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ENDS OF STRATA OF THE MODULI SPACE OF

QUADRATIC DIFFERENTIALS

CORENTIN BOISSY

Abstract. Very few results are known about the topology of the
strata of the moduli space of quadratic differentials. In this pa-
per, we prove that any connected component of such strata has
only one topological end. A typical flat surface in a neighborhood
of the boundary is naturally split by a collection of parallel short
saddle connections, but the discrete data associated to this split-
ting can be quite difficult to describe. In order to bypass these
difficulties, we use the Veech zippered rectangles construction and
the corresponding (extended) Rauzy classes.
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1. Introduction

We study compact surfaces endowed with a flat metric with isolated
conical singularities and Z/2Z linear holonomy. Such surface is natu-
rally identified with a Riemann surface endowed with a meromorphic
quadratic differential with at most simple poles. The moduli space of
such surfaces with fixed combinatorial data is a noncompact complex-
analytic orbifold Q and is called a stratum of the moduli space of
quadratic differentials.
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2 CORENTIN BOISSY

There is an obvious way to leave any compact of Q by rescaling the
metric so that the area tends to infinity or to zero. Hence we usually
consider normalized strata that corresponds to area one flat surfaces.
A normalized strata is still noncompact, and a neighborhood of the
boundary corresponds to flat surfaces with a short geodesic joining
two singularities (not necessary distinct).
Very few results are known about the topology of these strata. Kont-

sevich, Zorich and Lanneau have classified their connected components
(see [KZ03] and [Lan08]). Eskin, Masur and Zorich have described the
neighborhood of the principal boundary, which corresponds the neigh-
borhood of the boundary after removing a subset of negligible measure
(see [EMZ03, MZ08]). For the special case of genus zero flat surfaces,
we have proven that the corresponding strata have only one topological
end (see [Boi08]). In this paper, we extend this result to all strata.

Theorem 1.1. Let C be a connected component of a stratum of the

moduli space of quadratic differentials and let C1 be the subset of C that

corresponds to area one flat surfaces. Then, C1 has only one topological

end.

The most natural approach is to describe a typical flat surface in
the neighborhood of the boundary. A saddle connection is a geodesic
joining two singularities. A flat surface is near the boundary if it has
a saddle connection of short length. One can look at the set of saddle
connections that are of minimal length. In general, there are several
such saddle connections and we can show that they are parallel for a
generic flat surface, and they stay parallel and of the same length for
any small perturbation of the surface. One can associate to such col-
lection of saddle connection a “configuration” that describes how the
collection splits the surface (see [EMZ03, MZ08]). The number of dif-
ferent configurations tends to infinity when the genus tends to infinity,
and no canonical way is known to describe all the configurations as-
sociated to a connected component of a stratum (see [MZ08, Boi09]).
We show in the Appendix some examples that illustrate the difficulties
that appear using this direct approach.

In order to bypass these difficulties, we use generalized permutations

that give another combinatorial description of a surface in a stratum.
These combinatoria data appear in a natural generalization of the well
know relation between translation surfaces and interval exchange maps
(see [Ma82, Vee82]). There is a natural construction that associates a
flat surface to a generalized permutation and a continuous parameter.
This is the Veech construction. The set of generalized permutations
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that can appear with this construction in a connected component of
a stratum is called the extended Rauzy class. The important fact is
that it can be built canonically using the (extended) Rauzy moves. A
difficulty here is that a generic surface near the boundary does not
appear naturally from the Veech constrution with a “short” parameter
(see section 4 for a precise statement). We will proceed in the following
way:

(1) Given a generalized permutation π, we define a subset Z(Dπ,ε),
of flat surfaces that are near the boundary, were we take “short”
parameters.

(2) For any flat surface near the boundary, there is a path that
stays near the boundary and reach Z(Dπ,ε), for some π.

(3) We show that the subset ∪πZ(Dπ,ε) is connected, where the
union is taken on an extended Rauzy class.

2. Flat surfaces and moduli space

2.1. Generalities. A flat surface is a real, compact, connected surface
of genus g equipped with a flat metric with isolated conical singularities
and such that the holonomy group belongs to Z/2Z. Here holonomy
means that the parallel transport of a vector along a long loop brings
the vector back to itself or to its opposite. This implies that all cone
angles are integer multiples of π. We also fix a choice of a parallel line
field in the complement of the conical singularities. This parallel line
field will be usually referred as the vertical direction. Equivalently a
flat surface is a triple (S,U ,Σ) such that S is a topological compact
connected surface, Σ is a finite subset of S (whose elements are called
singularities) and U = {(Ui, zi)} is an atlas of S \ Σ such that the
transition maps zj ◦ z−1

i : zi(Ui ∩ Uj) → zj(Ui ∩ Uj) are translations or
half-turns: zi = ±zj+c, and for each s ∈ Σ, there is a neighborhood of s
isometric to a Euclidean cone. Therefore, we get a quadratic differential
defined locally in the coordinates zi by the formula q = dz2i . This form
extends to the points of Σ to zeroes, simple poles or marked points
(see [MT02, HM78]).
Observe that the holonomy is trivial if and only if there exists a sub-

atlas such that all transition functions are translations, or equivalently
if the quadratic differential q is the global square of an Abelian differ-
ential. We usually say that S is a translation surface. In this case, we
can choose a parallel vector field instead of a parallel line field, which
is equivalent to fix a square root of q. In the complementary case, we
sometime speak of half-translation surfaces.
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The moduli space of quadratic differentials on a Riemann surface
of genus g is naturally stratified by considering quadratic differentials
that have prescribed orders of zeroes (and poles). Each corresponding
stratum is a complex analytic orbifold.
A saddle connection is a geodesic segment (or geodesic loop) joining

two singularities (or a singularity to itself) with no singularities in its
interior. Even if q is not globally a square of an Abelian differential,
we can find a square root of q along any saddle connection. Integrating
q along the saddle connection we get a complex number (defined up
to multiplication by −1). Considered as a planar vector, this complex
number represents the affine holonomy vector along the saddle connec-
tion. In particular, its Euclidean length is the modulus of its holonomy
vector. Note that a saddle connection persists under any small de-
formation of the surface. Local coordinates in a stratum of quadratic
differentials are obtained by considering affine holonomy vectors of a
well chosen collection of saddle connections.
A normalized stratum corresponds to flat surfaces with area one.

There is a natural action of SL2(R) on any normalized stratum: let
(Ui, zi)i∈I be an atlas of flat coordinates of S, with Ui open subset
of S and zi(Ui) ⊂ R2. For A ∈ SL2(R), an atlas of A.S is given by
(Ui, A ◦φi)i∈I . The action of the diagonal subgroup of SL2(R) is called
the Teichmüller geodesic flow. In order to specify notations, we denote
by gt, ht the matrices

gt =

[

e
t

2 0

0 e−
t

2

]

and ht =

[

1 t
0 1

]

.

It is well known (see [Ma82, Vee82, Vee86]) that the Teichmüller flow
and the SL2(R) action preserve a natural finite volume measure and
are ergodic with respect to this measure for each connected component
of each normalized stratum.

2.2. Neighborhood of the boundary of a stratum. Let C1 be a
connected component of a normalized stratum of the moduli space of
quadratic differentials. Let Kε ⊂ C1 be the set corresponding to flat
surfaces whose lengths of saddle connections are all bigger than or equal
to ε. Since the set of saddle connections is discrete, we clearly have
∪ε∈QKε = C1. Also, it is well known that Kε is compact.
We will call the ε−boundary of C1 the subset C1,ε = C1\Kε.
Recall that for a σ-locally compact space W , the number of ends is

the maximal number of unbounded components of W\K, for K ⊂ W
compact, when this number is bounded from above (see [HR]). Hence,
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in order to prove the main result, it is enough to show that the ε-
boundary of C1 is connected.

3. Veech construction and extended Rauzy classes

Definition 3.1. A generalized permutation of type (l, m), with l +
m = 2d, is a two-to-one map π : {1, . . . , 2d} → {1, . . . , d}. We will
usually represent such generalized permutation by a table of two lines
of symbols, with each symbol appearing exactly two times.

π =

(

π(1) . . . π(l)
π(l + 1) . . . π(l +m)

)

.

A generalized permutation is called reduced if for each k, the first oc-
currence in {1, . . . , 2d} of the label k ∈ {1, . . . , d} is before the first
occurrence of any label k′ > k.

A renumbering of a generalized permutation corresponds to replacing
π by f ◦ π, for f a permutation of {1, . . . , d}. In this paper, we look at
generalized permutations defined up to renumbering. It is easy to show
that for each generalized permutation π, there exists a unique reduced
generalized permutation πr which is obtained from π by renumbering.

Example 3.2. Consider the generalized permutation π = ( 3 4 1 2 1
4 2 5 5 3 ). It

is not reduced since the first occurence of the number 3 is before the
first occurence of 1. In order to get a reduced generalized permutation,
we clearly must replace 3 by 1, 4 by 2, etc. . . The corresponding reduced
generalized permutation therefore is ( 1 2 3 4 3

2 4 5 5 1 ).

If for all k ≤ l the unique k′ 6= k such that π(k) = π(k′) satisfies
the condition k′ > l, then a reduced generalized permutation satisfies
π(k) = k for all k ≤ d, and corresponds to a permutation of {1, . . . , d}.
Definition 3.3. Let π be a generalized permutation of type (l, m). Let
{ζk}k∈{1,...,d} be a collection of complex numbers such that:

(1) ∀1 ≤ i ≤ l − 1 Im(
∑

j≤i ζπ(j)) > 0

(2) ∀1 ≤ i ≤ m− 1 Im(
∑

1≤j≤i ζπ(l+j)) < 0

(3)
∑

1≤i≤l ζπ(i) =
∑

1≤j≤m ζπ(l+j).

The collection ζ = {ζi}i∈{1,...,d} is called a suspension datum for π. We
will say that π is irreducible if π admits suspension data.

For the case when π corresponds to a permutation, being irreducible
means that there exists no 1 ≤ k < d such that π({d+1, . . . , d+k}) =
{1, . . . k}. In the general case, the combinatorial criterion for being
irreducible is more complicated (see [BL09]).
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Now we consider a broken line L1 whose edge number i (1 ≤ i ≤ l)
is represented by the complex number ζi. Then we consider a second
broken line L2 which starts from the same point, and whose edge num-
ber j (1 ≤ j ≤ m) is represented by ζl+j. The last condition implies
that these two lines also end at the same point. If they have no other
intersection points, then they form a polygon (see Figure 1). The sides
of the polygon, enumerated by indices of the corresponding complex
numbers, come naturally by pairs according to the involution σ. Glu-
ing these pairs of sides by isometries respecting the natural orientation
of the polygon, this construction defines a flat surface. The holonomy
of this surface is either trivial or Z/2Z, depending on the generalized
permutation π.

ζ1

ζ1

ζ2
ζ2

ζ3

ζ3

ζ4

ζ4

ζ5

ζ5

Figure 1. A suspension datum associated to a general-
ized permutation

The two lines L1 and L2 might intersect in some other point. How-
ever, in this case, we can still define a flat surface from the pair (π, ζ),
this is the Veech zippered rectangle construction (see [Vee82, MMY05]
for the case of Abelian differentials and [Boi08] for the other case). In
all cases, we will denote by Z(π, ζ) the flat surface obtained from this
construction.
Let us fix some terminology: let k ∈ {1, . . . , l + m}. The other

occurrence of the symbol π(k) is the unique integer k′ ∈ {1, . . . , l+m},
distinct from k, such that π(k′) = π(k).
Now we define the combinatorial Rauzy moves for the generalized

permutations. We first define the unreduced maps R′
0, R′

1 and s′.

(1) R′
0(π):

• If the other occurrence k of the symbol π(l) is in {l+1, . . . , l+
m− 1}, then we define R′

0(π) to be of type (l, m) obtained by
removing the symbol π(l + m) from the occurrence l +m and
putting it at the occurrence k + 1, between the symbols π(k)
and π(k + 1).
• If the other occurrence k of the symbol π(l) is in {1, . . . , l−1},
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and if there exists another symbol α, whose both occurrences
are in {l + 1, . . . , l + m}, then we we define R′

0(π) to be of
type (l + 1, m− 1) obtained by removing the symbol π(l +m)
from the occurrence l +m and putting it at the occurrence k,
between the symbols π(k−1) and π(k) (if k = 1, by convention
the symbol π(l+m) is put on the left of the first symbol π(1)).
• Otherwise R′

0π is not defined.
(2) The mapR′

1 is obtained by conjugatingR′
0 with the transforma-

tion that interchanges the two lines in the table representation.
(3) The map s′(π) is the generalized permutation of type (m, l)

such that s′(π)(k) = π(2d− k + 1).

Then we obtain R0(π), R1(π) and s(π) by renumbering R′
0(π), R′

1(π)
and s′(π) in order to get reduced generalized permutations. For a
more explicit definition of R′

0 and R′
1 in terms of the map π, we refer

to [BL09].

Example 3.4. Let π be the generalized permutation π = ( 1 2 3 4 3
2 4 5 5 1 ). We

have

R′
0(π) =

(

1 2 1 3 4 3
2 4 5 5

)

= R0(π),

and

R′
1(π) =

(

1 3 2 3 4
2 4 5 5 1

)

so R1(π) =

(

1 2 3 2 4
3 4 5 5 1

)

.

Also,

s′(π) =

(

1 5 5 4 2
3 4 3 2 1

)

so s(π) =

(

1 2 2 3 4
5 3 5 4 1

)

.

• Let ζ be a suspension datum for π such that we have Re(ζπ(l)) >
Re(ζπ(l+m)). We can define a suspension datum ζ ′ for π′ =
R′

0(π) in the following way: ζ ′k = ζk if k 6= π(l) and ζ ′π(l) =
ζπ(l) − ζπ(l+m).

• Let ζ be a suspension datum for π such that Re(ζπ(l)) <
Re(ζπ(l + m)). We can define a suspension datum ζ ′ for π′ =
R′

1(π) in the following way: ζ ′k = ζk if k 6= π(l + m) and
ζ ′π(l+m) = ζπ(l+m) − ζπ(l).

Remark 3.5. The parameter ζ ′ defines a suspension datum for π′. The
flat surfaces Z(π, ζ) and Z(π′, ζ ′) are naturally identified in the moduli
space (see Figure 2).

A consequence of this remark is that if π is irreducible, then so
are R0(π) and R1(π), and they correspond to the same connected
component of the moduli space of quadratic differentials.
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ζ1

ζ1
ζ2

ζ2

ζ3

ζ3
ζ4

ζ4

ζ ′1

ζ ′1

ζ ′2

ζ ′2 ζ ′3

ζ ′3
ζ ′4

ζ ′4

Figure 2. Rauzy-Veech induction for a suspension datum.

Note that when π does not correspond to a permutation, s(π) is
not necessary irreducible as shown in the next example. When s(π) is
irreducible, then it corresponds to the same connected component of
the moduli space of quadratic differentials.

Example 3.6. Let π = ( 1 2 1
2 3 3 4 4 ). This generalized permutation is irre-

ducible: for instance ζ = (2 + 2i, 1 − i, 1 − 2i, 1 + 4i) is a suspension
data for π. However s′(π) = ( 4 4 3 3 2

1 2 1 ) does not admit a suspension
data. Indeed, if ζ ′ were a suspension datum for s′(π), then we would
get:

Im(ζ ′1) < 0 and 2Im(ζ ′4) + 2Im(ζ ′3) > 0

However, we must have ζ ′1 = ζ ′3 + ζ ′4 which contradicts the previous
inequalities.

Definition 3.7. (1) A Rauzy class is a minimal subset of irre-
ducible generalized permutations (or permutations) which is
invariant by the combinatorial Rauzy maps R0,R1.

(2) An extended Rauzy class is a minimal subset of irreducible gen-
eralized permutations (or permutations) which is invariant by
the combinatorial Rauzy maps R0,R1 and s.

Extended Rauzy classes can be build by the following way: we start
from a generalized permutation and consider all its descendant by the
Rauzy moves, were we forbid the operation s on π when s(π) is re-
ducible.
One have the following result, due to Veech (see [Vee90]) for the

case of permutations and to the author and E. Lanneau for the case of
generalized permutation (see Appendix B in [BL09]).

Theorem 3.8. Extended Rauzy classes are in one to one correspon-

dence with the connected components of the moduli space of quadratic

differentials.
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Remark 3.9. A sufficient condition for s(π) to be irreducible is that π
admits a suspension data such that

l
∑

k=1

Im(ζπ(k)) =
l+m
∑

k=l+1

Im(ζπ(k)) = 0.

Indeed, in this case, ζ is a suspension data for s(π) after suitable renum-
bering. In the proof of Theorem 3.8, the operation s is only used on
such generalized permutations. Hence we can weaken the definition of
extended Rauzy class by authorizing the map s only for such permu-
tations.

4. Ends of strata

In order to prove Theorem 1.1, we define a subset of C1,ε that corre-
sponds to flat surfaces obtained from the zippered rectangle construc-
tion, and with a “small” parameter. We show that any connected
component of C1,ε must intersect this set, and that it is connected.
The following definition is needed for technical reasons when the

corresponding stratum corresponds to quadratic differentials.

Definition 4.1. Let π be a generalized permutation. A symbol α is
said to be regular if one of the following property holds:

• α appears in both lines,
• there exists β 6= α that appears only in the same line as α.

The geometric interpretation of this notion is the following: for a
regular symbol α, there exists a suspension datum ζ such that Re(ζβ)
is smaller than Re(ζβ) for all β 6= α. For a nonregular symbol, such
suspension does not exists since the suspension data condition implies
that ζα =

∑

β ζβ, were the sum is taken on all β that appear only in
the line different from α.

Example 4.2. Let π be the generalized permutation π = ( 1 2 3 4 3
2 4 5 5 1 6 6 ).

The symbols ”1”, ”2” and ”4” satisfy the first condition, and the sym-
bols “5”, “6” satisfy the second condition, hence they are regular. The
symbol ”3” satisfies none of the prescibed condition, hence it is not
regular.

Definition 4.3. Let π be a generalized permutation. We denote by
Dπ,ε the set of of pairs (π, ζ) , with ζ a suspension data for π, that
define an area one surface and such that there exists a regular symbol
α ∈ {1, . . . , d} with |ζα| < ε.

Recall that we denote by Z(π, ζ) the flat surface obtained from (π, ζ)
by the Veech construction. Clearly, we have Z(Dπ,ε) ⊂ C1,ε.



10 CORENTIN BOISSY

Lemma 4.4. Let S ∈ C1,ε. There exists a generalized permutation π
and a suspension datum ζ such that (π, ζ) ∈ Dπ,ε and Z(π, ζ) is in the

same connected component of C1,ε as S.

Proof. We claim that we can find a surface S ′ in the same connected
component of C1,ε as S, whose horizontal foliation consists of one cylin-
der, and with a horizontal saddle connection of length smaller than ε.
The set of flat surfaces with a horizontal one cylinder decomposition

is dense in each connected component of a stratum (see [KZ03], Re-
mark 7 and [Lan08], Theorem 3.6). Hence, up to a small perturbation
of S we can assume that it is the case for S. It admits a smallest sad-
dle connection γ. If γ is horizontal, then the claim is true. We assume
now that γ is not horizontal. Then, we apply on the surface the matrix
ht = ( 1 t

0 1 ) for a suitable continuous family of parameter t, so that γ
becomes vertical. Note that in the last operation, the area of the flat
surface does not change and the size of γ decrease, and therefore the
flat surface stays in C1,ε during that process.
The resulting surface, that we still denote by S can be represented

by a rectangle whose vertical sides are identified, and whose horizontal
sides admit a partition pairs of segments, and for each pair, the seg-
ments are of the same length and are identified either by translation or
by a half-turn (see Figure 3). The endpoints of each segments corre-
spond to singularities of S. The bottom left corner can be assumed to
be a singularity which is an end point of γ, but the top left point does
not correspond in general to a singularity. Indeed, for a generic initial
surface, the corresponding rectangle is very long and very thin, and the
saddle connection γ is much bigger than the heigth of that rectangle.
Let N be ratio of the length of γ by the heigth η of the rectangle. This
ratio N is necessarily an integer.

0 0

1

1 2a2a2b2b

3

3

4

4

5 5

Figure 3. A small vertical saddle connection on a long
thin cylinder

Now we assume that there is a pair (s1, s2) of horizontal segments
on the rectangle that are identified by a translation. Each si is on a
different side of the rectangle. We want to shrink s1 and s2 until they
are very small. During the process, we must modify the surface so that
it stays in C1,ε.
Let A < 1 be the area of the flat surface obtained after collapsing the

segments s1, s2 to a point. Up to applying the matrix gt0 for a suitable t0
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to the surface S, we can assume thatN.η <
√
Aε. Now we continuously

shrink the segments s1 and s2 to a point. We get a continuous family of
flat surfaces (S̃t). There exists t1 ∈ R such that the saddle connection γ
persists for t ∈ [0, t1[, but does not necessarily stay vertical. We can find
a continuous function ϕ such that the saddle connection corresponding
to γ in hϕ(t).S̃t stays vertical. Rescaling hϕ(t).S̃t so that it has area one,
we get a continuous family of surfaces (St)t in C1,ε with a one cylinder
decomposition, and with a vertical saddle connection of length N.ηt,
where ηt is the heigth of the rectangle. Since the area At of hϕ(t).S̃t

is bigger than A, and the rescaling changes the lengths of all saddle
connections by a factor 1/

√
At, then we have N.ηt < ε. Hence St is in

C1,ε for all t < t1.
Taking t1 maximal, either we find t < t1 such that the corresponding

surface St satisfies the conclusion of the lemma, or St converges to a
surface St1 when t tends to t1. The path corresponding to γ in St1 is
not a saddle connection but a union of saddle connections. This means
that we have a saddle connection γ′

t1
, of length N ′ηt1 < ε with N ′ an

integer smaller than N . And we can continue the shrinking process.
There can be only a finite number such steps, hence the segments s1, s2
are of length smaller than ε, thus we have found the surface S ′ of the
claim.
If the pair (s1, s2) does not exist then the surface is a half-translation

surface and there exists a pairs of segments on each horizontal side of
the rectangle, whose corresponding identifications are half-turns. The
previous proof works if we shrink both of them until the smallest one
becomes small enough.
Now, starting from S ′, we can continuously change the vertical direc-

tion and we get a area one surface obtained by the zippered rectangle
construction with data (π, ζ) such that |ζα| < ε for some α. It is easy
to check that α can be taken regular. �

Now we want to prove that ∪πZ(Dπ,ε) is connected, where the union
is taken over all the elements in the extended Rauzy class. This is a
consequence of the next two lemmas.

Lemma 4.5. Let π be an irreducible permutation or generalized per-

mutation.

(1) Let π′ be R0(π) or R1(π). Then Z(Dπ,ε) ∩ Z(Dπ′,ε) 6= ∅.
(2) If π admits a suspension datum such that

∑

k≤l Im(ζπ(k)) = 0
then Z(Dπ,ε) and Z(Ds(π),ε) have elements in the same con-

nected component of C1,ε.
Proof. Let (l, m) be the type of π.
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1) We assume that the step of the Rauzy induction we consider
is R1. This means in particular that π(l) is regular. We first build
(π, ζ) ∈ Dπ,ε such that |ζπ(l)| < ε and Re(ζπ(l)) < Re(ζπ(l+m)).
Since π is irreducible and π(l) is regular, there exists a suspension

data ζ such that Re(ζπ(l)) is smaller than Re(ζπ(l+m)). Now we want to
shrink Re(ζπ(l)) so that, after area renormalization, we can assume that
Re(ζπ(l)).Im(ζπ(l)) < ε2/4. If the occurrences of π(l) appear on both
sides, this is obviously possible. If the occurrences of π(l) appear only
on the top side, we must fulfill the condition

∑

i≤l Re(ζi) =
∑

i>l Re(ζi).
This is done by increasing Re(ζβ) for some other (possibly all) symbols
that appear only on the top side
Once the condition Re(ζπ(l)).Im(ζπ(l)) < ε2/4 is obtained, we can

apply the Teichmüller geodesic flow gt on the corresponding flat surface
until we have Re(ζπ(l)) < ε/2 and Im(ζπ(l)) < ε/2. Then |ζπ(l)| < ε and
Re(ζπ(l+m)) > Re(ζπ(l)). Since π(l) is regular, (π, ζ) ∈ Dπ,ε.
Applying the Rauzy–Veech induction on (π, ζ), we obtain (π′, ζ ′) that

define the same surface S and there is a symbol α such that ζ ′α = ζπ(l).
It is easy to check that this symbol is regular for π′, and therefore
(π′, ζ ′) ∈ Dπ′,ε and Z(π, ζ) = Z(π′, ζ ′). This proves the first point of
the lemma, the other case being similar.

2) When we start from a suspension datum with
∑

k≤l Im(ζπ(k)) = 0,
either the symbol π(l) or the symbol π(l +m) is regular, at least one
of the Rauzy moves R0, R1 is always possible. Then the same con-
struction as before gives (π, ζ ′) ∈ Dπ,ε such that

∑

k≤l Im(ζ ′π(k)) = 0.

The parameter ζ ′ is also suspension datum for the unreduced general-
ized permutation s′(π), after turning the corresponding picture of 180
degree. If the underlying stratum is a not a stratum of Abelian dif-
ferentials, then we have Z(π, ζ ′) = Z(s′(π), ζ ′), and after renumbering,
we have Z(π, ζ) ∈ Z(Ds(π),ε). If the underlying stratum is a stratum
of Abelian differentials, then we consider the path (rθ.Z(π, ζ))θ∈[0,π] for

rθ =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)

. The latter path is clearly in C1,ε and joins Z(π, ζ ′)

and Z(s′(π), ζ ′). This proves the lemma.
�

Lemma 4.6. The set Dπ,ε is connected.

Proof. We consider ζ, ζ ′ that define two elements in Dπ,ε. There exists
α, α′ ∈ {1, . . . , d} regular such that |ζα| < ε and |ζ ′α′| < ε (we may
have α = α′).
Case 1 : We assume that there is a symbol β, with β 6= α and β 6= α′

that appears in both lines of π.
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Let ζt be the suspension data obtained after rescaling (1 − t)ζ + tζ ′

so that the corresponding flat surface has area one. We denote by
ht height of the rectangle associated to the label β. Since t 7→ ζt is
continuous on [0, 1], there exists h > 0 such that ht > h for all t and
there exists c > 0 such that |ζt,α| < c and |ζt,α′| < c for all t.

Let N > 0. We consider ζ
(N)
t obtained from ζt after adding N to

the parameter ζt,β. This means that for each t we increase the length
of the intervals Ik, Ik′ of the corresponding linear involution by N . By

construction, the area of the flat surface defined by ζ
(N)
t is At = 1+Nht.

Then, ζ̃
(N)
t = 1√

At

.ζ
(N)
t is a suspension data and we have, for all t:

|ζ̃ (N)
t,α | < c√

1 +Nhr

≤ c

1 +Nh

and similarly

|ζ̃ (N)
t,α′ | <

c

1 +Nh

For N large enough, c
1+Nh

is smaller than ε and hence (π, ζ̃t) is in Dπ,ε

for all t ∈ [0, 1].

Furthermore, rescaling suitably the path
(

ζ
(sN)
0

)

s∈[0,1]
(respectively

(

ζ
(sN)
1

)

s∈[0,1]
), we see that (π, ζ) and (π, ζ̃) (resp. (π, ζ ′) and (π, ζ̃ ′))

are in the same connected component of Dπ,ε. This proves the lemma
for Case 1.

Case 2: We assume that there are two symbols β, β ′ different from
α, α′, and such that β appears only in the top line of π, and β ′ appears
only in the bottom line. The same proof as before works if we add N
to ζt,β and ζt,β′.

Now we come back to the general case. For Abelian differentials,
the Case 1 is always true except if d = 2, but this corresponds to the
stratumH(0), which has only one topological end. For quadratic differ-
entials, recall that α and α′ are regular. There are several possibilities:

• Each of the symbols α and α′ appears in both lines of π, then
Case 2 is satisfied.

• The symbol α appears only in one line (for instance the top
one) and the symbol α′ appears in both. Then, there is β 6= α
that appears only in the top line because α is regular. Since
there exists necessarily β ′ that appears only in the second line,
Case 2 applies.
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• The symbol α appears only in the top line and the symbol α′

appears only in the bottom line. Then, Case 2 applies since α
and α′ are regular.

• Both symbols α, α′ appear only in one line (for instance the
top one). We can assume that none of the previous assumption
is valid. In particular there are no other symbols in the first
line. If there is only one symbol in the second line, then the
generalized permutation is defined with only three symbols and
therefore one can check that the stratum is Q(−1,−1,−1,−1)
which has only one topological end (see for instance [Boi08]).
When there are at least two symbols β, β ′ in the bottom line,
then as in the proof of Lemma 4.5, there is a suspension data
ζ ′′ such that |ζ ′′β | < ε. And we can find paths in Dπ,ε that join
(π, ζ) to (π, ζ ′′) and (π, ζ ′) to (π, ζ ′′).

�

Proof of Theorem 1.1. Combining Theorem 3.8, Lemma 4.5 and 4.6 we
see that the set ∪π∈CZ(Dπ,ε), for C the extended Rauzy class corre-
sponding to C, is a subset of the same connected component of C1,ε.
By Lemma 4.4, any connected component of C1,ε intersects the subset

∪π∈CZ(Dπ,ε). Hence there is only one connected component in C1,ε. �

Appendix A. Geometric description of a neigborhood of

the boundary of a stratum

In this this part, we present natural splittings of a generic flat surface
in C1,ε. We show some examples of the difficulties that can arise if one
wants to relate two possible “configurations” that can occur in the same
connected component of the corresponding strata of the moduli space
of flat surfaces.

A.1. Configurations of rigid collections of saddle connections.

Let S be a surface in C1,ε. The set of lengths of saddle connections
is discrete, hence, there exists a saddle connection whose length is
minimal.
Such saddle connection is not necessarily unique even if the surface is

generic. Indeed, if two saddle connections on a translation surface are
homologous, then they are necessary parallel and of the same length.
This property is preserved by any small deformation of the surface
inside the ambient stratum. One can show that the converse is true:
if the ratio of the length of two saddle connections is constant for any
small deformation of a translation surface, then they are homologous.
The analogous notion for half-translation surfaces is “ĥomologous”. In
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this case, two ĥomologous saddle connections are parallel and the ratio
of their lengths is in {1/2, 1, 2} (see [EMZ03, MZ08] for more details).
Hence, a generic surface in C1,ε naturally defines a splitting of the

surface by a collection of small and parallel saddle connections. This
collection is preserved under small perturbation of the surface. We will
call configuration, the discrete data associated to this splitting which is
preserved under any small deformation of the surface (see also [EMZ03,
MZ08]). Note that, contrary to the case of generalized permutations,
there is no canonical way to describe all the configurations that can
appear in a stratum, or in a connected component of a stratum (see
[MZ08, Boi09]).

Example A.1. Consider an element S0 ∈ H(0) and S1 ∈ H(1, 1). We
slit each of these two surfaces along a segment of the same length and
with the same direction such that exactly one endpoint of the segment
in S1 is a singularity. We get two flat surfaces with one boundary
component each, and each of these boundaries consists of two saddle
connections. Now let S be the translation surface obtained by gluing
the two previous surfaces with boundary so that we get a closed trans-
lation surface. The segments of the boundary components of S1 and
S2 correspond in S to a pair (γ1, γ2) of homologous saddle connections.
We see that the surface S has three singularities: one corresponds to
the singularity of S1 that does not intersect the segment, and two cor-
respond to the endpoints of the segments, hence, are of angle 2π + 2π
and 2π + 4π. Therefore S is in the stratum H(2, 1, 1). The configura-

tion of (γ1, γ2) can be seen as the combinatorial data associated to this
construction.
Similarly, one can define a surface S ′ with the same construction as

before, but using a surface S ′
2 inH(2) and with a segment that does not

intersect the degree two singularity. It is easy to see that the surface
S ′ is also in the same stratum H(2, 1, 1). The corresponding saddle
connections (γ′

1, γ
′
2) have a different configuration.

Note that a configuration of homologous saddle connections is also
preserved by the SL(2,R) action on the stratum. Therefore, by ergod-
icity of this action, as soon as there exists a translation surface with a
collection of homologous saddle connections, then such collection exists
on almost all translation surfaces of the same connected component of
stratum. Moreover, a result of Eskin and Masur asserts that the num-
ber of collections of saddle connections realizing a given configuration
on a generic surface has quadratic asymptotics (see [EM01]). However,
there is no lower bound on the length of a saddle connection that would
realize a given configuration.
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In the case of the surfaces S, S ′ of Example A.1, by choosing suf-
ficiently small segments in the construction, we can assume that the
saddle connections γi, γ

′
i are very small and the surfaces are in the ε-

boundary of the stratum. There exists a pair of homologous saddle
connections (γ′′

1 , γ
′′
2 ) on S that realizes the configuration of (γ′

1, γ
′
2), but

the saddle connections γ′′
i might be very long, and therefore, it can be

difficult to shrink γ′′
i by staying in the ε-boundary of the stratum. A

possible solution is to look at some other saddle connections, not too
long, that would correspond to an intermediary configuration. In our
case, it is easy to find on S and on S ′ a simple saddle connection joining
for instance a singularity of degree 1 and a singularity of degree 2. Here
by simple we mean that no other saddle connection is homologous to
it. However, such approach depends on the geometry of S and S ′, since
there does not exists an analogous to the Rauzy induction for config-
urations, i.e. a canonical operation that relates all the configurations
of a connected component of a stratum. Furthermore, as we will see,
the relations between configurations and the geometry of the surface
are not simple.

A.2. Some strange examples. In this section we present two exam-
ples that correspond to the stratum Q(−1, 9). This stratum is noncon-
nected and the only known proof of this result uses extended Rauzy
classes (see [Lan08, BL09]).

Example A.2. Let S ∈ Q(−1, 9) with the following decomposition:
there exists two closed saddle connections γ1 and γ2 that start and end
at the singularity of order 9 and that are the boundary of a cylinder,
and such that no other saddle connections are ĥomologous to the γi.

γ1 γ2kπ

Figure 4. Cylinder attached to a singularity, bounded
by two saddle connections
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The angle between γ1 and γ2 is kπ, for k ∈ {1, 2, 3, 4}. Lanneau
([Lan08]) has proven the following.

• If k ∈ {1, 2, 4} then S belongs to the regular connected compo-
nent of Q(−1, 9), i.e. there exists a simple saddle connection
joining the pole to the zero of order 9.

• If k = 3, then S belongs to the irreducible connected component
of Q(−1, 9), and hence, there is no simple saddle connection
joining the pole to the zero of order 9.

Note that in the stratum Q(−1, 1 + 4n), for n ≥ 3, one can find
surfaces with analogous decomposition by a pair of saddle connections
bounding a cylinder. But in this case, for all parameters k, there exists
a simple saddle connection joining the pole to the zero of order 1+ 4n,
because the stratum Q(−1, 1 + 4n) is connected.

Example A.3. Let S ∈ Q(−1, 9) and γ a simple closed horizontal saddle
connection of S joining the zero to itself. It defines at the zero an
unordered pair of angles (απ, βπ) with α, β ∈ N∗ and α + β = 11.
We assume that this pair is (4π, 7π). Then S can be obtained from
the stratum by the following construction: we start from a surface
S0 ∈ Q(−1, 1, 4) and we denote by P1 and P2 the two singularities of
order 1 and 4. For each Pi, we choose an angular sector of angle π,
between two consecutive horizontal separatrices. We denote by I and
II these sectors. Then, we choose a path ν transverse to the horizontal
foliation and without self intersections that joins the sector I of P1 to
the sector II of P2 (such path always exists by a result of Hubbard and
Masur [HM78]). Then, we cut the surface along this path and paste
in a “curvilinear annulus” with two opposite sides isometric to ν, and
with horizontal sides of length ε. We get a surface with two boundary
components and each of these components consists of a closed saddle
connection. These two saddle connections are parallel and of the same
length, and therefore, we can isometrically glue them together and get
a flat surface which is in Q(−1, 9), and with a saddle connection that
realize the configuration described above.
One can show that the connected component containing the surface

obtained by this construction does not depend on the choice of the
path ν (see [Boi08], Lemma 4.5), once fixed the pair of sectors I and
II. Also, the resulting connected component does not change if we
change continuously the initial surface. However, since the numbers of
possible sectors (respectively 3 and 6) are not relatively prime, there
remains a parameter in Z/3Z.
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In this precise case, we have the following result: fix the sector II.
Among the 3 possible choices for sector I, the following possibilities
hold:

• Two choices we give a surface in the regular connected compo-
nent of Q(−1, 9), and hence, on the resulting flat surface, there
exist a simple saddle connection joining the pole to the zero of
order 9.

• The last choice leads to the irreducible connected component
of Q(−1, 9) and hence, on the resulting flat surface, we cannot
find a simple saddle connection joining the pole to the zero of
order 9.

To prove this, we start from the flat surfaces obtained starting from
a rectangle and gluing by translation or half turn the sides according to
the left drawing of Figure 5. Then we perform the previous construction
using the 3 possible paths that are indicated by dotted lines. This leads
to 3 flat surfaces a), b) and c).

a)

b)

c)
11

1 11

11

1

2

2

2

2

2

2

22

0

00

00

0

00

3

3

33

3

3

33

4

4

4

44

4

4

4

5

5

5

55

555

6 6

6

6

6

6

Figure 5. Three similar surgeries of a surface in Q(−1, 4, 1)

Continuously deforming these 3 surfaces and after some cutting and
gluing, we get three new surfaces in the same connected component as
the initial ones. The new surfaces are shown on Figure 6.
Then we have the following:

• In the case a), there is a flat cylinder corresponding to the closed
vertical geodesics starting from the segment 6. According to
the criteria of Lanneau (see [Lan08], section 5), this cylinder is
simple. We can check that the angle between the corresponding
two saddle connections is 3π. Hence, by the criteria of Lanneau
described in Example A.2, the flat surface is in the irreducible
connected component of Q(−1, 9).
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a)

b)

c)
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3

3
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4
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55

6 6

6

6

6 6

6

6

6

6

6

6

Qirr(−1, 9)

Qreg(−1, 9)

Qreg(−1, 9)

Figure 6. Connected components of the surfaces of Figure 5

• In the case b), the criteria of Lanneau says that the vertical
saddle connection corresponding to the segment labelled “0”
is simple, hence we are in the regular connected component of
Q(−1, 9).

• In the case c), it is clear that the saddle connection correspond-
ing to the segment labelled “6” is simple, hence we are in the
regular connected component of Q(−1, 9).
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