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FINITE VOLUME METHOD FOR GENERAL MULTIFLUID FLOWS GOVERNED
BY THE INTERFACE STOKES PROBLEM

STELLA KRELL*

Abstract. We study the approximation of solutions to the steady Stokes problem with a discontinuous viscosity
coefficient (interface Stokes problem) in the 2D “Discrete Duality Finite Volume” (DDFV) framework. In order to
take into account the discontinuities of the viscosity and to prevent consistency defect in the scheme, we propose
to modify the definition of the numerical fluxes on the edges of the mesh where the discontinuity occurs. We first
show how to design our modified scheme, called m-DDFV, and we analyze its well-posedness and its convergence
properties. Finally, we provide numerical results which confirm that the m-DDFV scheme significantly improves the
convergence rate of the usual DDFV method for Stokes problems.

Key words. Interface Stokes problem, discontinuous coefficients, DDFV methods.

1. Introduction.

1.1. Interface Stokes model. In this paper, we are concerned with the finite volume ap-
proximation of solutions to the steady interface Stokes problem with homogeneous Dirichlet
boundary conditions: Find a velocity u : Q — R? and a pressure p : 2 — R such that:

div (—p(u,p)) =f, div(u) =0,inQ, wu=0, onof, / p(x)dz =0.  (1.1)
Q

where 2 is a polygonal connected open bounded subset of R?, the total stress tensor is denoted
by ¢(u,p) = 2n(z)Du — pld, with Du = 3(Vu + ‘Vu), f is a function in (L*(£2))? and
the viscosity n € L () satisfies:

0<C, <n(x) <C,, forae zecQ, (1.2)

where C, and 67, are two positive constants. For simplicity we will only consider here the
case of homogeneous Dirichlet boundary conditions, we emphasize the fact that our frame-
work naturally allows to take into account non-homogeneous Dirichlet boundary conditions.

REMARK 1.1. Here we note the stress tensor by  instead of the usual notation o since,
in the finite volume framework, o traditionally denotes an edge of the mesh.

The existence and uniqueness of a solution (u,p) € (H}(Q))? x L*(Q) of (1.1) is
classical using the Lax-Milgram Theorem and the Necas Lemma (see for instance [6, 16, 27,
25]).

In particular, this study allows to take into account a viscosity constant per sub-domains
Q1,5 such that Q; N Qy = @ and Q = Q; U Qy. On the interface I' = Q4 N 92 between
the sub-domains, we have the following condition

[u] . =0 and [p(u,p)ii] =0, onT,

where i is an unit normal vector to I" oriented from €2; to 5 and [a]). = (a),, — a|q, )|r
denotes the jump of a across I'. Since the viscosity is discontinuous across the interface
T', the pressure may have jumps. More precisely, we have [p]‘F = [2nDuil - ﬁ']‘F on I see
[20]. Thus, our scheme must consider the possible jumps of the pressure and of the velocity
gradient. The corresponding regularity of the solution is then (for more details see [24])

u e {ve(Hj(Q)? Vi, € (H?(;))? for i = 1,2}, for the velocity,

1.3
pe{qeL?), o, € H'(Q;), fori = 1,2}, for the pressure. (1-3)
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2 S. KRELL

In many numerical simulations, two phase flows are modeled by a single set of conser-
vation laws for the whole computational domain. Such an approach leads to Navier-Stokes
equations with discontinuous density and viscosity coefficients. Thus the Stokes equations
with discontinuous viscosity (1.1) can be considered as a reasonable first step for the study of
highly viscous two phase flows.

1.2. The DDFV method. Different methods of gradient reconstruction for cell-centered
finite volume methods have been proposed since the last ten years to handle anisotropic het-
erogeneous scalar diffusion problem on distorted meshes. In all cases, the crucial feature
is that the summation-by-parts procedure permits to reconstruct a whole two dimensional
discrete gradient, starting from two point finite differences. Many of them have been com-
pared in the benchmark of the FVCAS conference [18], for scalar diffusion problems, see
also [8, 10, 11, 14, 19] for more details.

We consider here the class of schemes called “Discrete Duality Finite Volume” (DDFV
for short). The DDFV method has been first introduced and studied in [10, 19] to approximate
the solution of the Laplace equation on a large class of 2D meshes including non-conformal
and distorted meshes, without “orthogonality” assumptions required by classical finite vol-
ume methods. Basically, it consists in defining a full discrete gradient from finite differences
in two independent directions. This discrete gradient (see Definition 2.1) is located around
the edges of the mesh and his dual operator, the discrete divergence (see Definition 2.2) on
the centers and the vertices of the mesh.

All the notation used in this introduction are defined in Section 2.

1.2.1. The DDFV method for the Stokes problem. Finite volume approximation of
Stokes problems is a current research topic, we refer to [9, 12, 15, 2, 3] for the description
and the analysis of the main available schemes up to now. All these works deal with a constant
viscosity on the whole domain. We propose here a staggered method: the discrete unknowns
(the components of the velocity and the pressure) are located on different nodes. The most
celebrated staggered scheme is the MAC scheme [17, 23] on cartesian grids. Actually, for
a cartesian grid and constant viscosity, the scheme we propose here is equivalent (except
possibly on the boundary) to two uncoupled MAC schemes written on two different staggered
meshes.

The first reason why the DDFV method is considered here, is the large class of 2D general
meshes we can use. The second one is: since the viscous part of the momentum conservation
law is not a Laplace operator, we have to address the problem of the reconstruction of the full
velocity gradient and its symmetric part on the whole domain. The DDFV strategy for the
Stokes problem is the following: the approximate velocity u” is defined on the centers and
the vertices of the mesh, and the approximate pressure p® on the edges of the mesh, that is
where the discrete velocity gradient exists. Remark that the edges are naturally associated to
a family of quadrangles called diamond cells (see Fig. 2.2(a)).

In a previous work [21], we propose the following construction of the scheme in the case
of smooth viscosity. We integrate the momentum conservation law of the problem (1.1) on
the interior center cells 21 and the interior vertex cells 2)1*. The mass conservation equation
is directly approached on the diamond cells. The velocity is imposed to be equal to zero on
the boundary of the domain, which is denoted by u* € E (see (2.3)). Finally, the integral of
the pressure is imposed to be equal to zero. Unfortunately, the corresponding scheme is only
proved to be well-posed for particular classes of mesh see [9]. Indeed, the well-posedness
result relies on a discrete inf-sup condition, which is still an open problem for general meshes.
To overcome this difficulty, we propose in [21] to add in the mass conservation equation
a stabilization term —Ah% A®p®, corresponding to a finite volume approximation of the
Laplace operator (see Definition 2.9), inspired by the well-known Brezzi-Pitkédranta method
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in the finite element framework [7]. The stabilized DDFV scheme can then be written as
follows:

Find u? € Eg and p® € R® such that,

div™(—2n®°D®u” + p®°Id) = >, div™" (—27°D®u” + p®Id) = £>", (1.4)

div® (u?) — Ak APp® =0, > mpp” =0,

DED

where A > 0 is given and is a stabilisation parameter. This stabilized DDFV scheme is then
proved to be well-posed for general 2D meshes. Furthermore, we showed the convergence
of such schemes and error estimates in the case where the viscosity and the exact solution
are assumed to be smooth enough (see [21]). We proved the first order convergence of the
scheme (1.4) in the L?(2)-norm for the velocity gradient, as well as for the velocity and for
the pressure. These results have been extended to the 3D case in [22]. In the case where 7
presents discontinuities, our numerical results in [21] show that the scheme is still convergent
but the error analysis is no more valid and, actually, we numerically observe a loss of accuracy
of the method in that case.

1.2.2. Consideration on the discontinuities of the viscosity. Even for scalar diffusion
problems, it is known that such discontinuities in the coefficients imply a consistency defect
in the numerical fluxes of usual finite volume schemes. It is needed to modify the scheme in
order to take into account the jumps of the coefficients of the problem and then to recover the
optimal first order convergence rate. As in the scalar case [5], we need to introduce a modified
gradient operator (see Definition 2.5) and finally define a modified approximate viscous stress
tensor D%Nu”’ (see Definition 2.7) on each diamond cell. We derive a modified DDFV
scheme, referred to as m-DDFYV, that consists in replacing n° D®u7 (resp. —Ah3 AP p®) by
DZMu7, (resp. —Ah3 AP (p®,D®u?)) as follows:

Find u? € Eg and p® € R® such that,

div™(—2D%"u” + p®°1d) = £7 div™ (=2DF"Yu” +p°Id) = 7] (| 5
div® (u7) — Ah3 A® (p®,DPuT) =0, > mpp” =0.
DED

Note that this m-DDFV scheme has the same number of unknowns as the standard DDFV
scheme (1.4). The aim of this work is first to explain the derivation of this new scheme. Then
we show an existence and uniqueness result which relies on a discrete Korn inequality on the
modified discrete operators (see Theorem 4.2) which is not just an extension of the one proved
in [21]. We finally provide a first order error estimate of the scheme (1.5) in the L?(£2)-norm
for the velocity gradient and for the pressure. Furthermore, we numerically observe the real
benefit of this construction. We want to emphasize that, despite quite intricate notations and
construction, the implementation of m-DDFV schemes is in fact easy. It is essentially the
same as that for the DDFV scheme (see Section 2.4.5) and the computational costs of the two
methods are almost the same.

1.3. Outline. This paper is organized as follows. In Section 2, we recall the DDFV
framework for the finite volume approximation of Stokes problems on unstructured 2D grids
and we introduce the modified discrete operators (see Section 2.4). Then, we describe the
m-DDFYV stabilized scheme in Section 3. In Section 4, we present the main results of discrete
functional analysis necessary for the theoretical study of the finite volume method. These
results include properties of discrete operators proved in [21] but also properties of the mod-
ified discrete operators, including an appropriate discrete Korn inequality (see Theorem 4.2).
We prove the stability and well-posedness of the scheme in Section 5. Then, in Section 6,
we prove error estimates (see Theorem 6.1). Finally theoretical error estimates are illustrated
with numerical results, in Section 7.
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2. The DDFYV framework.

2.1. The meshes and notation.

The meshes. We recall here the main notation and definitions taken from [1]. A DDFV
mesh 7 is constituted by a primal mesh 9t U 091 and a dual mesh 9t* U 091*. An example
for square locally refined primal mesh is given in Fig. 2.1.

B L i e -~ - — - — —
| *ooo--m--p--
o Primal node ! I I I
Ty . I I Ty I I
o) o) — Primal cells © @.--Q___.JUJ__Q -
- - . Dual cell k* ! | “\ !
r Boundary vertices x I I Zee /N !
[ ! = n ) . r * L El}C e O W
o Interior vertices x | | Pl
© © e =z, the middle of o i oo (i) ¢ 9
o B ! | ---¢<_ O é& 0O ¢ m

1 ~ ! 1

o} o} I : T - - -Q ¢
n - = - B--o---B-OE-6-R

FIG. 2.1. The mesh T . (Left) The primal mesh 9t U O9N. (Right) The dual mesh " U O0*.

The interior primal mesh 90 is a set of disjoint open polygonal control volumes k£ C €2
such that UK = €. We denote by 9901 the set of edges of the control volumes in 91 included
in 0f2, which we consider as degenerate control volumes. To each control volume and de-
generate control volume k£ € 9T U 9, we associate a point x, € k. For each degenerate
control volume x € 090, we choose the point z to be the midpoint of the control volume .
This family of points is denoted by X = {z,, £ € MU IM}.

For all control volumes k and £, we assume that dx N Jc is either empty or a common
vertex or an edge of the primal mesh denoted by o = «|£. We note by & the set of such edges.
We also note o* the segment [z, z ] and £* the set of such segments. To each edge o € &,
we associate a point z, such that x,, belongs to the interior of o. We introduce, for each edge
o € &, two different angles: o the angle between Tz, and o, o, the angle between z .z
and o, (see Fig. 2.2(a)).

Let X* denote the set of the vertices of the primal control volumes in 21 that we split
into X* = X7, U X7, where X}, N0 = 0 and X, C 0. With any point x» € X/, ,
(resp. xx~ € XJ,;), we associate the polygon £* € 9)?* (resp. K* € OM*) whose sides are
{[zx,z,] such that z,. € X,z € KNT, K €M, 0 € E} (resp. {[xx+,z,]| suchthat o €
OMand z- € o} U {[zc,x,]suchthatz, € X,z € KNT, K € M, 0 € £}) sorted
with respect to the clockwise order of the corresponding control volumes. This defines the
set N* U 09* of dual control volumes.

CRITERION 2.1. For each o € &, we usually choose for x, the middle point of the edge
o. In that case, dual cells are called barycentric dual cells. For each o € &, we can define
the two angles o and o, as shown in Fig. 2.2(a). We specify a criterion ¢y > 0 such that if
the angles are too close |, — a.| < €, then x,, is finally chosen to be the intersection of the
primal edge o and the segment o*.

We modify some dual cells in order to have either the same angles like for the direct dual
mesh (see [1, 5, 10, 21]) or the angles distant from ¢y. This technical assumption plays a
role in Definition 2.5 of the modified discrete gradient, in the discrete Korn inequality (see
Theorem 4.2) and in the consistency errors analysis (see Lemma 6.4 and Corollary 6.1). The
reason is that those three results rely on the estimate given in Lemma 2.2, which can be seen
to blow up as soon as the angles o and «, are too close but distinct.
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Given the primal and dual control volumes, we define the diamond cells D, .« being the
quadrangles whose diagonals are a primal edge 0 = K|£ = [zc+,x.~] and a corresponding
segment o* = [z,,z.], (see Fig. 2.2(a)). Note that the diamond cells are not necessarily
convex. If o € £ N 01, the quadrangle D, ,. degenerates into a triangle. The set of the
diamond cells is denoted by © and we have Q = Dg@ﬁ

> R s NN o N Y
i" P S Sy DN ST xﬁ* ."'m..
S e o = [acD,xL l '.so c NN
L. _ -
Tike'” -7~ x
ot = [$}C71‘L} =D =-i=iD
(a) Notation in the diamond cell. (b) Direct orthonormal basis on the dia-

mond cell.

FIG. 2.2. Diamond cells.

Notation. We recall here the main notation taken from [21]. For any primal control
volume £ € 9t U 09, we note m its Lebesgue measure, dy its diameter, &, the set of its
edges (if £ € M), or the one-element set {k} if K € IM, D = {D, .~ €D, 0 € &},
By := B(wx, px) NI C K the open ball of radius p > 0 for £ € M, mp, its measure,
the value p, is chosen such that the inclusion is verified. We will also use corresponding dual
notation for any dual cells £* € I* U OI*: mycx, Excx, Diyer, dicx, Bicx, MB > Prc*-

For a diamond cell o = D, - whose vertices are (Zy, i+, Xz, T+ ), We NOte Tp = T,
the center of the diamond cell D, hy, its diameter, m, the length of the primal edge o, m,«
the length of o* and m,, its measure.We introduce for each diamond cell in Fig. 2.2(b) the
two direct orthonormal basis (Ficx,z#, loxc) and (M, =ycx, T,z ), Where ii,,c the unit vector
normal to o oriented from x to x., =+ the unit vector normal to o* oriented from x,«
to .+, T, the unit vector parallel to o* oriented from z, to =, and Tx«, .~ the unit vector
parallel to o oriented from .~ to x.~. We also note for each diamond cell s its sides (for

L= 6= [Z‘K*axa]

T ic*
= L, T I ,
5 = [2e, 2er] |, RIS
. SRk
f' ‘S K4 "\
; S, - ,
8 x .
K D " 22K, LK .,
"' - . N' / 7 b K
=imin D R S ¢ Qr,c* ‘a
R “ / K
’ g >~ Qx,C NG
8 LTS S ’ L, .
~ 4"‘ J/‘L*..'.'.'. ), ~/ R CEZ’i.'~..' \<\
K4 "ﬁ‘ '~y L, ’ K - .'.:Q'%ZL'[,
. ~ L d
R ’
B Tiger”
(a) A diamond and its sides. (b) Quarter diamond cells.

FI1G. 2.3. Diamond cells.

example s = [x, 2] see Fig. 2.3(a)), £, = {s, s C Ipands ¢ ON} the set of interior
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sides of D, m, the length of a diamond side s, fis5 the unit vector normal to s = D|p’ oriented
from » to D’ and & = {s € £,, V D € D} the set of interior sides of all diamond cells in D.

Since we use here the barycentric dual cells, we introduce other notation in comparison
to the notation in [21]. For a diamond cell p, we note o, (resp. o.) the segment [z, zp]
(resp. [p,x,]), Ox~ (resp. o.+) the segment [z, x5 (resp. [Zp, Z.+]), mc the length of
¢ and x. the middle point of the segment ¢ for each ¢ € {ox,0,,0xx, 0.+ }. We introduce
in Fig. 2.2(b) the two other direct orthonormal basis (i, =, 7o cx+) and (i, =, To xc* ),
where i, _x« the unit vector normal to oy oriented from 2« to .« i, .~ the unit vector
normal to o oriented from '« to T+, T, x= the unit vector parallel to o, oriented from
Tk to xp and T, .~ the unit vector parallel to o oriented from x5, to .. Remark that we
have m,« M, xcx = Mg Mg xcx + Mo, Ty i, forany o € D.

We distinguish the interior diamond cells and the boundary diamond cells: D+ = {D €
D, pNINY # 0}, Dint = D\Deyt. For all D € Dy, we define the length between zc
(resp. x.+) and z by d« o (resp. d.« ). Thus, for all D € Dy, we have mgy . = dic+ o
and my .. =dg ..

To each diamond cell D € D, we associate quarter diamond cells as follows ¢, q =
DNpNd,suchthatpNp # Pandd N # O, forp € {k,c} and d € {k*, 2"}, as shown
in Fig. 2.3(b). If D € D54, we have D = O xc+ U Ok - UQ, x» U Q. .~ and if D € Dy,
we have D = Qg o+ U O .. The set of the quarter diamonds in the domain is denoted by
Q= DLEJQQD' For ¢ € 0, we note by m,, its measure and h, its diameter. We also define the

setEo = {0k, 0.,0/+, 0.+ }, forall @ € Q. Remark that my, is, for instance for @ = 9y k=,
equal to 1 sin(a )Mo Mo, . -

ASSUMPTION 2.1. An important assumption for our analysis is that each DDFV mesh T
is conforming with respect to the discontinuities of the viscosity.We assume that the viscosity
7 is Lipschitz continuous on each quarter diamond cell: there exists C,, > 0 such that:

In(x) —n(z")| < Cylz —2'|, Vz,2’ € g, forallg € 9. 2.1

We note ng = % jg n(s)ds, forall @ € Q. We always have C,, < ng < C,, forall ¢ € Q.

This assumption imposes to know where the discontinuity occurs before building the
mesh of the domain. Of course, in real non-stationary situations this is not possible and it
would be interesting to extend our analysis to the case of immersed interfaces. However, one
can see that the present work can be adapted to the case of the linear elasticity equations for
which this assumption seems much more realistic.

We denote by M, ,,(R) the set of real m x n matrices (we note M, (R) when m =
n). In the sequel, || - ||2 stands for the natural L?({2)-norm when we consider scalar valued
and vector valued functions and for the Frobenius norm when we consider matrix valued
functions:

i€l = /Q € (@) 5z, with [l€]% = (£:€), VE € L*(Q, M2 (R)),

where (€:&) = Y &&= Tr('€€), VE €€ Ma(R).

1<i,j<2
REMARK 2.1. The matrix norm ||-|| 7 satisfies ”’ # ‘H < ||A|l 7, forall A € M2(R).
f
Mesh regularity measurement. Let size(7 ) be the maximum of the diameters of the
diamond cells in ®. To measure how flat the diamond cells can be, we note o the unique real
in ]0, ] such that sin(a) := gn%ﬂ sin(a )|, | sin(a,)]). We introduce a positive number
€
reg(7) that quantifies the regularity of a given mesh and is useful to perform the convergence
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analysis of finite volume schemes:

1 hp dx d)C*
reg(7):=max | ———,max max — ,max max —, max max — | . (2.2)
sin(ar)’ Ded Qeap min m, ' KEMDED hp k*em*Uom*peDd o« hp
c€0Q

The number reg(7) should be uniformly bounded when size(7) — 0 for the convergence
to hold. For instance, there exists a constant C' depending on reg(7") such that

h h
<2 <0, YoeNy,  hp<Cmin(m,,m,), VD, - €D.

NN

2.2. Unknowns and discrete projections. The DDFV method associates to any primal
cell K € M U IM an unknown value u,e € R? for the velocity, to any dual cell k* €
OM* U OM* an unknown value u,- € R? for the velocity and to any diamond cell D € ® an
unknown value p” € R for the pressure. These unknowns are collected in the families :

u” = ((urc);ce(imuamt) ) (“n*)me(fm*uam*)> € (R2)T’ P = ((pD)DGD) €R®.

We specify a discrete subset of (RQ)T needed to take into account the Dirichlet boundary
conditions:

Ey={v7 € (R?)" s.t.vc =0, Vk € IMand v, = 0, Y+ € IM*}. (2.3)

We define an interior mean-value projection for any integrable vector function v on 2:

@:v(<1/v(x)dx) >,1F>f:v (( ! / v(x)dx) > (2.4)
Mi Jx KeM Myex Jer K*EM*

We also note the mean-value projection for any integrable vector function v on Q as follows

~ 1 ~o* 1
Prv :GP’:V, ( / v(a:)da:) ,}P’: v, ( / v(x)dx) ) .
MBk JBy Keom MBer By K+ com
2.5

In particular, the mean-value projection IP7, v is well defined for any vector field v lying in
(H'(9))*.

2.3. Discrete operators. We recall the discrete operators introduced in [21].
DEFINITION 2.1 (Discrete gradient). We define a consistent approximation of the gradi-
ent operator V®° : u% ¢ (]RQ)T = (VPuT) pep € (M2(R))®, as follows:

1 — N Up*x — Upc* N
ViuT = Sin(a ) |: @ o T ¥ n"'*’C*:| .
D

o o

where & represents the tensor product.
DEFINITION 2.2 (Discrete divergence). We define a consistent approximation of the
divergence operator applied to discrete tensor fields denoted by div™ : (Mo (R))® — (RQ) i

such that divT &2 = (div”‘§©7div8””§®7div”"*fi’,diva”"*{i’), for €2 € (Ms(R))®,

with div™ 2 =(div'e®) divo™ 2=, div™ 0= (divE®) L oo divo™" ¢P=
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s KD .
(dlv £ )zc*eaim* and:
s KD 1 D=
diveey = — > m &P, «, VK € M,
Mk scox
. 1 R
div<¢® = > M€ gnsex, V* € M*,
Ty o* EOK*
. * 1 R R
div™ fg = Yo M &P pnpex + > d}c*,ﬁfpnaic , VK* € 0™,
Micx \ D, v €D Dy e €0 jcx NDeme

Using the barycentric dual mesh, we also can write the discrete divergence like in [9]

- 1 ~ -
dive"¢® = — > (mmcfpnax,c* +mU£§DnaLK*), VK € I~
Mi* orcox*
Thanks to the discrete gradient we can define a discrete strain rate tensor and a discrete
. . T

divergence of a vector field in (RZ) .

DEFINITION 2.3 (Discrete strain rate tensor). We define a discrete strain rate tensor of
a vector field in (RQ)T, D® :u” € (R2)T — (DPu?)pen € (M2(R))®, with DPu” =
vP T+‘ vPuT
YT (V) forall b € ®.

DEFINITION 2.4. We define a discrete divergence of a vector field in (RQ)T, div® :

u” € (R2)T — (divPu®)pen € R®, with diviu® = Tr(VPu?), forall D € D.

2.4. Local modification of the discrete strain rate tensor. The point we are concerned
with in this paper is that the DDFV scheme (1.4) suffers from a loss of consistency in the case
where 7 presents discontinuities. More precisely, we present a way to recover the consistency
of the fluxes even when 7 jumps across the primal and dual edges of the mesh.

We observe that, at the continuous level, the normal component of the stress tensor
©(u,p) = 2nDu — pld is continuous in a weak sense across all primal and dual edges of
the mesh. For instance, we have

/ PGy o (u,p)i, cds = / P13, (u,p)i,cds. (2.6)
U}C*

Ty *

We need to ensure an equivalent continuity property at the discrete level. We express a dis-
crete stress tensor ¢, as follows ¢ = 2no,DYyu” — p2Id on quarter diamond cells, (see
Definition 2.8) thanks to additional unknowns p2? = (p?)gecq,, and a modified strain rate
tensor DY (see Definition 2.6). The additional unknowns will be algebraically eliminated on
each diamond cell (see Section 2.4.3). Thus the number of unknowns of the m-DDFV scheme
is the same as for the DDFV scheme.

2.4.1. Scalar diffusion problems. We first recall the principle of the method proposed
in [5] for scalar diffusion problems. The discrete gradient V?u” can be understood as the
gradient of the unique affine function II,u” on D whose value at the middle of each side of
the diamond D is the mean value between the two unknowns associated to the extremities
of this segment (this construction is summed up in Fig. 2.4). The modified discrete gradient
Vw7 is chosen to be constant on all the quarter diamond cells ¢ € Q. It is the gradient of
a function ﬁDuT which is affine on each ¢ € £, which coincides with II,u” in the middle
of each side of D and which is continuous at each point =5, , T5, , To,.» , T5 .. - The modified
discrete gradient can be expressed as VPu” + Bod” where 67 = t(é,c, 8z, 0,0.+) € RYis
a set of four unknowns that are Il u7 (y) — IL,u” (y) for each y € {20, , T4, Loy Lo, )
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FIG. 2.4. The affine functions pu? and pu? on D.

and (Bg)geqn, is a family of matrices in M3 4(R) which can be explicitly computed and
depend on the geometry of . Remark that the modified discrete gradient depends on the
artificial unknowns 07, which can be determined. This construction, valid for an interior
diamond, can be extended to the case where D € D, with 6° = (dc) € R. If we note
np =4if D € D,y and np, = 1if D € D4y, then that 67 is a vector in R™P .

2.4.2. Modified operators in the vector-valued case. We propose here to adapt the
above framework to the vector case. We will now work with §? = t(é,c, Or,0,cx,0.+) lying
in M,,,, o instead of a vector in R"? and the family of matrix By, is the same.

DEFINITION 2.5 (Discrete gradient on quarter diamonds). A discrete gradient of a vector
field of (RQ)T, vy (RQ)T — (V3uT)geq € (M2(R))2, is a set of tensors defined by
VAuT = VPuT + 6P By, for any D € ® and for any @ € Qp, with §° € (M, 2(R))®
the artificial set of unknowns and (Bo)gcq, the set of matrices in Ma ., (R) defined as
follows:

o VD € Dypy, we take 57 = (8, 0., 8+, 8.+ ) € My, 2(R) and four matrices Bo:

- - = -
B | Mo Noyerc* 0 Moy« Norc 0 B o Mo Noye 1c* 0.0 Mo+ Noc
Q. k* s Yy ) 5 Crecc*— | — s Uy Uy )

Mo o= mQ;c,;c* mQ,CYL* Mo ,«
= = - —
Mo Ne x> Mo« Norc Mo No x> Mo s Norc
BQL,L*: 03_ 707_ ) BQL.)C*: 03 y 30 .
Mo, o Mo, ' Moy yox Moy xx

e VD € Dy, there is only two non-degenerate quarter diamonds in Q,, we take
0P = (5,C) € My, 2(R) and the two corresponding matrices By are given by:

Moy Doy ic* My Dy 1
Bo, px = Bk Shals SAEE Bo, ,. = el s L I
’ Moy o« ’ mo K,
Thanks to the modified discrete gradient, we can define a modified symmetric operator a
modified discrete strain rate tensor as follows.

DEFINITION 2.6 (Discrete strain rate tensor on quarter diamonds). A discrete strain rate
tensor of a vector field of (RQ)T, DY : (RQ)T — (DZuT)geq € (M2 (R))2, is a set of
tensor defined by: DNu” = 3 (Vgu" + t(VguT)), forany o € Q. It can be also written
as Dju” = D”u” + % (téstQ + BQ(SD),for any D € ® and for any @ € Qp.

Furthermore, we easily see from the formulas above that ) - ap MeBo = 0 for any

diamond cell p. Hence the following straightforward result holds
LEMMA 2.1. For all p € D, for any § € M3(R), for any § € My ., (R), we have

f= o % mo (64 (Beb+ 9B ).

Mp ocHp



10 S. KRELL

Even if we do not yet determine the value of 67, this Lemma implies that the operators
D” and DY, V” and V' satisfy the following identities:
D, T 1 N T D, T ]‘ N T
DPu” = — > moDju”, VPu” = — > moViyu”, Vpe®D. (2.7)
Mp ocp Mp ocHp
Thanks to the modified discrete strain rate tensor, we can define a modified viscous stress
tensor and a complete discrete stress tensor as follows.
DEFINITION 2.7 (Discrete viscous stress tensor on quarter diamonds). A modified dis-

crete viscous stress tensor of a vector field of (RQ)T, DLV :u” € (R2)T — (Dg’NuT)DGQ €
1
(M2(R))®, is defined by DLNu™ = — Y mgnoDNu?, forany o € D.
mp Q€ND

DEFINITION 2.8. We define a discrete stress tensor oo, for all 9 € Qp and for all
D € D, by the formula: po(DPu7,d?,p2P) = 21,DPu? +1,(Bod® + 67" By) — p°Id.

2.4.3. Determination of the additional unknowns. On each diamond cell », we have
3n, additional unknowns (67, p2?) that can be eliminated by imposing the conservativity of
the numerical fluxes on all the diagonals of D. The discrete counterpart of the conservativity
condition (2.6) reads for any D € Dpns, D = QO ox U Qi px U Qp or U Qp gt

—

DT D = _ DT D
QOQ;C’K* D"u 75 apQ,Cy,c* naK:_QDQL,;C*(D u 76 7pQLYK*)naK.7

— o DT D —
nax—@gﬁyﬁ*(D u 76 7pQL,L*)n0’K:7

~ _ (2.8)
Pax jc* DDu’T7 6D)pQ)C o Moy = Pog oo (DDu’T7 5D7p9;c,£* )na’cn*,
Pos o= D”u”, 6D7pQL o ﬁaLJC* = 0o, o (DPu”, 6D7pQC,£* )ﬁvc’c*7
and forany D € Dy, D= Qo U Qx o+t
Por - (DPUT, 07, po  iorr = Pop o (DPUT, 67, po ) Tgprce- (2.9)

It gives 2n,, equations, thus the linear system is underdetermined. We will add other condi-
tions, remembering that we consider incompressible flows so the velocity satisfies diva = 0.
In the DDFV scheme, we add a stabilization term in order to prove its well-posedness. Thus,
at the discrete level we do not have div>u? equal to zero. Nevertheless, we want the follow-
ing equality to be verified Tr(VYu”) = divPu?, for any ¢ € 9, and forany » € ©. As a
result, we impose that

Tr("6P'B,) =0, Vo € Qy. (2.10)
Since Y oenp MeBo = 0, we have that these equations are linked and so we add that

>, mep® =mpp”. (2.11)
€D

Note that the existence of (67, p2?) is not a straightforward adaptation of the proof in [5],
since we use the discrete strain rate tensor and not the full discrete gradient. We need to
first study the overdetermined linear system: for Fy € My (R) given, can we find §® €
My, 2(R) such that

'6P'By + Bod® = F,, Vo€ Qp. (2.12)

PROPOSITION 2.1. If Fg = 0, for all 9 € Q, the solutions of (2.12) are generated by
do € My, 2(R) -
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e 0o = 0 when a # a, (angles defined on Fig. 2.2(a)).
t —

- - -

50 = Noxe Noxe Noxpe* | P h _

® 0o = - ) ) y T when 0 = Q..
Mo Moy Mox Mo

PROPOSITION 2.2. Under the following assumptions

Fy is symmetric forall 0 € Qp and >, mgokFgs =0,
2€0D (2.13)

R t= R
Tx,c + Moy r= TIC,ﬂF T, = 0,

t =
Moy ox Tr,cF o o+

e, k*

o When ax, = g, the system (2.12) admits a solution (non unique) if we have the
additional assumption:

t = - t— -
Moy o TrxexFo o Trner + Mo, o TrrenFo, Trerer =00 (2.14)

The solution is unique if we impose the orthogonality condition (6” : dy) = 0.
o When ay # v, the system (2.12) admits an unique solution. Notice that we obvi-
ously have (8% : 6o9) = 0, since, in that case, we let 5o = 0.
PROPOSITION 2.3. For any D € 3, the conditions (2.8) or (2.9), with (2.10)-(2.11) and
(67 : 09) = 0 are equivalent to

Y. mope(DPu”,6”,p°)Bs =0, (2.15a)
Q€0 p
Tr('0”tBy) =0, Ve € Qp, S mop® = mpp®, (2.15b)
€N D
(67 : 6g) = 0, (2.15¢)

where g is defined in Proposition 2.1.
We are now able to prove the existence and uniqueness of a suitable choice for (67, p27) €
Mip 2(R) x R"P,

THEOREM 2.1. For any D € © and for any (D”u”,p?) € M3(R) X R, there exists a
unique pair (67, p2P) € My, o(R) x R"® satisfying (2.15).
Proof. 'We only give the proof for o € ®,,+ (so that n, = 4), since the case of boundary
diamond cells can be treated in the same way. We can write the system (2.15) like a linear
rectangle system AX = b with A € M1, 12(R) and b € R4, written as follows:

2(Nex gr = Moy v )DPUT ok
2(Noy po = Nop - )DPU Hox
2(77Q}C,)C* - nQK,L* )DDuTﬁO’;CTC*
2o, - — Moy po)DPUT gy
b= 8 cR™. (2.16)
0
0
mpp”
0

We are interested in the kernel of A. We assume that D”u” and p® are zero, thus the second
member b is zero. Right-multiplying (2.15a) by 6™ and taking the trace, it gives

Z mQ(‘ﬁQ(DDuT?(SDva) : BQ(SD) =0.

e€ep

Using Definition 2.8 of ¢, and the fact it is a symmetric matrix, we have

S mo(2neDPu” 4 1o (Bod® + 07 By) — pRlId : Boé® + 07t By) = 0.

€D
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Furthermore we have (Id : Bod” + ‘67 B,) = Tr(Bod™) = 0, it implies that

S mo(20eDPu” 4 1o (Bod® + 07! B,) : Bod®) = 0. (2.17)
2€0p

Thanks to D”u? = 0, we get

S meno('07"Bo + Bod® 1 Bod®) = 0.

e€ep

Remarking that the Frobenius scalar product of a symmetric and antisymmetric matrix is

equal to zero, we deduce ), manol|'6P! Bo + Bod?||% = 0. Therefore, it implies

' By + Bod® =0, Vo€ Qs (2.18)

Using the fact that (6 : dg) = 0, Proposition 2.1 implies that 6 = 0. Furthermore the
condition (2.8) reduces to

(pg,c,,@ _pgc,,@)norc =Y, (pg,c,y _pgﬁ,c*)ﬁa =0,

IS
(pg,cy,cx —Poy o= )ﬁa;cic* =0, (pQLJC* —Po, .= )ﬁayc* = 0.

We obtain that po, . = Do, « =Po, .« = Po, .. and thanks to (2.11), we get pP = 0.
It remains to study the kernel of the adjoint of the matrix A. We need to differentiate two
cases.

eCase . # .. We observe that the kernel of the adjoint Ker’ A = SpanX; where:
Xl = t(oa T 703 mQ)C.,)C* ) mQIC,L* 5 mgﬁ"c* , mQLL* , O7 0) S R14.
We immediately get that (X1,b) = 0, where b is given by (2.16). So that we have b €
(Ker"A) * — ImA and we deduce the existence of (67, p9P).

eCase o = ar,. We determine the kernel of the adjoint Ker’ A = Span(X, X5) where
X is given above and

t t— t— t— t— 14
X2 = (_ ncr;CTC*? nch:JC*7 Nk, — no-;c,o,"' ,O) e R,

We have to prove once again that b € ImA = (KertA) . We still have (X1,b) = 0. We just
have to prove that (X2, b) = 0, thus we compute

(X2,b) == 2(No o= Moy o )D U  fiox, Toprcx) +2(Nog o= Moy o) (D0 Hore, Hoprcx)
+2(Ney v = Moy o )(DPu” iy, v, Hoxc) — 2(Mey o= Moy o+ YD u” figpcx, Box).

Using the fact that D”u7 is symmetric, ie (DPu”fi, «, i, xc+) = (DPu7i, v, Ty ), We
deduce (X2,b) = 0. Therefore b € ImA, we deduce the existence of (57, p2?). O
From now on, the artificial unknowns (67, p2?) are determined, they linearly depend on

(DPu”,p”). Thus the modified discrete gradient V¥ and the modified discrete strain rate
tensor D% are completely determined for all @ € Qp and p € D:

vg‘uT = VPu? + t(;”D(D”DuT’pD)tB97

D¥u” = D?u + By6®(DPu”,p?) + '62(D"u”, p?)" Bo, (2.19)
Tr(ViuT) = div”(u”).
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FIG. 2.5. The viscosity on D when D N T" # ().

2.4.4. Example of the artificial unknowns. Let us illustrate the value of the artificial
unknowns (67, p2?) in the case where 7) is constant per sub-domains, equal to 77; on €2; and
to 12 on 2. For o N T # () (see Fig. 2.5), the solution (67, p2?) is equal to

D T = —
e 6= 0. 6 5 Mo, Mo, o (M —m2)D7 0 fox - Tz
< = L = 5 ’C* = ll* = — T’C,C
MMy v T MM, (cx

Mo, xx

Pog - =" +2(m — 12)Du” fox - fox , Doy e =Pog ers

Mo o T Mo, cx

Moy o

Pop e =D +2(n2 —m)D u" flox - fiox » Pop e =DPoy n-

Moy i + Moy o«

In that case, if we note the discrete strain rate tensor by D”u? = (?; 'y) , the modified

Mo N1+Mo N2 o (Mo +mo)min2
i i i N T Moy +Mo Mo N1+Me M2
discrete viscous stress tensor is equal to DL u? = (Mo Ao Y7112 Mg T+ g 12 5
Mo N1+Mo e N2 Mo +Mo o

in the basis (i, ., Txc=,c+). We notice that D’ u7 is not proportional to DPu?. Diagonal
terms are multiplied with the arithmetical mean of the viscosities where the off-diagonal terms

are multiplied by the harmonic mean of the vicosities.

2.4.5. Implementation. We want to emphasize at this point that the implementation of
the m-DDFV scheme is easy. To solve the linear system (3.1) which reads A(u7, p®, §°, pQ) =
b, we first calculate, for each diamond cell p € ®, the pseudo-inverse the 12 x 14 matrix
involved in (2.15). Thus the twelve artificial unknowns (5”,;0’31’) can be expressed as a lin-
ear function of u? and p® let say (67, p2?) = fP(u7,p®), (see Section 2.4.4). This first
procedure has little cost and can be easily vectorized/parallelized, since it is a local (per dia-
mond) computation which has only to be done once at the beginning of the resolution. The
second step consists then to rewrite the m-DDFV scheme (3.1) in term on the unknowns u”
and p® thanks to the functions f? and the modified fluxes which reads A, ., (u?,p®) = b.
The matrix A,,¢,, is then assembled diamond cell per diamond cell just like the scheme (1.4).

2.4.6. Properties of the artificial unknowns. First of all, we prove estimates between
Bo6” and B,0” + 57! B, that can be seen as a local Korn inequality on a diamond for the
velocity artificial unknowns. Like in the proof of the existence of 47, the two cases o =
and o # o, have to be investigated. The following Lemma is proved in Section 9.1.

LEMMA 2.2. Forall D € ®, for all §* € My, 2(R) such that (6" : §y) = 0, there
exists Cy > 0, depending only on reg(7T) and sin(eq), such that

> mollBod®lF < C1 3 mollBod” + 67" Boll,

2€0p 2€ND

where g is defined in Proposition 2.1.
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We bring out the form of artificial pressure unknowns p2? in the following result proved
in Section 9.2.

LEMMA 2.3. For any D € ®, any (D”u”,p”) € M2(R) x R, there exists Cz > 0, de-
pending only on reg(7T) and C,, and a linear function os , such that the solution (67, pP)
of (2.15) with (DPu”, p®), as the following form

p? =p” + a5 »(DPu”), where s = 0D N 0Q,
with |as »(q7) > < Callq®||%, for any ¢° € Ma(R).

2.5. Inner products and norms. We define the four following inner products
2

[vT,u”]r = L <

Z MUk * Vi + Z Mycx Ugex* Vi
reM

~>, VuT,VTG(Rg)T,
K*eM*UoMm*
(°,¢°)o = Z@ mppq®, Vp°,q° € R,
DE
(€% : ¢®)p = Z@mp(fﬂ L 97), VEP,¢° € (Ma(R))®,
DE
(€% :9)g =

Z mQ(é-Q : (bg)v vfﬂ7¢ﬂ € (MQ(R))Qv
€N

and the corresponding norms:

1
[u?lz = [u™, u*]7

2

5 VT e (Ma2(R)T
2.6. Preparation of the stabilization procedure. We define a second order discrete
difference operator as follows.

, Yu” € (RY)",
1P®lle = @°,0°)3, W° €R®, €72 = (67 :£7)3, VEP € (M2(R))?,
g%z = (¢%,q)d, Vg2 € RY, €22 = (€7 : €9)2

DEFINITION 2.9. We define a second order discrete difference operator, denoted by
AP :p® € R® — A®p® € R®, as follows:

ADp’}D _ 1

h2 + h2 ’ ’
— > P (p” —p®) VD ED.
mp s=D|D'EED h% ’
It is a non consistent approximation of the Laplace operator. Related to this operator, we
define a mesh dependent semi-norm | - |5, over R® by:
DEFINITION 2.10. We define a discrete semi-norm for any p° € R®:
PRl = X (hi+h3)0" —p°)%
s=D|D'€S
The semi-norm |p|, is the discrete counterpart of size(7)|Vpla. We have that (see [21,
Remark 3.6])

—(hpA%p°,p®)n = [P,  Vp® €R®. (2.20)
Now we can define the new stabilization term, that considers the jumps of the pressure on
quarter diamond cells.

DEFINITION 2.11. We define a second order discrete difference operator, denoted by
A® :p? € R2 — A®p? € R?, as follows (see Fig. 2.6):
ADPD — i h’723 + h’123'

o’ Q
(p —-p )a
m h2
Ps=gl|o’ D
=p|p €€

VpeD.
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FIG. 2.6. A diamond cell D and its neighbouring diamond cell D’.

It is also a non consistent approximation of the Laplace operator. Note that we do not need a
consistent approximation of the Laplace operator. In fact, a consistent approximation based
on a two-point flux formula would require the diamond mesh to verify an orthogonality con-
straint as, for instance, in the case of admissible meshes [13], which has no reason to hold
here. An other operator uses the function o ,, introduced in Lemma 2.3 as follows.
DEFINITION 2.12. We define a second order discrete difference operator, denoted by
A2 1 ¢® € (M3(R))® — A2¢®° € R?, as follows:
1 h3 + h2,

DO _
APqg” = W
mp s=D|D'E€ED D

(a5, (¢7) = as.0(q7)), VD €D,
where o p is the function defined in Lemma 2.3.
DEFINITION 2.13. We define a discrete semi-norm for any ¢° € (Ms(R))®:
®an= X (B +hi) (s (¢”) — asn(d”)?,
s=D|D’'€S
where o 1, is the function defined in Lemma 2.3.

Thanks to the property |as »(g7)]? < Ca|l¢”[|% and relation (2.2), the Cauchy-Schwarz
inequality implies that

®1n < Cslld®l3 ¥ a® € (M2(R)?, 21
with C3 = 8Cyreg(7)?(1 + reg(7)?). Lemma 2.3, Definitions 2.9 and 2.12 imply that
Vpe®,  APp? =AP(p®) + AZ(D®u”). (2.22)

3. DDFV schemes for the Stokes equation. The principle to get the modified DDFV
scheme is the following: we integrate the momentum conservation law of the problem (1.1) on
the interior primal mesh 9 and the interior dual mesh 2t*. The mass conservation equation
is directly approached on the diamond mesh using the discrete operator div® and the new
stabilization term. We impose on 09t and on 99Jt* the Dirichlet boundary conditions. Finally,
the integral of the pressure is imposed to be equal to zero. The differences with the scheme
(1.4) introduced in [21] are in the viscous stress tensor and the stabilization term, which takes
now into account the jumps of the viscosity and the pressure. We replace n°D®u? (resp.
—AZ AP p®) by DL u7 (resp. —Ah3 A®p2) as follows:

Find u? € Eg and p® € R® such that,
divfm(_2Dn©,NuT + p’i)Id) _ ff.m7 divsm* (—QD%NHT —|—p®:[d) — fsm*’ (3.1)
div® (uT) — NhAA®p2 =0, > mpp” =0,

DED



16 S. KRELL

where A > 0 is given, f™ = @::f and f™" = @:: f (the projections are defined by (2.4)),
and for any D € D, (67, p2?) € M,,,, o(R) x R"? satisfying (2.15).

If we take the old stabilization term —/\hQ33 A®p? instead of —)\h% A®p2, the scheme
is still well-posed but we did not succeed in proving first order error estimates, since we have
take into account the jumps of pressure. The numerical tests also bring out the difference
of these two stabilization term and show that the new form of the stabilization term actually
improves the results.

4. Results on discrete operators. In this section, we present several results on the dis-
crete operators. In Section 4.1, we focus on the modified and standard discrete strain rate
tensor. The main result is the discrete Korn inequality for the modified one (see Theorem
4.2). Its proof consists in using the discrete Korn inequality proved in [21] for the standard
discrete strain rate tensor and Lemma 2.2 that can be seen as a local Korn inequality for the
velocity unknowns. Then in Section 4.2, we rewrite the discrete Stokes formula and finally
we sum up results of [21].

4.1. Discrete strain rate tensor.

4.1.1. Estimations of the discrete strain rate tensor. We recall results proved in [21],
and extend them on the quarter diamond cells. The first one is a consequence of Remark 2.1.
PROPOSITION 4.1. For all u® € (RQ)T, we get

ID®u™fl < [V2uTlla  and  [D¥u”|> < [VEu .

The discrete strain rate tensor and the modified one can be compared as follows.
LEMMA 4.1. Assume that 1 satisfies (1.2). There exists a constant Cy > 0, depending
only on C, and C,, such that for all u™ € (RQ)T:

D=0z < DY ||z < C4lDZu 2.

Proof. First estimate. Let D € ©. The estimate is just a consequence of property of the

1
matrix By thatis Y. meoBo = 0. Then we have |[D¥u” |2 = |[D®u” |3 + Z|||BQ5D +
Q€EQD
t6Pt B, ||2, which concludes the first estimate.
Second estimate. Let € ©. The equality 2.17 gives

S meno(2DPu” + Bod® + 0P B, : Bod® + 6P Bg) = 0. (4.1)
€D

Definition 2.6 of Dy u” implies that

> mg%ll\DguTl\Isz > anQ(DguT:DDuT)-
Q€ND 2€0D

Thanks to the inequality (1.2), we get

C, Y mo|DYu”[F<C,; ¥ mo(Dyu” :D”u”).
QEND €N D

Applying Cauchy-Schwarz inequality, we obtain

—2
c % mo[[DFu % < Cymo[[DPu” % 4.2)
Qe p

C
Noting Cy = C—" we get the result.
==
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4.1.2. Discrete Korn inequality. In this section, we recall the discrete Korn inequality
which is already known and prove a new one for the modified operators.

THEOREM 4.1 (Discrete Korn inequality on diamond cells, [21, Theorem 5.1]). For all
u”? € Eg, we have

IV2uT]lz < V2|D®u” .

THEOREM 4.2 (Discrete Korn inequality on quarter diamond cells). Assume that n sat-

isfies (1.2). There exists Cs > 0 depending only on C,, Cy, reg(7) and sin(eo) such that:
IVauTlz < C5[Dgu™fl2,  Vu” € Eo.
Proof. The equality (4.1) implies that

Y. manel||Bod” + t(sDtBQm%-‘ =— 3 mgno(2DPu” : Boo” + t5DtBQ)~
Q€ND Q€ND

Cauchy-Schwarz inequality and (1.2) imply that

C, ¥ mollBob” + 67 Bl
2€0p

Nl

_ 1
< C, (mp|D”u”|%)> ( > mollBod” +t5DtBQII3f>
Q€e0p
It follows that
62
> mollBod” + 67 BollF < —gmop D7 %
Q€eND QW

Thanks to Lemma 2.2, we deduce

—=2
C

% mol|Bod? 1% < lecg mo [DPu” 3.
Qe p ~n

Furthermore, it gives

—2
> molVauT | < 2mp [ VPuT % + 20 czme ID™u” 5.
eep ~n

Using the discrete Korn inequality Theorem 4.1 and than Lemma 4.1, we conclude

C, C,
[Vau|3 < 4 (1 +Ch CZ) D2 a3 < 4 (1 +Ch C;’) [DFu= 3.
~=n ~=n
O
Using Lemma 4.1, these two discrete Korn inequalities allow us to compare the discrete
gradient and the modified one, as follows. It does not seem possible to show this result
directly, that is without using Korn inequalities.
LEMMA 4.2. Assume that n satisfies (1.2). There exists a constant Cg > 0, depending
only on C,, C,, reg(7T) and sin(eo) such that for all u™ € Eqo:

IVou]l2 < [VEu[l2 < Col Vo uT 2.
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4.2. Discrete Stokes formula. The discrete gradient and discrete divergence for a vector-
valued function are known to satisfy a discrete Stokes formula, as follows.
THEOREM 4.3 (Discrete Stokes formula [21, Theorem 3.1]). We have

[divTe® vT]r = — (€2 : VPvT)p, YV (€2,v7) € (M2(R))® x Ey.

Since we have introduced modified discrete operators on the quarter diamond cells, we want

to rewrite the discrete Stokes formula for the specific tensor D%’N u” (see Definition 2.7).

THEOREM 4.4. We have, for all (u”,v7) € (R?)” x E,
[divT (DZYu”),vT ]z = —(n¥D¥u” : VEvT)q.
Proof. The first discrete Stokes formula 4.3 gives

[divT (DZVu”),vT ] = —(DEVu” : VOv7T)p = — Z@ ED Mot (Dgu™ : VOVT).
DED Q€D

Thanks to Theorem 2.1, there exists a unique (55,]9/973) € My, 2(R) x R"P satisfying
equations (2.15), with D?v7 and p®. Using the symmetry of D?v7, we have

1 /t—~ —~
(DL u” : VOvT)p = Z@ ZQ Moo (DguT :DYVT — 3 (tévtBQ _ BQ(SD)) _
DED Q€D
4.3)

Right-multiplying (2.15a) by 57 and applying the trace operator, we get

> Mmo(2noDu” +1o(Bod” + t5DtBQ) —p°ld: BQ(S/B + thtBQ) =0,

€D

=po(DPu7 5P pD)

since o (DPu”,d”,p?) is a symmetric matrix. Furthermore since we have (Id : ngg +
t— B
67" Bg) = Tr(Bod®) = 0 by (2.15b), we obtain

S mone(2DPuT + Bod® + 167 By : 69 By + Bd?) = 0.

€D

=2DYyu”
Substituting this equality in (4.3), we deduce that

(DEVu” : VovT)p = Z@ ZQ mone(D¥u™ : DYvT).
DED Q€D

The symmetry of DYu” implies the result. O

4.3. Poincaré inequality. Properties of the mean-value projection operator. We re-
call results already known in the literature.

THEOREM 4.5 (Discrete Poincaré inequality [21, Theorem 5.2]). Let T be a mesh of ).
There exists a constant C; > 0, depending only on the diameter of Q) and veg(T), such that

lu[l2 < CIVou[l2,  Vu” € Eo.

LEMMA 4.3 ([21, Lemma 5.5, Proposition 5.5]). Let 7 be a mesh of ). There exists
Cs, Cy > 0 depending only on reg(T), such that for any function v in (H}(Q))?, we have

IVoPL vz < Csl| Vvl and Z@ / p® (div?(B7,v) — div(v)) dz < Co|p® ][ v] .
DE D
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LEMMA 4.4 ([21, Lemma 3.1]). Let 7 be a mesh of Q). There exists C1o > 0 depending
only on reg(T), such that for any p® € R®, we have

P |1 < Crollp® |la-
LEMMA 4.5 ([1, Lemma 3.4]). There exists a number C11 > 0 such that for any bounded
set P C R? with positive measure, any segment o C R? and any v € H*(R?), we have

diam(ﬁ;)3
m,mp

1

m.,mp

or =00 < o [ [ 10ta) = vl Paaay < L Iveokaz,

where vp denotes the mean value of v on P, v, the mean value of v on the segment o, and
Py is the convex hull of P U 0.
5. Stability of the scheme. In this section, we prove the well-posedness and the uniform

stability of our finite volume scheme. The proof of the uniform stability result relies on an

appropriate choice of the stabilization term.
DEFINITION 5.1. We define the bilinear form associated to our DDFV scheme (3.1):

~ 4 T
v (u”,p®),@",5%) € (R*)" xR?,
B(u”,p°;u”,5°) = [div7 (=2D%Mu” +p°1d), 07 7 + (div® (u”) — AB A% (p7),57)s,

where \ > 0 and (6°,p2) is the solution of (2.15) for D®u7 and p®.
4c,

THEOREM 5.1 (Stability of the scheme). Assume that n satisfies (1.2) and A < o
Then there exists C15,C13 > 0, depending only on the diameter of ), A, Qn’ 677, reg(7) and
sin(eq), such that for each pair (u”,p®) € Eg x R® such that > mpp® = 0, there exists

(@7, p°) € Eg x R® with: nee
IVEaT 2 + 522 < Ciz (IVEUT[l2 + Ip2l2) . (5.1)
and
VSTl + [Ip2 3 < C13B(a™,p®;a”,p%). (5.2)

with (62, p2) (resp. (gg,ﬁﬂ)) is the solution of (2.15) for D®u® and p® (resp. D®u7 and

P®), thus we have mpp® = 5. mop, forall D € D.

2€0p
4C

The technical condition \ < 5y does not seem to be mandatory for the scheme to be

stable. In practice, we did not find positive values of \ leading to instabilities.

Proof. Let (u,p®) € Eg x R® such that > mpp” = 0. The proof of this Theorem is
DED

obtained by building explicitly (1%, p®) € Ey x R® such that (5.1) and (5.2) hold.
Step 1. We apply to B the two discrete Stokes formula Theorem 4.3 and Theorem 4.4:

B(u”,p®;u”,p?) =29 Dyu” : ViuT)g — (MHA° (p7),p°)0.
The symmetry of D¥u” and (2.22) imply that

Bu™,p%;u”,p%) = (27" DYu” : DYuT)a — (MBHAT (07) + MH AT (Du7),p”)s.
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Reorganizing the sum over all the sides s € G of all the diamond cells, we have

—(hp A2 (D®u7),p®)p = 2 (W} + h) (e (D7'07) = ag p(DPu7)) (™ = pP).

s=Dp|D’'€S
Young inequality and (2.20) imply that
A A
WS AR () + hHAD (D), p%)0 = PP — 5IDuT[2 .
Thanks to the inequality (1.2), we obtain

2

a,h”

A A
B(u”,p®;u”,p®) 22C, [Dgu” |5 + 5 |p° [} - 5[D7u”

Thanks to (2.21) and Lemma 4.1, we have [D®u”|2 ;, < C3||Dyu” 3. Finally we use the
discrete Korn inequality on quarter diamond cells (Theorem 4.2) in order to get

B(u™,p®5u™,p®) > (2Cn - CSA) IVu™I3 + 2P . (5.3)
Ce 2 2
With A < 4093 L, the constants in the above estimate are positive. Note that the above estimate
on the pressure is mesh dependent (the semi-norm |.|, is itself mesh dependent). That is why
we could not bound uniformly the L?(£2)-norm of the pressure by the semi-norm |.|;,.
Step 2. We use the Necas Lemma (see [16, Corollary 2.4] or [4, Lemma III.1.17]): since

p2= 3 3 p°1, € L*(Q) and its integral over § is zero, there exists a constant C' > 0
DED Q€0

depending only on 2, and v € (H}(£2))? such that div(v) = —p2 and

V][ < Cllp2J2. (5.4)

Let us choose v = P7 v the mean-value projection P72 v, defined by (2.5). In particular,
we have v7 € [Eq. Thanks to Lemma 4.1, Proposition 4.1 and Lemma 4.3, we deduce

IDYV7ll2 < CaCsCllp - (5.5)
Theorem 4.4 implies
B(u,p®;v7,0) = 2(n2DY¥u” : VEVT)q — (p°,div® (v7))o.
Using the fact that (p2DX¥u” : VEvT)g = (n2VHu? : D¥v7)q and the Cauchy-

Schwarz inequality, we deduce

Bu” p®;v7,0) > —C,[[VEuT[o[DSvT . — X % / pdiv(v(z))dz
PED 0€0p Jo

-2 [ P —diviv() de + Y X / (p° — p)div(v(2))dz.

peE®D Jp DED Q€D
Since we have div(v) = —p2 and the inequality (5.5) gives
B(uT,p?;v7,0) > ~C,CiCsCIVEuT [l2[[p7 12 + [p13

— 2 pP(dVT(vT) —div(v(2)))dz = > 3] /(p’jfpg)diV(V(Z))dZ

DED JD DPED Q€D

(5.6)
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e Thanks to Lemma 4.3 and to estimate (5.4), we obtain

> [ PP (VP (vT) = div(v(2))) dz < CColp®[n|p=]|2.

DED JD

e Thanks to Lemma 2.3, we have p” — p® = —a, »(D"u”), with s = dp N do.
Cauchy-Schwarz implies

DED Q€N

1
2
/(pD —p2)div(v(2))dz < [[div(v)[}2 ( PIEDY mvlas,D(DDuT)F) :
Q DED s€ép
Thanks to div(v) = —p2, Lemma 2.3 implies that

2 2 /(pD — p?)div(v(z))dz < V/Collp? |2 IDPuT |5

DED Q€E0D

Lemma 4.1 and Proposition 4.1 give

S5 [ 07— v £ VEp eIV

DED 0€Qp

We then deduce from (5.6) that
B(u,p®;v7,0) > [[p[5 = C,CaCsC|p? o[ VEuT [l = (v/Ca + CCo)[p® 1 ]|p7 -

Using Young’s inequality, we obtain the existence of three constants 5‘1, 5’27 Cs >0, depend-

ing only on €2, C,; and reg(7), such that
B(u”,p%v7,0) > Ci[|p?|3 - Co VRT3 — Cslp® 7. (5.7)
Step 3. By bilinearity of B, (5.3) and (5.7) give for each positive number £ > 0:
B(u”,p®;u” +&v7,p?)

1 A ~ ~ A ~
> (g2 (26, - Co3 ) — 6o IV&wTIE + Gl ™1 + (5 - €Ca) 1.
5
Choosing a value of £ > 0 small enough, this inequality yields an estimate of the form (5.2).
As the relation (5.1) is clearly satisfied by the pair 17 = u7 + (v and p° = p®, (since
(5.5) and Theorem 4.2), this concludes the proof.
O
A consequence of this stability inequality is the well-posedness of the scheme (3.1).
THEOREM 5.2. Assume that n satisfies (1.2). For any DDFV mesh T ,the finite volume
scheme (3.1) with 0 < A < % admits a unique solution (u” ,p®) € (Rz)T x R®.
Proof. Let us consider the homogeneous discrete problem given by setting 7, the right-hand
side of (3.1), to zero. Thanks to Theorem 5.1, there exists u? € Eg, fj@ € R®, such that

[VEuT[3 + P25 < CizB(u™,p®; 07, p?).

Definition 5.1 of B implies that B(u”, p®;u”,p”) = 0. It follows that Vyu” = 0 and
p2 = 0, with (67, p?) the solution of (2.15) with D®u7 and p®. We deduce that p® = 0.
The former identity implies that the degrees of freedom of the velocity u? are constant, since
u? € Eg, we conclude that u” = 0. O
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6. Error estimates. In the following, we assume that the viscosity 7 satisfies (1.2) and
(2.1). In order to study the rates of convergence of our approximate solution, we need to
make some assumptions on the regularity of a solution (u, p). In the following, we assume
that (u, p) the solution of the problem (1.1) lies in (H2(Q))? x H'(Q), that is:

(H*(Q))? = {ue (H'(Q))?, u, € (H?(0))?, forall ¢ € 9}, for the velocity,
HY Q) ={pec L*Q), Pig € H*'(2), forall o € Q} for the pressure, (

with the corresponding norms
[allZg2cayy: = allFm @) + ;Q IV2ul720), Yue (H?(Q))?
Q

Pl ) = IPl1Z2 () + ZQ IVplliaoy ¥peH (D)
[81S

6.1. Definitions. We define projections of functions defined on 2 over the primal and
dual meshes 7. We call the center-value projection for any continuous function u on €:

PTu = ((u(zx)) ce@muam), (W(Txx)) e e(m=vom=))s Vv € (HQ(Q))Z. (6.2)

We also define a mean-value projection over the diamond mesh ® and over the quarter dia-
mond mesh ¢ for any integrable functions ¢ on 2:

(e from) ). (3 o))

The following proposition is a consequence of Theorem 2.1.
PROPOSITION 6.1. Let (u,p) the solution of the Stokes problem (1.1). There exists
(62, p2P) € My, 2(R) x R satisfying

> mQ@Q(DDPZua Sex>Pox)Bo = 0, Tr(t‘s:xtBQ) =0, Vo € Qyp,

e€ep

ZQ meeQx = m'D]PJ;ip7 (5er : 50) = 0
Qe p

Thanks to Proposition 6.1, in the following, we note

Do =P2p—pd, Voe Qandwehave > mopd =0. (6.3)
2€0p

As usual for the error analysis of the finite volume methods, the consistency error which
has to be studied is the error on the numerical fluxes across each of the primal and dual edges
of the mesh. We first give the precise definition of these terms, then we state the various
estimates needed to prove the error estimates.

DEFINITION 6.1. For any 9 € £, we define the consistency errors in Q by

R3(2) = nja(2)Dujg() — neDYPTu, RA(z) =Pep—pglz), Vzeo.

We introduce the following consistency errors on the numerical fluxes, for all s = 0|0’ € Ey:
i i 1 i\ .
R;,=-R,o=— Ry (2)Hsodz, fori=u,p.
Ms Jq

We note the L*(2)-norm of the consistency error as follows:

IRiolZ= ¥ % molRLP,  fori=up.
€N sefo
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Thanks to (6.3), we define for all s = 0|0’ € E,:

Rs,g = 2R;l,g + Rlsj,g - @Qxﬁs@ (6.4)

6.2. Statement of the result and sketch of proof. The main result of the Section 6 is
the following.
ac,

THEOREM 6.1. Assume that 7 satisfies (1.2) and (2.1) and 0 < \ < o We assume

that the solution (a,p) of the Stokes problem (1.1) belongs to (H*(Q))?> x H'(Q). Let
(u?, pg) S (R2) 7 X R® be the solution of the scheme (3.1). There exists a constant C14 > 0

depending only onreg(T), A, sin(eo), Cy, C,, C,, [[ull(z2(a))2 and ||p|| a1 (), such that:

[u—u”|]2 + [[Du—D¥u”||s < Cigsize(T) and |p —pDHQ < Chgsize(T).

with (62, p2) the solution of (2.15) for D®u” and p®.

Step 1. Lete” = PZu —u” € E, denote the approximation error for the velocity field
and €® = P2p — p® € R® the approximation error for the pressure field. Thanks to (3.1)
and (1.1), we have Vk € M

1 1
div®(-2D%Mu” + p°Id) = f, = ——— [ div(2n(z)Du(z))dz + — / Vp(z)dz.
My S My S
Therefore, Definition 2.2 of div™ and the continuous Stokes formula imply that

mediv®(—2D%Ve” +e°Id) = > 3 /277(,2)Du(z)ﬁ5gdz

QCK s€€g Js

sCOK
— > m,2DZVPTu)h, e + Y, m,Plpie — > > /p(z)ﬁﬁgdz.
DPED K DPEDK QCK se€g Js

sCOK
Using Definition 2.8 of ¢4 and Proposition 6.1, we deduce for any D € D,

me

DT D Dp\= _ — N
Z mQ@Q(D ]Pc u76ex7pex )naKl _mU)C* QOQ)C,}C* nalC +m0'£* @mec*nak'
mp Q€D

Thanks to Definition 6.1 of the consistency error and (6.3), we deduce

mediv®(—2D5Ve” +eId) = 3. 3 m.R, .
QCK sefo
sCOK

We do similar computations for £* € 9t*. Finally, the couple (e7,e®) € Ey x R satisfies:

div® (eT) — AhLA%e? = R, S mpe” =0, (6.5)

{ div” (—2DL"e” + e®Id) = Ray,  div™ (—2D%Ye” + €°1d) = Ru-,
DED

where R, = (R )ceom, Rons = (Rex )crem= and Ry = (Rp)pen with:

1 1
Rrx=— > > m:R, o, VK€M, Rp= > msR, o, VEr €M,
Mk oCkseég Mi* ock* s€€g
sCOK sCoK*

Rp = div? (P u) — MEAPPE, VD eD, e2=pS —p%, Vaoeq.
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Theorem 5.1 implies that there exists €7 € Eq, é® € R® such that :
IVEell2 + 112212 < Cuz (IVEeT Il + [le?]2) . (6.6)
and
IVEeTI3 + €73 < CisB(e™, e®;87, ). 6.7)

Thanks to Definition 5.1 of B and to (6.5), we have B(e%,e®;e7,e°) = I + T, with
I:= [div7 (-2D%"e” +¢°1d),&7] and T := (div® (e7) — Mh3 A®e2,8®) 5. Using the
fact that €.« = 0 for any k* € 99* and the definition of I, we have

I=3% > X ms(Rygie)+ X ST me(Ry g, 8cr).

KEM QCK s€€o K*EM=UIM* QCK* sEE0
sCoK sCOK*
Using the fact that Ry o, .=—Roc 0, .. , We have

Moy ((RG)C,Q,C,,C* s€xcx) + (RU}C»QKYL* 7€L*))
2 DT =
=~ dtan) (mQK)K*R(,,OQK,K* +mgn,£*R%Qm*) (VP&T Frw ov).
Reorganizing the sum over all the diamond cells D € D, we deduce

4 ~
< - > 2 meo|R, o [IVTeT| £
Sm(aT) DPED 0€Np s€EQ e

Thanks to the Cauchy-Schwarz inequality and to Lemma 4.2, we obtain

4
<—|R VEeT ..
< sty RealIVEE:
We note 77 := —A(h% A®p2 &®)5. Reordering the summation over 5 € &, we have
T =X 2 (W3 + 3 (pS — PE)(E — 7).

s=0|Q'=D|D'e&

The Cauchy-Schwarz inequality and Lemma 4.4 give

2

ITy| < Cio2size(T)A||E22 < > (pS - p:.?x)2>
s=0|Q'=D|D'eS

For the term 7', we have the following estimate:

2

IT| < [|€®]|2 | 2size(T)ACho < (S pfx)2> + | divoPZ ull2

5=Q|Q'=D|D'€&
To sum up, using the fact that ||¢® ||, < [|€2]|2 and (6.6), (6.7) becomes
IVEe™lI3 + lle? 3

<Ci(IVEeTll2 + e l2) (IRq all2 + |divoPZ ull2) ©5)
G

(pegx pegx)2> )

+ Cosize(T) (Ve |l2 + [le22) (
s=Q|Q'=D|D'€G

where C~’1 = (13C12 max (m#ﬂv 1) and 52 = 2(13C12AC1p. It remains to estimate the
consistency errors.
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6.3. Consistency error for the pressure. LEMMA 6.1. There exists Ci5,C16 > 0,
depending only on reg(T), such that for all p € H*(Q) and for all D € D

S me ¥ REP <Ok ¥ / Vp(2)[2dz,
2€e0p se€€o oep Jo

and
IRGII5 < Cresize(T)?|pll 7 (a)-

Proof. Definition 6.1 gives

2

>3 meRE P <h Y %

Q€eQp sefo €N p s€fg

. / (Pr.p — p(z))dz

ms Jg

3
Thanks to Lemma 4.5 and —2— < reg(7)3, we have

msmg —

2 Ophd
< e |Vp(2)[2dz < Cllreg(T)?’/ |Vp(2)[2dz, (6.9)
o

MsMg Jo

H (T

which concludes the first estimate. For the second estimate, we add and subtract % fﬁ p(z)dz
on RE(z) to get

/Q (p(z) — P2p)*dz < 2 /

The Jensen inequality implies that

/Q (p(2) — Pgp)* dz <dmg ! /Q / (p(2) — p(x))® dzdz.

MMy

2
+2mg

2

L / (0(2) — pla))dzdz

ms Jg

— [®sp- s

s Js

Like in the estimate (6.9), we get the result with g = 4C11reg(T)3.

6.4. Consistency error for the velocity.

6.4.1. Properties of the center-value projection operator. By using usual Taylor for-
mulas inside each quarter diamond ¢ (see [5], for instance), we can easily show the main
properties of the center-value projection for functions in (H?2(L))?2.

LEMMA 6.2. There exists C17,C1g > 0, depending only on reg(7T), such that for any
function v in (H?*(Q))?, we have

v =Pz vl|l2 < Cigsize(T)||v]l(m2ay2  and  [|VPZvla < Cusl|vl(m2(a))2-

6.4.2. Definitions. DEFINITION 6.2. The consistency error Ry can be split into two
different contributions R%" and R2P®. They originate, resp., from the errors due to the
approximation with respect to the space variable of the viscous stress tensor and to the ap-
proximation of the gradient: R%(z) = RS"(z) + RYP™, where

RY"(:) = na(2)Dua() ~ —— [ nfa)Du(e)da,

Q

1
R2Pv = e /Q n(z)(Du(z) — DYPL u)dz.
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We also introduce the quantity, for all s = 0|0’ € £
RW" — Ru,n _ 1 u,n i..d
5,0 Tlg ol — RQ (2)lisodz.
ms Je

DEFINITION 6.3. We define the projection P2 of u on the set of quarter diamond cells
as follows. For each quarter diamond cell @ € £, the restriction of P?u to the triangle
Q is the unique affine function P2u which coincides with u at the middle point of the semi-
edges s € E4 and whose value at the middle point of the third side of Q is the mean-value
of the value u at the extremities of this side. Remark that this definition makes sense since

u), € (H*(2))? C (€%(9))*
Ty *
$(u(ex) + o) JRUCH.
N o - -
Io,c*
T //’/Ig,c Trp

u(mg,c)

FIG. 6.1. The affine interpolation P on the quarter diamond cell Q = Qyc .

For instance, in the case of the quarter diamond cell @ = Qx - (Fig. 6.1), it reads

POu(t0r) = (o), Poulze,.) = ulze..); Pou <x;< J;m) _ u(zx) J;u(x;g*)'

The following proposition is the vector-valued version of [5, inequality (5.4)] and can be
proved exactly in the same way.
PROPOSITION 6.2. There exists a constant C1g9 > 0, depending only on reg(T), such
that for any function v in (H?(Q))?, we have for all o € Q

/ [Vv(z) — VPev]2dz + / [Dv(z) — DPev|2dz < Cioh? / IV2v(2)|2dz.
Q Q Q

6.4.3. Approximation of the viscous stress tensor. LEMMA 6.3. There exists a con-
stant Ca9 > 0, depending only on C,, C,, and reg(T), such that for any function u in
(H?(9Q))?, we have for all D € D

mo[RUI[2 < Cogh? / (IVul% + [V2u2)dz, Vo€, Vs € Eq.

Q

Proof. Applying the Jensen inequality, we have
u 1
125" ()% < — | lIn(z)Du(z) - n(z)Du(z)|xdz.

QJo

We add and subtract (z)Du(z), Cauchy-Schwarz inequality implies that

IRS" ()15 < mlg /Q [n(2) = n(x)|” [Du(2)|Fdz + mlg /Q n(2)|” IDu(z) — Du(z)||>dz.
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The assumption (1.2) and (2.1) give
u,n 2 2031 2 2 26727 2 (6 10)
IRS" ()l < —"h% [ IDu(z)|7dz + —" [ [[Du(z) — Du(z)||zdz. :
Mo o Mg Jo

Since we have R;'8 = -1 [ R3"(2)fi;odz, Jensen inequality implies that

—2
2C,

ms

molREAP < 122C% [ Du()frdz+ 2 [ [ IDu) - Du(e)deds.
Q s JQ

For the second integral, we apply Lemma 4.5 on a edge s and the quarter diamond cell o,

since :T% < reg(T)h2:
1
o [ [ IDuz) = Du(e)ded < Crrreg(T)n [ [vDuly) Py
5 JsJo Q

Finally, we deduce the result with Cyp = max(2C7, QGiCllreg(T)). O

6.4.4. Approximation of the gradient. DEFINITION 6.4. We define R® € Mg 4(R),
forany D € D, as follows

Mo (Z(Rﬁ,’f,g,cﬂ 7R;;C7I,QK’K*)+R{:;C,QK,L* 7R£)¢,Q,C’,C*)
RD — Moy (2(}};2}7951* - R;?L”,QL,C* )+ Rgpﬁ,gﬁﬁﬁ* - Rgﬁp,gﬁx*)
Moy (2(R”;<n*’9£,1<* - RUZI*’Q)C,)C*) + RUIC*’QL,}C* - RU}C*7Q}C,)€*)
Mo (2(R;Z]*,g£)£* _R;f*vg;c,a*)_‘_Rga*vQLc* _Rgﬁ*,gmya*

We also introduce the following norm for all D € ©

AL, = X AlZ20), VA € L* (e, M2(R)), forall 0 € Qp.

€D

PROPOSITION 6.3. There exists a constant Cy1 > 0, depending only on Qn’ @7, C,, and
reg(T), such that for all D € D, such that for any 6* in M4 2(R), we have

Q€N p

'Tr('67RP)|* < O ( > mQIIBQ5D||2f> hp %D/ IV u() %+ V*u(2)*+[Vp(2)]*)d2.
Qe Q
Proof. We compute Tr(*6” RP), then Cauchy-Schwarz inequality implies that

(‘57 R < ( 5 mguBga”n%r) ( S me ¥ (|R;‘;5|2+|R§,g|2>) .
oecQp ocap scEq
Lemmas 6.3 and 6.1 conclude the result. (]
The following proposition is proved in Section 9.3.
PROPOSITION 6.4. We assume that (u,p) is the solution of the problem (1.1). For
any D € D , there exists a constant Caz > 0, depending only on C,, C,, and reg(T), and
a function vV, which is an affine function on each @ of Qyp such that v, € (H(p))? N

(H?*(0))2 forall ¢ € Qyp, and
IDV5> — DYPZVollap < Cor(I5a”ll2 + [Du — DEPZulay, + ho),

and

s~ o~ 1 .
- / divv,pSdz > —Casl|Du — DYPZul3, + 5\\}5&’”% — Caosize(T).
Q

oep
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Remark that }P’ZVD, defined by (6.2), is not well defined, since v, is discontinuous. Nev-
ertheless, this function is only used locally on each diamond, thus ]P’ZVD means in that case
(Vo(zx), Vp(x,), Vp(Zix ), Vp(2,+)), for a diamond . We prove a consistency estimate
for the modified strain rate tensor DY that we have introduced. This is the main difference
between the present study and our previous work since the definition of the modified discrete
strain rate tensor depends on the jumps of 7 in each diamond cell. Hence, the consistency
estimate for this operator cannot be obtained as in the usual way, that is, only by applying
well-chosen Taylor formulae, we have to use here the fact that the pair (u, p) is a piecewise-
smooth solution of the problem (1.1) and the estimate of Lemma 2.2. Note also that we can
not prove separately the estimates on the velocity and on the pressure of the following lemma.

LEMMA 6.4. We assume that (u,p) is the solution of the problem (1.1). There exists
a constant Ca3 > 0, depending only on C,, C,, C,, reg(T) and sin(eg), such that for all
D €D, we have

IDu — DYPZuldy, + IPS2 113 < Cashy 32 [ (IVullf + [Vl + [Vp(2)[*)d=.

ocQp Jo

Proof. Let us give the proof in the case where the diamond cell D is an interior diamond cell.
The case D € D, can be treated in a same way.

Step 1. Since (u,p) solves (1.1), we have the conservativity of the fluxes through s =
0| o’ as follows

/ (2ng(=)Du/g(2) — pig(2)d)fegdz = / (20 (2)Dugr(2) — pigr(2)d)eodz.

We recall that the discrete strain rate tensor satisfies Proposition 6.1, we can deduce that

1 N
(5r: [ na(IDugs) - pgle)idts - (21 DEFTu - 50 ) e
S S

1 N L
~ (52 [ eDug () - pgr (s — (2no DEFTu = pE1) ) g =0

Ms Jq
Using Definition 6.1 and the last equality, we have

2

o n(z) (Du(z) — DYPZu) figodz — - / n(z) (Du(z) — DY P7 u) figodz
e Jo o Jo!
1 - 1 AP
e [0 - p Bz [ (pe) - p) s

= 2R™, + 2RY, — 2R — 2R%Z —RY , + RY

5,07 5,0/

We sum over the quarter diamond cells ¢ € Q,,

Q€N Q€N

ZD( [ 2 (Du(z) - DYFEw) s BQ—ZD( / (02) = p3)d2 ) B =R (611

with R” defined by Definition 6.4. We multiply (6.11) by any 6” € M,,, 2(R) and take the
transpose, thanks to the symmetry of Du(z) and DYP u, we obtain

> / 5P Bo2n(z) (Du(z) — DYPZTu)dz — Y me'dP'Bop = '6° R
Q

2€0p e€ep
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Using the trace operator we deduce

3 / n(z) (BQSD +'6%'Bg : Du(z) — DgPCTu> dz
o€Qp /o (6.12)

- Y moTr (t5DtBQ) P =Tr (t(SDRD) , V6T € Mg 2(R).

QEN D

Step 2. For u,v € (H?(Q))?, and p?,q? € R2, we define a bilinear form B, as
follows

Bo(u,p?,v,¢Y) = 3O 2/ n(z)(Du — DYP7 u : Dv — DYP? v)dz
2€Qp Q

— Y [ Te(Dv —DYPZv)p2dz+ 3. [ Tr(Du— DSP7 u)q¢2d=.

Q€N Q QenN Q
We easily have that
Bo(u, 527, u, p2?) > 2C, [|Du — DYBTuf}, . (6.13)

Thanks to Cauchy-Schwarz inequality, using the function v, obtained in Proposition 6.4, we
have

Bo(u, 5, Vo, 0) > — 2C||Du — DYPZ ulla, [[DV5 — DYPE Vo llas

-3 /divVD'pvfxdz—i— > moTr(DYPIV, )P
Q

2€0p e€eQp

For the last term of the above estimate, since we have Tr(DX¥P?v,) = div”(PZ vyp) (see
(2.19)), forall @ € Qp, wehave Y. moTr(DYP; vo)pe = dive (PZvs) > moba.

2€Qp Q€0
thanks to (6.3), we deduce that Y moTr(DYP? v, )pe = 0. Finally, the estimate on v,
2€Qp

in Proposition 6.4 and Young inequality conclude that
~ 1 .
By (057, ¥, 0) > =C|[Du — DgPTulfy, + L IIPS2 115 — Csize(T)*. (6.14)
By bilinearity of B, the inequalities (6.13) and (6.14) give for each positive number £ > 0:

Bo(u, 5l u+EVp, Pl ) +€Csize(T)* > (2C, — £C) [Du—DIPZulg, + ngDﬁD I3

Choosing a value of § > 0 small enough (depending only on C, and C,), the above inequality
yields the following estimates for i = u + £v, € (H%(Q))?

D@ — DXPFdlla, < C (JDu—DYPTulla, + [527)l2 + ho), (615
and
IDu - DYPTull3y,, + P27 15 < CBp(u, paP; 1, aP) + Casize(T)>.  (6.16)

Step 3. We define now the consistency error for the projection IP’S as follows

Tsa(z) =Dii(z) —DPSd, Vzeo, Veoeq.
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Remark that 2DP21 — QDDPTI_J satisfied the conditions (2.13) and (2. 14) if o = a, thanks

to Proposition 2.2, there exists a unique 57 € M, 2(R) such that (5 : 0p) = 0 (with &g
defined in Proposition 2.1) and

1 —  t=
DP%d — DPPZd = 5 (Bad® + §7'By), Vo€ Qp.

Then applying Theorem 2.1 with (DPPZ @, P2 p), there exists a unique pair (67,p97) €
M 2(R) x R™P satisfying (2. 15) So we have D¥YPZa = DPPZ G+ 1 (Bod” + tFtBQ),
with (67 : §p) = 0. We note now 57 = 67 — 57 which satisfies ((51’ :0p) = 0and
1
DP2a — DYPIa = 5(BQ(sD + 558 o)y Vo€, 6.17)

Replacing §” by 57 in (6.12) and using the fact that

1 e

E(Bgav + 67'Bg) = DP2di — DYPZ @ = Dii(2) — DYPZ 4 — 15 a(2), (6.18)
we deduce that

Tr (tﬁRD): Y [ 2n(z) (Du(2) — DYPT G : Du(z) — DAPTu) dz + 3 moTr (To a(2))
€N Q Q€eNp

- > / 2n(z) (Ta,a(2) : Du(z) — Dg]P’Zu) dz— Y moTr (Di(z) — Dg]P’;rﬁ) P

QenNpJQ 2eQp
Now we can link R and BB, as follows

Bo(w, 520, 527) = Tr ((0PR7) = 5 moTr (Toa(2)) 52

€D

+ > 2n(2) (To,u(2) : Du(z) — DYPZu)dz + Y. moTr (Du(z) — DYPZu) p.
eeNp/ o €0

Thanks to (1.2) and the Cauchy-Schwarz inequality, Proposition 6.3 implies that

1

2

Bo(u, o 8, pa”) < Chol| Bad® o ( 2 /(\IIVH(Z)HIQf + V()| + IVp(Z)IQ)dZ>
Q

€QpJo

. _
+ITa,allap 1P |2 + 2C,|Du — DEPT ullas 175 alap + IDu — DSPZ ullas [[PaP 2.

Thanks to Lemma 2.2 and the estimate (6.18), we have

> mollBod”lF < C (DT - DAPT &R, + IT5,al,) -

2€Qp

Using (6.15) and (6.16), Proposition 6.2 implies

IDu - DEPZula, + 1552113 < Cha %D/ (V@)% + [V*u(2)]* + [Vp(2)|*)dz
Q€ Q

2
+Chv(||\Du—DgPZqunDH\peDH (ZD/ IVu()l% + [V*u(2)]* + Vp(Z)IQ)dZ)

"H"Du - DN]P)Tu"‘QD H Dox” H2

Finally, Young inequality gives the result. (]
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REMARK 6.1. We immediately have the estimate on the whole norm for (u, p)
IDu — DIPZull3 + 513 < Cassize(T)?([ullfyz(ay)e + 1Pl ) (6.19)

LEMMA 6.5. We assume that (u,p) is the solution of the problem (1.1). There exists a
constant Co4 > 0, depending only on Qn’ C,, Cy, reg(7T) and sin(eg), such that

mp|divPPZul* < |[D¥PZu—Dul|j,, VpeD,
[divo P ulls < Cousize(T)(|[ull (22 + ol @)

Proof. Thanks to div” (P2 u) = Tr(D?PZ u) and div u = 0, the equality (2.7) gives

1
div?(PZu) = div? (PZu) —diva = — / Tr(DYPZ u — Du(z))d=.

Mp ocp

Cauchy-Schwarz inequality implies the first estimate. Thanks to (6.19), we get the second

estimate with Coy = /Cas. O
Now, we can control R;‘ o> as follows

LEMMA 6.6. We assume that (u,p) is the solution of the problem (1.1). There exists a
constant Ca5 > 0, depending only on Cy, C,, C,, reg(T) and sin(eo), such that

RS qll2 < Cassize(T)([lull(zz(0))2 + Pl a1 (9))-

Proof. Definition 6.2 implies that

IREQlE < X me 3 IREZP + 1RSI

e s€€o
First, the inequality (1.2) and Lemma 6.4 imply

u,Du =2 .
IRSP )5 < C, Cassize(T)? ZQ (IVa@)l% + [V?u(z)* +[Vp|*) dz
Q€

Q

Finally, Lemma 6.3 implies the result, noting Ca5 = \/@f]ng + Cy.

6.5. Pressure jumps in diamonds. LEMMA 6.7. We assume that (u,p) is the solution
of the problem (1.1). There exists Cog > 0, depending only on C,, C,, C,;, reg(T) and
sin(eg), such that

O

010’Zp|p G(pe?x _pegx)2 S C26<||uH%H2(Q))2 + ||p||%11(ﬂ))
5= = 'e

Proof.  We note P}, p == — / y)dy, for any s € &, adding and subtracting P} p,

Cauchy-Schwarz inequality 1mphes

(SRR DD DR DN A o1
5=0|Q'=D|D'e& DED Q€N P s€IQNID

Then adding and subtracting P2, p, Cauchy-Schwarz inequality implies

Y (e —p2)?<8Y Tlpa—Poplf+8Y X X PRp—PLpl? (620
s=0|Q'=D|D’'e& DEDQEND DEDQENPsEIANID
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Since we have p € H'(9), thanks to Lemma 4.5, we get

P p — B2 pl2 < Ciyreg(T)? / Vp(z)dz. ©621)
Q

Lemma 6.4 and (6.21) conclude the proof with Cog = 8(Cas + Cyireg(7)3).
O

6.6. End of the proof of Theorem 6.1. We may now collect all the previous results in
order to conclude the proof of Theorem 6.1, that we started in Section 6.2.
Proof. Having denoted by €7 = PZu — u? and ¢® = P2p — p®, we have obtained the
inequality (6.8)

0 ~ Q .
IVHTIE + €213 <Cr(IVEeT 2 + e 2)(Re,lz + [div® P ull)
1
2

+ Casize(T) (1V3 €T ll2 + [l |2) ( (S - pegx)2>

5s=0Q|Q'=D|D' €&

Using the estimate | R, o2 < 2[[R¥ gll2+ [RY o2 + 552 [|2, Lemmas 6.1, 6.19, 6.6 and
Lemma 6.5 imply || R, o2 + |div®PZu||y < Csize(T). Finally, Lemma 6.7 gives

[V5e™||la < Csize(T) and |[[e?|s < Csize(T). (6.22)

Estimate of |[u — u” ||o. We have [[u—u7||2 < [[lu—PZul2 + ||PZu—u”|;. Lemma
6.2 and the discrete Poincaré inequality Theorem 4.5 imply

= a2 < Csize(T) + CJVOPZu ~ V2u 1.

Lemma 4.2 and (6.22) gives the estimate of ||u — u” ||2.

Estimate of |[Du—D¥u” ||2. We have [Du—D¥u” ||z < [|[Du—D¥PZ ufj2+|DY¥PZu—
DX u”||2. Finally, (6.19) and (6.22) imply the estimate of |[Du — D¥u” ||,.

Estimate of |p—p2||2. Using (6.22), we obtain ||P2p—p2 ||y < Csize(T). We conclude
thanks to Lemma 6.1. (]

Remark that we can improve the estimate of the velocity as follows

COROLLARY 6.1. Iffor any D € D, we have o # o.. We assume that the assumption
of Theorem 6.1 are satisfied. There exists a constant Ca7 > 0 depending only on reg(T), A,

sin(eo), Cy, C,, Gy, llull(m2())2 and ||pll 1 (), such that:

[Vu—VEuT |2 < Corsize(T).
Proof. The difficulty lies in the proof of the existence of a constant C'yg > 0, such that
IVa — VaPZullz < Cossize(T)(||ull(zr2(0))2 + [Pllz1@)-
Indeed with this estimate, we have
IVu = VauT|lz < Cossize(T)([ull a2 ()2 + Pl ) + IVEPZu — Vau™|».

Finally, (6.22) imply the estimate of [[Vu — Vyu?||2. We prove now the existence of Cs.
Let € ©. Thanks to Proposition 6.1, there exists 0%, € M, 2(R) such that (62, : do) =0
and DYPZu = DPPZu+ 1(Bodh + 62" Bo) forall @ € Q. So we can write VAPZu =
VPPZu+ 62" B, for all o € Q. By the discussion of Section 2.4.1 we remark that, there
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— t~—
exists 02 € M, 2(R) such that VP2u = VPPZu + 62'By, using the affine function
I1,P7 u (see Fig. 2.4), that is

0 = u(Zo) — UpPlu(z,,) 6. =u(z,,) — UpPlu(z,,) 623
See = u(ze,.) — IpPru(zs, . ) - u(z,,.) — P u(z,,. ). .

— — t—~
Noting 07 = §” — 6Z,, we deduce that VPSu— V¥PZu = §7'Bg and DP2u—DYPZu =

> e ex’
3(Bod® + 67'By). N
eCase o # .. Since &y is zero, we have (0P : ) = 0 and Lemma 2.2 implies
> mollBod?IF < Ci % mo|DPZu - DYPTul3
2€Qp €D

Lemma 6.4 gives

> moll Bod? |k < CiCash 3 [(IVu(2)lF + Vu(2)]” +|Vp(2)*)dz. (6.24)

Q€D 2€eNp Jo

Proposition 6.2 and (6.24) conclude the proof in that case. (]

7. Numerical results. We show here some numerical results obtained on the domain
Q =]0, 1[%. Error estimates are given for two different tests with a stabilization coefficient
A=1073

In order to illustrate error estimates, the family of meshes (see Fig. 7.1) are obtained
by successive global refinement of the original mesh. We recall that in the theoretical study

(a) Non conformal quadrangle mesh. (b) Quadrangle and triangle mesh.
FI1G. 7.1. Family of meshes.

presented here, we have either the same angles o, and o, (see Fig. 2.2(a)) or the angles
distant from €(. This restriction is not required in the numerical test. We get the same results
using the barycentric dual mesh or the direct dual mesh. And we observe that the convergence
order of the velocity gradient is one even in the case of direct dual mesh.

In all the tests, we choose an exact solution (u, p) and a viscosity 7 and then define the
source term f and the boundary data g in such a way that (1.1) is satisfied. In Fig. 7.2
and 7.3, we compare the three following schemes the original DDFV scheme (1.4), the
m-DDFV scheme (3.1) and the m-DDFV-AP scheme (3.1) with the old stabilization term
—\hA A®p? instead of —\h% AP p2. The comparison is performed in term of L?(£2)-norm

[P2p — p2l2 . _[PRVU - VEuT |,
for the pressure —S———=_ for the velocity gradient —< and for the
e Ieapl Ve B2Vl
PTu —
velocity W resp. as a function of the mesh size, in a logarithmic scale, where
c Uf[2

P2p = ((p(wo))oeq) is the center-value projection on 9.
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7.1. Test 1 - Discontinuous viscosity. The interface I' is located at {y = 0.5}. Let

u(z,y) = <”(°% y)>, with:

y> — 0.5y fory>0.5

, z,y) =2x — 1,
10*(y? — 0.5y) else. P(@,y)

u(z,y) =

and the discontinuous viscosity: 71 = 1,172 = 10~4, which leads to Du discontinuous across
I". We use the non conformal quadrangle mesh, locally refined where the discontinuity occurs,
shown on Fig. 7.1(a).

Error in L 2-norm of the pressure Errorin H é—norm of the velocity Error in L 2-norm of the velocity
10° 10" —F
— A+
rate: 0.85
— rate: 0.35 /
- A " 035 107
rate: 0.78_~ 10
©
—+DDFV . — DDFV | rater 10 ——DDFV |
-6-m-DDFV-AY 107 ter1.38 & m-DDFV-2% 10 T -S-m-DDFV-A
——m-DDFV —%—m-DDFV rate: 1.93 ——m-DDFV
rate: 1.38
-3 -4
10 10
B 10° 107 B 10° 107 B 10°
Mesh size Mesh size Mesh size
D D DT 4y _ IO T T T
[P p — P~ ll2 [VZPEu—VPuT|> [Peu—u™]

() (®) (©

P2 pll2 IVOPZ ull2 IPZ ull

FIG. 7.2. Test 1, discontinuous viscosity on a non conformal quadrangle mesh Fig. 7.1(a).

In Fig 7.2, we show that in that case, the results using the m-DDFV-AP scheme are
essentially the same than the one using the m-DDFV scheme (3.1). As predicted by the
theory, the m-DDFV scheme provides a much better convergence rate than the original DDFV
scheme. Furthermore, the error (in any of the three norms we consider) obtained by the m-
DDFV scheme is better than using the original DDFV scheme even in the case of coarse
meshes. Note that the convergence rates obtained with the m-DDFV scheme are greater than
the theoretical ones. This is related to some uniformity of the mesh away from the refinement
area. Furthermore, let us emphasize that the convergence rate is not sensitive to the presence
of non conformal control volumes.

7.2. Test 2 - Discontinuous viscosity and discontinuous pressure. The interface I" is

now located at {x = 0.5}. We note ¢ = ——2T—. We take the discontinuous viscosity:
n1+0.5m27

1 = 102, m = 1072, and

. 4.07 cos(4.0my)
- 0.5 5.0 —, f <0.5
{ (z )(cz + sin(5.0mx)) 0Bc T 1 orz <

(z — 0.5)(cos(mz) + 1)4.07 cos(4.0my), elsewhere.
u x? y = I’
(@9) . sin(4.07y)
— (ex + sin(5.0mz) 4+ (z — 0.5)(c + 5.07 cos(5.0nz))) ————, forz < 0.5

0.5¢+1
— (cos(mz) + 1 — 7(z — 0.5) sin(mz)) sin(4.0my), elsewhere.

8.0m(m — n2) cos(4my) + cos(4nx) sin(4nry), forz < 0.5
p(z,y) = .
cos(4mz) sin(4my), elsewhere.

We use the quadrangle-triangle mesh shown on Fig. 7.1(b). As predicted in Theorem 6.1,
we observe for the m-DDFV a first order convergence for the L?(£2)-norm of the velocity
gradient and of the pressure, which seems to be optimal in that case. We obtain a second
order convergence for the L?(£2)-norm of the velocity. This super-convergence of the L?(£2)-
norm is classical for finite volume methods, however its proof in general remains an open
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Error in L 2-norm of the pressure Errorin H é—norm of the velocity Error in L 2-norm of the velocity
10 10° 10°
—+—DDFV J 1 DDFV ——DDFV ]
~©-m-DDFV-A & m-bbFv-aY 10°|-©-m-DDFV-A!
—%—m-DDFV % m-DDFV —%-m-DDFV
| | -2
0 10 0 rate: 1.16
rate: .50+~ | rater1.28
rate: 0.59 rate: 0.67 10 "frate: 1.98
rate: 0.80
o rae L10¥, ~ , 107lrate: 100, - ) 107 = = o
10 10 10 10 10 10 10 10 10 10 10 10
Mesh size Mesh size Mesh size
Q Q Q NyT T T
IPEp — P42 [P Vu — VauT| |[P2 u—u? |2

©
[P2Vull2 [PZ ull2

(@) (b)

P& pll2

FIG. 7.3. Test 2, discontinuous viscosity and discontinuous pressure on the quadrangle-triangle mesh Fig. 7.1(b).

problem (see [26]). Fig. 7.3 brings out the role of the new stabilization term. We observe that
the m-DDFV-AP scheme is still convergent even if we have lost the first order convergence,
as expected.

8. Conclusion. In this paper, we provide a modification of the stabilized DDFV scheme
with Dirichlet boundary conditions for the interface Stokes problem on general 2D grids in
order to take into account discontinuities in the viscosity. The m-DDFV scheme we obtained
is proved to present a better consistency of the fluxes at the discontinuities. We prove a first
order convergence of the DDFV scheme in the L?(Q)-norm for the velocity gradient, for
the velocity and for the pressure. The performance of the scheme is illustrated by numerical
results. Let us mention some of the possible extensions of the present work to more general
situations. In this paper, we did not allow the viscosity 7 to depend on Du, so the first
extension could be to consider this situation with non-Newtonian flows. A second one could
be to extend this work to the 3D case.

Acknowledgments The author want to express its gratitude to Franck Boyer and Flo-
rence Hubert for their support during the preparation of this work.

9. Appendix.
9.1. Proof of Lemma 2.2.

Estimate between §¥ and the symmetric part of Bod™. Let us explicit the components
of 67 in the local basis of the diamond cell.
t(;;c :,Ufc?rc*,c* + Acliox, t§£ = ,Uz:?rc*,c* + A ik,
t(slc* :,LL?C*?GKK* + )‘)C*ﬁcr;cK*a t(sﬂ* = uL*?G"CK* + Aﬂ*ﬁ”KK*7
where 1., A, lie in R. Using notation S, = Bo0”+ 07! B, forall @ € £, and the fact that
tXBo6"X = 'X"6P'B,X for any X € R?, the definition of B, and the decomposition of
0 imply four equations:
Mo (X7 ?K*,L*)(ﬁanlc* , X) + )\zcma;c (X7 ﬁalc)(ﬁa;cic* , X)
+ Mo Pic (X, ?U;CIC*)(ﬁo-IC7 X) 4 Ag= Moy (X, ﬁaKK*)(ﬁUK,? X) (9.1a)

Moy on 4
= — XSQ}C,)C*X7

- mo’;c,U/IC(Xv '7_:K.*,L* )(ﬁa’ch* , X) - )\)cma,c (X7 ﬁa;c)(ﬁa,clc* ) X)
s s (X, P rer) (@, X)  Apo g (X, By e ) (o, X) .
inc,L

*t
= T XSQ)C,C*X’
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mO‘L/’LL(X7 ?K*,L*)(ﬁacﬁ* ) X) + )\Cmﬂ'[; (Xa ﬁa}C)(ﬁaLK*vX)
— Moy Pxc* (X7 ?UKK*)(ﬁaK7 X) - )\}C*mU}C* (X> ncr;CIC*)(naiC7 X) 9.1¢)
ch,}C* t
== T XSQE,)C* X,
— Mg e (Xu $x*,L*)(ﬁaﬂm*7X> - Aﬁma'g (X7 ﬁo’lC)<ﬁo'LKl*7X)
— Moo frx (X, Fa,crc*)(ﬁam X) - Ac*mac* (X, ﬁa,cic*)(ﬁaic, X) 9.1d)

Moy x4
= T XSQL,[,*X'

We deduce the different value of i by taking X = 7, _,~ in (9.1a)-(9.1b) and by taking
X = Ty»,c~ in (9.1¢)-(9.1d). Thanks to the relation (2.2), we have the following estimate

p? < Clreg(T)) > mollSoll% 9.2)

Q€D

eCase e # . Wehave (1, . cx, To ) 7 0. We deduce the different value of A by
taking in (9.1c) respectively X = T, _,~ and X = 7, .=, and in (9.1d) X = T, _,c~. The

value A\ is deduced from (9.1a). Using the criterion €y and the estimate (9.2), we obtain
A2 < Clreg(T),sin(e0)) Y- mollSoll% 9.3)

Q€D

Finally, we deduce thanks to (9.2) and (9.3) that

16717 < C 32 mollSollF = Clreg(T),sin(eo) 3. moll Bo” + 67 Bol|7

2€0p €D

eCase a, = a,. We have chosen 07 such that (6” : §y) = 0. We write the system on
A. as follows BA = F, where B is a following matrix in M5 4(R)

Moy 0 Moy 0
Moy 0 0 Mo
B = 0 mo'L _mU}C* 0 s
0 —Mop 0 —Mg
1 1 1 1
md}c mﬂ'c mﬂ"C* mﬂ'c*

A= t()\,c,)\ﬁ, A+, Az+ ) is a vector in R* and F = t(FQK,,C*,FQ,C oo Fo, s Fo, ,0,0)is
a vector in R®. We have . F, = 0 and using the estimate (9.2), for all ¢ € Q,,

Q€N D
|FQ|2 < C’(reg(T))h% > QOSQm%—" 9.4
Q€eND
The solution of BA = F'is
b 1 b
>\£ = b’ >\}c* = my (FQK:),C* +FQ,C ¥ Mo b*) 5
) ~ ; ) 9.5)
)\L:ma_ﬁ ( FQLL* ma'ﬁ*b*>7 )‘K:mo_)c ( FQL)C* +mo'£*b*>7
where
1 N N 1
bP < Clreg(T)) 5 3> mallSollr and [b] = —b* > Clreg(T))—.  (9.6)
hD €0 p h‘D
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We deduce thanks to (9.5), (9.4) and (9.6) that

N < Clreg(T)) Y mollSoll%. ©.7)

Finally, we deduce thanks to (9.2) and (9.7) that

I67]1% < Clreg(T)) 3 mollSallF = Clreg(T)) Y. mollBod” + 67 Boll7-

Q€D €0

Estimate between Bo6” and 67. Thanks to hp, < Cmin(mg,,ms,..), we deduce
1Bod” (1% < C35- 167 (|5 Thanks to reg(7), we obtain 3 meol|Bod” % < Cll6™|%,
D
that concludes the proof.

e€ep

9.2. Proof of Lemma 2.3. We improperly note as »(D”u”) = ag = p° — p” when
s = 0p N Q. We have that (07, aq,, ) satisfied the following system

Y mopo(DPu”, 0%, ag)By =0, Tr(tavtBQ):Oa Vo € Qp,

Q€ND 9.8)
Y. Mmeag=0, (0% : dp) = 0. '
2€Qp
Using the value of ¢, in (9.8), we deduce that
> moagBo =2 > mgnoDY¥u”B,. 9.9)

Q€D Q€D

2

We have that [me, . Bo, . I = m3, +m . < 2h%. The same estimate holds for all

9 € Q. We estimate the right hand side of (9.9) thanks to Cauchy-Schwarz inequality

2
2 anQDgu’BguuﬁcnhD( > |||Dguf|||3f> : (9.10)
2€0p oep

Then we have that the norm of the left-hand side of (9.9) is

Il Qg} mQaQBQ|”.27: :mZ')C (O‘Q,C,,c* — Qo )2 + mig (O‘QL,C* — g, o« )2
D
+ mg,c* (ag,c‘,c* — g, e )2 + mgﬂ* (O‘QKYE* — Qg o« )2
9.11)
Using (9.10)-(9.11), the relation (2.2) implies that

2
|%—ag/|szcnreg<7>< > ||Dgu7|||%c> Ve, o € Dy suchthat 5N Q' # 0.

€D

C
Thanks to (4.2) and to 722 < reg(7)?, weobtain 3> [[Dgu” I% < reg(T)3C—"|HDDuT I%.
Q€D =n
We deduce that
—1/2

g — aor| < 2C,reg(T )5/2#|"DD“T”|J:- 9.12)
=

Now we can estimate |« | with differences like agr — g/, using (9.8). Thanks to (9.12), we

. . )5 /263/ 2
obtain the result with Cy = 6reg()17n.
cl/?
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9.3. Proof of Proposition 6.4. We define F, as follows

Id

mQ;c,)c*

F =

e, k*

Id

’ Ck,c* ) Qr,K*

mQIC,C*

F = F = —

Id P Id

9 Q)C,L* = .
Mg, o ch,L*

We check that Fg satisfy the conditions (2.13) and (2.14) if o = . Thus, there exists
67 € My, 2(R) such that (Bod” + tgptBQ) = Fo,V 0 € 9y and (67 : §y) = 0. Taking
0% equal to §” in (6.12), we deduce that

S [ n(2) (Fo:Du(z)—DY¥PTu)dz — 3 moTr (Fo) p2 =Tr (tSDRD) . (9.13)

eeNp/Q

2€0p

We construct a function v, such that v, € (H'(p))2 N (H?())?, for all @ € 9, such that

div(vp)(z) =

- div® (P2 1 = .
- T [ - (P RR), it € o
N D(PQT) e (9.14)
_ o 4V Eew

ex

2mg

/ N(2)dz, ife o, e oe =0,
Q

with RP defined by Definition 6.4. We choose v linear per quarter diamond cells of the

form Ag(z — xp) if & € 0, with
~p _, ~ _
Vier @ Ny g VE @ Ny
AQ}C.)C* == — + — — 9 AQIC.L* -
’ N, cx * Trex,c* Ny " Toperc* '
~D _, ~ _,
Ve @M, e V2 @M,
AQL.)C* == — + — = ’ AQLL* -
’ N, cx * Trex,c* Ny Topr*

P D D
where V2, vZ, v2

Vo

Thus v, is continuous across the diagonals of D and v, (z5) = 0.
e Case a,c = ot We choose V2 = ax v

(w0 + aFcr c) = {

—

D
no’TC’ VL

~p — D o =
vﬂ*®na’c,c* n Ve ® N

—

= =
N, cx Trex,c* Ny " Toprc*

5D = D
Vs QN g n V., QN x

= s =
N, cx  Trex,c* Nox " Topx*

«» V2. belong to R2, they will be determined above. Remark that we have

OV, if zp + aTcn o € O~

avi., if 2y + QT o+ € 0.

— ~ ~

— D — = D —
= Al x, Vs = Qx*Tr,c, Vox =

G+ Ny xe«. To determine the unknowns a, a,, g+, a + we impose (9.14):

A = SiIl(OéD) (-]A)egx)cylc* +

div® (P u) /
Q

2m91c.)c*

n

K™

(z)dz — ;Tr(tSDRD)> := sin(ap )by,

. ~ex div” (P7 .
ac = sin(ap) (—pgﬂx* + u/ n(z)dz) := sin(ap )bz,
o o

ax + a+ = sin(ap) (pQK ot

as + agx = sin(ap) <_p95.c* +

We get

2ch c*

div? (PZ u)

nglc c*

~ex

div? (P7 u)
2mQLC*

~ex

ax = sin(ap)by, a, =sin(ap)bs,

/QK,L* n(z)dz) := sin(ap )bs,

/QLE* n(z)dz) := sin(ap)ba.

a,~ = sin(ap)(bs — by).
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Thanks to (9.13) that is by —by —bs+by = 0, we also have a, = sin(ap ) (b1 —bs+by4)
and we choose a,- = 0. We deduce that there exists C' > 0 depending only on
reg(7) and C,, such that

> mollAclF < C( X molp&l® + moldiv® (PFu)|” + mo|Te('8° R7)|?).
QeQp Q€
9.15)

e Case ax # o : We choose VP = axliox, Vi = Qrligx, Vs = O Tocxcns
boaadh _. . . ;
Vz+ = Qg+, g+ To determine the unknowns a, a., ax«, az+ we impose (9.14):

ax = sin(ax )by, ax + agx = sin(ax)bs,
ac + axx sin(ax — az) = sin(ag)be, arz + agx cos(ax — ag) = sin(ag)ba.
We get

ax = sin(ax)b1, ar = sin(az)bs + cos(ax — ar)sin(ax) (b — bs),
_sin(a,)(ba — bs) 4 cos(ax — a)sin(ax)(bz — b1)
o sin(ax — ag)

,  ag+ =sin(ax)(bs — b1).

In that case, we have that a,- blows up if the angles o, o, are too close. So there

exists C' > 0 depending only on reg(7), C,, and sin(eg) such that

> mollAollF < C( 2 malP&l + moldiv® (BT w)|* + mo|Tr('57R7) ).

QeQp Q€Qp
9.16)
From (9.15) and (9.16) and applying Lemma 6.5, we obtain
Wollzr oy < CUPEP |12 + IDu = DYPTulla, + /o | Te( 67 R))). (9.17)

Lemma 2.2 implies that m || Bo6”[|& , < C(reg(7)). Thanks to Proposition 6.3, we deduce
mo|Tr('67 RP)|* < Ch, % (IVa)IF + [V*u(2)* +[Vp(2)[*)dz.  (9.18)
QeEp JQ

We have [[DV,—DXP; Vo llas < Vol mr (o) +HIDEPE Vo [|ap - Proposition 4.1 and Lemma
6.2 give |DVp — DYPZ V5 |lap, < (1 + Cis)||Vo| g (p). Thanks to (9.17) and (9.18), we
deduce that

IDVy — DYPIVollap < C(1PSP |2 + IDu — DYPZulla, + Chy).
Furthermore, we have

- 2 [ aveptds > [P B-divPTu S [ n@depome, (SRS .
oeQpJo oeqQpJo !

Thanks to divu = 0, Proposition 6.3 gives

- % / divVppsdz > [Par |3 — ClIDu — DRI ulla PSP 2 — Csize(T)||[PEP o
Qedp JQ

Young inequality concludes the proof.
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