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SURVIVAL OF A SNAKE IN AN HOSTILE

ENVIRONMENT

LAURENT SERLET

Abstract. We consider a Brownian snake subjected to killing in an
inhomogeneous medium. We show an equation satisfied by the prob-
ability of survival. Conditionally on survival, the Brownian snake has
the law of a snake with a drift that we specify. This study include
“path-dependent killings”. In the case of constant drift, we give a large
deviation principle and derive some estimates for the caracteristics of
this process. The results can also be stated in terms of super-Brownian
motion and super-Brownian motion with drift. Then, we show how to
annihilate a (general non-positive) drift by adding immigration. The
conditioning to non-extinction of super-Brownian motion with constant
non-positive drift is also studied.

1. Introduction

The Brownian snake introduced by Le Gall is widely recognized to be a
convenient representation of the super-Brownian motion as well as a pow-
erful tool for the applications to certain pde or particle systems. We refer
the reader to [Lg] for a comprehensive treatement of the subject but, for
the convenience of the reader, we will recall some basic facts in the next
section which should suffice for the reading of this paper. The notations
used in the present introduction and the rest of the paper are also detailed
in that section. The reader which is not very familiar to the subject could
find convenient to read first next section before the following introduction.

In the present paper we consider a Brownian snake (Ws) living in a par-
tially absorbing medium. This snake is absorbed (we could say killed in
a more conventional way) at a rate given by the non-negative measurable
function V . Conditionally on (Ws), the probability of survival up to time τ
is given by

P(survival|(Ws)) = exp

(
−
∫ τ

0
V (Wr) dr

)
.

Different models corresponding to various times τ could a priori be consid-
ered : exit time of a domain, fixed time, but, in order to use the connections
with super-Brownian motion, we will study here the case τ = τ1 (hitting
time of 1 by the local time at 0 of the lifetime of the Brownian snake). For
some results given in the next sections the function V : W → R+ can be
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2 LAURENT SERLET

fairly general but in the present introduction we restrict ourselves to the
case V (w) = V (ŵ). The probability of survival, up to time τ1 of a Brownian
snake starting from x̃, killed according to V , is then given by

(1) Ex̃

[
exp

(
−
∫ τ1

0
V (Ŵs) ds

)]
.

This probability is positive as soon as V is bounded on a neighbourhood of
x. From now on, we suppose that V is locally bounded and we set

h(x) = − log Ex̃

[
exp

(
−
∫ τ1

0
V (Ŵs) ds

)]
.

This function is solution on whole Rd of the following p.d.e :

(2)
∆

2
h− 2h2 + V = 0.

We have supposed here and in the rest of the introduction, that the “spatial
motion” of the Brownian snake is simply Brownian motion in Rd, hence
the presence of its generator ∆/2. This p.d.e satisfied by h can be found
in the litterature on super-Brownian motion. Indeed, it is well known that
a super-Brownian motion (Yt) can be constructed from (Ws); we recall it
briefly in the Formula (11) of the next section. Therefrom, h(x) can be
rewritten using the formula :

(3)

∫ +∞

0
Yt(V ) dt =

∫ τ1

0
V (Ŵs) ds.

Here we extend (2) to more general cases for V i.e. V depending on the
whole trajectory and we give a proof using arguments on Brownian snake.
See section 3.2.

Since the survival event, as specified earlier, is of positive probability,
conditioning by this event is straightforward. We can thus define the law

P
(V,τ1)
w0 of the Brownian snake starting from w0 and conditioned to survive up

to time τ1 the killing at rate V and stopped at that time, from the law Pw0

of the Brownian snake starting from w0, by the following formula (where φ
is an appropriate test function) :
(4)

E(V,τ1)
w0

[φ(Ws∧τ1 , s ≥ 0)] =
Ew0

[
φ(Ws∧τ1 , s ≥ 0) exp

(
−
∫ τ1
0 V (Ŵs) ds

)]

Ew0

[
exp

(
−
∫ τ1
0 V (Ŵs) ds

)] .

Of course we can re-formulate this law as the one of a super-Brownian motion
penalized by the weight function :

(5) exp

(
h(x) −

∫ +∞

0
Yt(V ) dt

)
.

It happens that the law defined by (4) is known. It is the law of a b–
snake, as named in [AS]. Roughly speaking, a b–snake is obtained from
the ordinary Brownian snake by addition of a drift term; in particular its
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lifetime is a reflecting Brownian motion with drift −b(Ws) ds. The relevant
drift function b for our conditioned snake is simply b(w) = 2h(ŵ) as stated
in Proposition 8. Note that in the case where V (·) is constant equal to V ,

the function h(·) is also constant, equal to h =
√
V/2 as shows Equation (2).

In that case the law of the snake conditioned to survival is easily described :
its lifetime is a reflecting Brownian motion with drift −

√
2V , stopped at

τ1, and the conditional law knowing the lifetime is the same as ordinary
Brownian snake.

Proposition 8 could also be stated in terms of super-Brownian motion or
even historical Brownian motion when V (·) is no more of the type V (w) =
V (ŵ). It says that the law of the superprocess obtained from super-Brownian
motion by the penalization given in (5) is a super-Brownian motion with
drift b given previously. Super-Brownian motion with drift has for instance
been shown to be the limit of rescaled contact processes ([DP]) or rescaled
Lotka-Volterra competing species models ([CP]); in both case the drift is
even constant.

A limit case of our study is when V → +∞ on a domain U of Rd and
equals 0 elsewhere. We get Brownian snake (or super-Brownian motion)
conditioned not to reach U . In the recent paper [LgW], Le Gall and Weill
provide a deep study of the one-dimensional Brownian snake conditioned to
stay positive, motivated by problems on asymptotics for planar maps. We
briefly discuss at the end of section 4 this particular case.

We want to described the behaviour of the snake conditioned to survive
i.e. the b-snake or equivalently the behaviour of a super-Brownian motion
with drift. In particular, what is the probability of exit from a “big ball”
i.e. the tail distribution of

(6) R = sup
s

|Ŵs| = inf{ρ;∀t, Yt({x, |x| > ρ}) = 0} ?

For (non-conditioned) Brownian snake, or equivalently for the support of
super-Brownian motion (Yt), the answer is well known, as a result of ex-
cursion theory and a scaling argument. Using the excursion measure whose
definition is recalled in section 2, we get

P0̃[R > r] = 1 − exp−N0[R > r]

= 1 − exp− c1
r2

where c1 = N0

[
sup
s≤σ

|Ŵs| > 1

]

∼ c1
r2

when r → +∞.

For a snake conditioned to survival/a super-Brownian motion with drift,
the behaviour is much different. For instance if V is constant (and still
starting from 0), excursion representation (see Proposition 6) and scaling
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lead to

P
(V,τ1)

0̃
[R > r] = 1 − exp−N0

[
1{R>r} exp−

(∫ σ

0
V (Ŵs) ds

)]

∼ N0

[
1{R>r}e

−V σ
]

=

∫ +∞

0

dσ√
2π σ3/2

e−V σ Nσ
0 (R > r)

=

∫ +∞

0

dσ√
2πσ3/2

e−V σ N1
0

(
R >

r

σ1/4

)
(7)

where Nσ
0 denotes the law of the Brownian snake excursion with lifetime

excursion length σ. But the asymptotics of the above probability of exit is
known by [DZ] (or [S1]). Using ≈ to mean “same exponential speed”, we
have

N1
0(R > A) ≈ exp

(
−3

2
A4/3

)
.

Then the integral above should behave like

(8)

∫ +∞

0

dσ√
2πσ3/2

e−V σ e
− 3

2
r4/3

σ1/3 ≈ e−25/4 V 1/4 r

where the last estimate is obtained by minimizing the negative exponential
exponent.

This result may seem strange : since V is constant, why does the surviving
snake has much less probability to go far than the ordinary snake, when we
condition by the fact that killing has not occured ? Because excursions with
bigger length are less probable. For instance, still in the case of constant
killing at rate V , the added lengths of excursions, which sum up to τ1, is
distributed according to

E
(V,τ1)

0̃

(
e−λ τ1

)
=

E0̃

(
e−λ τ1 e−V τ1

)

E0̃ (e−V τ1)

= exp− 1√
2

(√
V + λ−

√
V
)
.(9)

We note in particular that, a contrario to the unconditioned case, τ1 has fi-
nite expectation 1/

√
8V . If V (·) is not constant but bounded from below by

V , it is easy to see that (9) now becomes an upper bound. See Proposition 7
for a formalisation of a monotonicity remark, also applying for instance to
the quantity R considered before.

We want to make rigorously the above calculation (8) and extend it by
stating a large deviation principle for the law of a rescaling of (Ws). Such
a large deviation principle has been proved in [S1] for a (non-conditioned)
Brownian snake when the lifetime process is a normalized Brownian excur-
sion (that is, under N1

0) and when it is spatially rescaled by the factor r−3/4.
For our present purpose we first need to state an analogous result under the
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excursion measure N0. As an outline (otherwise see Theorem 10 below) this
large deviation principle has speed r and rate function

J(W ) =
1

2

∫ σ

0
ζ̇2
s ds+

1

4

∫ σ

0

| ˙̂
Ws|2
|ζ̇s|

ds.

Then we come back to the large deviations of a Brownian snake surviving
the killing at a constant rate V . We are able to state a large deviation result
still with speed r but this time the spatial normalization factor is 1/r, which
confirms the rough estimate (8). The rate function is now W → J(W ) +
V σ(W ), see Theorem 11 for the precise statement. As an application we
compute a large deviation estimate for R as hinted in (8) and also for the
extinction time

H = sup
s≤τ1

ζs = inf{t > 0, Yt = 0}

for which we obtain the result :

lim
r↑+∞

1

r
log P

(V,τ1)

0̃
(H > r) = −23/2 V 1/2.

See Proposition 12 and 13 for these derivations.
In the following section 8, we are interested in a way to transform a

Brownian snake/Super-Brownian motion with (non-positive) drift into an-
other one, but without drift. In terms of super-Brownian motion, this can
be done by adding to the original super-Brownian motion with drift a super-
position of independent “super-Brownian excursions” with random starting
time and random starting point, both distributed according to a certain
Poisson measure. See Theorem 15 of section 8 for the precise statement.
This can be viewed also in the following terms: super-Brownian motion is a
super-Brownian motion with (non-positive) drift to which we add a certain
immigration.

Finally the last section concentrates on the super-Brownian motion with
constant non-positive drift conditioned to non-extinction. This conditioning
for super-Brownian motion is classical, see for instance [Ev] or [Ov]. It can
be constructed by conditioning the extinction time to be greater than h
and then let h ↑ +∞. We first remark that we obtain a similar limit if we
condition the total mass Z of super-Brownian motion to be L and let L tend
to +∞. However this becomes false in the case of super-Brownian motion
with drift. The conditioning by infinite total mass leads to the same limit
as in the case without drift whereas the conditioning to infinite extinction
time leads to another law that we specify.

2. Some background on the Brownian snake

In this paper we will use the following notations :
R+ = [0,+∞).
c denotes a constant whose value is unimportant and may change from line
to line.
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µ(φ) : integral of function φ with respect to measure µ.
Supp(µ) : support of the measure µ.
AC : complement of the set A.
1A : indicator function of set A.
|x| : for x ∈ Rd, euclidean norm of x.
A ∧B : infimum of the numbers A and B.
C(X,Y ) : set of continuous functions from metric spaceX to metric space Y .
MF (X) : set of finite measures on the metric space X, equipped with the
topology of weak convergence and its Borel σ-algebra.
Kd : set of compact subsets of Rd equipped with the Hausdorff metric.

This paper deals with processes taking their values in the space W of
stopped paths. A stopped path is a couple (w, ζ), where ζ ≥ 0 is called the
lifetime of the path, and w : R+ → Rd is a continuous mapping which is
constant on [ζ,+∞). We often write w for (w, ζ), and ζ(w) for the lifetime.
The distance on W is d(w,w′) = supt≥0 |w(t)−w′(t)|+|ζ(w)−ζ(w′)|, making
W a Polish space. We denote by

(1) ŵ = w(ζ) the endpoint of w,
(2) w≤r or w≤r the path of lifetime ζ(w) ∧ r such that, for u ≥ 0,

w≤r(u) = w(u ∧ r),
(3) x̃ the path of lifetime 0 started at x ∈ Rd,
(4) w1 ⊕ w2 the concatenation of two paths w1 and w2 such that ŵ1 =

w2(0), defined as the path of lifetime ζ1 + ζ2 given by :

w1 ⊕ w2(u) = w1(u) 1{u≤ζ1} + w2(u− ζ1) 1{ζ1<u≤ζ1+ζ2}.

Let us fix a diffusion with values in Rd, and denote by A its generator.
A simple example of process in W is the so-called A–path process (W̃s)s≥0.

It is a Markov process such that ζ(W̃s) = ζ(W̃0) + s and W̃s has the law

of W̃0 ⊕ ξ where ξ is a trajectory of the A–diffusion starting from ˆ̃W0 and
stopped at time s. We will denote P̃w its law when it starts from w and L
its generator.

The Brownian snake starting at w ∈ W, with spatial motion governed by
A, whose law will be denoted Pw, is the strong Markov continuous process
(Ws, s ≥ 0) with values in W, characterized by the following properties:

(1) W0 = w;
(2) The lifetime process ζs = ζ(Ws) is a reflecting Brownian motion in

R+ starting at ζ(w);

(3) The conditional distribution P
[ζ]
w of (Ws, s ≥ 0) knowing (ζs, s ≥ 0) is

that of an inhomogeneous Markov process whose transition kernels
are described as follows : for every s < s′,

• W≤m
s′ = W≤m

s for m = infr∈[s,s′] ζr; this property will be called
“snake property” in the sequel;
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• (Ws′(m+t), 0 ≤ t ≤ ζs′ −m) is independent of Ws conditionally
on Ws(m) and has the law of a diffusion in Rd with generator
A, starting from Ws(m) and stopped at time ζs′ −m.

From the Brownian snake starting at x̃, x ∈ Rd, one can construct the
MF (W)–valued process (Ht)t≥0 called historical Brownian motion starting
at δx̃ by :

(10) Ht =

∫ τ1

0
d(s)L

t
s δWs

where Lt
s is the local time of the lifetime process (ζ.) at level t and time s,

and τ1 = inf
{
s ≥ 0;L0

s > 1
}

is the hitting time of 1 for the local time at

level 0. Super-Brownian motion is then the MF (Rd)–valued process (Yt)t≥0

given as the image measure of Ht by the mapping w → ŵ so that

(11) Yt =

∫ τ1

0
d(s)L

t
s δŴs

.

To simplify notations we have chosen a normalisation which differs from the
usual one by a factor 4 and our super-Brownian motion is usually called the
(A, 4 z2, 0)–super-process, and identically for historical Brownian motion.
This representation formula (11) gives, via the occupation time formula, the
Equation (3) stated in the introduction. It can of course be reinforced in :

(12)

∫ +∞

0
Ht(φ) dt =

∫ τ1

0
φ(Ws) ds

for a measurable φ : W → R+. The so-called “range” of super-Brownian
motion amounts to be

(13) S(W ) = {Ŵs, s ≤ τ1}.
As x̃ is a regular point for the recurrent process (Ws), it is possible to define
the associated excursion measure Nx. To be more specific and introduce
some notation useful later, let (αi, βi)i∈I be the excursion intervals of (ζs)
out of 0, up to time τ1 and (W i)i∈I be the corresponding “snake excursions”
that is W i

s = W(αi+s)∧βi
. Under Px̃, the random point measure

(14)
∑

i∈I

δ(L0
αi

,W i)(dl dW )

is a Poisson measure with intensity 1(0,1)(l) dl Nx(dW ). Under Nx, the law
of the lifetime is distributed as the Itô measure of positive excursions of

Brownian motion and the conditional law knowing the lifetime ζ is P
[ζ]
x̃ as

before. We will also use the probability Nσ
x which is the conditioning of Nx

knowing that the lifetime excursion has duration σ.
Under N0 and when spatial motion is Brownian (A = ∆/2), the following

scaling identity holds :

(15) N0[F (W )] =
1√
α

N0 [F (θα(W ))]
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where F : C(R+,W) → R+ is a measurable test function, α > 0 and θα is
the following scaling operator :

(16) θα(W )s(u) =
(
α1/4W s

α
(
u

α1/2
), α1/2ζ s

α

)
.

Spatial motion governed by A being fixed, we recall that the notion of b-
snake can be defined for instance by a well-posed martingale problem, see
[AS]. An equivalent definition, at least when b is bounded, is to say that the
law Pb

w of the b–snake starting from w ∈ W has a density with respect to
the law Pw of the ordinary Brownian snake when we restrict to events prior
to time s and this density is :

(17) ds = exp

(
−
∫ s

0
b(Wr) dβr −

1

2

∫ s

0
b2(Wr) dr

)

where (βs) is the martingale part of the semi-martingale (ζs), given by

Tanaka’s formula. Supposing for simplicity that b(w) = b̂(ŵ), the super-
process associated via Equation (11) to a b–snake starting from x̃ is the

(A, 4z2,−b̂)–super-process starting from δx that we will call super-Brownian

motion with drift −b̂ i.e. the solution of the martingale problem

(b̂–MP)





Y0 = δx
∀φ ∈ D(A), Yt(φ) = Y0(φ) +

∫ t
0 Ys(Aφ) ds−

∫ t
0 Ys(b̂ φ) ds+Mt(φ)

where the local martingale M has quadratic variation

〈M(φ)〉t = 4
∫ t
0 Ys(φ

2) ds.

Analogous statement with general b is given for the historical process in
[DS].

3. Probability of survival

3.1. Sufficent conditions of survival.

Proposition 1. The probability of survival up to time τ1 of a Brownian
snake, starting from x̃0 and killed according to the measurable non-negative
function V : W → R+, is given by :

(18) Ex̃0

[
exp

(
−
∫ τ1

0
V (Ws) ds

)]
= exp−h(x0)

where h : Rd → R+ equals

(19) h(x0) = Nx0

[
1 − exp

(
−
∫ σ

0
V (Ws) ds

)]
.

For such a survival to occur with positive probability, each of the following
condition is sufficient

• V (·) is bounded on a ball B in W centered at x̃0.
• V satisfies, for B a ball in W centered at x̃0,∫ +∞

0
Ẽx̃0

(
V (W̃t) 1{W̃t⊂B}

)
dt < +∞.
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Proof. Equations (18,19) come from the usual exponential formula of
excursion theory, where σ denotes, under Nx0 , the length of the lifetime
excursion. The probability of survival is positive if and only if h(x0) is
finite. By discussing whether or not the Brownian snake exits a ball B in
W centered at x̃0, we get the following upper bound :

h(x0) ≤ Nx0

[(
1 − e−

R σ
0 V (Ws) ds

)
1{∀s, Ws⊂B}

]
+ Nx0 [{Ws, s ∈ [0, σ]} 6⊂ B] .

The second term is finite; otherwise we obtain a contradiction with the
continuity of s → Ws. To treat the first one, let us suppose first that V (·)
is bounded by Vmax on B. By using the “law” of σ under Nx0 we get :

Nx0

[(
1 − e−

R σ
0 V (Ws) ds

)
1{∀s, Ws⊂B}

]
≤ Nx0

[
1 − e−σ Vmax

]

=

∫ +∞

0

dσ√
2π σ3/2

(
1 − e−σ Vmax

)
< +∞.

To obtain the second sufficient condition of survival we simply use 1 − e−x ≤ x
for x ∈ R+ to get

Nx0

[(
1 − e−

R σ
0 V (Ws) ds

)
1{∀s, Ws⊂B}

]
≤ Nx0

[∫ σ

0
V (Ws) 1{Ws⊂B} ds

]

=

∫ +∞

0
Ẽx̃0

[
V (W̃t) 1{W̃t⊂B}

]
dt.

The last equality follows from Bismut’s description of the Brownian excur-
sion (see [RY] p. 502), because, under the measure Nx0(dW ) 1[0,σ](ds), ζs
is distributed as the Lebesgue measure on R+ and conditionally on ζs = t,
Ws is an A-Markov process in Rd starting from x0 and stopped at time t.

Note that this second sufficient condition of survival can be realized even if
V is not bounded in a neighbourhood of x̃0. For instance for V (w) = V̂ (ŵ),
the above condition amounts to the finiteness of

∫

B
G(x0, z) V̂ (z) dz

where G stands for the Green function associated to the A–Markov process
and B is now a ball in Rd centered at x0. For example, if V̂ is moreover radial
i.e. V̂ (x) = V (|x|), x0 = 0 and spatial motion is Brownian, the condition
reduces to ∫

0
r2−d V (r) rd−1 dr =

∫

0
r V (r) dr < +∞.

3.2. Equation for the survival probability. Coming back to the case of
a general V (·), we define an extension b : W → R+ of 2 h defined before, in
the sense that b(x̃) = 2h(x) and obtain an equation satisfied by this function
on W.
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Proposition 2. For V : W → R+ measurable and locally bounded i.e.
bounded on a neighbourhood of every w ∈ W, we set

(20) b(w) = 2 Nŵ

[
1 − exp

(
−
∫ σ

0
V (w ⊕Ws) ds

)]
.

This function b satisfies the following equation for every w ∈ W :

(21) b(w) = 2

∫ +∞

0
dt P̃ b

t (V )(w)

where (P̃ b
t ) is the semi-group associated to the A-path process killed accord-

ing to b. For every w ∈ W, the probability of survival up to time τ1 of a
Brownian snake starting at w and killed according to V is

(22) Ew

[
exp

(
−
∫ τ1

0
V (Ws) ds

)]
= exp

(
−b(w̃(0))

2
−
∫ ζ

0
b(w≤r) dr

)
.

In particular, for every x ∈ Rd, 2h(x) = b(x̃).

Proof. We write

1

2
b(w) = Nŵ

[∫ σ

0
exp

(
−
∫ s

0
V (w ⊕Wu) du

)
V (w ⊕Ws) ds

]

= Nŵ

[∫ σ

0
exp

(
−
∑

i

∫ βi

αi

V (w ⊕W
≤ζαi
s ⊕W i

u) du

)
V (w ⊕Ws) ds

]
.

where the (αi, βi) are, at fixed time s, the excursion intervals of the lifetime
above its future infimum, up to time s and on such an excursion interval,
W i

u(v) = Wu(ζαi + v) for u ∈ (αi, βi) defines the corresponding “small
snakes”. But, by Bismut’s description of the Brownian excursion, we know
that, under the measure 1[0,σ](ds) Nx(dW ), ζs is distributed as the Lebesgue

measure on R+; conditionally on ζs = t, Ws is an A-Markov process in Rd

starting from x and stopped at time t and the lifetime (ζu, u ≤ s) is a three
dimensional Bessel process run until it last hits t. By Pitman’s Theorem the
excursions of a three dimensional Bessel process above its future infimum
are distributed as the excursions of a reflecting Brownian motion out of 0.
Thanks to this and the description of the conditional law of the Brownian
snake knowing its lifetime, the random measure

∑

i

δ(ζαi ,W
i
(αi+·)∧βi

)(du, dW )

is, under the measure 1[0,σ](ds) Nx(dW ) and conditionally on Ws of lifetime
t, a Poisson measure with intensity

1[0,t](du) 2 NWs(u)(dW ).
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Thus the exponential formula shows that, under the previous conditional
law, the expectation of

exp

(
−
∑

i

∫ βi

αi

V (w ⊕W
≤ζαi
s ⊕W i

u) du

)

is

exp−
∫ t

0
du 2 NWs(u)

[
1 − exp

(
−
∫ σ

0
V (w ⊕W≤u

s ⊕W ′
v) dv

)]

= exp−
∫ t

0
du b(w ⊕W≤u

s ).

Hence we obtain

1

2
b(w) = Ẽw

[∫ +∞

0
dt V (W̃t) exp−

∫ t

0
du b(W̃u)

]

=

∫ +∞

0
dt P̃ b

t (V )(w)

which is the desired result.
To prove (22) we introduce the time T0 of return to 0 of the lifetime;

we apply the Markov property at T0, as recalled in (29) below; on [0, T0],
we decompose according to the excursions above the minimum as in [Lg]
V.Lemma 5; on [T0, τ1], we decompose according to the excursions out of the

trivial path w̃(0). This argument leads without difficulty to Formula (22).

Proposition 3. When V is continuous on W, the function b given by (20)
belongs to the domain of L and satisfies on W the equation

(23) Lb− b2 + 2V = 0.

Proof. Equation (21) gives :

1

h

(
P̃ b

h(b) − b
)

(w) = −2

h

∫ h

0
dt P̃ b

t (V )(w).

By the Feller property of the (killed) A–path, the right-hand side has the
limit −2V (w) as h ↓ 0 so b belongs to the domain of the A-path process
killed according to b whose generator is (L − b). Hence (L− b) b = −2V
which is the announced formula (23).

3.3. Limit or special cases.

Corollary 4. If V (w) = +∞ 1U (w) for an open subset U of W, we have

(24) b(w) = 2 Nŵ ({w ⊕Ws; s ∈ (0, σ)} ∩ U 6= ∅)
and, for every w in the interior of UC , Lb(w) = b2(w).

Proof. Formula (24) for b is straightforward. For n ∈ N∗, we set

Vn(w) = n inf

(
n inf

u 6∈U
d(w, u), 1

)
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so that Vn(w) ↑ V (w) for every w ∈ W. If bn is associated to Vn, Beppo-Levi
Theorem implies bn(w) ↑ b(w) for every w ∈ W. Moreover Vn is continuous
(even Lipschitz) so that bn belongs to the domain of L and Lbn = b2n − 2Vn.
But for w 6∈ U , Vn(w) = 0. If w is in the interior of UC , we have Lbn(·) =
b2n(·) on a ball B centered at w. This implies by the martingale problem

associated with the A-path process (W̃s) starting from w, that for every
stopping time T lower than the exit time of B,

Ẽw

[
bn(W̃T ) − bn(w) −

∫ T

0
b2n(W̃r) dr

]
= 0.

By Beppo-Levi Theorem we can pass to the limit and obtain the same
equation where b replaces bn. This implies that b(W̃s)− b(w)−

∫ s
0 b

2(W̃r) dr
is a martingale, up to the exit time of B. We conclude that b belongs to the
domain of L and Lb(w) = b2(w).

Corollary 5. If V (w) = V̂ (ŵ) where V̂ is continuous on Rd, the probability
of survival of a Brownian snake starting from x ∈ Rd is equal to exp−h(x)
where h : Rd → R+ belongs to the domain of A and satisfies on whole Rd

the p.d.e.

(25) Ah− 2h2 + V̂ = 0.

If V̂ is moreover with compact support, h is the unique non-negative solution
vanishing at infinity on Rd of the previous equation.

Proof. Equation (25) follows readily from Equation (23). It is clear from

the definition (19) that if V̂ has compact support, h tends to 0 at infinity.
We mean that h is less than any arbitrary small value if we look at it outside
a certain compact set of Rd. Consider now another non-negative solution
h̃ of (25) vanishing at infinity. If h − h̃ takes somewhere a positive value,
it admits a positive maximum at a point x1. We obtain a contradiction by
using the maximum principle for the generator A :

0 ≥ A(h− h̃)(x1) = 2h2(x1) − 2h̃2(x1) > 0.

We deduce h− h̃ ≤ 0 and by symmetry, h− h̃ = 0.

For example, in the case of a continuous radial V , that is V (x) = V (|x|)
and with Brownian spatial motion, the function h is also radial : h(x) =
h(|x|) and the expression of the Laplacian in spherical coordinates leads to

(26) h′′(r) +
d− 1

r
h′(r) − 4h2(r) + 2V = 0.

Unfortunately it is not possible in general to solve this equation given a
function V but it is at least possible to know which V correspond to a
function h. In the limiting case V (r) = +∞ 1{r≥A} and d = 1, we obtain



SURVIVAL OF A SNAKE IN AN HOSTILE ENVIRONMENT 13

that h′′ = 4h2 on (0, A), h(A−) = +∞. A classical computation gives, for
r ∈ (0, A),

(27) h(r) =
3 G(+∞)2

8 A2
G−1

(
G(+∞)

r

A

)

where

G(y) =

∫ y

1

dz√
z3 − 1

and G(+∞) =
2
√
π Γ(7/6)

Γ(2/3)
.

In particular the probability for a one dimensional super-Brownian motion
starting at 0 to stay in (−A,A) is

exp−h(0) = exp−
(

3π

2

(
Γ(7/6)

Γ(2/3)

)2 1

A2

)
≈ exp−2.21

A2
.

4. Law of a surviving snake

4.1. Markov property. The law P
(V,τ1)
w of the Brownian snake starting

from w and conditioned to survive up to time τ1 the killing at rate V ,
and stopped at that time, has a density with respect to the law Pw of the
Brownian snake starting from w and stopped at time τ1, given, on the σ–
algebra of events prior to time τ1, by

Dw =
dP

(V,τ1)
w

dPw
=

exp
(
−
∫ τ1
0 V (Ws) ds

)

Ew

[
exp

(
−
∫ τ1
0 V (Ws) ds

)]

and, in particular, when w = x̃, x ∈ Rd,

(28) Dx̃ = exp

(
b(x̃)

2
−
∫ τ1

0
V (Ws) ds

)
.

The Markov property of the Brownian snake can be written in our context,
with appropriate test functions F,G, as :

Ew

[
F (Wr∧τ1 , r ≤ s) G(W(s+u)∧τ1 , u ≥ 0)

]

= Ew

[
F (Wr∧τ1 , r ≤ s)

∫
PWs∧τ1

(dW ′) G(W ′
u∧τ

1−L0
s

, u ≥ 0)

]
.(29)

It is easy to deduce a Markov property for (L0
s,Ws) in the conditioned

context that we write :

E(V,τ1)
w

[
F (Wr∧τ1 , r ≤ s) G(W(s+u)∧τ1 , u ≥ 0)

]

= E(V,τ1)
w

[
F (Wr∧τ1 , r ≤ s)

∫
P

(V,τ
1−L0

s
)

Ws∧τ1
(dW ′) G(W ′

u∧τ
1−L0

s

, u ≥ 0)

]
.

From now on, P
(V,τ1)
w and E

(V,τ1)
w will be abbreviated into P

(V )
w and E

(V )
w .
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4.2. Excursions. We consider the excursions out of a trivial path x̃, x ∈
Rd, keeping the notations of (14).

Proposition 6. Under P
(V )
x̃ , the random measure
∑

i∈I

δ(L0
αi

,W i)(dl dW )

is a Poisson measure with intensity 1(0,1)(l) dl N
(V )
x (dW ) where N

(V )
x (dW ) is

the infinite measure on C(R+,W) given, for a measurable F : C(R+,W) →
R+, by

N(V )
x [F ] = Nx

[
F (W ) exp−

(∫ σ

0
V (Ws) ds

)]
.

Proof. It suffices to show that, for F as above,
(30)

E
(V )
x̃

[
exp−

∑

i∈I

F (L0
αi
,W i)

]
= exp−

[∫ 1

0
dl

∫
Nx(dW )

(
1 − e−F (l,W )

)
e−

R σ
0 V (Ws) ds

]
.

We rewrite the left-hand side using the definition of E
(V )
x̃ , noting that

∫ τ1

0
V (Ws) ds =

∑

i∈I

∫ βi−αi

0
V (W i

s) ds.

We obtain a ratio where the exponential formula can be applied to both
numerator and denominator :

Ex̃

[
exp−∑i∈I

(
F (L0

αi
,W i) +

∫ βi−αi

0 V (W i
s) ds

)]

Ex̃

[
exp−∑i∈I

∫ βi−αi

0 V (W i
s) ds

]

=
exp−

∫ 1
0 dl

∫
Nx(dW )

(
1 − e−F (l,W )−

R σ
0 V (Ws) ds

)

exp−
∫ 1
0 dl

∫
Nx(dW )

(
1 − e−

R σ
0 V (Ws) ds

) .

This last expression reduces to the right-hand side of (30), completing the
proof.

This excursion representation implies a straightforward corollary on the
monotonicity of certain variables with respect to V , which was less clear on

the definition of P
(V )
w . We say that a non-negative variable U decreases with

V if V1(·) ≤ V2(·) implies E
(V1)
x̃ (ϕ(U)) ≥ E

(V2)
x̃ (ϕ(U)) for every x ∈ Rd and

every non-decreasing ϕ : R+ → R+.

Proposition 7. For every measurable non-negative F , every variable of the
form (with the notations of (30) )

(i) U =
∑

i∈I

F (L0
αi
,W i) or (ii) U = sup

i∈I
F (L0

αi
,W i)
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decreases with V . Examples are :

τq = inf{s, L0
s > q} (q ∈ (0, 1]), R = sup

s≤τ1

|Ŵs|, H = sup
s≤τ1

ζs.

Proof. It suffices to check the criteria for ϕ(·) = 1 − e−λ ·, λ ≥ 0 in case
(i) and ϕ(·) = 1(A,+∞)(·), A ≥ 0 in case (ii). In case (i) we read the result
on (30). The example τq is obtained for F (α,W ) = 1{α≤q} σ(W ). In case
(ii), we use the definition of Poisson measures to get

P
(V )
x̃ (U > A) = P

(V )
x̃ (∃i ∈ I, F ((L0

αi
,W i) > A)

= 1 − exp−
∫ 1

0
dl Nx̃

[
1{F (l,W )>A} e

−
R σ
0 V (Ws) ds

]

and the result follows, with the examples of R and H.

4.3. Main result. We now identify the law of the conditioned Brownian
snake as the law of a b–snake.

Proposition 8. Let V be a bounded continuous non-negative function on W.
The Brownian snake starting from x̃0 and conditioned to survive the killing
at rate V , up to time τ1 and stopped at that time, is a b-snake starting from
x̃0 and stopped at time τ1 where b is given by (20).

Proof. Note that the boundedness of V implies the boundedness of b and
the law of the b–snake is defined by Formula (17). We apply Ito’s formula
for the Brownian snake with respect to the function

F (w) =

∫ ζ

0
b(w≤r) dr

as given in [DS] Theorem 2. We obtain

F (Ws∧τ1) = F (W0) +

∫ s∧τ1

0
b(Wr) dζr +

1

2

∫ s∧τ1

0
Lb(Wr) dr.

We recall Tanaka’s Formula ζs = βs + (1/2)L0
s(ζ) where β is a Brownian

motion; we note that obviously F (W0) = 0 and Lb− b2 + 2V = 0 as proved
earlier. We get

F (Ws∧τ1) =

∫ s∧τ1

0
b(Wr) dβr +

b(x̃0)

2
L0

s∧τ1

+
1

2

∫ s∧τ1

0
b2(Ŵr) dr −

∫ s∧τ1

0
V (Ŵr) dr.(31)
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But the density of P
(V )
x̃0

with respect to Px̃0 , restricted to Fs = σ(Wr, r ≤
s ∧ τ1), is

Dx̃0,s = Ex̃0

[
exp

(
b(x̃0)

2
−
∫ τ1

0
V (Wr) dr

) ∣∣Fs

]

= exp

(
b(x̃0)

2
−
∫ s∧τ1

0
V (Wr) dr

)

× EWs∧τ1

[
exp

(
−
∫ τ

1−L0
s

0
V (W ′

r) dr

)]

where the latter expression is obtained by the Markov property as stated
in (29). A slight generalization of Formula (22) is

EWs∧τ1

[
exp

(
−
∫ τ

1−L0
s

0
V (W ′

r) dr

)]
= exp

(
−b(x̃0)

2
(1 − L0

s∧τ1) − F (Ws∧τ1)

)

so that we obtain finally :

(32) Dx̃0,s = exp

(
−
∫ s∧τ1

0
V (Wr) dr +

b(x̃0)

2
L0

s∧τ1 − F (Ws∧τ1)

)
.

This can be re-expressed using (31) as

Dx̃0,s = exp

(
−
∫ s∧τ1

0
b(Wr) dβr −

1

2

∫ s∧τ1

0
b2(Wr) dr

)

which is precisely the density of the law of the b-snake when restricted to Fs.
Remark 1. Formula (32) shows the difficulty to describe the conditional
law of (Wr)r≤s knowing the lifetime. Generally speaking this conditional
law is given by the formula

(33) E
(V )
x̃0

[φ(Wr, r ≤ s ∧ τ1)|ζ] =
Ex̃0 [φ(Wr, r ≤ s ∧ τ1) Dx̃0,s|ζ]

Ex̃0 [Dx̃0,s|ζ]
.

We are not able to give a more explicit description in the general case.
Remark 2. Proposition 8 can of course be re-formulated in the following
way : the law of super-Brownian motion penalized according to (5) is the
law of super-Brownian motion with drift. A proof can be given without
Brownian snake in the case V (w) = V̂ (ŵ) by using Dawson’s stochastic
calculus for measure valued processes ([Da] chapter 7), once the solution h
of (25) is known.

4.4. Special cases. Let us examine briefly special cases where the b-snake
is more easily described.

If V (·) is constant then Dx̃0,s is measurable with respect to (ζs) and it
is clear on Formula (33) that the conditional law given the lifetime of the
surviving snake is the same as the one of standard Brownian snake.

If V (w) = +∞ 1U (ŵ) for a smooth open subset U of Rd, the Brownian
snake starting from x̃, ;x 6∈ U and killed according to V can be viewed as
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the Brownian snake conditioned not to hit U . It is a b–snake with b given
by

b(w) = 2h(ŵ) and h(x) = Nx

(
{Ŵs; s ∈ [0, σ]} ∩ U 6= ∅

)
.

When U is smooth, h(x) → +∞ if x→ ∂U . Adapting Formula (32) to this
case, we rewrite Formula (33) under the (little) more explicit form :

E
(V )
x̃ [φ(Wr, r ≤ s ∧ τ1)|ζ]

=
Ex̃

[
φ(Wr, r ≤ s ∧ τ1) 1{∀r≤s∧τ1, Ŵr 6∈U} exp−

(∫ ζs∧τ1
0 2h(Ws∧τ1(r)) dr

)
|ζ
]

Ex̃

[
1{∀r≤s∧τ1, Ŵr 6∈U} exp−

(∫ ζs∧τ1
0 2h(Ws∧τ1(r)) dr

)
|ζ
] .

Another special case of our study happens when V (w) = v(ζ). In this
case the function b depends on ζ only and more generally spatial motion
is irrelevant with respect to this conditioning. We simply obtain the fact
that a (linear) Brownian motion (ζs), reflecting at 0 and killed according
to v has, when conditioned to survive up to τ1, the law of a (reflecting)
Brownian motion with drift −b where b is a solution of the Ricatti equa-
tion : b′ − b2 + 2v = 0. In particular when conditioned to stay in [0, A],
corresponding to v = +∞1(A,+∞), the drift is b(x) = −1/(A− x).

Let us conclude this section with particular one dimensional cases. First
the law of the Brownian snake conditioned to stay between −A and A up to
time τ1 is a b–snake where b(w) = 2h(|ŵ|) and h is given by Formula (27).
Let us now consider, for ε > 0, the law of the (one-dimensional) Brownian
snake sarting at 0̃ and conditioned not to hit (−∞,−ε) up to τ1. By the
previous Theorem, it is a bε-snake with bε(w) = 2hε(|ŵ|) and hε is now the
solution of h′′ε = 4h2

ε on (−ε,+∞) and hε(−ε+) = +∞. Moreover hε has
the following “explicit” expression that we transform by scaling :

hε(x) = Nx ({Ws; s ∈ (0, σ)} ∩ (−∞,−ε) 6= ∅)

=
1

(x+ ε)2
N0 ({Ws; s ∈ (0, σ)} ∩ (−∞,−1) 6= ∅)

But in order that hε solves the above differential equation, the quantity
on the right-hand side of the last line must be 3/2, so that we conclude
bε(w) = 3/(ŵ + ε)2. In [LgW], it is shown that the law of the considered
conditioned Brownian snake converges when ε ↓ 0. Following our description
we would be led to a Brownian snake with drift b(w) = 3/2ŵ2. However
there is a problem to define this process starting from 0 because the drift is
unbounded at 0 and

∫

0

(
3

2 Ŵ 2
s

)2

ds = +∞

showing that Formula (17) cannot be extended to this situation. The diver-
gence of the above martingale is for instance a consequence of the law of the
iterated logarithm for the Brownian snake ([S2]).



18 LAURENT SERLET

5. Large deviations of the Brownian snake excursions

In [S1] a large deviation principle has been given for

W r =

(
1

r3/4
Ws(

√
r ·), 1√

r
ζs

)

s≥0

when r → +∞ where (Ws) is a Brownian snake starting from 0̃ whose
lifetime is a normalized Brownian excursion, that is, under N1

0 and with
Brownian spatial motion (A = ∆/2). This large deviation principle has

speed r and good rate function J̃ given by

J̃(W ) =
1

2

∫ 1

0
ζ̇2
s ds+

1

4

∫ 1

0

| ˙̂
Ws|2
|ζ̇s|

ds

when W belongs to the appropriate function space. For the purpose of the
present paper we need to adapt this result to the case of a Brownian snake
under its excursion measure N0. We first define some notations.

We denote by P the space of all (Ws, ζs)s∈[0,σ] where σ > 0 and W is a
path-valued function with lifetime ζ, having the snake property, ζ being an
excursion of length σ denoted σ(ζ) or even σ(W ). For every σ0 > 0, the
subset Pσ0 of P is defined by restricting to the snakes (W, ζ) ∈ P whose

lifetime excursion length σ(ζ) is precisely equal to σ0. We denote Ṗ the set

of (W, ζ) such that (ζs) and (Ŵs) are two absolutely continuous function

and we use the notations ζ̇s,
˙̂
Ws to denote in this case the derivatives with

respect to s. The space P is endowed with the metric

d((W, ζ), (W ′, ζ ′)) = |σ(ζ)−σ(ζ ′)|+sup
s≥0

|ζs−ζ ′s|+sup
s≥0

sup
r≤ζs∨ζ′s

|Ws(r)−W ′
s(r)|.

Lemma 9. Let us call J the function on P defined by

J(W ) =
1

2

∫ σ

0
ζ̇2
s ds+

1

4

∫ σ

0

| ˙̂
Ws|2
|ζ̇s|

ds

if (W, ζ) ∈ Ṗ and +∞ if not. Then,

(1) the function J is invariant under scaling :

(34) ∀α > 0, J(θα(W )) = J(W );

(2) for all L, σ1 > 0, the set {W ; J(W ) ≤ L, σ(W ) ≤ σ1} is compact;
(3) the function J is lower semi-continuous that is, for every sequence

(Wn) converging to W0 in P,

lim inf
n→+∞

J(Wn) ≥ J(W0).

Proof. The first assertion amounts to trivial changes of variables in the
definition of J . A consequence is that, for any non empty subset B of
(0,+∞) the set {W ; J(W ) ∈ B} is unbounded. The second point was
obtained in [S1] when J is restricted to P1. We generalize easily using the
first point and the continuity of the scaling operators (θα). The last assertion
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concerning the lower semi-continuity of J is then a direct corollary of the
second one.

We want now to formulate a large deviation principle under N0. But it
can happen that closed sets that were “large deviation events” under N1

0

are no longer of exponentially small probability. For instance, using the
notation (6),

N0[R(W r) ≥ 1] = N0[r
−3/4 R(W ) ≥ 1] =

1

r3/2
N0[R(W ) ≥ 1]

where the last equality obtains by scaling as stated in Equation (15). It is
much different under N1

0, where we have

lim
r→+∞

1

r
log N1

0 [R(W r) ≥ 1] = −3

2

as proved in [S1]. Also, because we work under an infinite measure we will
have to restrict the sets to which the large deviation principle applies.

Theorem 10. The laws under N0 of W r satisfy a large deviation result as
r → +∞ with speed r and rate function J in the following way :

• for every open subset U of P,

(35) lim inf
r↑+∞

1

r
log N0 [W r ∈ U ] ≥ − inf

U
J

• for every closed subset F ⊂ {W ∈ P; σ1 ≤ σ(W ) ≤ σ2} with
σ2 > σ1 > 0,

(36) lim sup
r↑+∞

1

r
log N0 [W r ∈ F ] ≤ − inf

F
J.

Proof. For A Borel subset of P, we condition with respect to the length
of the lifetime excursion and we note that the scaling operators (θα) defined
by Formula (16) operate on P so that Nσ

0 is the image of N1
0 by θσ. We

obtain :

(37) N0(W
r ∈ A) =

∫ +∞

0

dσ

2
√

2π σ3/2
N1

0(θσ(W r) ∈ A).

By the contraction principle applied to the continuous function θσ and to
the large deviation principle given in [S1], we have,

• for every open subset U of P,

(38) lim inf
r↑+∞

1

r
log N1

0 [θσ(W r) ∈ U ] ≥ −Ĩσ(U)

• for every closed subset K of P,

(39) lim sup
r↑+∞

1

r
log N1

0 [θσ(W r) ∈ K] ≤ −Ĩσ(K)
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where, for A ⊂ P,

Ĩσ(A) = inf{J̃(W̃ ); W̃ ∈ P1 and θσ(W̃ ) ∈ A} = inf
A∩Pσ

J.

For the last equality, note that if θσ(W̃ ) = W , we know by (34) that J̃(W̃ ) =
J(W ). As a consequence, for any A ⊂ P, we have

(40) inf
σ>0

Ĩσ(A) = inf
W∈A

J(W ).

We now want to use Inequality (38) [respectively Inequality (39)] in For-
mula (37) to get, via Equation (40), the desired result (35) [respectively (36)].
This is a kind of Laplace method for the integral in (37).

We first prove (35). For shortness we set Ĩ = infσ>0 Ĩ
σ(U) = infU J and

fix ε > 0. Let σ0 > 0 be such that Ĩσ0(U) ≤ Ĩ+ε. We can find W0 ∈ P1 such

that θσ0(W0) ∈ U and J̃(W0) ≤ Ĩσ0(U)+ ε. Then, for σ in a neighbourhood
of σ0, say σ ∈]σ0 − η, σ0 + η[, we have θσ(W0) ∈ U because U is open.
Therefore,

(41) Ĩσ(U) ≤ J̃(W0) ≤ Ĩ + 2ε.

But trivially,

N0(W
r ∈ U) ≥

∫ σ0+η

σ0−η

dσ

2
√

2π σ3/2
N1

0(θσ(W r) ∈ U).

Then

lim inf
r↑+∞

{
1

r
log N0 [W r ∈ U ] + (Ĩ + 3ε)

}

= lim inf
r↑+∞

log
(
N0 [W r ∈ U ] er(Ĩ+3ε)

) 1
r

≥ lim inf
r↑+∞

log

(∫ σ0+η

σ0−η

dσ

2
√

2π σ3/2
N1

0(θσ(W r) ∈ U)er(Ĩ+3ε)

) 1
r

≥ 0

which proves (35) by letting ε tend to 0. The last inequality follows from
Fatou’s lemma

lim inf
r↑+∞

∫ σ0+η

σ0−η

dσ

2
√

2π σ3/2
N1

0(θσ(W r) ∈ U)er(Ĩ+3ε)

≥
∫ σ0+η

σ0−η

dσ

2
√

2π σ3/2
lim inf
r↑+∞

{
N1

0(θσ(W r) ∈ U)er(Ĩ+3ε)
}

and

lim inf
r↑+∞

{
N1

0(θσ(W r) ∈ U)er(Ĩ+3ε)
}

= +∞

because of (38) and (41).
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We pass to the proof of (36) concerning the closed subset F ⊂ {W ; σ1 ≤
σ(W ) ≤ σ2}. We note that σ(W r) = σ(W ) and condition with respect to
σ, as in (37) :

1

r
log N0 [W r ∈ F ] =

1

r
log

∫ σ2

σ1

dσ

2
√

2π σ3/2
N1

0(W
r ∈ θ−1

σ (F ∩ Pσ))

≤ 1

r
log

[
σ2 − σ1

2
√

2π (σ1)3/2
N1

0

(
W r ∈ F̃

)]

where
F̃ =

⋃

σ1≤σ≤σ2

θ−1
σ (F ∩ Pσ).

By the continuity of (σ,W ) → θσ(W ) and the closedness of F we obtain

easily that F̃ is closed. Therefore we can apply (39) to claim that the
limsup of the righthand side in the above inequality is lower than

Ĩ1(F̃ ) = inf
F̃
J̃ = inf

F
J.

This completes the proof of (36).

6. Large deviations for a surviving snake

We want to formulate a large deviation result for the Brownian snake,
conditioned as usual to survive the killing at constant rate V , up to time
τ1 and with Brownian spatial motion. We will now consider the following
rescaling :

W [r] =

(
1

r
Wrs(r ·),

1

r
ζrs

)

s≥0

because, for any measurable subset A of P, the scaling property (15) implies
that

N
(V )
0

[
W [r] ∈ A

]
= N0

[
1{W [r]∈A} e

−V σ(W )
]

=
1√
r

N0

[
1{θr(W )[r]∈A} e

−V σ(θr(W ))
]

=
1√
r

N0

[
1{W r∈A} e

−V r σ(W r)
]
.(42)

We have used

σ(θr(W )) = r σ(W ) = r σ(W r) and θr(W )[r] = W r .

On the expression (42), we would like to argue as in the Varadhan-Laplace
Lemma, using the large deviation principle for W r given in Theorem 10.
However, we will have to impose, as in Theorem 10, a restriction on the
closed sets K for which the result holds. More precisely, it will be the
existence of p > 1 such that

(43)

∫ +∞

0

dσ

2
√

2π σ3/2
e−r V σ Nσ

0 (W r ∈ K)1/p
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stays bounded when r → +∞. This technical condition is only a little
stronger than the boundedness of

∫ +∞

0

dσ

2
√

2π σ3/2
e−r V σ Nσ

0 (W r ∈ K) =
√
r N

(V )
0

[
W [r] ∈ K

]

which is obviously necessary to give sense to the following result.

Theorem 11. The laws under N
(V )
0 (dW ) of W [r] satisfy as r → +∞ a large

deviation principle with rate function W → J(W )+V σ(W ) in the following
way :

• for every open subset U of K,

(44) lim inf
r↑+∞

1

r
log N

(V )
0

[
W [r] ∈ U

]
≥ − inf

U
(J + V σ)

• for every closed subset K of K satisfying the assumption (43),

lim sup
r↑+∞

1

r
log N

(V )
0

[
W [r] ∈ K

]
≤ − inf

K
(J + V σ).

Proof. As the factor 1/
√
r does not interfere with exponential speed,

we can prove the result for the last quantity appearing in (42) instead of

N
(V )
0

[
W [r] ∈ A

]
, in both cases A = U open and A = K closed.

We first let U be an open subset of P, y 6= 0 belong to U and η > 0 be
such that B(y, η) ⊂ U . Then σ(W ) ≤ σ(y) + η if W belongs to B(y, η).
Hence,

N0

[
1{W r∈U} exp (−r V σ(W r))

]
≥ N0 [W r ∈ U ] exp−(r(σ(y) + η))

≥ N0 [W r ∈ B(y, η)] exp−(r(σ(y) + η)).

Therefore, using Theorem 10 we get

lim inf
r↑+∞

1

r
log N0

[
1{S(W r)∈U} exp (−r V σ(W r))

]

≥ − inf
B(y,η)

J − (σ(y) + η)

≥ −J(y) − σ(y) − η.

We let η ↓ 0 and maximize over y ∈ U to get (44).
Now we consider a closed subset K of P satisfying (43). We may suppose

that 0 6∈ K. We set, for L, σ1 > 0,

K1 = K ∩ {W ; J(W ) ≤ L} ∩ {σ ≤ σ1},
K2 = K ∩ {W ; J(W ) ≤ L} ∩ {σ ≥ σ1},
K3 = K ∩ {W ; J(W ) > L}.

We know by Lemma 9 that {W ; J(W ) ≤ L} ∩ {σ ≤ σ1} is compact so
that K1 can be covered by a finite number of closed balls of arbitrary small
radius η :

K1 ⊂
N⋃

i=1

B(yi, η).
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Then

N0

[
1{W r∈K1}e

−r V σ(W r)
]

≤
∑

i≤N

N0

[
1{W r∈B(yi,η)} e−r V σ(W r)

]

≤
∑

i≤N

N0

[
W r ∈ B(yi, η)

]
e−r V (σ(yi)−η) .

We deduce, using Theorem 10,

lim sup
r↑+∞

1

r
log N0

[
1{W r∈K1} exp(−r V σ(W r))

]

≤ − inf
i≤N

(
inf

B(xi,η)
J − V (σ(yi) − η)

)

≤ − inf
i≤N

inf
B(xi,η)

(J + V σ) + 2V η

= − inf



(J + V σ)(W ); W ∈

⋃

i≤N

B(xi, η)



 + 2V η

η→0−→ − inf
K1

(J + V σ)(45)

For the last convergence we have used the lower semi-continuity of J and
the continuity of W → σ(W ).

Concerning the contribution of K2, we have :

N0

[
1{W r∈K2}e

−r V σ(W r)
]
≤ e−r σ1V N0(σ ≥ σ1).

We deduce

(46) lim sup
r↑+∞

1

r
log N0

[
1{W r∈K2} exp−r V σ(W r)

]
≤ −σ1 V .

Finally, concerning the contribution of K3,

N0

[
1{W r∈K3}e

−r V σ(W r)
]

≤
∫ +∞

0

e−r V σ dσ√
2π σ3/2

Nσ
0 (W r ∈ K; J(W r) > L)

≤
∫ +∞

0

e−r V σ dσ√
2π σ3/2

Nσ
0 (W r ∈ K)1/p Nσ

0 (J(W r) > L)1/q

≤
(∫ +∞

0

e−r V σ dσ√
2π σ3/2

Nσ
0 (W r ∈ K)1/p

)
N1

0(W
r ∈ {J > L})1/q .(47)

We have used as before the conditioning of N0 according to excursion length,
then the Hölder inequality, where q is the conjugate exponent of p i.e. (1/p)+
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(1/q) = 1. Then, we have noted that

Nσ
0 (J(W r) > L) = N1

0 (J(θσ(W r)) > L) = N1
0 (J(W r) > L)

because of the invariance of J by scaling, as proved in Lemma 9. Recalling
that the quantity in brackets in (47) is by the assumption (43) supposed to
be bounded, we obtain

(48) lim sup
r↑+∞

1

r
log N0

[
1{W r∈K3} exp(−r V σ(W r))

]
≤ − L

2 q
.

The combination of Equations (45), (46), (48) completes the proof of the
Theorem as we recall that L, σ1 are arbitrary.

7. Applications

The following propositions give, when the killing is constant equal to V ,
large deviation estimates for the exit from a big ball and the extinction time.

Proposition 12. R = sups≤σ |Ŵs| satisfies

lim
r↑+∞

1

r
log N

(V )
0 [R ≥ r] = −25/4 V 1/4.

Proof. We apply Theorem 11 to

U = {W ∈ P; R(W ) > 1} and K = {W ∈ P; R(W ) ≥ 1}

which are respectively open and closed in P. This set K satisfies the as-
sumption (43) because, as obtained in [S1],

Nσ
0 (W r ∈ K) = N1

0

(
σ1/4 R(W r) ≥ 1

)
≤ e

−c r

σ1/3 .

The result will be proved if we show that

inf {J(W ) + V σ(W ); R(W ) ≥ 1} = inf {J(W ) + V σ(W ); R(W ) > 1}
= 25/4 V 1/4.

In the search of the first infimum (second one is similar) we can restrict
ourselves to (Ws) of the type

ζs =
2sh

σ
1[0, σ

2
] + 2h

(
1 − s

σ

)
1(σ

2
,σ]

Ws =
2s

σ
u 1[0, σ

2
] + 2h

(
1 − s

σ

)
u 1(σ

2
,σ]

where u ∈ Rd has norm equal to 1 and for such a (Ws) we have

(49) J(W ) + V σ(W ) =
2h2

σ
+

1

2h
+ V σ.
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Indeed the form of the rate function shows that we can restrict ourselves to
snakes that are symmetric with respect to σ/2. Then the Cauchy-Schwarz
inequality gives

J(W ) + V σ(W ) =

∫ σ/2

0
ζ̇2
s ds+

1

2

∫ σ/2

0

| ˙̂
Ws|2
|ζ̇s|

ds+ V σ

≥ 2

σ

(∫ σ/2

0
ζ̇s ds

)2

+
1

2

(∫ σ/2
0 | ˙̂

Ws| ds
)2

∫ σ/2
0 |ζ̇s| ds

+ V σ

≥
2 ζ2

σ/2

σ
+

|Ŵσ/2|2
2 ζσ/2

+ V σ.

Standard optimization of (49) gives the optimal values

h = 2−5/4 V −1/4, σ = 2−3/4 V −3/4

for which J(W ) + V σ(W ) = 25/4 V 1/4.

Proposition 13. H = sups≤σ |ζs| satisfies

lim
r↑+∞

1

r
log N

(V )
0 [H ≥ r] = −23/2

√
V .

Proof. In this setting, checking (43) follows from

Nσ
0 (H(W r) ≥ 1) ≤ e−c r

σ .

The present proof amounts to show that

inf {J(W ) + V σ(W ); H ≥ 1} = inf {J(W ) + V σ(W ); H > 1}
= 23/2

√
V .(50)

The derivation of (50) is done as in the proof of the previous proposition
reducing to easy optimization on real variables.

8. De-conditioning

We have seen in the previous sections that conditioning a Brownian snake
to survive a killing procedure leads to a b-snake i.e. a Brownian snake with
drift. Such a b–snake can also be obtained by other methods, as proved in
[AS]. In the following proposition we are going to see that a b–snake can be
transformed into a (standard) Brownian snake by “inserting small snakes”.

Proposition 14. Let (Ws) be a b–snake where b : W → R+ is continuous.
Suppose that, conditionally on (Ws), the point measure Λ on R+ ×W is a
Poisson measure with intensity

(51) ds 2 b(Ws) NŴs
(dW ).

The increasing right-continuous function

Ar = r +

∫

{s≤r}
Λ(ds dW ) σ(W )
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has a jump at time r of height Ar − Ar− = σ(W ′) if Λ({(r,W ′)}) 6= 0. We
define the W–valued process W 1 by W 1

s = Wr if Ar = s and

W 1
s = Wr ⊕W ′

s−Ar−
if Ar− ≤ s < Ar and Λ({(r,W ′)}) 6= 0.

Then W 1 is a (standard) Brownian snake.

Proof. The meaning of this Proposition is that a b–snake can be trans-
formed into a (standard) Brownian snake by inserting “snake excursions”
W i, i ∈ I at respective times si so that in particular the lifetime of the
inserted snake ζi realizes a Brownian excursion above level ζsi , the measure

∑

i∈I

δ(si,W i)

being a Poisson measure with intensity given by (51). Restricted to the
lifetime process, this Proposition amounts to a result on Brownian motion
given in [S4]. The proofs given there can be easily extended to path–valued
processes to obtain this statement.

We now reformulate it in terms of super-Brownian motion or even histori-
cal Brownian motion. We introduce the infinite measure Qt,x on C(R+,MF (W))
which is the “law” of the historical process associated to a Brownian snake
distributed according to the excursion measure from x, and starting at time
t : under Qt,x(dY ) we have Yu = 0 for u ≤ t and

∫
Qt,x(dY ) F (Yt+u, u ≥ 0) =

∫
Nx(dW )F (Hu(W ), u ≥ 0)

where, on the right-hand side, Hu(W ) is defined as in (10).

Theorem 15. Let (Ht) be an historical Brownian motion with drift b where
b : W → R+ is continuous. Suppose that, conditionally on (Ht), the point
measure Θ on C(R+,MF (W)) is a Poisson measure with intensity

(52)

∫ +∞

0
dt Ht(dw) b(w) Qt,ŵ

Then (
Ht +

∫
H ′

t Θ(dH ′)

)

t≥0

is an historical Brownian motion (without drift).

Proof. We suppose that the initial measure H0 is δx̃0 for x0 ∈ Rd. The
general case consists in taking a Poisson measure of such processes (see [Lg]
p.61-64) and works as well. Using the notations defined at the begining of
the proof of the previous Proposition, it follows from this Proposition that
the historical Brownian motion (H1

t ) associated to the Brownian snake W 1

can be written

H1
· = H· +

∑

i∈I

H i
· −ζsi
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where H [resp. H i] is relative to W [resp. W i]. We use the convention
H i

u = 0 for u < 0. Thus the Proposition will be prouved once we establish
that the point measure

∑

i∈I

δHi
·−ζsi

is a Poisson point measure with intensity given by (52). But it follows
from (51) that this intensity Θ is such that

∫
Θ(dY ) ψ(Y ) = 2

∫ τ1

0
ds b(Ws) NŴs

(dW ) ψ (H·−ζs(W ))

= 2

∫ ∞

0
dt

∫
Ht(dw) b(w) Nŵ(dW ) ψ (H·−t(W ))

where the last equality follows from (12). We obtain the sought-after result.

9. Everlasting super-Brownian motion with drift

9.1. Remarks on the case without drift. Let us from now on denote
Pµ the law of the (ordinary) super-Brownian motion (Yt) starting from µ, a

finite measure on Rd. Since (Yt(1)) is a martingale under Pµ, a new law of

measure valued process P̃µ may be defined by

Ẽµ [F (Ys, s ≤ t)] = Eµ

[
F (Ys, s ≤ t)

Yt(1)

µ(1)

]
.

It is called the law of super-Brownian motion conditioned to non-extinction
because we have the following property, for bounded continuous F ,

Ẽµ [F (Ys, s ≤ t)] = lim
h→+∞

Eµ

[
F (Ys, s ≤ t)

∣∣∣Yt+h(1) > 0
]

which is easy to obtain using the asymptotics of the extinction probability.
See for instance [Ev] or [Ov] for more on this conditioning procedure and

the resulting process. We claim that P̃µ is also the law of super-Brownian

motion conditioned to have an infinite total mass Z =
∫ +∞
0 Yt(1) dt, in the

following way.

Proposition 16. For F = F (Ys, s ≤ t) continuous and bounded, we have :

Ẽµ[F ] = lim
L→+∞

Eµ [F |Z = L]

The fact that the two conditionings either by infinite extinction time or
by infinite total mass lead to the same limit has been observed long ago in
the case of a critical Galton-Watson process by Kennedy. In the present
setting we provide a
Sketch of proof. It is proved in [S3] that the laws Pµ [·|Z = L] are the
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solutions of the martingale problem (stopped at extinction)




∀φ ∈ D(A), Yt(φ) = µ(φ) +
∫ t
0 Ys(Aφ) ds

+
∫ t
0

(
4

Ys(1)
− Ys(1)

L−
R s
0 Yr(1) dr

)
Ys(φ) ds+Mt(φ)

where the local martingale M has quadratic variation

〈M(φ)〉t = 4
∫ t
0 Ys(φ

2) ds.

Note that the factor 4 has to be added here because we have chosen to work
with super-Brownian motion with branching rate 4. A reformulation is that
the law Pµ [·|Z = L] has a density with respect to Pµ of the form

exp

[∫ t

0

(
1

Ys(1)
− Ys(1)

4L− 4
∫ s
0 Yr(1) dr

)
dYs(1)

− 2

∫ t

0

(
1

Ys(1)
− Ys(1)

4L− 4
∫ s
0 Yr(1) dr

)2

Ys(1) ds

]
(53)

when we restrict to events σ(Ys; s ≤ t)–measurable and contained in
{Y ; ∀s ≤ t, M ≥ Ys(1) ≥ (1/M)} for a certain M > 0. This localization is
meant to ensure the existence of the density (53), when L is large enough.
Passing to the limit L→ +∞ in (53) we obtain the limit (in probability)

exp

[∫ t

0

1

Ys(1)
dYs(1) − 2

∫ t

0

1

Ys(1)
ds

]

but this is equal to Yt(1)/Y0(1) by Itô formula applied to log Yt(1). We

get precisely the density of P̃µ with respect to Pµ. Thus we have obtained
on the localization set the convergence of the densities which implies weak
convergence by the so-called Schéffé Lemma. The proof may be completed
by checking the technical argument that the localization set has a mass
under the laws P̃µ and Pµ [·|Z = L], L large, (restricted to σ(Ys, s ≤ t))
which is arbitarily uniformly close to 1 when M is chosen large enough.

9.2. Case of constant drift. We now consider the law Pb
µ of super-Brownian

motion with constant drift −b starting from µ a finite measure on Rd. We
note that
(54)

Ẽb
µ [F (Ys, s ≤ t)] = Eµ

[
F (Ys, s ≤ t) exp

(
− b

2
(Yt(1) − µ(1)) − b2

2

∫ t

0
Ys(1) ds

)]

We want to condition this process not to die following the lines of the
undrifted case. We first state a lemma which recalls “well-known” facts.
However the formulation may differ from other sources because our super-
Brownian motion has branching rate 4.

Lemma 17. Let Xt = Yt(1) be the “mass process” of a super-Brownian
motion (without drift) (Yt), starting from µ.

(i) (Xt) is a Feller diffusion with generator 2x d2

dx2 , that is a squared Bessel
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process of dimension 0, starting from µ(1).
(ii) For γ > 0,
(55)

Eb
µ

[
exp

(
−γ Xt −

b2

2

∫ t

0
Xs ds

)]
= exp−

(
µ(1)b

2

b sinh(bt) + 2γ cosh(bt)

b cosh(bt) + 2γ sinh(bt)

)
.

Let us now suppose that (Yt) is under Pb
µ a super-Brownian motion with

constant drift −b starting from µ and, as before, Xt = Yt(1) having initial
value X0 = µ(1).
(iii) We have, when t→ +∞,

(56) Pb
µ [Xt > 0] ∼ µ(1) b exp(−2bt) .

(iv)

(
Xt exp(2bt)

µ(1)

)
is a martingale under Pb

µ.

Proof. For (i) see the martingale problem. Then (ii) is a classical result
cf [RY] Theorem XI.1.7. Taking into account the density of Pb

µ with respect
to Pµ as given in (54), the right-hand side of (55) gives, for γ = λ + (b/2),

the value of Eb
µ[exp(−λXt)]. Passing to the limit λ→ +∞ we obtain

Pb
µ [Xt > 0] = 1 − exp−

(
µ(1)b

2

cosh(bt) − sinh(bt)

sinh(bt)

)

hence (iii). Finally (iv) is checked using (54) and (55).

We define the law P̃b
µ of the everlasting super-Brownian motion with drift

−b using the martingale found in (iv) of the above Lemma i.e.

Ẽb
µ [F ] = Eb

µ

[
F
Xt exp(2bt)

µ(1)

]

for all measurable F = F (Ys, s ≤ t), for instance bounded. Then point (iii)
of the above Lemma shows that, for F as before,

Ẽb
µ [F ] = lim

h→+∞
Eb

µ

[
F
∣∣∣Yt+h(1) > 0

]

so that the defined law is to be interpreted as the law of super-Brownian
motion with drift conditioned not to die, as in the undrifted case. But the
density of Pb

µ with respect to Pµ can also be written under the simple form

dPb
µ

dPµ
= exp

(
µ(1) b

2
− b2

2
Z

)
where Z =

∫ +∞

0
Yt dt

as previously defined. Since this density is measurable with respect to Z,
the conditional law of Pb

µ knowing Z = L is equal to the conditional law
of Pµ knowing Z = L and as a consequence, has the same limit when L →
+∞ which exists by Proposition 16. Thus we remark that conditioning the
super-Brownian motion with drift to have infinite mass leads to the super-
Brownian motion (without drift) conditioned to have infinite mass. This
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latter process was claimed in Proposition 16 to have the law P̃µ of super-
Brownian motion (without drift) conditioned to non-extinction and that law

is different from the law P̃b
µ of super-Brownian motion with drift conditioned

to non-extinction.
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sitaire des Cézeaux, 63177 Aubière cedex, France,

E-mail address: Laurent.Serlet@math.univ-bpclermont.fr


