details, see[[Z, Theorem 3.1] & [5, Theorem 1].
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