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Abstract. A challenge for 3D motion capture by monocular vision is 3D-2D 
projection ambiguities that may bring incorrect poses during tracking. In this 
paper, we propose improving 3D motion capture by learning human gesture 
models from a library of gestures with variants. This library has been created 
with virtual human animations. Gestures are described as Gaussian Process 
Dynamic Models (GPDM) and are used as constraints for motion tracking. 
Given the raw input poses from the tracker, the gesture model helps to correct 
ambiguous poses. The benefit of the proposed method is demonstrated with 
results.  
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1   Introduction 

Avatars are virtual self representations. They evolve in a 3D world and interact with 
other virtual entities on our behalf. Avatars are animated by their human counterpart. 
One difficulty is the control of their behaviors. Selecting behaviors from a menu or by 
using icons is tedious. Moreover the avatar animation is not lively as it moves only on 
command. Some attempts have been made to alleviate the user’s role and endow 
avatars with some autonomy [1]. These approaches are promising but require 
intensive computation to parse what the user aims to say and derive an appropriate 
nonverbal behaviors that accompany this text. In our project we aim at letting the user 
fully control his avatar [2]. 3D user motion is captured through a plain webcam using 
computer vision algorithms, and rendered by his avatar.  

Vision-based human body tracking allows inexpensive, non-obtrusive marker-less 
motion capture [ 3]. Research in this field has been motivated by numerous target 
applications: human-computer interfaces, animation, interaction with virtual 
environments, video surveillance, games, etc. Monocular vision based markerless 3D 
motion capture is a difficult problem because of the ambiguities resulting of the lack 
of depth information, partial occlusion of human body parts, high number of degrees 



of freedom, variations in the proportions of the human body and various clothing 
[3,4,26]. It has an intrinsic limitation of poor precision and robustness. 

In this paper, we address the issue of improving motion capture with statistical 
gesture models. These models require training on some relevant gesture databases. 
Most existing databases as CMU Graphics Lab Motion Capture Database 
(http://mocap.cs.cmu.edu/) and HumanEva (http://vision.cs.brown.edu/humaneva/) 
gather data on human actions such as running, jumping and the like, but very few 
include communicative gestures. The variety of communicative gestures is a 
challenge by itself. Even though some gestures with a defined shape can be linked to 
a precise meaning, most of the communicative gestures are creative [5] that is they are 
created on the spot. Thus, gesture shape can vary a lot depending on their meaning 
and discourse context. Building a library of such gestures is a tremendous enterprise.  

To avoid this problem, we have selected the context of a recruiting interview and 
we have gathered video data from 4 interviews, each about 30 minutes. We have 
generated gesture by mimicking real user motion and their variations using the Greta 
expressive conversational agent [6]. The resulting library of gestures has then been 
described with a statistical model suitable for constraining tracking and 
disambiguating monocular 3D people tracking. 

The rest of the paper is organized as follows. Section 2 introduces the related 
works about gesture modeling in a low-dimensional space. In section 3, we present 
our real-time monocular motion capture system. Then, we present our work toward 
building a library of communicative gestures in section 4. We describe also how we 
encompass user’s communicative distinctiveness in our library. In section 5, we 
propose using Gaussian Process Dynamic Models (GPDM) [7] to statistically 
describe gesture models and use them as guides for motion tracking. The interest of 
this approach is demonstrated with results. 

2   Related Work 

Although people can perform very large variation of complex motions, their 
movements can be represented in a low-dimensional space. Pullen et al. [8] observed 
human motions have certain cooperative relationships especially when people do 
some specific movements like walking, swimming, etc. This relationship can be used 
to reduce the parameter space dimensionality while performing human motion 
analysis. Safonova et al. [9] have demonstrated that many dynamic human motions 
can be adequately represented with only five to ten parameters. Elgammal et al. [10] 
and Grochow et al. [11] observed that human activities can be described in a latent 
space. So, human motion can be modeled in a low-dimensional latent space. 

Building the latent motion space from existing motion data consists in defining a 
subspace with a lower dimension than the full motion capture data. Because human 
motion is non-linear, basic dimensionality reduction methods such as principal 
component analysis (PCA) are inadequate to describe non-linear human motion [4]. 
Other methods such as Locally Linear Embedding (LLE) [27] and Isomap[28] either 
do not provide invertible mapping from the low dimensional latent space to the 



original pose space or do not provide probability distribution over data in latent space. 
They are not suitable to build low dimensional gesture models [7]. 

Locally Linear Coordination (LLC) [12], Gaussian Process Latent Variable Models 
(GPLVM) [13] and later appeared approaches like Gaussian Process Dynamic Models 
(GPDM) [7] and Laplacian Eigenmaps Latent Variable Model (LELVM) [14] can 
learn a non-linear mapping between the human motion parameter space and a latent 
space and they provide an inverse mapping. They allow describing human motion in a 
low-dimensional latent space. 

Recently, latent gesture models have been used as prior constraints to help 3D 
human motion tracking. Urtasun [15, 16] used GPLVM and GPDM to learn prior 
models for tracking 3D human walking. She achieved good results even in case of 
serious occlusion. Raskin et al. [17] presented an approach to combine annealed 
particle filter tracker with GPDM that allows reducing the state vector and that 
enhances tracking stability. Moon and Pavlovic [19] investigated the effect of 
dynamics in dimensionality reduction problems on human motion tracking. 
Lu et al. [20] used LELVM as constraints in the probabilistic sigma point mixture 
tracker for robust operation with missing data, noisy and ambiguous image 
measurements. In these approaches, gesture models were combined with the image-
based likelihood in the tracker to reduce the number of state sampling particles [21]. 

3 Real-Time 3D Motion Capture with a Webcam 

Our baseline is a real-time webcam-based system for 3D motion capture that was 
previously developed in our team [18]. It works by registering an articulated 3D 
model of the human body on a video stream (Fig. 1). 

 

 
Fig. 1. Real time motion capture by monoscopic computer vision and virtual rendering. 

Our 3D human model has 3 global position parameters and 20 joint angles of the 
upper-body (bust, arms, forearms, hands, neck and head), so a body-pose is 
represented by a vector of 23 parameters. For each input image we search for the 
model pose that best matches the image. Image features (color regions, edges) are 
extracted and matched with model features (colored limbs, occluding edges) projected 
in the candidate pose. For each captured image, optimal registration is searched with 
respect to the pose parameters by iteratively maximizing the color region overlap and 
by minimizing the distance between the image edges and the projected occluding 
edges of the model (Fig. 2) [18]. 



 
Captured image   Color-based image segmentation 

 
Distance map image  2D projection of the  

 registered 3D body model 

Fig. 2. The captured image, the color-segmented image, distance map image edges in the 
foreground mask and finally the projection of the 3D human body model in the optimal 
matching pose [18]. 

Joint angles are then output in real-time over the network as low bandwidth 
MPEG-4 body animation parameters (BAPs). The captured motion is rendered 
remotely by animating the user avatar in the virtual space (Fig. 3). 

 

 
Fig. 3. Real-time motion capture using a single camera for each user and virtual rendering.              
Demonstration videos are available at http://MyBlog3D.com. 



4 Creating a Library of Gestures 

Several dictionaries of emblematic gestures have been gathered in our project. They 
are bound to a given culture. These dictionaries provide detailed information about 
the gesture shape and its associated meaning. Other attempts have looked to describe 
gesture shape in association with their physical meaning [22]. Raised hand with palm 
facing one’s interlocutor carries the meaning to stop something or somebody to do 
something. It can be viewed as symbolizing a wall between both interlocutors.  

In our work we are interested at all types of gestures as we aim to track any hand 
and arm movements done while communicating. We do not aim to recognize gestures 
or to interpret them. We are interested in detecting their shape and following their 
movement in view in reproducing them by the avatar. This reproduction does not 
require understanding the meaning of the gestures. With such an aim we decided to 
consider only one feature of the gestures: their shape.  

Most of the existing databases of motion capture data gather data on action 
movements such as walking, jumping or running. Almost no databases are centered 
on communicative gestures. In our work, our aim is to track people gesturing while 
conversing. To be able to train our tracking algorithm, we need to gather data on 
nonverbal gestures. Rather than creating a database of motion capture data, we have 
decided to use virtual agent technology as it is cheaper. We have created a database 
with the animation of the synthetic character. It is difficult to select which gestures to 
consider. Communicative gestures are often ‘creative’. It is not possible to create an 
extensive library of communicative gestures. At a first step of our work, we have 
decided to focus on one conversational domain: recruiting interviews. We have 
gathered data of real people going through job interview and we have searched for the 
gestures shapes that are the most frequent. The agent was made to replay those 
gestures. To ensure to gather gesturing variability of users, we have applied a set of 
expressivity parameters that modulate the animation of the virtual agent.  

4.1 Gesture Variability 

While communicating, people show large variability not only in their intentions but 
also in their way of expressing them. One can be characterized by a signature, a style 
one carries along in, basically, all circumstances [23].  

We have developed a model of distinctive agent that encompasses variability in the 
modality preference used to communicate a given intention and on the behavior 
expressivity [24]. In particular when modulating the last set of parameters, the agent 
can display gestures more or less extent, more or less fast and powerful, etc. These 
variations occur at the level of execution of behaviors and not on the type of 
behaviors to be displayed.  



4.2 Gesture Clustering 

In our corpus we have gathered data from 8 interlocutors. The data was annotated 
using ANVIL [25]. Around 800 communicative gestures were found in the data. We 
gathered them into classes of gestures looking alike in their shape and movement. 

Our aim is to create a library to train our gesture tracking algorithm [2]. To ensure 
robustness of our tracking algorithm over a large population of users, we have 
enhanced the library of gestures of the training phase with gesture variability using 
the model of distinctive agent [24]. The gesture of each class found in our corpus is 
reproduced by a virtual agent (Fig. 4). The library contains the reproduced gesture as 
well as the same gesture with different expressivities. Thus each gesture in a class and 
its variations are present.  

 

 

 
Fig. 4. Rendering by the virtual agent of a gesture belonging to a gesture class. 

5 Gesture Modeling and 3D Motion Capture 

5.1 Gaussian Process Dynamical Models 

Gaussian Process Dynamic Models (GPDMs) are a powerful approach for 
probabilistically modeling high dimensional time related data through dimension 
reduction that make it possible to learn probability gesture models from small training 
data sets [7]. We propose hereafter a brief introduction to GPDMs. 

A GPDM consists of 1) a continuous mapping between the full-dimensional data 
space (joint angles) and a low-dimensional latent space and 2) a dynamical model in 



the latent space. It is obtained by marginalizing out the parameters of the two 
mappings, and optimizing the latent coordinates of training data. 

GPDMs aim at modeling the probability density of a sequence of vector-valued 
states 1..., ,...,t Ny y y  with discrete-time index t  and D

ty R∈  where D  is the 
number of parameters that define a body pose in the full dimensional parameters 
space. These two mapping can be expressed as: 

                  1 ,( ; )t t x tx f x A n−= +                (1) 

,( ; )t t y ty g x B n= +                   (2)   

where d
tx R∈ denotes the d dimensional latent coordinates at time t . ,x tn  and 

,y tn are zero-mean white Gaussian noise processes. f and g  are (nonlinear) 

mappings defined as linear combinations of basis functions iφ  and iϕ  with weight 

vectors A and B : 
                    ( ; ) ( )i i
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g x B b xϕ=∑                 (4) 

where 1 2[ , ,...]A a a= , 1 2[ , ,...]B b b= . 

The specific forms of f and g will be marginalized out in GPDM. With an 

isotropic Gaussian prior on each jb , we can marginalizing over B in closed form [29] 
to yield a multivariate Gaussian data likelihood: 
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where 1[ ,... ]T
NY y y= is a matrix of training poses, 1[ ,..., ]T

NX x x= is a matrix of 

latent positions, YK  is a kernel matrix, and { 1, 2,..., }Wβ β β=  comprises the 

kernel hyperparameters. 1( ,..., )DW diag w w≡ is a scaling matrix used to account 
for the different variances in the different data dimensions. The kernel matrix 
elements are defined by a kernel function ,( ) ( , )Y i j Y i jK K x x= . For the latent 

mapping, X Y→ , the Radial Basis Function (RBF) kernel is used. 
2 12

1 3 , '( , ') exp( ' )
2Y x xk x x x xββ β δ−= − − +          (6)  

Hyperparameter 1β  represents the overall scale of the output function, while 2β  

corresponds to the inverse width of the RBFs. The variance of the noise term ,y tn  is 

given by 1
3β
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The dynamic mapping on the latent coordinates X is: 
1

1 ( 1)
X
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Where 2[ ,...., ]T
out NX x x= , XK  is the ( 1) ( 1)N N− × −  kernel matrix 

constructed from 1 1{ ,..., }Nx x − , and 1x  is assumed to be have an isotropic Gaussian 
prior. Where α  is a vector of kernel hyperparameters. The dynamics can be 
modeled using the following “Linear + RBF” kernel: 

    
2 12

1 3 4 , '( , ') exp( ' ) '
2

T
X x xk x x x x x xαα α α δ−= − − + +           (8)    

Hyperparameters 1α , 2α  represent the output scale and the inverse width of the 

RBF terms, and 3α  represents the output scale of the linear term. Together, they 

control the relative weighting between the terms, while 1
4α
−  represents the variance 

of the noise term ,x tn . 

Learning the GPDM from measurements 1[ ,..., ]T
NY y y= entails minimizing the 

negative log-posterior: 
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 5.2 Gesture Modeling  

Gesture models are learnt offline from the gesture library using GPDM. Here we use a 
3D latent space as this appears to be the lowest dimension for robustly learning 
complex motions with stylistic variability [16]. We select gestures from each subject 
for training in order to get the mean trajectories and variances of gestures in the latent 
space. The input matrix for GPDM learning is pose parameters, which are 20 joint 
angles of the upper-body (bust: 3DOFs, left shoulder: 3DOFs, right shoulder: 3DOFs, 
left forearm: 1DOFs, right forearm: 1DOFs, left hand: 3DOFs, right hand: 3DOFs, 
neck and head: 3DOFs). Fig. 5 shows two conversational gestures from our library 
and their description as trajectories in a 3D latent space. 

5.3 Gesture Modeling for 3D Motion Capture 

In our model-based approach, tracking relies on evaluating how well some 
synthesized appearance of the human body model matches the input image, i.e. how 



well some model instantiation explains the input image. However, because we only 
use a single camera, depth ambiguities can occur. Furthermore, because real-time 
processing implies limited computation power, only a limited subset of the human 
body degrees of freedom can be processed, so the hand pose cannot be captured, and 
image size may even be limited. We use the gesture model as a constraint to raise 
ambiguities and augment the captured motion with details (Fig. 6). 
 

 
Fig. 6. Gesture model working as constraints in tracking 

For each iteration, the motion tracker outputs a candidate pose to be constrained 
with the gesture model. That pose is projected from the full motion parameter space to 
the 3D latent model space and then replaced with the closest point on the latent 
motion trajectory. Since GPDM mapping is continuous, poses that are close in the full 
motion parameter space remain close in the latent space. The output constrained pose 
at each time step is the pose reconstructed into the full motion space. The point used 

              

Fig. 5. Conversational gestures described in a 3D latent space. Each circle on the trajectories 
represents a body pose. 



for pose reconstruction is the closest point from the projected point on the model 
trajectory in the latent space. The resulting pose is then used as the initial pose for 
tracking at the next image.  

5.4 Experiments 

We used those gesture models as constraints while tracking communicative gestures 
and actions gestures from videos. As we only using one webcam, the tracker can not 
always distinguish poses correctly due to lacking depth information (for example, 
hands orientation are sometimes incorrectness). In the gesture models based tracking, 
each candidate pose is projected into the latent gesture model space, so enforcing the 
captured motion regularity. 

We tested our approach on 4 subjects of communication gestures (each test video 
is about 90 frames). Because the output poses lay on the gesture model internal 
trajectory, most of the monocular vision ambiguities can be solved. Impossible poses 
will not happen in the gesture model space, so heuristic biomechanical constraints, 
which otherwise must be used for pruning the pose space, can be replaced with the 
gesture model that constrain the output poses to be on the learnt motion trajectory 
(fig.7). Another benefit of this approach is that the poses reconstructed in the latent 
space include motion details that cannot be captured from the input video sequence 
(such as hand shapes) (fig.8). 

 

     
Fig.7. Motion tracking with biomechanical constraints vs. gesture model. Left: An input image 
where the left hand orientation can hardly be distinguished. Middle: Motion capture result with 
heuristic biomechanical constraints: the unlikely pose of the left hand is biomechanically 
possible, so it is accepted. Right: Tracking with gesture model instead of biomechanical 
constraints: the gesture model avoids the awkward pose. 

   
Fig.8. Augmenting motion capture with gesture models. Left: Input image. Middle: Tracking 
without gesture model: the hand shape is not captured to meet real-time computation 
constraints. Right: The gesture model augments the motion capture with fingers movements. 



6 Discussion and Future Work 

We have created a library of communication gestures with variants and used it to 
learn gesture models with a GPDM statistical approach. These models allow both 
non-linear mapping for reconstruction and dimension reduction between the motion 
parameters space and a low-dimensional latent space, while being simple to learn 
from small training data. The main contribution of this work is used the low-
dimensional gesture models as prior constraints for monocular motion capture while 
tracking communicative gestures. These gesture models help track ambiguous poses 
and render some motion details. 

Our approach works on specific gestures. Future work is still required to be done to 
support broader classes of gestures. 
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