
HAL Id: hal-00473809
https://hal.science/hal-00473809

Submitted on 16 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis of the modified mass method for the dynamic
Signorini problem with Coulomb friction

David Doyen, Alexandre Ern

To cite this version:
David Doyen, Alexandre Ern. Analysis of the modified mass method for the dynamic Signorini
problem with Coulomb friction. SIAM Journal on Numerical Analysis, 2011, 49 (5), pp.2039-2056.
�10.1137/100804711�. �hal-00473809�

https://hal.science/hal-00473809
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

Analysis of the modified mass method for the dynamic

Signorini problem with Coulomb friction

David Doyen · Alexandre Ern

Received: date / Accepted: date

Abstract The aim of the present work is to analyze the modified mass method for

the dynamic Signorini problem with Coulomb friction. We prove that the space semi-

discrete problem is equivalent to an upper semi-continuous one-sided Lipschitz dif-

ferential inclusion and is, therefore, well-posed. We derive an energy balance. Next,

considering an implicit time-integration scheme, we prove that, under a certain condi-

tion on the discretization parameters, the fully discrete problem is well-posed. For a

fixed discretization in space, we prove also that the fully discrete solutions converge to

the space semi-discrete solution when the time step tends to zero.
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1 Introduction

The modified mass method is a new approach for solving computationally dynamic

problems with unilateral contact. Introduced in [16] for frictionless contact problems,

it is based on a space semi-discrete formulation in which the mass matrix is modi-

fied (the entries of the mass matrix associated with the (normal) displacements at the

contact boundary are set to zero). This modified semi-discrete problem can then be

discretized with various time-integration schemes, either implicit or semi-explicit. In

the implicit case, the modified mass method enables to eliminate the large spurious

oscillations on the contact pressure, which can appear with a standard mass matrix,
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while ensuring an exact enforcement of the contact condition. The method does not re-

quire extra steps or extra parameters and can easily be implemented. With a suitable

scheme such as the Newmark scheme (trapezoidal rule), the modified mass method

achieves a tight energy conservation and exhibits a good behavior in long-time. The

method can also be used in the context of a semi-explicit time-marching method, with

in practice the same stability condition as in the linear case while ensuring an exact

enforcement of the contact condition. For a detailed presentation of the modified mass

method for frictionless contact and a comparison with other methods, we refer to [8].

The modified mass method has been formulated for dynamic contact problems

with Coulomb friction in [15,11,12] and numerical simulations have been performed

in [11,12]. Up to date, no theoretical analysis has been carried out for the modified

mass method in the frictional case. In the frictionless case with an elastic material,

interesting results have been proven. The space semi-discrete problem is equivalent to

a Lipschitz system of ordinary differential equations and is, therefore, well-posed [16].

The variation of energy is equal to the work of the external forces; the contact forces do

not work [16]. Furthermore, convergence of the semi-discrete solutions to a continuous

solution is proven for viscoelastic materials in [7].

The aim of the present work is to analyze the modified mass method for the dy-

namic Signorini problem with Coulomb friction. We prove that the space semi-discrete

problem is equivalent to an upper semi-continuous one-sided Lipschitz differential in-

clusion [6,20] and is, therefore, well-posed (Theorem 2). Furthermore, the variation of

energy is equal to the work of the external forces and friction forces (Theorem 3). For

the time discretization, we propose an implicit scheme. Each time step requires solving

a nonlinear problem similar to a static friction problem. It is well-known that such a

problem can have several solutions [14]. Here we prove that, under a certain condition

on the discretization parameters of CFL-type, the fully discrete problem is well-posed

(Theorem 4). For a fixed discretization in space, we prove also that the fully discrete

solutions converge to the space semi-discrete solution when the time step tends to zero

(Theorem 5).

With a standard mass term, proving the existence of a semi-discrete solution to a

dynamic contact problem is quite delicate. It is necessary to add an impact law and to

work with BV and measures spaces [3,21,2]. The modification of the mass term greatly

simplifies the analysis. Indeed, the unilateral contact condition can be eliminated and

replaced by a Lipschitz continuous term in the momentum equation [16]. Static and

quasi-static Coulomb friction problems can have several solutions [14]. Uniqueness is

only obtained for small friction coefficients (see [17, Theorem 11.4] for the static case

and [13, Theorem 7.2.1] for the quasi-static case). It is worthwhile to notice that in the

dynamic case, uniqueness is recovered. We do not examine the convergence of the dis-

crete solutions to a solution of the continuous problem. Nevertheless, it seems possible

to extend the convergence result in [7] (see above) to the case of a non-local Coulomb

friction (the non-local Coulomb friction is a regularization of Coulomb friction [17,5]).

This paper is organized as follows. In Section 2, we formulate the continuous prob-

lem. Sections 3 and 4 are devoted to the space semi-discrete and fully discrete problems,

respectively. In Section 5, we examine the convergence of the fully discrete solutions



3

to the space semi-discrete solution.

2 Continuous problem

We consider the infinitesimal deformations of a body occupying a reference domain

Ω ⊂ R
d (d = 2 or d = 3) during a time interval [0, T ]. Let ν be the outward unit normal

to Ω. The elasticity tensor is denoted by A and the mass density by ρ. An external

load f is applied to the body. Let u : (0, T ) × Ω → R
d, ǫ(u) : (0, T ) × Ω → R

d,d,

and σ(u) : (0, T ) × Ω → R
d,d be the displacement field, the linearized strain tensor,

and the stress tensor, respectively. Denoting time-derivatives by dots, the momentum

conservation equation reads

ρü − div σ = f, σ = A : ǫ, ǫ =
1

2
(∇u +T ∇u) in Ω × (0, T ). (1)

The boundary ∂Ω is partitioned into three disjoint open subsets Γ D, Γ N , and Γ c.

Dirichlet and Neumann conditions are prescribed on Γ D and Γ N , respectively,

u = uD on Γ D × (0, T ), σ · ν = fN on Γ N × (0, T ). (2)

In what follows, we assume f ∈ W 1,∞(0, T ;L2(Ω)d) and fN ∈ W 1,∞(0, T ;L2(Γ N )d).

We let uν := u|∂Ω ·ν and uτ := u|∂Ω−uνν the normal and tangential displacements

on ∂Ω, respectively. We also let σν(u) := ν ·σ(u)|∂Ω ·ν and στ (u) := σ(u)|∂Ω ·ν−σ(u)νν

be the normal and tangential stress on ∂Ω, respectively. Note that uν and σν(u) are

scalars while uτ and στ (u) are vectors in R
d. Let | · | denote the Euclidean norm in

R
m, m ≥ 1. On Γ c, a unilateral contact condition, also called Signorini condition, and

a Coulomb friction (see Fig. 1) are enforced

uν ≤ g, σν(u) ≤ 0, σν(u)(uν − g) = 0 on Γ c × (0, T ), (3)

|στ (u)| ≤ µ|σν(u)| on Γ c × (0, T ), (4)

στ (u) = −µσν(u)
u̇τ

|u̇τ |
if u̇τ 6= 0 on Γ c × (0, T ), (5)

where µ is the friction coefficient and g is the initial gap. At the initial time, the

displacement and velocity fields are prescribed,

u(0) = u
0, u̇(0) = v

0 in Ω. (6)

The mathematical analysis of the above time-dependent problem entails substantial

difficulties. The existence of a weak solution is only proven for a viscoelastic material

and a non-local Coulomb friction law [5].
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u̇τ

στ(u)

νFσn(u)

−νFσn(u)

Fig. 1 Coulomb condition (d = 2).

3 Space semi-discrete formulation

In this section, we formulate the space semi-discrete problem in space and we prove

existence and uniqueness of a solution. We also establish an energy balance. In the

frictionless case, the semi-discrete problem is equivalent to a Lipschitz ordinary differ-

ential equation, and existence and uniqueness are deduced from the Cauchy-Lipschitz

theorem. With friction, the situation is more complicated. We choose to model the

friction term as a set-valued map. The semi-discrete problem is then equivalent to a

differential inclusion, for which generalizations of the Cauchy-Lipschitz theorem are

available [6,20].

3.1 Preliminaries

To begin with, we introduce some notions needed for the formulation of our problem

as a differential inclusion.

– Given a set E, we define P(E) as the set of all subsets of E, and P∗(E) := P(E) \
{∅}.

– A set-valued map is said to be closed convex if its images are closed convex sets.

– Various notions of continuity can be defined for set-valued maps. One of them is

upper semi-continuity 1. A set-valued map F is said to be upper semi-continuous

at x if, for every open set V containing F (x), there exists a neighborhood U of x

such that F (U) ⊂ V . Consider, for instance, the following set-valued maps:

F1(x) =

(

[−1, 1] if x = 0,

{0} if x 6= 0,
and F2(x) =

(

{0} if x = 0,

[−1, 1] if x 6= 0.

It is easy to verify that F1 is upper semi-continuous for all x ∈ R, whereas F2 is

not upper semi-continuous at x = 0. Here is another example of set-valued-map,

1 This notion of upper semi-continuity is distinct from the upper semi-continuity for single-
valued functions.
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closely related to the Coulomb friction term,

F3(x, y) =

8

>

<

>

:

{−|x|} if y < 0,

[−|x|, |x|] if y = 0,

{|x|} if y > 0.

It is easy to verify that this map is upper semi-continuous for all (x, y) ∈ R
2.

Finally, we observe that upper semi-continuity applied to single-valued functions is

equivalent to continuity. For more details on set-valued maps, we refer to [1].

– The existence theorem for differential inclusions we use does not provide continu-

ously differentiable solutions in time. The solutions are only absolutely continuous

in time. For brevity, we do not define this concept and refer to [19]. For our pur-

pose, it suffices to know that an absolutely continuous function y is continuous,

differentiable almost everywhere and is equal to the integral of its derivative:

y(t0) = y(0) +

Z t0

0
ẏ(t)dt.

Lipschitz continuous functions are absolutely continuous. In what follows, we denote

by AC([0, T ]; Rm), the space spanned by absolutely continuous functions from [0, T ]

to R
m.

– The set-valued maps which appear in our space semi-discrete problem are subgra-

dients and for completeness, we define this notion. Let J : R
m → R ∪ {+∞} be

a convex function and D(J) := {v ∈ R
m; J(v) < +∞} its domain. We define the

subgradient of J as the set-valued map ∂J : D(J) → P∗(Rm) such that

∀v ∈ D(J), ∂J(v) :=
˘

γ ∈ R
m; J(w) − J(v) ≥ (γ, w − v), ∀w ∈ D(J)

¯

, (7)

where (·, ·) denotes the canonical inner product on R
m. It is easy to prove that the

subgradient of a convex function is well-defined and is a closed convex set-valued

map. For more details on subgradients, we refer to [4].

We can now state the main result we use for asserting the well-posedness of a problem

posed in the form of a differential inclusion.

Theorem 1 Let P : [0, T ] × R
m → P∗(Rm) be a closed convex set-valued map. Let

x0 ∈ R
m and consider the following problem: Find x ∈ AC([0, T ]; Rm) such that

ẋ(t) ∈ P (t, x(t)), (8)

x(0) = x0. (9)

Assume that

1. the set-valued map P (t, ·) is upper semi-continuous for almost all t ∈ [0, T ];

2. for any x ∈ R
m, there exists a measurable function p(·, x) satisfying p(t, x) ∈ P (t, x)

for almost all t ∈ [0, T ];

3. there exists a function b ∈ L1(0, T ;Rm) such that |p(t, x)| ≤ b(t) for almost all

t ∈ [0, T ].
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Then, there exists a solution to (8)-(9). Furthermore, assume the following one-sided

Lipschitz condition: there exists K ∈ R such that, for all t ∈ [0, T ], for all x1, x2 ∈ R
m,

(y1 − y2, x1 − x2) ≤ K‖x1 − x2‖2, ∀y1 ∈ P (t, x1), ∀y2 ∈ P (t, x2). (10)

Then, the solution is unique.

Proof For the existence, see [20, Theorem 4.7] or [6, Theorem 5.2]. Uniqueness is

straightforward owing to the one-sided Lipschitz condition since it implies that two

solutions x1 and x2 satisfy 1
2

d
dt(‖x1 − x2‖2) ≤ K‖x1 − x2‖2.

Remark 1 In the single-valued case (P : [0, T ] × R
m → R

m), the hypotheses of Theo-

rem 1 become

1. P (t, ·) is continuous for almost all t ∈ [0, T ];

2. for any x ∈ R, P (·, x) is measurable;

3. there exists a function b ∈ L1(0, T ; R) such that |P (t, x)| ≤ b(t) for almost all

t ∈ [0, T ];

We recover Caratheodory’s existence theorem for ordinary differential equations [10].

Furthermore, the one-sided Lipschitz condition means that P (t, ·) is Lipschitz contin-

uous for all t ∈ [0, T ] (uniformly).

Remark 2 If P is a monotone operator, i.e., for all t ∈ [0, T ], for all x1, x2 ∈ R
m,

(y1 − y2, x1 − x2) ≥ 0, ∀y1 ∈ P (t, x1), ∀y2 ∈ P (t, x2),

then −P satisfies the one-sided Lipschitz condition.

3.2 The discrete setting

For simplicity, we suppose that Ω is a polyhedron. Let T be a simplicial mesh of Ω

(triangles in 2D and tetrahedra in 3D). Let {xi}i∈N and {φi}i∈N be the nodes of

the mesh and the associated scalar basis functions (continuous and piecewise affine),

respectively. We denote by ND the set of indices where a Dirichlet condition is enforced,

and we set Ñ := N \ ND. The space of admissible displacements is approximated by

the space

V = {v ∈ C0(Ω)d; v|T ∈ (P1)
d, ∀T ∈ T , and v(xi) = 0, ∀i ∈ ND}.

The space V is spanned by {φieα}i∈Ñ ,1≤α≤d
, where {eα}1≤α≤d is the canonical basis

of R
d. Denote by N c the set of indices of contact nodes (that is, the nodes located on Γ c

which is fixed a priori) and by N i := Ñ \N c the set of indices of the remaining nodes

(see Fig. 2). Let {νi}i∈N c and {τi,α}i∈N c,1≤α≤d−1 be the contact normal vectors and

tangential vectors, respectively. We set

V i = span({φieα}i∈N i,1≤α≤d),

V c = span({φiνi}i∈N c) and V f = span({φiτi,α}i∈N c,1≤α≤d−1).
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Fig. 2 Decomposition of the domain Ω; bullets (resp., circles) indicate nodes indexed by

elements of the set N i (resp., N c). The open sets Ωc and Ωc
′

are defined in Section 3.

Clearly, V = V i ⊕ V c ⊕ V f , so that any discrete function v ∈ V can be decomposed as

v = vi + vc + vf with vi ∈ V i, vc ∈ V c, vf ∈ V f .

We also introduce the space V ∗ := V i ⊕ V f , so that any discrete function v ∈ V can

also be decomposed as

v = v∗ + vc with v∗ ∈ V ∗, vc ∈ V c.

Let (·, ·) denote the L2 inner product on V . Let ‖ · ‖ denote the norm associated with

(·, ·). Herein, we always work in finite dimension on a fixed spatial mesh; the specific

choice of the norm is therefore not critical. The present choice is made for simplicity.

The standard mass term stems from the bilinear form

m : L2(Ω)d × L2(Ω)d ∋ (v, w) 7−→
Z

Ω

ρv · w ∈ R.

The key idea in the modified mass method is to remove the mass associated with

the normal components at the contact nodes. We consider an approximate mass term

associated with the bilinear form m∗ such that

m∗(φiνi, w) = m∗(w, φiνi) = 0, ∀i ∈ N c, ∀w ∈ V. (11)

Many choices are possible to build the rest of the mass term. In [11,16], the authors

devise various methods to preserve some features of the standard mass term (the total

mass, the center of gravity, and the moments of inertia). Here, we focus for simplicity

on the choice

m∗ : V × V ∋ (v, w) 7−→ m(v∗, w∗) ∈ R.

We define the associated operator M∗ : V ∗ → V ∗ such that,

(M∗v∗, w∗) = m∗(v∗, w∗) ∀(v∗, w∗) ∈ V ∗ × V ∗.
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We define the bilinear and linear forms

a : H1(Ω)d × H1(Ω)d ∋ (v, w) 7−→
Z

Ω

ǫ(v) : A : ǫ(w),

l : [0, T ] × H1(Ω)d ∋ (t, v) 7−→
Z

Ω

f(t) · v +

Z

Γ N

fN (t) · v.

We define the linear operator A : V → V and the vector L(t) ∈ V such that for all

v ∈ V and w ∈ V , and for all t ∈ [0, T ],

(Av,w) = a(v,w), (L(t), w) = l(t, w).

We also need Ac : V → V c, and Lc(t) ∈ V c such that for all v ∈ V and all wc ∈ V c,

and for all t ∈ [0, T ],

(Acv, wc) = a(v, wc), (Lc(t), wc) = l(t, wc).

We define the constraint set

K := {v ∈ V ; v(xi) · νi ≤ g(xi), ∀i ∈ N c}.

We define the unilateral contact term IK : V c → R

IK(vc) =

(

0 if vc ∈ K

+∞ if vc 6∈ K

The function IK is non-differentiable, but convex since K is convex. Therefore, it is

possible to define its subgradient ∂IK : V c ∩ K → P∗(V c),

∂IK(vc) :=
˘

γ ∈ V c; 0 ≥ (γ, wc − vc) ∀wc ∈ V c ∩ K
¯

.

Now, we define the friction term j : V × V f → R such that

j(v, wf) =

Z

Γ c

µ|σν(v)||wf |. (12)

The function j is non-differentiable with respect to its second argument, but convex,

and its domain is V f . We can define its subgradient with respect to its second argument

such that for all z ∈ V , ∂2j(z, ·) : V f → P∗(V f ) with

∂2j(z, vf) :=
n

γ ∈ V f ; j(z, wf ) − j(z, vf ) ≥ (γ, wf − vf ) ∀wf ∈ V f
o

. (13)

3.3 Formulation of the semi-discrete problem

We can now formulate the semi-discrete problem. Let u0
∗ ∈ V ∗ and v0

∗ ∈ V ∗ be suitable

approximations of the initial displacement and velocity u
0 and v

0, respectively.

Problem 1 Seek u ∈ C0([0, T ]; K) such that u∗ ∈ C1([0, T ]; V ∗), u̇∗ ∈ AC([0, T ]; V ∗),

and the following differential inclusion holds true

M∗ü∗ ∈ −Au − ∂2j(u, u̇f ) − ∂IK(uc) + L(t) a.e. in [0, T ], (14)

with the initial conditions u∗(0) = u0
∗ and u̇∗(0) = v0

∗ in Ω.
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Remark 3 The velocity u̇∗ is absolutely continuous. Therefore, it is differentiable al-

most everywhere, and the acceleration ü∗ in (14) is well-defined. Moreover, uc ∈ K so

that ∂IK(uc) is well-defined.

To explicitate the link between the space semi-discrete Problem 1 and the contin-

uous problem formulated in Section 2, we observe that (14) means that, for almost all

t ∈ [0, T ], there exist λc ∈ ∂IK(uc) and λf ∈ ∂2j(u, u̇f) such that

M∗ü∗ + Au + λc + λf = L(t).

Therefore, the vectors λc and λf are discrete counterparts of the normal and tangential

contact stresses. Furthermore, lumping the mass matrices, it is easy to verify that the

definitions of ∂IK(uc) and ∂2j(u, u̇f) imply that, for all i ∈ N c,

uc(xi) · νi ≤ g(xi), λc(xi) ≤ 0, λc(xi)(uc(xi) · νi − g(xi)) = 0, (15)

|λf(xi)| ≤ µ|σν(u)(xi)|, (16)

λf(xi) = −µσν(u)(xi)
u̇f(xi)

|u̇f(xi)|
if u̇f(xi) 6= 0. (17)

Thus, we recover the discrete counterpart of the contact and friction conditions (3)-(5).

3.4 Main results

This section contains our main results concerning the space semi-discrete problem. We

define the map q : [0, T ]×V ∗ → V c ∩K such that for all t ∈ [0, T ] and for all v∗ ∈ V ∗,

vc = q(t, v∗) ∈ V c ∩ K solves the following variational inequality

a(vc, wc − vc) ≥ l(t, wc − vc) − a(v∗, wc − vc) ∀wc ∈ V c ∩ K, ∀t ∈ [0, T ]. (18)

This variational inequality is well-posed since it is equivalent to the minimization of

a strictly convex functional over a convex set. We first examine the properties of the

map q.

Lemma 1 For all v∗ ∈ V ∗, the map t 7→ q(t, v∗) is Lipschitz continuous, and its

Lipschitz constant is uniformly bounded in v∗. For all t ∈ [0, T ], the map v∗ 7→ q(t, v∗)

is Lipschitz continuous, and its Lipschitz constant is uniformly bounded in t.

Proof Let t1, t2 ∈ [0, T ] and v∗, w∗ ∈ V ∗. Set vc = q(t1, v∗) and wc = q(t2, w∗). Owing

to (18),

a(vc − wc, vc − wc) ≤ a(v∗ − w∗, wc − vc) + l(t1 − t2, vc − wc). (19)

Since

l(t1 − t2, vc − wc) =

Z

Ω

(f(t1) − f(t2)) · (vc − wc) +

Z

Γ N

(fN (t1) − fN (t2)) · (vc − wc),

and since f ∈ W 1,∞(0, T ; L2(Ω)d) and fN ∈ W 1,∞(0, T ; L2(Γ N )d), there exists a

constant cl such that

l(t1 − t2, vc − wc) ≤ cl|t1 − t2|‖vc − wc‖.
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Moreover, the bilinear form a being continuous (with constant ca) and elliptic (with

constant α) for the norm ‖ · ‖, a straightforward calculation yields

α‖vc − wc‖ ≤ ca‖v∗ − w∗‖ + cl|t1 − t2|,

which proves the desired regularity for q.

We now reformulate the differential inclusion (14) using the map q.

Lemma 2 The differential inclusion (14) is equivalent to

M∗ü∗ ∈ −A∗(u∗ + q(t, u∗)) − ∂2j(u∗ + q(t, u∗), u̇f ) + L∗(t), a.e. in [0, T ], (20)

uc = q(t, u∗), ∀t ∈ [0, T ], (21)

Proof Distinguishing components in V ∗ and V c, the inclusion (14) is equivalently split

into the following inclusions

M∗ü∗ ∈ −A∗u − ∂2j(u, u̇f) + L∗(t) a.e. in [0, T ], (22)

0 ∈ −Acu − ∂IK(uc) + Lc(t) a.e. in [0, T ]. (23)

Consider (23). By continuity, the inclusion (23) is valid for all t ∈ [0, T ]. For conve-

nience, we recast it as a variational inequality,

a(u, vc − uc) ≥ l(t, vc − uc) ∀t ∈ [0, T ], ∀vc ∈ V c ∩ K, (24)

or, equivalently,

a(uc, vc − uc) ≥ l(t, vc − uc) − a(u∗, vc − uc) ∀t ∈ [0, T ], ∀vc ∈ V c ∩ K. (25)

Hence uc = q(t, u∗) so that the system (22)-(23) is equivalent to the system (20)-(21).

We can now state our main existence result for Problem 1.

Theorem 2 There exists a unique solution u to Problem 1. Furthermore, uc ∈ W 1,∞(0, T ; V c).

Proof (i) To prove the existence of a solution, we rewrite the second-order differential

inclusion (14) as a first-order differential inclusion. We define the single-valued map

S : [0, T ] × V ∗ × V ∗ → V ∗ × V ∗ such that, for all t ∈ [0, T ], for all v∗, w∗ ∈ V ∗,

S(t, v∗, w∗) =

„

w∗

−A∗(v∗ + q(t, v∗)) + L∗(t)

«

,

and the set-valued map P : [0, T ] × V ∗ × V ∗ → {0} × P∗(V ∗) such that

P (t, v∗, w∗) =

„

0

−∂2j(v∗ + q(t, v∗), wf)

«

.

We define also the linear single-valued map D : V ∗ × V ∗ → V ∗ × V ∗ such that

D(v∗, w∗) =

„

v∗
M∗w∗

«

.

Setting X(t) =

„

u∗(t)

u̇∗(t)

«

∈ V ∗ × V ∗, the differential inclusion (20) can be recast as

DẊ(t) ∈ S(t, X(t)) + P (t, X(t)). (26)
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We equip the product space V ∗ × V ∗ with the product norm.

(ii) The operator S is a single-valued map. Since q(t, ·) is continuous and q(·, x) is

Lipschitz continuous, the operator S satisfies the hypotheses of Theorem 1 (see Remark

1).

(iii) We now examine the operator P . This operator is a closed convex set-valued

map (owing to the properties of the subgradients of convex functions). Since q(t, ·)
is continuous and ∂2j(·, ·) is upper semi-continuous (see the example given by (3.1)),

the map P (t, ·) is upper semi-continuous. Hence, Hypothesis 1 of Theorem 1 holds

true. Since q(·, x) is Lipschitz continuous, Hypotheses 2 and 3 of this theorem are also

satisfied. Next, we check the one-sided Lipschitz condition (10). Let (u1
∗, u2

∗, v
1
∗, v2

∗) ∈
(V ∗)4 and let t ∈ [0, T ]. Set u1 = u1

∗ + q(t, u1
∗) and u2 = u2

∗ + q(t, u2
∗). Let γ1 ∈

−∂2j(u1, v1
f ) and let γ2 ∈ −∂2j(u2, v2

f ). Using the definition of the subgradient, a

reverse triangle inequality, norm equivalence in finite dimension, and the fact that

q(t, ·) is Lipschitz, we infer

(γ2 − γ1, v1
∗ − v2

∗) ≤ j(u1, v1
f ) − j(u1, v2

f ) + j(u2, v2
f ) − j(u2, v1

f )

≤
Z

Γ c

µ
“

|σν(u1)| − |σν(u2)|
” “

|v1
∗| − |v2

∗|
”

≤
Z

Γ c

µ
˛

˛

˛

|σν(u1)| − |σν(u2)|
˛

˛

˛

˛

˛

˛

|v1
∗ | − |v2

∗|
˛

˛

˛

≤
Z

Γ c

µ|σν(u1) − σν(u2)||v1
∗ − v2

∗ |

. ‖u1 − u2‖‖v1
∗ − v2

∗‖

.
“

‖u1
∗ − u2

∗‖ + ‖q(t, u1
∗) − q(t, u2

∗)‖
”

‖v1
∗ − v2

∗‖

. ‖u1
∗ − u2

∗‖‖v1
∗ − v2

∗‖ . ‖u1
∗ − u2

∗‖2 + ‖v1
∗ − v2

∗‖2.

Therefore, P satisfies the one-sided Lipschitz condition.

(iv) Owing to Theorem 1, there exists a unique X ∈ AC([0, T ]; V ∗×V ∗) satisfying

(26) with the initial condition X(0) =

„

u0
∗

v0
∗

«

. Therefore, there exists a unique u∗ ∈

C1(0, T ;V ∗) such that u̇∗ ∈ AC([0, T ]; V ∗) satisfying (20) with the initial conditions

u∗(0) = u0
∗ and u̇∗(0) = v0

∗. Owing to (21), u = u∗ + uc = u∗ + q(t, u∗). Therefore,

Problem 1 has a unique solution and it is clear that uc = q(t, u∗) ∈ W 1,∞(0, T ;V c).

We conclude this section with the energy balance.

Theorem 3 For all t0 ∈ [0, T ], the following energy balance holds true:

E(u(t0)) − E(u(0)) =

Z t0

0

n

l(t, u̇(t)) − j(u(t), u̇f(t))
o

dt, (27)

where E(v) = 1
2 (m(v̇∗, v̇∗) + a(v, v)).

Proof We recast the differential inclusion (20) as a variational inequality,

m(ü∗, v∗ − u̇∗) + a(u, v∗ − u̇∗) + j(u, vf) − j(u, u̇f)

≥ l(t, v∗ − u̇∗) ∀v∗ ∈ V ∗, a.e. in [0, T ]. (28)
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Taking v∗ = 0 and then v∗ = 2u̇∗ in the above inequality, we obtain

m(ü∗, u̇∗) + a(u, u̇∗) + j(u, u̇f) = l(t, u̇∗) a.e. on [0, T ]. (29)

Recalling that the family {φiνi}i∈N c is a basis of V c, we decompose uc on this basis

yielding uc =
P

i∈N c uiφiνi. Define C0
i := {t ∈ [0, T ]; ui = 0} and C−

i := {t ∈
[0, T ]; ui < 0}. The sets C0

i and C−
i are respectively closed and open, and they form

a partition of [0, T ]. On int(C0
i ), u̇iφiνi = 0. Owing to (23), a(u, u̇iφiνi) = 0 on C−

i .

Finally, a(u, u̇iφiνi) = 0 on int(C0
i )∪C−

i , and hence almost everywhere (since an open

set in R is a countable union of open intervals, so that its boundary has zero measure).

Hence,

a(u, u̇c) = l(t, u̇c) a.e. on [0, T ]. (30)

Using (30), we obtain

m(ü∗, u̇∗) + a(u, u̇) + j(u, u̇f) = l(t, u̇) a.e. on [0, T ]. (31)

Since u̇ is absolutely continuous in time, by integrating in time (31), we obtain (27).

4 Fully discrete formulation

In this section, we discretize the space semi-discrete problem with an implicit time

scheme. We discretize the elastodynamic part with an implicit Newmark scheme (trape-

zoidal rule), while the unilateral contact and friction conditions are enforced in an

implicit way. This choice of time discretization is very common. It is for instance em-

ployed in [11]. At each time step, we have thus to solve a nonlinear problem similar

to a static friction problem. It is well-known that such a problem may have several

solutions. Here we prove that, under a certain condition on the discretization param-

eters of CFL-type, the fully discrete problem is well-posed. We also derive the energy

balance of this time-integration scheme.

For simplicity, the interval [0, T ] is divided into N equal subintervals of length ∆t.

We set tn = n∆t and denote by u
n, v

n, and a
n the approximations of u(tn), u̇(tn), and

ü(tn), respectively. We define the convex combination �n+α := (1 − α)�n + α�n+1,

where � stands for u, v, a or t, and α ∈ [0, 1]. In this section, the notation A . B

means that A ≤ cB with a constant c independent of h and ∆t.

Let T c ⊂ T be the set of simplices such that at least one vertex is a contact node.

We set Ωc = int
`

∪T∈T cT
´

. Let T c′ ⊂ T be the set of simplices such that at least one

vertex belongs to Ωc. We set Ωc′ = int
`

∪T∈T c′ T
´

(see Fig. 2). We define

hc = min
T∈T c

diam(T ) and hc′ = min
T∈T c′

diam(T ),

where diam(T ) denotes the diameter of the simplex T . Observe that hc and hc′ are

defined using a minimum.

Let us recall some classical discrete trace and inverse inequalities (see, e.g., [23] and

[9]). For all vc ∈ V c,

‖vc‖L2(Γ c)d ≤ 1√
hc

‖vc‖L2(Ωc)d , (32)
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|vc|H1(Ωc)d = ‖∇vc‖L2(Ωc)d×d ≤ 1

hc
‖vc‖L2(Ωc)d . (33)

The same inequalities hold when Ωc is replaced by Ωc′ , and hc by hc′ . We define the

operator qn : V ∗ → V c, such that for all 0 ≤ n ≤ N ,

qn(v∗) = q(tn, v∗) ∀v∗ ∈ V ∗, (34)

where the map q is defined in Section 3.4.

Lemma 3 The function qn : V ∗ → V c is Lipschitz continuous. More precisely,

|qn(v∗) − qn(w∗)|H1(Ωc)d . |v∗ − w∗|H1(Ωc′ )d ∀v∗, w∗ ∈ V ∗. (35)

Proof Let v∗, w∗ ∈ V ∗. Set vc = qn(v∗) and wc = qn(w∗). Owing to (19),

a(vc − wc, vc − wc) ≤ a(v∗ − w∗, wc − vc).

Since vc and wc are zero outside Ωc, a(vc − wc, vc − wc) & |vc − wc|2H1(Ωc)d , and

a(v∗ − w∗, wc − vc) = a((v∗ −w∗)1Ωc′ , wc − vc) . |v∗ − w∗|H1(Ωc′ )d |vc − wc|H1(Ωc)d ,

whence the assertion.

We can now formulate the fully discrete problem.

Problem 2 Seek u
n+1 ∈ V , v

n+1
∗ ∈ V ∗, and a

n+1
∗ ∈ V ∗ such that

M∗
a
n+1
∗ ∈ −A∗

u
n+1 − ∂2j(un+1, vn+1

f ) + L∗(tn+1), (36)

u
n+1
c = qn+1(un+1

∗ ), (37)

u
n+1
∗ = u

n
∗ + ∆t v

n
∗ +

∆t2

2
a

n+ 1

2

∗ , (38)

v
n+1
∗ = v

n
∗ + ∆t a

n+ 1

2

∗ . (39)

To begin with, we reformulate Problem 2 by eliminating v
n+1
∗ and a

n+1
∗ . We set

δn
∗ := −u

n
∗ − ∆t

2 v
n
∗ and εn

∗ := −u
n
∗ −∆tvn

∗ − ∆t2

4 a
n
∗ , and we rewrite v

n+1
∗ and a

n+1
∗ as

v
n+1
∗ =

2

∆t
(un+1

∗ + δn
∗ ),

a
n+1
∗ =

4

∆t2
(un+1

∗ + εn
∗ ).

Next, we define the linear operator Ã∗ : V ∗ → V ∗ and the vector L̃n+1 ∈ V ∗ such

that, ∀v∗ ∈ V ∗,

Ã∗v∗ := A∗v∗ +
1

4∆t2
M∗v∗,

(L̃n+1, v∗) := L∗(tn+1) − 1

4∆t2
M∗εn+1

∗ .

Then, using (37), it is straightforward to turn (36) into

0 ∈ Ã∗
u

n+1
∗ + ∂2j

„

u
n+1
∗ + qn+1(un+1

∗ ),
2

∆t
(un+1

∗ + δn
∗ )

«

− L̃n+1 + A∗qn+1(un+1
∗ ).

(40)

Observe that the last term on the right-hand side of (40) involves the operator A∗ (and

not Ã∗) owing to (11) and the fact that qn+1(un+1
∗ ) ∈ V c.
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Theorem 4 Problem 2 has a unique solution under the CFL-condition

∆t

hc′
. 1. (41)

Proof Define the map Φn : V ∗ → V ∗ such that for all v̂∗ ∈ V ∗, v∗ = Φn(v̂∗) satisfies

0 ∈ Ã∗v∗ + ∂2j

„

v̂,
2

∆t
(v∗ + δn

∗ )

«

− L̃n+1 + A∗v̂c, (42)

where v̂c := qn+1(v̂∗) and v̂ := v̂∗ + v̂c, so that (40) amounts to seeking a fixed-point

for Φn. Setting y∗ := 2
∆t (v∗ + δn

∗ ), we rewrite the above inclusion as a variational

inequality,

ã(v∗, z∗ − y∗) + j(v̂, zf) − j(v̂, v̇f ) ≥ ln+1(z∗ − y∗) − a(v̂c, z∗ − y∗), ∀z∗ ∈ V ∗, (43)

where we have set ã(v∗, w∗) := (Ã∗v∗, w∗) and ln+1(v∗) := (L(tn+1), v∗). Taking

z∗ := 2
∆t (w∗ + δn

∗ ) in (43), then dividing by 2
∆t , we obtain for all w∗ ∈ V ∗,

ã(v∗, w∗ − v∗) + j(v̂, wf + δn
f ) − j(v̂, vf + δn

f ) ≥ ln+1(w∗ − v∗) − a(v̂c, w∗ − v∗). (44)

The variational inequality (44) has one and only one solution. Indeed, it is equivalent to

the minimization of a strictly convex functional. The map Φn is thus well-defined. Now

we shall prove that Φn is a contraction under the CFL condition (41). Let v̂∗ ∈ V ∗

and ŵ∗ ∈ V ∗. Set v∗ := Φn(v̂∗) and w∗ := Φn(ŵ∗). Using (44), a straightforward

calculation yields

ã(v∗ − w∗, v∗ − w∗) ≤ j(v̂, wf + δn
f ) − j(ŵ, wf + δn

f )

− j(v̂, vf + δn
f ) + j(ŵ, vf + δn

f ) − a(v̂c − ŵc, v∗ − w∗). (45)

Using the ellipticity of m and a,

ã(v∗ − w∗, v∗ − w∗) &
4

∆t2
‖v∗ − w∗‖2

L2(Ω)d + |v∗ − w∗|2H1(Ω)d . (46)

Using a reverse triangle inequality,

j(v̂, wf + δn
f ) − j(ŵ, wf + δn

f ) − j(v̂, vf + δn
f ) + j(ŵ, vf + δn

f )

≤
Z

Γ c

µ |σν(v̂) − σν(ŵ)|
˛

˛

˛

|wf + δn
f | − |vf + δn

f |
˛

˛

˛

≤
Z

Γ c

|µ||σν (v̂) − σν(ŵ)||vf − wf |

.

Z

Γ c

|σν(v̂) − σν(ŵ)||vf − wf |.

Using the Cauchy-Schwarz inequality and the trace inequality (32),

j(v̂, wf + δn
f ) − j(ŵ, wf + δn

f ) − j(v̂, vf + δn
f ) + j(ŵ, vf + δn

f )

. ‖σν(v̂) − σν(ŵ)‖L2(Γ c)‖vf − wf‖L2(Γ c)d

.
1

hc
‖σν(v̂) − σν(ŵ)‖L2(Ωc)‖v∗ − w∗‖L2(Ωc)d

.
1

hc
|v̂ − ŵ|H1(Ωc)d‖v∗ − w∗‖L2(Ωc)d . (47)
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Furthermore, using (35) and the inverse inequality (33),

|v̂ − ŵ|H1(Ωc)d = |v̂c − ŵc|H1(Ωc)d + |v̂∗ − ŵ∗|H1(Ωc)d

= |qn+1(v̂∗) − qn+1(ŵ∗)|H1(Ωc)d + |v̂∗ − ŵ∗|H1(Ωc)d

. |v̂∗ − ŵ∗|H1(Ωc′)d + |v̂∗ − ŵ∗|H1(Ωc)d

. |v̂∗ − ŵ∗|H1(Ωc′)d .
1

hc′
‖v∗ − w∗‖L2(Ωc′ )d . (48)

Collecting inequalities (47) and (48), and since hc′ ≤ hc,

j(v̂, wf + δn
f ) − j(ŵ, wf + δn

f ) − j(v̂, vf + δn
f ) + j(ŵ, vf + δn

f )

≤ 1

h2
c′
‖v̂∗ − ŵ∗‖L2(Ω)d‖v∗ − w∗‖L2(Ωc)d .

Using the inverse inequality (33),

a(v̂c − ŵc, w∗ − v∗) .
1

h2
c′
‖ŵc − v̂c‖L2(Ω)d‖v∗ − w∗‖L2(Ω)d .

Collecting these different estimates,

‖Φn(v̂∗) − Φn(ŵ∗)‖L2(Ω)d = ‖v∗ − w∗‖L2(Ω)d .

„

∆t

hc′

«2

‖v̂∗ − ŵ∗‖L2(Ω)d .

Hence, if the ratio ∆t
h

c′
is sufficiently small, the mapping Φn is a contraction. The

Banach fixed-point theorem guarantees that the problem has a unique solution.

Remark 4 In the above proof, the inertial term is essential. By strengthening the co-

ercivity of ã, it enables to prove that Φn is a contraction (for a time step sufficiently

small). In the static case, without the help of the inertial term, this fixed-point proof

works only for a certain range of physical parameters, for instance when the Young

modulus is large compared with the friction coefficient [17, Theorem 11.4].

To conclude this part, we formulate the energy balance. We define the energy at

time tn as

En :=
1

2
(Au

n, un) +
1

2
(M∗

v
n, vn). (49)

At each time tn, there exist λn
c ∈ ∂IK(un

c ) and λn
f ∈ ∂2j(un, vn

f ) such that

M∗
a
n
∗ + Au

n + λn
c + λn

f = L(tn). (50)

Proceeding as in [18], it is readily shown that

En+1 − En = − 1

2
(λn

c + λn+1
c , un+1 − u

n) − 1

2
(λn

f + λn+1
f , un+1 − u

n)

+
1

2
(Ln + Ln+1, un+1 − u

n). (51)
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5 Convergence of the fully discrete solutions

We fix the space discretization and we build the approximate solutions ω∆t : [0, T ] → V

as follows:

ω∆t(t) := u
n + v

n
∗ (t − tn) +

1

2
a

n+ 1

2

∗ (t − tn)2 ∀t ∈ [tn, tn+1), (52)

ω∆t(T ) := u
N . (53)

It is readily verified that, by construction, ω∆t ∈ C0([0, T ]; V ) and ω∆t
∗ ∈ C1([0, T ]; V ∗).

Furthermore, ω∆t ∈ W 1,∞(0, T ;V ). We are now going to prove the convergence of these

approximate solutions to the semi-discrete solution u of Problem 1. In this section, the

notation A . B means that A ≤ cB with a constant c independent of ∆t, but which

can depend on h. We assume without loss of generality that ∆t ≤ 1.

Lemma 4 Let (un, vn, an) solve, for all n ∈ {0, . . . , N}, Problem 2. Then, for ∆t

small enough,

‖un‖ . 1, ‖vn
∗‖ . 1, ‖an

∗‖ . 1. (54)

Proof (i) Let n ∈ {0, . . . , N}. From (50) we deduce Acun + λn
c = Lc(tn), and then,

‖λn
c ‖ . ‖un‖+ ‖L(tn)‖. Owing to the inequality (16), we obtain ‖λn

f ‖ . ‖un‖. Hence,

owing to the equilibrium equation (50), ‖an
∗ ‖ . ‖un‖ + ‖L(tn)‖.

(ii) Using the energy balance (51), it follows that

En+1 − En
.

“

‖un‖ + ‖un+1‖ + ‖L(tn)‖ + ‖L(tn+1)‖
”

‖un+1 − u
n‖.

Observing that

‖un+1 − u
n‖ ≤ ‖un+1

∗ − u
n
∗‖ + ‖qn+1(un+1

∗ ) − qn+1(un
∗ )‖ + ‖qn+1(un

∗ ) − qn(un
∗ )‖

. ‖un+1
∗ − u

n
∗‖ + ‖L(tn+1) − L(tn)‖

. ‖un+1
∗ − u

n
∗‖ + ‖L(tn+1)‖ + ‖L(tn)‖,

we infer

En+1 − En
.

“

‖un‖ + ‖un+1‖ + ‖L(tn)‖ + ‖L(tn+1)‖
”

“

‖un+1
∗ − u

n
∗‖ + ‖L(tn+1)‖ + ‖L(tn)‖

”

. (55)

Using (38),

En+1 − En
. ∆t

“

‖un‖ + ‖un+1‖ + ‖L(tn)‖ + ‖L(tn+1)‖
”

„

‖vn
∗‖ +

∆t

2
‖an+ 1

2

∗ ‖ + ‖L(tn+1)‖ + ‖L(tn)‖
«

. (56)

Thus, using the previous bound on ‖an
∗‖ and ‖an+1

∗ ‖, and since ∆t ≤ 1,

En+1 − En
. ∆t

“

‖un‖ + ‖un+1‖ + ‖L(tn)‖ + ‖L(tn+1)‖
”

“

‖vn
∗ ‖ + ‖un‖ + ‖un+1‖ + ‖L(tn+1)‖ + ‖L(tn)‖

”

. (57)
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Now, using Young’s inequality and the coercivity of the energy En,

En+1 − En ≤ C1∆t En+1 + C2∆t En + C3∆t
“

‖L(tn)‖2 + ‖L(tn+1)‖2
”

,

where C1, C2, C3 are three constants independent of ∆t. Next,

En+1−En ≤ C1∆t (En+1−En)+(C1+C2)∆t En+C3∆t
“

‖L(tn)‖2 + ‖L(tn+1)‖2
”

,

For ∆t ≤ 1/(2C1),

1

2
(En+1 − En) ≤ (C1 + C2)∆t En + C3∆t

“

‖L(tn)‖2 + ‖L(tn+1)‖2
”

,

so that

En+1 − En
. ∆t

“

En + ‖L(tn)‖2 + ‖L(tn+1)‖2
”

.

Finally, using a discrete Gronwall lemma,

En
. E0 +

n
X

j=0

∆t‖L(tj)‖2
. 1.

Then, it is straightforward to obtain the estimates (54).

Theorem 5 The following convergence results hold true as ∆t → 0,

ω∆t → u in C0([0, T ]; V ),

ω̇∆t
∗ → u̇∗ in C0([0, T ]; V ∗),

ω̈∆t
∗ → ü∗ weakly ∗ in L∞(0, T ; V ∗),

where u solves Problem 1.

Proof (i) From the estimates (54), we deduce that

‖ω∆t‖L∞(0,T ;V ) . 1, ‖ω̇∆t‖L∞(0,T ;V ) . 1,

‖ω̇∆t
∗ ‖L∞(0,T ;V ∗) . 1, ‖ω̈∆t

∗ ‖L∞(0,T ;V ∗) . 1.

(ii) Using standard compactness arguments [22], there exists ω ∈ C0(0, T ; V ) such that

ω̇∗ ∈ C0(0, T ;V ∗), ω̈∗ ∈ L∞(0, T ;V ∗), and, up to a subsequence,

ω∆t → ω in C0([0, T ]; V ),

ω̇∆t
∗ → ω̇∗ in C0([0, T ]; V ∗),

ω̈∆t
∗ ⇀ ω̈∗weakly ∗ in L∞(0, T ;V ∗).

(iii) Next, we introduce the auxiliary (piecewise constant in time) approximate solutions

ω∆t : [0, T ] → V and ζ∆t
∗ : [0, T ] → V ∗ such that

ζ∆t
∗ (t) := v

n+1
∗ ∀t ∈ [tn, tn+1), ζ∆t

∗ (T ) := v
N
∗ ,

ω∆t(t) := u
n+1 ∀t ∈ [tn, tn+1), ω∆t(T ) := u

N .



18

By definition of the approximate solutions ω∆t and ω∆t, and using relation (38),

∀n ∈ {0, . . . , N}, ∀t ∈ [tn, tn+1),

‖ω∆t(t) − ω∆t(t)‖ ≤ ‖un+1 − u
n‖ + ∆t‖vn

∗‖ +
1

2
∆t2‖an+ 1

2

∗ ‖

≤ 2∆t‖vn
∗‖ + ∆t2‖an+ 1

2

∗ ‖.

Hence, using estimates (54),

‖ω∆t(t) − ω∆t(t)‖ . ∆t a.e. in [0, T ].

We deduce that ω∆t → ω in L∞(0, T ; V ). In the same way, we prove that ζ∆t
∗ → ω̇∗

in L∞(0, T ;V ∗). We define an approximate external force vector,

L∆t(t) := L(tn+1) ∀t ∈ [tn, tn+1), L∆t(T ) := L(tN ).

Since t 7→ L(t) is Lipschitz continuous, L∆t → L in L∞(0, T ;V ).

(iv) Owing to (36), the approximate solutions satisfy

M∗ω̈∆t
∗ ∈ −A∗ω∆t − ∂2j(ω∆t, ζ∆t

f ) + L∆t∗(t) a.e. in [0, T ],

so that

m∗(ω̈∆t
∗ , v∗ − ζ∆t

∗ ) + a(ω∆t, v∗ − ζ∆t
∗ ) + j(ω∆t, vf ) − j(ω∆t, ζ∆t

f )

≥
“

L∆t, v∗ − ζ∆t
∗

”

∀v∗ ∈ V ∗, a.e. in [0, T ].

Passing to the limit,

m∗(ω̈∗, v∗ − ω̇∗) + a(ω, v∗ − ω̇∗) + j(ω, vf ) − j(ω, ω̇f)

≥ l(t, v∗ − ω̇∗) ∀v∗ ∈ V ∗, a.e. in [0, T ],

and hence

M∗ω̈∗ ∈ −A∗ω − ∂2j(ω, ω̇f) + L∗(t) a.e. in [0, T ].

By uniqueness of the solution, we conclude that ω = u. This uniqueness also implies

that the whole sequence (ω∆t) converges, not only a subsequence.
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