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FINITE VOLUME METHOD FOR GENERAL MULTIFLUID FLOWS GOVERNED
BY THE INTERFACE STOKES PROBLEM

STELLA KRELL*

Abstract. We study the approximation of solutions to the stationary Stokes problem with a piecewise constant
viscosity coefficient (interface Stokes problem) in the discrete duality finite volume (DDFV) framework. In order
to take into account the discontinuities and to prevent consistency defect in the scheme, we propose to modify the
definition of the numerical fluxes on the edges of the mesh where the discontinuity occurs. We first show how to
design our new scheme, called m-DDFV, and we analyze the well-posedness of the scheme and its convergence
properties. Finally, we provide numerical results which confirm that the m-DDFV scheme significantly improves the
convergence rate of the usual DDFV method for Stokes problems with discontinuous viscosity.

Key words. Interface Stokes problem, discontinuous coefficients, DDFV methods.

1. Introduction. In many numerical simulations the two phases are modeled by a single
set of conservation laws for the whole computational domain. Such an approach leads to
Navier-Stokes equations with discontinuous density and viscosity coefficients. For highly
viscous flows then the Stokes equations with discontinuous viscosity are a reasonable model
problem.

1.1. Stokes model. In this paper, we are concerned with the finite volume approxima-
tion of solutions to the steady interface Stokes problem with homogeneous Dirichlet boundary
conditions: Find a velocity u : 2 — R? and a pressure p : Q — R such that:

div (=2nDu+ pld) =f, div(u) =0, inQ;, fori=1,2, [,p(z)dz =0,

u=0,0n0%, [u =0, [2nDui—pi]=0, onT, (D
where (2 is a polygonal connected open bounded subset of R?, Du = %(Vu + tVu) ,fisa
function in (L2(£2))?2, a piecewise constant viscosity 7, equal to n; > 0 on ©;, fori = 1,2.
The sub-domains €21, 5 are assumed to be Lipschitz domains such that Q; N Qs = () and
Q = Q; UQ,. By T, we denote the interface between the sub-domains I' = 9€; N 9, and
is a closed C® curve. Others notation are standard, i is an unit normal vector to I" from

to Q2 and [a]|. = (a|,, — ay,, )|, denoted the jump of a across I'.

1.1.1. Regularity of solution. We note C, =min(71,72) and C,=max(n1,12), we get
0<C, <n(x)<C,, foraexe (1.2)

The well-posedness of the problem (1.1) is studied in [4, 14, 25] with a constant viscos-
ity and in [23] with a piecewise constant viscosity. In order to study the rates of conver-
gence of our approximate solution, we need to make some assumptions on the regularity of
a solution (u,p). Firstly, if T" is a closed C3 curve and 2 is a convex polygon, we have
u, € (H?(£2;))? and Plo, € H(Q;), fori = 1, 2. On the other hand, we cannot expect this
regularity, when 09 N T # () and the maximum interior angle of 9§, 9 at 9Q N T is large
enough. For more details of these facts, we refer to [22]. Since the viscosity is discontinuous,
the pressure can have jumps. More precisely, we have [p] = [2nDuii - ii], on " in [18]. We
assume that (u, p) the solution of the problem (1.1) lies in (H?(w))? x H'(w), that is:

(u,p) € (H'())? x L*(Q), up, € (H?())3, Pla, € H' (), fori =1,2. (1.3)
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2 S. KRELL

1.1.2. Notation. We denote by M,, ,,(R) the set of real m x n matrices (we note
M,,(R) when m = n). In the sequel, || - || stands for the natural L?-norm when we con-
sider scalar valued and vector valued functions and for the Frobenius norm when we consider
matrix valued functions:

€l = /Q (@) 5da, with €]1F = (£:€), V€€ L (2, Ma(R)),
VI iz = V17 @) + IV2VIT20,) + IVPVIE2(0,), YV € (H?(W))?,
lall7 ) = llallZ2) + IValZ20y) + 1 Vall72(,), Vo€ H (w),

where (£:€) = X & ;& = Tr("€€), VE €€ Ma(R).

1<ij<2

REMARK 1.1. The matrix norm || - || 7 satisfies H‘ # H’}_ < Al #, forall A € My(R).

1.2. The DDFV method. Finite volume approximation of Stokes problems with con-
stant viscosity on the whole domain is a current research topic, we refer to [7, 10, 13] for
the description and the analysis of the main available schemes up to now. We propose here a
staggered method: the discrete unknowns, the components of the velocity and the pressure,
are located on different nodes. The most celebrated staggered scheme is the MAC scheme
[15, 21] on cartesian grids. Actually, for a cartesian grid and constant viscosity, the scheme
we propose here is equivalent (except on the boundary) to two uncoupled MAC schemes
written on two different staggered meshes.

The presence of the symmetric part of the gradient Du imposes to address the problem
of the reconstruction of the full velocity gradient on the whole domain. Different methods
of gradient reconstruction for cell-centered finite volume have been proposed since the last
ten years, one can refer to [6], [9], [12] and [8, 17]. In all cases, the crucial feature is that
the summation-by-parts procedure permits to reconstruct the whole two dimensional discrete
gradient, starting from two point finite differences. Many of them have been compared in the
benchmark of the FVCAS conference [16], for scalar diffusion problems.

We consider here the class of finite volume schemes called “Discrete Duality Finite Vol-
ume” (DDFV for short). The DDFV method reconstitutes gradients from finite differences in
two independent directions. Therefore, two finite volumes meshes are needed, noted 7. The
second mesh of dual control volumes is built around the vertices of the primal mesh. Thus the
dual mesh is thorough defined thanks the primal control volumes and their “centers”. The pri-
mal mesh and the dual one play a symmetric role. Finally, these two meshes give a new mesh
called diamond mesh ®, on which the discrete gradient operator V® is computed. Then, a
discrete divergence operator div” is built in order to be in duality with the discrete gradient
in a discrete sense (see Theorem 4.3).

1.2.1. Previous work. Let us comeback to the Stokes problem. Our strategy is to ap-
proximate the velocity u on the mesh 7, denoted u” and the pressure on the diamond mesh
D, denoted p®. The principle to obtain the DDFV scheme in [19] is the following. We
integrate the momentum conservation law of the problem (1.1) on the primal mesh 9t and
the interior dual mesh 91*. The mass conservation equation is directly approached on the
diamond mesh using the discrete operator div® and a stabilized term —\hZ A®p® inspired
by the well known Brezzi-Pitkédranta method [5]. The velocity is imposed to be equal to zero
on boundary domain, that is denoted by u” € E,. Finally, the integral of the pressure is
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imposed to be equal to zero. The stabilized DDFV scheme can be written as follows:

Find u” € E; and p® € R® such that,

div” (=27°D%u” + p®Id) = £,  div™ (-27°D®u” + p®1d) = ", (1.4)

div® (u?) — Ak APp® =0, > mpp” =0,

DED
where A > 0 given. This stabilized DDFV scheme is proved to be well-posed for general
2D meshes. Hence, we succeeded in showing the convergence of such schemes and error
estimates in the case where the viscosity and the exact solution are assumed to be smooth.
THEOREM 1.1. We assume that the solution (u,p) of the Stokes problem (1.1) belongs

to (H?(Q))? x H(2) and that 1) belongs to C?(Q2). Let (u*,p®) € Eg x R® be the solution
of the scheme (1.4). There exists a constant C > 0 depending only on the regularity of the
mesh, on the viscosity and of the couple (u, p), such that:

[u—u”z + [|[Vu— V?uT |y < Csize(T) and |p—p®|l2 < Csize(T).

We have extended this framework in 3D in [20]. In the case where 7 has discontinuous
coefficients, our results in [19] show that the scheme is still convergent but the error analysis
is no more valid.

1.2.2. Consideration of the discontinuities. Actually, it is known that such disconti-
nuities in the coefficients imply a consistency defect in the numerical fluxes of usual finite
volume schemes. It is needed to modify the scheme in order to take into account the jumps
of the coefficients of the problem and then to recover a better convergence rate. As in in
the scalar case [3], we need to introduce a new gradient operator and finally define a new
approximate viscous stress tensor on each diamond cell. The new gradient operator V] we
propose to consider is built upon the usual DDFV gradient V®. It is chosen to be con-
stant on all the quarter diamond cells ¢ € Q. Thanks to the modified discrete gradient, we
can define a new symmetric operator a modified discrete strain rate tensor D% as follows
D¥u” = 3 (vg u” + (VY u")) . We also introduce an artificial pressure unknowns on
the quarter diamond cells, denoted p=, that will depend on the symmetric part of the velocity
gradient D®u7 and the pressure unknowns p®. Then, we propose a modified DDFV scheme
-that we called m-DDFV. The only difference with the scheme (1.4) introduced in [19] is in
the viscous stress tensor and the stabilization term, to take into account the jumps of the pres-
sure. We replace n® D®u” (respectively —A\h4 A®p®) by a modified viscous stress tensor,
denoted by D%’Nu", (respectively —A\h2 A®p?) as follows:

Find u? € Eg and p® € R® such that,

div™(—2D}%Vu” 4 p°ld) = £, div™" (=2DF u” +p°Id) = £, () 5
div® (uT) — AMhHA®p? =0, > mpp” =0.
DED

This m-DDFV scheme is proved to be well-posed provided a new discrete Korn inequality
for the modified discrete operators (see Theorem 4.2) which is not just an extension of the
discrete Korn inequality proved in [19].

The aim of this work is to present a modified DDFV scheme which recovers the first
order convergence even if the viscosity is discontinuous. We provide an error estimate in
case where the exact solution of the problem (1.1) lies in the space (H?(w))? x H'(w), we
prove a first order convergence of the scheme (1.5) in the L?-norm for the velocity gradient,
as well as for the velocity and for the pressure. Hence, our analysis provides a theoretical
confirmation of the behavior numerically observed in [19].
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1.3. Outline. This paper is organized as follows. In Section 2, we recall the DDFV
framework for the finite volume approximation of Stokes problems on unstructured grids. In
Subsection 2.4, we introduce the modified new discrete operators. In Section 3, we describe
the m-DDFV stabilized scheme. In Section 4, we present the main results of discrete func-
tional analysis necessary for the theoretical study of the finite volume method. These results
include properties of discrete operators proved in [19] but also properties of the modified dis-
crete operators, including a new discrete Korn inequality (see Theorem 4.2). In Section 5,
we prove the stability and well-posedness of the scheme. Then, in Section 6, we prove error
estimates in the case where the exact solution lies in (H?(w))? x H'(w) (see Theorem 6.1).
Finally, in Section 7, theoretical error estimates are illustrated with numerical results.

2. The DDFYV framework.

2.1. The meshes and notation.

The meshes. We recall here the main notation and definitions taken from [1]. A DDFV
mesh 7 is constituted by a primal mesh 9t U 99t and a dual mesh 9t* U 990t*. An example
for square locally refined primal mesh is on Figure 2.1.

[ L N
| — The boundary dual cell £*

Node of the boundary dual cell z -«

u
O Inside node x -« of the dual cell
O Primal node x xc

® 1z, the middle of o

» — - Primal control volumes
- - -4

Tk — -+ Inside dual cell K*

FIG. 2.1. The mesh T .

The primal mesh 90 is a set of disjoint open polygonal control volumes x C €2 such that
UK = Q. We denote by 9901 the set of edges of the control volumes in 90 included in 052,
which we consider as degenerate control volumes. To each control volume and degenerate
control volume x € 9t U 99N, we associate a point . For each degenerate control volume
K € 09, we choose the point x equal to the midpoint of the control volume i. This family
of points is denoted by X = {z,, k£ € M U M }.

Let X* denote the set of the vertices of the primal control volumes in 21 that we split
into X* = X7, U X, where X/, N0Q = 0 and X}, C 9. With any point z,~ € X,
(resp. zx+ € XZ,,), we associate the polygon k* € I (resp. £* € 09*) whose sides are
{[zx,z,] such that z,. € X,z € KNT, K € M, 0 € E} (resp. {[xx+, .| suchthato €
OMand xc+ € T} U {[zc,x,]suchthatz, € X,z € KNT, £ € M, 0 € £}) sorted
with respect to the clockwise order of the corresponding control volumes. This defines the
set T U 09" of dual control volumes. It is usually called the barycentric dual mesh.

REMARK 2.1. Remark that our dual control volumes differ from the classic one proposed
in [8]or[1, 3, 19]. The classic dual cells are build by joining only the centers x, associated
to the elements of the primal mesh of which x.~ is a vertex. Barycentric dual cells never
overlap, that is not always the case for classic dual cells.

For all control volumes x and £, we assume that Ox N Jc is either empty or a common
vertex or an edge of the primal mesh denoted by o = «|2. We note by £ the set of such edges.
We also note o* = r*|c* and £* for the corresponding dual definitions.
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Given the primal and dual control volumes, we define the diamond cells D, .« being the
quadrangles whose diagonals are a primal edge o = k|2 = (xx+, 2.+ ) and a corresponding
dual edge 0* = k*|c* = (zx,x.), (see Fig. 2.2(a)). Note that the diamond cells are not
necessarily convex. If o € £ N 99, the quadrangle D, . degenerates into a triangle. The set
of the diamond cells is denoted by © and we have Q = Dg@ﬁ.

o = [m)cx,xpx]

o =[xk, zc] ) Tip

(a) Notation in the diamond cells. (b) Quarter diamond cells.

FIG. 2.2. Diamond cells

REMARK 2.2. An important assumption for our analysis is that each DDFV mesh T is
conforming with respect to the two sub-domains 2y, o in the following sense:

JM;, CM . U{K|K€W¢}:Qi,i:1,2
3 (M UOM*), C M UIM* - U{cs ks € (M uom*),} =Q;, i=1,2

This assumption is easily fulfilled if Q1 and Q5 are polyhedral sub-domains.

Notation. We recall here the main notation taken from [19]. For any primal control
volume k£ € 9t U 99, we note m its Lebesgue measure, dy its diameter, & the set of its
edges (if £ € M), or the one-element set {k} if K € IM, D« = {D, .~ €D, 0 € E},
By := B(xx, px) NOQ C K the open ball of radius p > 0 for £ € M, mp, its measure,
the value p, is chosen such that the inclusion is verified. We will also use corresponding dual
notation for any dual cells £* € 9U* U 09*: mycx, Excxy Dyex, dicx, Bier,s MByex s Prc*-

For a diamond cell D = D, ,~ whose vertices are (zy, Tix, L., o), We note xp the
center of the diamond cell D, that is the middle point of the primal edge o, hy its diameter,
m, the length of the primal edge o, m,~ the length of the dual edge o*, i, . the unit vector
normal to o oriented from z to z ., M =x+ the unit vector normal to o* oriented from x .«
to .+, Tx,. the unit vector parallel to o* oriented from zx to z., T, .+ the unit vector
parallel to o oriented from z.- to z.«, ap the angle between Ty, and Ty« o=, Mmp its
measure, equal to % sin(ap)m,m,+, and d- . (respectively d.- .) the length between z .-
(respectively x .« ) and z . for any boundary degenerate diamond cell, s its edges (for example
§ = [Zx,Zxx]), Ep = {5, 5 € Opands ¢ 0N} the set of interior edges of D, & = {s €
Ep, VD € D} the set of interior edges of all diamond cells D € D, m, the length of a
diamond edge s, fisp the unit vector normal to s = D|p’ oriented from D to D’.

Since we use here the barycentric dual mesh, we introduce new notation in comparison to
the notation in [19]. For a diamond cell D = D, ,«, we note o (respectively o) the segment
[, xp] (respectively [xp,x,]), ok~ (respectively o.+) the segment [+, zp] (respectively
[Zp, x]), ii,, x+ the unit vector normal to o oriented from ,« to x.«, 1, .= the unit
vector normal to o, oriented from z,+ to x«, 7"’%,@ the unit vector parallel to o oriented
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from z, to zp, T, .~ the unit vector parallel to o, oriented from x5 to z, ax the angle
between Tozp and T ,c*, 0 the angle between ToTp and Trcn ,c*, Mg, (respectively my )
the length of o (respectively o), me, . (respectively m, ., ) the length of o« (respectively
o.+), T, the middle point of the segment o for each o € {0\, 0., 0c*, 0.+ }.

For any D € D, we have m, «fi,«xx = Moy + Mo, M, . In a diamond cell
D € D, we have different direct orthonormal basis: (T« zx, flox ), (Hoxicx, Ti,z)s (Mo crc*s
T, oxc) and (i, .=, T, .x+). We distinguish the interior diamond cells and the boundary
diamond cells: Dy = {D €D, DNOIN £ O}, Dint = D\ Doy For all D € Dy, we have
Moyx = dy~ . and Mo = de- ..

Each diamond cell D € ;¢ (resp. D € D.,¢) can naturally be split into a set Q, of
four triangles (resp. two triangles), denoted by Oy +, Qi s+, Qe x+ and Q. ,+ © € Qp,
as shown in Figure 2.2(b), and satisfying 9x o+ C KN K*,---. If D € Dy, we have
D= Qp U9k - UQs c» UQ, o+ and if D € Dy, we have D = O - U Ok .~. The set
of the quarter diamonds in the domain is denoted by Q = DLeJZ)QD' For a quarter diamond

cell o € £, we note by mg, its measure, hg its diameter.

REMARK 2.3. In order to right define the quarter diamond cells, we have chosen the
barycentric dual mesh. In the classic dual mesh, when the diamond cells are non-convex the
definition of the quarter diamond cells is not possible.

The presence of the two angles o, o, takes a role in Definition 2.5 of the modified
discrete gradient, in the new discrete Korn inequality (see Theorem 4.2) and in the consistency
errors (see Lemma 6.4 and Corollary 6.1). The three last results rely on Lemma 2.2. In order
to prove this Corollary, we need to introduce the following criterion:

Criterion: For each p € D, if |a,c — a,| < €, we choose x,, to be the intersection of
the primal edge ¢ and the dual edge o* instead of the middle point of the edge o.

REMARK 2.4. Now, for each D € D, we have either |ae — az| > €9 or a = .

It is needed since the proof of the estimate is divided into two cases: when o, = . or
ax # a,. We can not generalize the case |a — a.| > €y when ¢ tends to 0. One hand,
when a,c # a, we obtain estimate constant depending on ¢y which explode when ¢ tends
to 0. On the other hand, when a,c = «a, , we can prove in an other way the same estimate
with a finite constant.

Mesh regularity measurement. Set size(7 ) the maximum of the diameters of the dia-
mond cells in ®. To measure how flat the diamond cells can be, we note o, the unique real
in ]0, 7] such that sin(a;) := 71')116121)(| sin(ay )|, | sin(a,)|). We introduce a positive number
reg(7) that quantifies the regularity of a given mesh and is useful to perform the convergence
analysis of finite volume schemes:

1 hp dx dyc~
reg(7):=max | ———,max max ———, Inax max —, max max — | . (2.1)
sin(a7)’ Ded Qeqp min m, KeEMDED  hp  K*€M*UIM*DED v hp
c€edQ

The number reg(7) should be uniformly bounded when size(7) — 0 for the convergence
to hold. For instance, there exists a constant C' depending on reg(7) such that

hD<hD

Vi~ e

2.2. Unknowns and discrete projections. The DDFV method associates to any primal
control volume x € 9t U A9 an unknown value u,. € R? for the velocity, to any dual control
volume k* € D* U OM* an unknown value u,- € R? for the velocity and to any diamond
cell D € ® an unknown value p” € R for the pressure. These unknowns are collected in the

<C,Voe€Q,, hy < Cmin(m,, M), VD, .« €D.
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families :

u” = ((urc);ce(imuaan) ) (un*)n*e(m*uam*)) € (RQ)T7 p® = ((pD>De©) €R®.

We specify a discrete subset of (RQ)T needed to take into account the Dirichlet boundary
conditions: Eg = {v7 € (]RQ)T s.t. Ve =0, Vk € 0M and v = 0, Vi* € OM*}.
We define a interior mean-value projection for any integrable vector function v on (2:

o ( foone) )0 (i o)) o

We also note the mean-value projection for any integrable vector function v on €2 as follows

- 1 ~on* 1
PZ v =(P..v, < / V(m)dx) Py, / v(z)dz .
MBx JBx KEOM MBicx JBy» K* €oM*
(2.3)

In particular, the mean-value projection is well defined for any vector v lying in (H*(£2))2.

2.3. Discrete operators. We recall the discrete operators introduced in [19].
DEFINITION 2.1 (Discrete gradient). We define a consistent approximation of the gradi-
ent operator denoted by V® : u% € (RQ)T = (VPuT) pep € (M2(R))®, as follows:

1 u, — —u

Uxc Ux c*
® g + ® Dy x e

 sin(ap) M» m,
where Q represents the tensor product.

DEFINITION 2.2 (Discrete divergence). We define a consistent approximation of the
divergence operator applied to discrete tensor fields denoted by div™ : £€° = (£P)pen €
(M3(R))® > divTe® € (R?), as follows:

1
divee® = — 3 m,EPf,., Ve €M, and div<E® =0, Vi € OM,

Mk sedk
. ek 1 R
div®"¢® = ST M€ peex, VE* € MF,
Mi* gxcor*
dive¢® = L ST M EP R + Y. de EPW VK € OM*
- o* o*IC* K*,L oK | .
Micx \ D, v €D Dy gx €D cx NDeme

To write the DDFV scheme, we also need to denote the discrete divergence on the primal
mesh and on the interior dual mesh as follows:
div™¢® = ((divee®) div™"e® = ((div<"¢?)

cem) crem-)

Using the barycentric dual mesh, we also can write the discrete divergence like in [7]

* 1
div™ 59 =

S (Mo £ rcn + Mg EP R, ier ), VT € .
Mi* orcox*
Thanks to the discrete gradient we can define a discrete strain rate tensor and a discrete
divergence of a vector field in (Rz) T
DEFINITION 2.3 (Discrete strain rate tensor). We define a discrete strain rate tensor of
a vector field in (RQ)T, denoted by: D® : u7 € (R2)T — (DPu”)pep € (Ma(R))®, with

D Tt D T
DDuT:M,forallDGQ.

DEFINITION 2.4. We define a discrete divergence of a vector field in (R2) ”, denoted by:
div® : u” € (R?)” = (divPu7)pen € R?, with divPu® = Tr(V>u?), forall o € D.
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2.4. Local modification of the discrete strain rate tensor. Assume that the viscosity
7 is Lipschitz continuous on each quarter diamond cell: there exists C,, > 0 such that:

In(z) —n(z")| < Cylz — 2’|, Va,2’ € o, forall o € Q. 2.4)

We note, forall ¢ € Q, 7, = [ 5 1(s)dua(s) where pug is a measure of probability. Further-
more, we always have Qn <ng < @7, forall o € Q.

The point we are concerned with in this paper is that the DDFV scheme (1.4) suffers
from a lost of consistency in the case where n presents discontinuities. More precisely, we
present a way to recover the consistency of the fluxes even when 7 presents jumps. The
normal component of the stress tensor o(u, p) = 2nDu — pld is continuous across all primal
and dual edges. For instance, we have

/ 015, o (W P)Tgreds = / 915, o (W, p)i,xds.

oK ) oK

We need to ensure this consistency at the discret level. We introduce a discret stress tensor
©o on quarter diamond cells. Thus we add additional unknowns p2P = (p?)oeanp ON
each diamond cell D and we must define a new discret strain rate tensor DY on each quarter
diamond cell in order to define the discret stress tensor ¢o as 2noDyu” — p2Id.

We first recall the scalar case propose in [3]. The discrete gradient operator VZu” can
be understood as the gradient of the unique affine function II,u” on D whose value at the
middle of each side of the diamond D is the mean value between the two unknowns associated
to the extremities of this segment (sum up in Figure 2.3). We introduce the middle point
TowsTopsToens To . OF the segments oy, 0., 04,0+ The new gradient operator Vg is

x T
uK+u * Rkl v
KU+ /§

NN g
/ \1}.5—"-11.[:*
Tpx 2

o

FI1G. 2.3..

chosen to be constant on all the quarter diamond cells o € Q. It is the gradient of a function
II,u” whose is a affine function on each ¢ € £, which coincides with IT,«7 in the middle
of each side of » and which is continuous at each point x5, Zs,, To, ., To .. We add four
new unknowns 67 = (6, 0., 0+, .+ ) defined to be the differences IT,u” (y) — Hpu? (y)
foreach y € {75, 25,, 25, To,.. }. Now we can write Vu” = VPu” + Bod”, where
(Bg)oen, is a family of matrices which can be explicitly compute. We have present the case
where D is a interior diamond, we can do the same when D € 3., thus we note n, = 4 if
D E D and npy = 1if D € D,,y. Here, we propose to adapt this framework to the vector
case. We will work now with 67 = (8,8, 65, 0.+ ) lying in (M, , 2(R))® and the family
of matrix B are the same.

2.4.1. Discrete operators on quarter diamond cells. DEFINITION 2.5 (Discrete gradi-
ent on quarter diamonds). We define a discrete gradient of a vector field of (R2) " on quarter

diamond cells: VY : (R2)T = (ViU ) geq € (Mo(R))R, such that for any o € © and
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forany @ € Qp: VNUT = VPu? + '62' By, where §° = (67,65) € (Myp, 2(R))® is an
artificial set of unknowns and (Bg) ¢, is a set of Mz np, (R) defined as follows:

o VD € D, we take 6 = t(é,c, 0z, 0k, 0.) € My, 2(R) and four matrices Bg:

_ _
Mo loercr | Moyx ok Moy Doy rc* Mo v Nox
BQIC.)C*: m ,07 m 70 ) BQ}C,L*: - m 70707 m )
e, k* i, k* Q. c* i, c*

- _ - -
Mo, Ng > Mo .« Noxc Mo Ny .ic* Mo, .« Noic
L L Lo K
BQM*<0, 0, , Ba, o.=|0, - 0.

7 bl
mQL,E* Mo, .« mgﬁ’,@ Mo, e«

o VD € Dy, there is only two non-degenerate quarter diamonds in Qp, we take
0P = ((5,C) € My, 2(R) and the two corresponding matrices By, are given by:

BQ/c,)c* = (m;;};na’dc*> ’ BQ}C,U‘ = (monnax’c*) .
Qe kc* mo K,

In [3], they have introduced a new discrete gradient for a scalar field. Here we extend
this definition for a vector field. We use the same matrix B, the artificial set of unknowns is
now a matrix in M, , 5 instead of a vector in R"?. Thanks to the modified discrete gradient,
we can define a new symmetric operator a modified discrete strain rate tensor as follows.

DEFINITION 2.6 (Discrete strain rate tensor on quarter diamonds). We define a discrete
. T . T
strain rate tensor of a vector field of (RQ) on the quarter diamonds: D% : (RQ) —

(DSu™)geq € (M2(R))2, such that for any @ € Q: D¥u” = } (VguT + t(VguT)) )
The discrete strain rate tensor on quarter diamonds can be written as follows, for any D € ©
and for any @ € Qp, D¥u? = DPu” + 1 (“6°' By + Bod™) .

Furthermore, we easily see from the formulas above that ) . a, MeBo = 0 for any
diamond cell . Hence the following straightforward result holds

LEMMA 2.1. For any £ € M(R), for any § € (M., 2(R))®, we have for all D € D

f= L % mo (64 (Beb+ 9B ).

Mp ocHp
This Lemma implies that the new strain rate tensor satisfied the following equality:

1 1
D?u” = — Y meD¥u”,  VPuT = — Y moViuT, VpeD. (25)

Mp ocOp Mp ocap

Thanks to the modified discrete strain rate tensor, we can define a new viscous stress
tensor as follows.

DEFINITION 2.7 (Discrete viscous stress tensor on quarter diamonds). We define a dis-
crete viscous stress tensor of a vector field of (RQ)T on diamond cells: D?D’N : (RQ)T —
(D3N u” € (M2(R))®, by DINu” = € > mgonoDYuT, forany p € D.

Mp ocHp

We define a stress tensor on quarter diamond cells as follows.

DEFINITION 2.8. We define a discrete stress tensor o, for all 0 € Qp,

po(DPu”, 5D7PQD) = 2noDPu” + 1o (Bod” + t(SDtBQ) — p°ld.

We want to eliminate the additional unknowns (57, p2?) on each diamond cell D in such
a way that the conservativity of the numerical fluxes on all diagonals of D is ensured. More
precisely, we want to choose (5D,pQD) such that, we have VD € D4, D = 9 xxUQx o+ U

)De©
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Qrxx UQr £+,
QOQ)C,)C* (DDuT7 5D7pQ)CJC* )ﬁUK = SDQL);C* (DDuT7 6,D7pQL’)C* )ﬁfﬂc7
Por o (DDuTv (SD?pQK,L* )ﬁo-lc = Pop px (DDU-T7 6D7pQL,L* )ﬁo-rC7
Pax jc* (DPu”, 5D7PQ,C1,C* )ﬁa;cKl* = Pox = (DPu”, 5D7PQ,C1E* )ﬁa,crc*, (2.6)

— —

D, T D _ D, T D
CIOQL;C*(D u 76 7pQLJC*)naLIC* 7¢Q£,£*(D u a(; 7pQ£,£*)nvnKi*7

Tr("0"'Bo) =0, Vo€ Qyp, % mep® = mpp”,
Qe D

andV D € Dext, D= Qx,kc* U Qc,c*s

—

D, T D = _ D, T D
QOQ)C’K* (D u 75 )pQ)C’;C*)nU;CK* 7QOQ)<’L*(D u 75 7pQ}C,L*)n"K2’C*’

Tr('67'Bo) =0, Ve € Qy, >, mop® =mop”.
Qe p

Q2.7)

We are going to show that (2.6) or (2.7) uniquely define (67,p2?) € M, o(R) x R"?
as a function of D®u? and p®. For any » € D, the existence of (67, p2?) is not only
a generalization of the work of [3], since we use the discrete strain rate tensor and not the
discrete gradient, we have Bod” + '67' B, instead of Bod™. Then we have to differentiate
two cases: the first one is when a,c # a, where we can prove the existence and uniqueness
and the second one is when o = o, where we need to add an other condition.
PROPOSITION 2.1. The condition (2.6) and (2.7) are equivalent to for any D € ®

Y. mope(DPu”, 8", p%) By =0, (2.8a)
Q€END
Tr('0”'By) =0, Vo € Qp, > mop® = mpp®. (2.8b)
Q€N D

Since we work with the symmetric part of the gradient, we have to study the overdetermined
system, forall D € D, "6P' B, + Bo0” = F,, Vo € Q. We determine its kernel and range
distinguishing the case where o # «, and o, = «, as follows.

PROPOSITION 2.2. Let D € ®. The kernel of "' By + Bo0” = Fy, V0 € Qop, is:

o zero when oy # o,
t— t— t— t—
naIC naIC na*lc* na*?C*
e generated by 6y = | — , , ,— when o, = .
Moy Moy Moee  Ma.

To have the existence of 67, the second member have to satisfy the following conditions:
o when oy, # o,

Fy have to be symmetric, VQ € Qp, > mgoFge =0,
Q€N P (29)

t = — t—= =
Moy o Tr,cF Tr,c T Moy o+ TIC,LFQ;CYL*TIC,L =0,

Qe K*
o when o = op,

Fg have to be symmetric, Yo € Qp, > mgFo =0,
2€Qp

(2.10)

t = R t = -
Mo, o T)C,LFQKY,C* Tr,c +m9;c,£* TK:,LFQ)C’L* Tr,e =0,

to o to i
Moy i« TK*,L*FQ,CJC* Trox,cx T Mo, ox TK*,L*FQLJC* Trx,ex = 0.
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To sum up, if the second member satisfies the above conditions, there exists a unique J° €

M, 2(R) satisfying '6P' Bo+BodP=Fo, Vo € Qp, and if ax =a,, we add (57, y) = 0.
PROPOSITION 2.3. We have V6P € M,,,, 2(R) such that Tr(Bo0P) = 0, Vo € Qp,

2 Y mono(DYu” : Boo?) = Y mone(DYu” : Bod® + thtBQ) =0.

2€Qp e€eQp

Proof. Multiplying (2.8a) by 57 and applying the trace operatorsince we have (Id : BQ(S/B)

O

Tr(BQgE), it implies the result.
In particular, Proposition 2.3 implies that
S mone(D¥u” : Bod® + 67 B,y) = 0. (2.11)

e€ep

Now we are able to prove the existence and uniqueness of (67, p2?) € M.,,,, 2(R) x R"?.

PROPOSITION 2.4. For any (D®u”,p®) € (RQ)T x R®, and for any D € D, there
exists a unique (6°,p3P) € M, 2(R) x R"® satisfying (2.8) and if e = o, we impose

t = —
(6P,80) = 0, where 6y = (— ig"’c, zmﬁ"’c, L::;’*’C* , —’:1"*"*)
ok ) Moy o 0w

Proof. 'We only give the proof for D € ®,,: (so that n, = 4), since the case of boundary
diamond cells can be treated in the same way. We can write the systems (2.8) like a linear
rectangle system AS = b with § = (67;0%;p2P) € R*" and A € M3,41.30p (R).

We are interesting in the injectivity of the matrix A. We assume that D?u” and p® are
zero, thus the second member b is zero. Thanks to Proposition 2.3 and to D”u” = 0, we get

> mane("07"Be + Bod? : Bod®) = 0.
2€0p
Remark that the Frobenius scalar product of a symmetric and antisymmetric tensor is equal
to zero, we get >, mone||'6P'Bo + BodP||% = 0. Therefore, it implies Bod® +
'6P'B, = 0, for all o € . Using the last equality in (2.6), we get that Do o> Pog gors

Po, ,. and po, ,. are equal and thanks to > meop® = 0, we get p22 = 0.
' ' o€Qp
eCase oy # a.. Thanks to Proposition 2.2, we must have §° = 0 and p2? = 0. The

matrix A is injective. We determine the kernel of its transpose Ker’ A:
t t
Ker"A = Span (07 T a07 mQ}C,)C* ) mQ)C,L* ) mQL,)C* ) mQL,L* ) 0)

For the existence of d, we have to prove that b € ImA = (KertA)o. Let X € (KertA)o. We
immediately get that (X,b) = 0.

eCase o, = a,. Inthis case, thanks to Proposition 2.2, we must have 67 = \dg, A € R,
dim(KerA)=1. The matrix A is not injective. Furthermore, we impose (67, §p) = 0 thus A is
equal to zero. We determine the kernel of its transpose Ker’ A. We have

—

t t — - -
Ker*A = Span ( (_ncr;cic*7na,cl€*)nal€a Ny, 0--- 30)7
t
(07 T 707mQK1K* ) mQK’£*7mQE’K*7mQL’L* ) 0)) .

For the existence of §, we have to prove that b € ImA = (KertA)o. Let X € (KertA)o,
we have prove in the case a, # «, that for X equal to the second span vector, we have

X,b) = 0. We just have to prove that for X . —M, e, Dy e, Doy, —T,sc,0,0,0,0,0),
J p K K
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we also have (X, b) = 0. Using the fact that D”u” is symmetric, ie (DPu”1i,x, i, =) =
(DPu”ii,, e, 1, ), We get

(X,b) = 2(Noy v Moy o ) (DU Bigre, oy i) + 2(No pv— Moy oo )(DP U7 o, oy )

— T

+2(noy o= Mo oo ) (DU Hig s, Forc) = 2(Na, co— Mo, oo )(DPUT oy pcx, Hox)

We deduce (X, b) = 0. Therefore b € Im A, we deduce the existence of ¢. O

2.4.2. Properties of the artificial unknowns. Since we have the presence of the full
velocity tensor Du, we have to prove discrete Korn inequalities. We want now to prove one
for the new discrete operators Dg’ and Vg (see Theorem 4.2). The extension to this new
operator is far from straight forward. The difficulty leads on the new artificial unknowns 6°.
First of all, we prove estimates between B,d” and B,6” + "6”'B,. Like in the proof of
the existence of 7, the two cases ax = «a, and o, # a, have to been investigate. The
following Lemma is proved in Subsection 9.1.

LEMMA 2.2. Forall D € ®, for all 6 € M,,, 2(R) such that if o, = o, we have
(67,80) = 0, there exists C; > 0, depending only on reg(T ) and sin(eq), such that

> mollBod®lF < C1 3 mollBod” + 67" Boll,

€N P 2€0p
here & —t Migx Hox Torsc Mg
where op = “m ' m b om T Tm

We want to bring out the form of the artificial unknowns (67, p2?) on the diamond cells.
REMARK 2.5. If n is constant per sub-domains, equal to 11 on 1 and to 12 on . For

T
. \‘
./ TD N\
/ KN
/ m 72 N
. - .
/ T A
R c ~.ar
e =%

FIG. 2.4. The viscosity on D N T # ().
pNT # () (see Figure 2.4), the solution (67, p2) is equal to

D.. T = —
Moy xMQ, jox (m —n2)DPu” figx - T, e R
Tic,C
Mo, + Mme . c«

mQL),C*

Sk =0, =0, Oxr =0 = —

D D..T = —
Poe » =P +2(m —m2)D7u’ fiox - fox v POy v = Doy ens
’ Moy jox +mQL,,C* ’ ’

. . mg *
Pos e =P" +2(2 —m)D T figx - Hox KL

sy Pop px = PO, jex-
Moy v T Mo, ’ '

We generalize the form of p2? as follows. The result is proved in Subsection 9.2.

LEMMA 2.3. For any p € D, any (DPu”,p?) € Ms(R) X R, there exists Cy > 0,
depending only on reg(T) and C,, and a function cs  such that the solution (67, p2?) of
(2.8) with (DPu?, p®) as the following form

p° =p” + a5, p(DPu”), where s = 0D N Do,

with |as p(q7)* < Collq®[|%, for any 7 € Ma(R).
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2.5. Inner products and norms. We define the four following inner products

1
v u']r = 3 ( S Ml Ve DL Mg Ugen v,cx) , VuT,vTe(RQ)T,

reEM K*EM*UOM™
(p°,4°)o = Z@ mppq”, Vp°,q° € R,
DE
(€% :9®)p = Z@ mp (€7 1 ¢7), VED,¢° € (M2(R))”,
DE
(€9 9)g = Zﬂmg(fg 1°), V€2, 9% € (Ma(R))%.
Qc

We define the corresponding norms as follows

[ulle = [a™, w715, vu” e (R2)”,
, ¥p° eR®, €% = (€7 : €7)
, Vg ERT, €7 = (67 €7)

P2 = , VEP € (Ma(R))?,

. VER € (My(R)2.

Ip (p®,p°
Q2

L :
)% )
0 Q\3 5
g% 2 = (¢%,¢7)3 !

For any p € ®, we define a norm over £ as follows

AL, = X [ IA@IFdz, VA€ L*(Qp, Ma(R)).

ocQp Jo

2.6. Preparation of the stabilization procedure. Now we can define the new stabiliza-
tion term, that considers the jumps of the pressure on quarter diamond cells.

DEFINITION 2.9. The new stabilization term is a non consistent discrete approximation
of the operator Ap, denoted by A® : p? € R2 — A®p? € R®, and defined as follows:

1 h2 +h2,
ADPQZWT > /%(pg -p°), VpeD.
ey ©

Note that we do not need a consistent approximation of the laplacian operator. In fact, a
consistent approximation based on a two-point flux formula would require the diamond mesh
to verify an orthogonality constraint as, for instance, in the case of admissible meshes [11],
which has no reason to hold here. Then, we define two other second order discrete difference
operators. The first one is the following.

DEFINITION 2.10. We define a non consistent discrete approximation of the Laplace
operator Ap, denoted by A® : p® € R® — A®p® € R®, and defined as follows:
2 2
AP =Ly %Lghv/(pbl -p®), VpeD.
Mp s—p|p'etp hD

Related to this operator, we define a mesh dependent semi-norm | - |, over R® by:
DEFINITION 2.11. We define a discrete semi-norm for any p° € R®:

Pl = X (3 +hL)p" —pP)>

s=D|D'€G
The semi-norm |p|, is the discrete counterpart of size(7)|Vp|2. We have that

—(hHA%p° p®)o = p°[,  Vp° €R®. 2.12)
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The second one uses the function oy 1, as follows.
DEFINITION 2.12. We define a new discrete laplacian for any ¢° € (Mo(R))®:
1 h3, + h2,

Az(qg) = > h2 (as,D’(qD/) —as,p(q7)), VD €D,
Mp s=D|D’'€Ep D

where o 1, is the function defined in Lemma 2.3.
We introduce the corresponding semi-norm.
DEFINITION 2.13. We define a new discrete semi-norm for any ¢° € (Ms(R))®:

[®lan = X (hE+h3)(as0(¢”) = asp(q7))?,

s=D|D' €S

where o 1, is the function defined in Lemma 2.3.
Thanks to |as,»(¢7)|* < Ca|l¢”[|% and relation (2.1), Cauchy-Schwarz inequality imply that

0°[on < Cslla®l3, ¥ q° € (Ma(R))®, (2.13)
with C3 = 8Cyreg(7)?(1 + reg(7)?). Lemma 2.3, Definition 2.10 and 2.12 imply that
B2 mpAPP? = h2my (AP (p®) 4+ pAZ(D®uT)), with p = 1. (2.14)

3. DDFYV schemes for the Stokes equation. As claimed in introduction, we integrate
the momentum conservation law of the problem (1.1) on the primal mesh 9t and the interior
dual mesh 21*. The mass conservation equation is directly approached on the diamond mesh
using the discrete operator div® and a stabilized term inspired by the well known Brezzi-
Pitkédranta method [5]. We impose on 991 and on IM* the Dirichlet boundary conditions.
Finally, the integral of the pressure is imposed to be equal to zero. The only difference
with the scheme 1.4 introduced in [19] is in the viscous stress tensor and the stabilization
term, to take into account the jumps of the pressure. We replace n°D®u” (respectively
—A\h4 A®p®) by D%’NuT, defined by Definition 2.7, (respectively —A\h2, A®p2) as follows:

Find u? € Eg and p® € R® such that,

div™ (—2D%Vu” + p°Id) = £, div™" (-2DF a7 +p°Id) = 77, (3
div® (uT) — AMhEA®p2 =0, S mpp® =0,
DED

where A > 0 given, f™ = ﬁ;:f and f™" = IF;: f where the projections are defined by (2.2),
and (07, p9P) € Mip 2(R) x R"P satisfying (2.8). If we take = 0 in (2.14), we recover
the old stabilization term —\h% A®p® . In this case, the scheme is well-posed nevertheless
the error estimates is an open problem, since we have take into account the jumps of pressure.
The numerical tests also bring out the role of the new stabilization term (u = 1 in (2.14)).

4. Results on discrete operators. In this section, we present some several results on
the discrete operators. In Section 4.1.1, we begin with estimates between the modified and
old discrete strain rate tensor. Then, we want to obtain two discrete Korn inequality for the
old and modified discrete strain rate tensor. We show that the discrete Korn inequality for
the modified operators is not only an extension of the old one, it is obtained thanks to the
old one proved in [19] and Lemma 2.2. This Lemma proves estimate between Bo4” and
Bo0” + 6" B,,. This is the main difference between the present study and the work of [3].

In other subsections, we sum up results of [19] and adapt them in the case of u € (H?(w))?2.

4.1. Discrete strain rate tensor.
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4.1.1. Estimations of the discrete strain rate tensor. We recall results proved in [19],
and extend them on the quarter diamond cells. The first one is a consequence of Remark 1.1.
PROPOSITION 4.1. For all u® € (R2)T, we get

ID®uTlls < IV2uTll>  and  [DFuT |z < [VEuT 2.

The discrete strain rate tensor and the modified one can be compared as follows.
LEMMA 4.1. Assume that 1 satisfies (1.2). There exists a constant Cy > 0, depending
only on C, and Cy, such that for all u™ € (RQ)T:

ID®u|l2 < IDFuT |2 < C4D®uT 2.
Proof. First estimate. Let D € ®. The relation 2.5 and Cauchy-Schwarz inequality give

mp[[DPuT|% = ¥ mo(Dyu” :D7u”) < ¥ mo|DIuT|£D7u” .
€D Q€D

We apply once more Cauchy-Schwarz inequality mo[|D”u”||% < Y. mo|D¥u”|%,

Q€0 p
which concludes the first estimate.

Second estimate. Let » € ©. Definition 2.6 of D}y u” and (2.11) imply that

> manoDIuT[E = > mene(DyuT : DPu”).
Q€N Q€qp

Using (1.2) and applying Cauchy-Schwarz inequality, we obtain the result noting Cy = &*.
'O

4.1.2. Discrete Korn inequality. In this section, we recall the discrete Korn inequality
proved in [19], and prove one for the new operators defined on quarter diamond cells.
THEOREM 4.1 (Discrete Korn inequality). For all u® € Eg, we have
IV uT]lz < V2|D®uT 2.

THEOREM 4.2 (Discrete Korn inequality). Assume that 1 satisfies (1.2). There exists

Cs > 0 depending only on C,, C,, reg(T) and sin(eo) such that for all u™ € Ey:
IVau™lz < C5IDJu™ 2.

Proof. The equality (2.11), Cauchy-Schwarz inequality, (1.2) and Lemma 2.2 imply that

=2

C
> mollBod”|F < lecg mo[[DPu”||%.
Q€D ~n

Furthermore, the relation ) 5, moBo = 0 gives

—=2

C
ZQ mol[VEuT % < mo | VPuT |5 + C *CQ mo D7 3.
Qe)p ~n

Using the discrete Korn inequality Theorem 4.1 and than Lemma 4.1, we conclude

=2

—=2

C C

IVau|l; < (2 +Ch C;’) D2 a3 < (2 + Cch> DS a3
=N =N
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O
Using Lemma 4.1, these two discrete Korn inequalities imply the comparison between
the discrete gradient and the modified one, as follows.
LEMMA 4.2. Assume that 0 satisfies (1.2). There exists two constants Cg,C7 > 0,
depending only on C,, C,;, reg(T) and sin(ey) such that for all u™ € Ey:

CollVouT[l2 < [VEu™|2 < 7| Vo uT..

4.2. Discrete Stokes formula. In [19], the discrete gradient and discrete divergence for
a vector-value function are linked by a discrete Stokes formula, as follows.
THEOREM 4.3 (Discrete Stokes formula). For all £® € (M3(R))®, v7 € Eq:

[divTe®, vT]r = —(£° : VOvT)p.

Since we have introduced new discrete operators on the quarter diamond cells, we want to
rewrite the discrete Stokes formula for a specific tensor D%’Nu” on the quarter diamond cells.

THEOREM 4.4 (Formule de Green ). For all u™,v™ € (R?)” x Eq
[div” (DL uT),vT]7 = —(nDX¥u” : V4v7)q.

Proof. Thanks to Proposition 2.4, there exists a unique (5/5, p/Q\D) € My, 2(R) x R"®
satisfied the conditions (2.8), with D”v7 and p®. Using the symmetry of D?v7, we have

t—~ t—~
mp(DINuT :2DPvT) = Y mong(D¥u” : 2DYvT — §P' By — 7' By).
€D

Furthermore, since for all o € 9, Tr(B QJ/’;) = 0, Proposition 2.3 implies that

> mone(Dyu” : Bod? + thtBQ) = 0.

€D

Finally, we deduce that mp(DF"u” : VPvT) = Yo mone(DYu” : DYv7). The
symmetry of Dy u” and the discrete Stokes formula 4.3 imply the result. O

4.3. Poincaré inequality. Properties of the mean-value projection operator. We re-
call results which are proved in [19] for the first four results or [1] for the last one. We begin
with the discrete Poincaré inequality.

THEOREM 4.5 (Discrete Poincaré inequality). Let T be a mesh of ). There exists a
constant Cg > 0, depending only on the diameter of Q) and reg(T), such that

lu[l2 < CsIVouT[l2,  Vu” € Eo.

We give below the main property of the mean-value projection onto the set of discrete func-
tions in our framework.

LEMMA 4.3. Let T be a mesh of ). There exists Cy, C1o > 0 depending only onreg(T),
such that for any function v in (H*(£2))?, we have

IV2P7,vll2 < Coll V2 and Z@ / p? (div? (B7,v) — div(v)) dz < Cuolp® [u[|v] -
DE D
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LEMMA 4.4. Let T be a mesh of S). There exists C11 > 0 depending only on reg(T),
such that for any p® € R®, we have

P°|n < Cllp® |l2-

Finally, the following result is similar to [1, Lemma 3.4].
LEMMA 4.5. There exists a number Co > 0 such that for any bounded set P C R? with
positive measure, any segment o C R? and any v € H'(P), we have

—

diam(P,)3
m.,mp

1
m,mp

|’U73 - Ua|2 <

[ iwo@pa,

o

/U/P lv(z) — v(y)[Pdedy < Cia

where vp denotes the mean value of v on P, v, the mean value of v on the segment o, and

—

‘Po is the convex hull of P U 0.

4.4. Properties of the center-value projection operator. By usual Taylor inside each
quarter diamond ¢ (see [3], for instance), we can easily show the main properties of the
center-value projection onto the set of functions in (H?(w))?.

LEMMA 4.6. Let T be a mesh of Q). There exists a number Cy3,C14 > 0, depending
only on veg(T), such that for any function v in (H?(w))?, we have

HV — PZV”Q S Clgsize(T>||VH(H2(w))2,
mo[VPPev]E < Ce 3 [ (IVv(@)lF + [V2v(2)]?) de.
eeNp Jo

We immediately have the inequality on the norm,
IVoBTvllz < Cuallvilazpe, Vv € (H2 (). @)

5. Stability of the scheme. In this section, we prove the uniform stability of our finite
volume scheme and its well-posedness. The proof of the uniform stability result relies on an
appropriate choice of the stabilization term. Let us introduce the bilinear form associated to

our DDFV scheme:
DEFINITION 5.1. We define the bilinear form associated to our DDFV scheme (3.1):

¥ (u”,p®), @@ ,5°) € (R%)" xR®,
B(u”,p”;0”,5”) = [div7 (=2DF"u” +p”1d), a7 )7 + (div® (u”) = A5 A7 (p7),5°)e,
where the stabilization parameter \ is a positive number.

THEOREM 5.1 (Stability of the scheme). Assume that n satisfies (1.2) and A < 46% 12,

Then there exists C5,C1¢ > 0, depending only on the diameter of ), A, C,), 6,7, reg(7)
and sin(eg), for each pair (u,p®) € Eq x R® such that Y mpp® = 0, there exists

DED
(GT,}A?JD) € Eg x R?:
IVEET |2 + 5212 < Crs (V5T ]2 + [Ip2]2) , (5.1)
and
VSTl + Ip? 13 < CieB(a™,p®;a”,p%). (5.2)

with (6@, p2) (resp. (59,]5’3)) the solution of (2.8) for D®u7 and p® (resp. D07 and
p°), thus we have mpp® = Y. meopS, forall D € D.
€D

Proof. Let (u?,p®) € Eg x R® such that Y mpp® = 0. The proof of this Theorem is
DED

obtained by building explicitly (a7, p°) € Eq x R® such that (5.1) and (5.2) hold.
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Step 1. We apply to B the two discrete Stokes formula 4.3 and 4.4, we get
B(u”,p®;u”,p®) =(27DFu” : ViuT)a — (M A° (p7),p°)0.
The symmetry of D¥u?” and (2.14) imply that
B(u”,p%;u”,p%) = (277 Dgu” : DyuT)a — (MHA® (p7) + Ah5 AT (D7 u”),p%)o.
Reorganizing the sum over s € S, we have

—(M%AR(D°u7),p%)n = X (A3 + h3) (s, (D”'uT) = ae p(DPu7)) (p" — p®).

s=Dp|D'€S
Young inequality and (2.12) imply that

2
a,h”

A A
—(ARAA® (p®) + AA AR (DPu”),p®)p > §\p®|i - §|D©u"’

Thanks to the inequality (1.2), we obtain

A A
B, p®5u”,p) 22C, [DYuT I3 + SIp° ;- SID2u”

2
a,h”

Thanks to (2.13) and Lemma 4.1, we have [D®u”|2 , < Cs||Dyu”||3. Finally we use the
discrete Korn inequality (Theorem 4.2) in order to get

A A
BT p%5075%) > G (20, - Cof ) IV + 3P 53)

. 4C . . . .
With \ < o, > constants in the above estimate are non negative. Note that the above estimate

on the pressure is mesh dependent (the semi-norm |.|;, is itself mesh dependent). That is why
we could not bound uniformly the L2-norm of the pressure by the semi-norm |.|,.
Step 2. We use the NeCas Lemma (see [14, Corollary 2.4] or [2, Lemma III.1.17]): since

p2= 3 3 p°1, € L*(Q) and its integral over () is zero, there exists a constant C' > 0
DED 0€0p

depending only on ©, and v € (H{(92))? such that div(v) = —p= and

V][ < Cl[p2J2. (5.4)

Let us choose v7 = P v the mean-value projection P, v, defined by (2.3). In particular,
we have v7 € [Eg. Thanks to Lemma 4.1, Proposition 4.1 and Lemma 4.3, we deduce

IDIVTll2 < C4CoCllp2 - (5.5)
The discrete Stokes formula 4.4 implies
B(u,p®;v7,0) = 2(n2DY¥u” : VEVT)q — (p°,div® (v7))e.

Using the fact that (n2D¥u” : VAvT)q = (n2VH¥u? : D¥v7)q and the Cauchy-
Schwarz inequality, we deduce

Bu” p®v7,0) > —Cy[VEuT[[DEvT . — X X / pediv(v(z))dz
DPED 0€Np J o

— 2 pP(dvT(vT) —div(v(2)))dz + 3 2 /(pg—pv)diV(V(Z))dZ~

DED JD PED Q€D
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Since we have div(v) = —p2 and the inequality (5.5) gives
B(u” p®;v7,0) 2 ~C,CaCoClIVRuT [l2[lp? |12 + 12713

= > [ pP(divP(vT) —div(v(2)))dz = >3 > / (p” — p®)div(v(z))dz.
DED JD PED 0€0p Jo
Thanks to Lemma 4.3 and to estimate (5.4), we obtain
> [ PP (divP(vT) —div(v(z))) dz < CCio|p® |nllp™ -
DED JD

Thanks to Lemma 2.3, we have p” — p? = —a, »(D"u”), with s = dp N 9. Cauchy-
Schwarz implies

=

/Q(;DD —p)div(v(2))dz < [[div(v)]l2 < > 2 mvlas,D(DDuf)|2>

DED QENp DED s€€p

Thanks to div(v) = —p2, Lemma 2.3, Lemma 4.1 and Remark 1.1 give

22 /(pD —p9)div(v(2))dz < V/Col|p||2 VEUT [z

PED Q€0

‘We deduce that
B(u™,p%;v7,0) > [Ip?|3 — C,C4CoCllp? |2 VEuTl2 — (v/Ca + CC10)[p° a0 2-

Using Young’s inequality, we obtain the existence of three constants 5‘1, 5’27 Cs >0, depend-

ing only on €2, C,; and reg(7), such that
B(u”,p®v7,0) = Ci[[p?5 — Co VEuT[I3 — Calp®|7. (5.6)
Step 3. By bilinearity of B,(5.3) and (5.6) give for each positive number £ > 0:
B(uT,p®;u” +&v7,p?)

A - ~ A~
> (0 (20, - o3 ) - 6Ga) VBB + <Gl + (5 - €00 ) WP

Choosing a value of £ > 0 small enough, this inequality yields an estimate of the form (5.2).
As the relation (5.1) is clearly verified by the pair U7 = u? + ¢v7 and p° = p®, this
concludes the proof.
O
A consequence of this stability inequality is the well-posedness of the scheme (3.1).

THEOREM 5.2. Assume that 1 satisfies (1.2). For all mesh T as described in section

2, the finite volume scheme (3.1) with 0 < \ < e admits a unique solution (u™,p®) €

Cs
(R?)” x R®,
Proof. Let us consider the homogeneous discrete problem given by setting 7, the right-hand
side of (3.1), to zero. Thanks to Theorem 5.1, there exists u? € Eg, fJ/D € R, such that

IVEuT I3 + 9713 < CreB(uT,p™; 07, 5°).

Definition 5.1 of B implies that B(u”,p®;u”,p”) = 0. It follows that Vyu” = 0 and
p? = 0, with (67, p2) the solution of (2.8) with D®u7 and p®. We deduce that p® = 0.
The former identity implies that the degrees of freedom of the velocity u? are constant, since
u? € Eg, we conclude that u” = 0. O
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6. Error estimates.

6.1. Definitions. We define a projections of functions defined on €2 over the primal and
dual meshes 7. We call the center-value projection for any continuous function v on €2:

PZV = ((V(-Tic))lce(imuaim)a (V(ﬂf;c*));c*e(m*uamt*))7 Vv € (HZ(W))2~

We also define a mean-value projection over the diamond mesh D and over the quarter dia-
mond mesh ¢ for any integrable functions ¢ on €2:

o= (G L), ) me= (G L) o)

The following proposition is a consequence of Proposition 2.4.
PROPOSITION 6.1. Let (u,p) the solution of the Stokes problem (1.1). There exists

(02, p2P) € My 2(R) x R"™® satisfying

ex?

ZmQ@Q(DD]PZua Oex> Pox) Bo= 0, Tr(t(;(?xtBQ): 0, Vo € Qp, Y mopa=moPp,p.

ex’

2€ND Q€EQD

DEFINITION 6.1. Let pg = Pp — pg, Ve € Q,and ).y mope = 0.

As usual for the error analysis of the finite volume methods, the consistency error which
has to be studied is the error on the numerical fluxes across each of the edges and dual edges
in the mesh. We first give the precise definition of these terms, then we state the various
estimates need to prove the error estimates.

DEFINITION 6.2. For any @ € £, we define the consistency errors in Q by
RY(z) = n1g(2)Dvig(2) —noDEPLv, RY(z) =Ppp—p(z), VzenD.
We introduce the following consistency errors on the numerical fluxes, for all s = 0|0’ € E,:

. _ 1 _
i i _ i N _
Rio=-"R; o = m Ry (2)iis0dz, t=V,p.
s Js

We note the L*-norm of the consistency error as follows:

||R'15,Q||§ = Z Z mQ|Ré,g 27 L=V,p.
€N sefg
Thanks to Definition 6.1, we define for all s = o|Q’ € E,:
Rs,Q = QR;I,Q + Rﬁ,g _5egxﬁss2~ (6.1)

6.2. Statement of the result and sketch of proof. We conclude by providing an error
estimate in case where the exact solution of the problem (1.1) lies in the space (H?(w))? x
H'(w). Our main result is the following

THEOREM 6.1. Assume that n satisfies (1.2) and (2.4) and 0 < ) < 462,” . We assume that
the solution (u, p) of the Stokes problem (1.1) belongs to (H?(w))? x H (w). Let (u,p®) €
(RQ) " % R be the solution of the scheme (3.1). There exists a constant C17 > 0 depending
only onreg(T), A, sin(e), C,, C,, Cy,

u||(H2(w))2 and HpHHl(w), such that:
|u—u” s+ [|[Vu - V¥uT ||y < Cizsize(T) and |p — p2|2 < Cyrsize(T).

with (62, p2) the solution of (2.8) for D®u” and p®.
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Step 1. Let €7 = PZu u € [Ey denote the approximation error for the velocity
solution field and e® = }P’Q Op — p® € R® the approximation error for the pressure solution
field. Thanks to (3.1) and (1.1), we have Yk € 9

1 1
div®(-2D%Vu” +p°Id) = fc = —— / div(2n(z)Du(x))de + — [ Vp(z)dzx
My Jx My S
Therefore, Definition 2.2 of div™ and the continuous Stokes formula imply that

mediv®(—2D%Ve” +e°Id)= Y. 3 2n(z)Du(z)fisodz

QCKsefgniK Js

- Y m,(2DEVPIu)i,c + Y m,Popic— > p(z)isgdz.

DED i DED QCK seggﬁalc 5

Using Definition 2.8 of ¢4 and Definition 6.1, we deduce for any D € D,

mO‘

T — —
Z mQQOQ(D P u?éexvpex )ncTC :mo';c*(pQ;ch* N, + mUﬁ* SOQ,C,L-*nch,-
Mp ocap

Thanks to Definition 6.2 of the consistency error and Definition 6.1, we deduce

mediv®(—2D%Ve” +€°Id) = 5. Y. mR,,.

QCK sefgoNiK

In the same way, for £* € 90t*. Finally, the couple (e7,e®) € Ey x R® satisfies :

div™(-2D%Ve” +€°1d) = Ray,  div™ (—2D%"e” + €°1d) = Ruy-,
div®(eT) — AhHA®e? = R, ST mpe® =0, (6.2)
DED
where
:RJC:i Z Z msRs,Q7 VKGDJL Ry+= E m5R57Q7 Vi Em*’
MKk oCkseEgnox Mi* ock* se€gnoK™

p =div2(PTu) — MWLAPpE, VD e D, e2=p2 —p°, Voen.
Theorem 5.1 implies that there exists €7 € Eq, €® € R® such that :
IVEETlla + [[€2l2 < Cis (IVEell2 + [l€?2) , (6.3)
and
IVEeTlI5 + €713 < CroB(e™, e®;e7, ). (6.4)

Thanks to Definition 5.1 of B and to 6.2, we have B(e7,e®;e7,¢®) = I + T, with [ :=
[div™ (—2D%"e” + ¢®1d),&7 ] and T := (div® (e7) — Ah3 A% e 82) 5. Using the fact
that €~ = 0 for any k£* € 091" and the definition of I, we have small

I=73% > > ms(Rs Q’e )+ > > > ms(R57Q’6K*)'

KEM QCK s€EQNIK KX EM*UOM* QCK* seEoNIK™

Using the fact that RUK* ok K*:—R%*’Qﬁ o s WE have

mo,c* ((R‘U}Cx ’QIC,)C* 767C) + (RO"C* ’QLJC* 76L))

2
=——= _mo,_ .R

DT = DT =
sin(cue) e, k* am,Q;c,,c*V e T’csﬁ+Sin(aL)mQL,)C*RUK*,QL.)C*V € Tr,c.
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Reorganizing the summation over the set of diamond cells, we deduce

4 -
2. 2 melR, [IVPeT| 5.

sin(ar) peo oédo s€€g

Thanks to the Cauchy-Schwarz inequality and to Lemma 4.2, we obtain

4
< ——GC6|R VEeT ..
< ey Col R LI V52
We note T} := —A\(h3 A®p &®)5. Reordering the summation over 5 € &, we have
Ti=A % (Wp+ho)(S — pS)ET — ).

5s=Q|Q'=D|D'€&

The Cauchy-Schwarz inequality and Lemma 4.4 give

N|=

|Ty| < Cr12size(T)A|[€® ||z < > (S pegx)2>

s=Q|Q'=D|D'e&

For the term 7', we have the following estimate:

2
7] < 1[e® |2 | 2size(T)AC1 < (P pfx)2> + | divoPZ ull2

5=0Q|Q'=D|D'€&
; YY) 50
To sum up, using the fact that ||€® || < ||€*}]|2 and (6.3), (6.4) becomes

Ve 113 -+ lle?13

<CL(IVEeTllz + lle[l2) (IR q 12 + [divoPZ ull2) ©5)

=

+ Cosize(T)(| Ve [|2 + [le?l2) ( > (Pex —pfx)2> ;
s=0|Q'=D|D'€

where 51 = (16015 max (sm(aq—)CG’ ) and C~’2 = 2C16C15AC11. It remains to estimate
the consistency errors.

6.3. Consistency error for the pressure. LEMMA 6.1. For any mesh T on §2, there
exists a constant C1g, C19 > 0, depending only on reg(T), such that for all p € H'(w)

IRE I3 < Cishy, 32 [ [Vp(2)Pdz, and ||REJ3 < Ciohi, Z IVP( )Pz

o€Qp Jo 2€0p

Proof. Definition 6.2 gives

2

>oX molRELPS XY me

Q€N p s€€g Q€N p s€€g

ol (R OIE

s Js

(T)3, we have

h3
—/|Pmp p(2)[?dz < C1p—2 /|Vp|2dz < Clgreg(T)3/ \Vp[?dz.  (6.6)
msmo Jo °
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Jensen inequality and (6.6) imply the first estimate. For the second estimate, we add and
subtract n% [, p(x)dz on R (z). Cauchy-Schwarz inequality implies that

[ @) =22 s <ame— [ [[(p(2) = p(o))* dac.

Thanks to (6.6), we get the result with Cg = 4Careg(7)3.

6.4. Properties of the velocity.

6.4.1. Definitions. DEFINITION 6.3. The consistency error RY, can be split into three
different contributions RS, RYPY and RY*. They originate, respectively, from the errors
due to the approximation with respect to the space variable of the viscous stress tensor, to the
approximation of the gradient and to the approximation of the viscosity: RY(z) = Rg"(z)+
RYPY 4+ RY?, where

RYM(2) = nis(2)Dvia(z) - mi [ naDv@z,
RYPY = L/ n(z)(Dv(z) — DYPIv)da,

Mo

V,Z 1
RY* = —/n(x)dx—ng DYP7v.
me Jo

We also introduce the quantity, for all s = 9|0’ € £

Ry =-R)) = L /R‘Q”"(z)ﬁsgdz.
Ms Jsg

DEFINITION 6.4. We define the projection P2 of u on the set of quarter diamond cells

as follows. For each quarter diamond cell o € £, the restriction of ]P’cﬂu to the triangle

Q is the unique affine function P2u which coincides with u at the middle point of the semi-

edges s € £, and whose value at the middle point of the third side of © is the mean-value

of the value u at the extremities of this side. Remarks that this definition makes sense since

w, € (H2(e))? C (€°(2))*

Tyc*
3(u(zi) +ulecs) u(Zoy )
A -
N o - -
$0K*
T P /’/iﬂa,c Tp

u(malc)

FIG. 6.1. The affine interpolation P on the quarter diamond cell Q = Q. .

For instance, in the case of the quarter diamond cell @ = Oy - (Figure 6.1), it reads

° <x;< +x,<*> _ u(ze) +ufee)

]chu(xff}c) = u(xdic)v chu(xff;c*) = U(IGK*), Pou 9 9

C

The following proposition is the vector-valued version of [3, inequality (5.4)].
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PROPOSITION 6.2. Let T be a mesh of Q). There exists a constant Cyg > 0, depending
only on veg(T), such that for any function v in (H?(w))?, we have for all o € Q

/ IVv(z) — V]P’fv\”i—dz +/ IDv(z) — D]P’fv\”i—dz < Cgohi/ |V2v(2)|*dz.
Q Q Q

6.4.2. Approximation of the viscous stress tensor. LEMMA 6.2. Assume that 1 satis-
fies (1.2) and (2.4). Let T be a mesh of ). There exists a constant Ca1 > 0, depending only
on C,,, C,, and reg(T ), such that for any function v in (H?(w))?, we have for all € D

Vi1
mQ|Rs,’Q

2 < Corh? / (IVvI% + |V2v|*)dz, Vo€, Vse&s.
Q

Proof.  Applying the Jensen inequality, we add and subtract 7(s)Dv(z), Cauchy-Schwarz
inequality implies that

1RSI < 2= [ o) = n@F Iov@ds + 2 [ )l IDv(s) - Dv(a)3ds.
mo o mo o

Jensen inequality, (1.2) and (2.4) give

me| RZ,’Z

—2
2C,
S

> <n22C [ IDvi)frde +
Q

[ [0v(s) - Dviolasas

For the second integral, we apply Lemma 4.5 on a edge s and the quarter diamond cell o,
3
since 22 < reg(7)h2:

1
o | IDv(s) = Dv(@)lfrdods < Cuares(T1E [ [VDv()Pdy.
Ms JsJo Q

Finally, we deduce the result with Cy; = max(2C7, ZGzClgreg(T)). O

6.4.3. Approximation of the viscosity. LEMMA 6.3. Assume that n satisfies (2.4). Let
T be a mesh of Q). There exists a constant Cag > 0, depending only on C,, such that for any
function v in (H?*(w))?, we have for all D € D

mol| RS < Coahgmo|DIPIVIE, Ve en, Vs € .

Proof. The Jensen inequality and (2.4) give the result with Cy; = C%. O

6.4.4. Approximation of the gradient. DEFINITION 6.5. We define R € M 4(R) as
follows

mo;c(R;;Cn,Q,c’L* +R‘;;§,Q,€’L* 7R:.71;7:,Q)C’,C* *Rﬁg,g,cy,c*)
R =2 mdc(??ﬁgﬁac* +RL'l(lle§Z,QL,L* _R;:Ln,gﬁy,c* - ;’LZQZLK*)
Mo (RG;CTI*,QLJC* +RU;C*,QLJC* - G;CT’*’Q)C,}C* _RU;Cx,Q}CJC*)
Mo (R;f*,gﬁwﬂ* +R;’;,QLL* _R:rlf*,g,cyﬁ* - ;’LZ*,Q,C‘L*)
mU}C(joc,Q}CYL* _RgK,QK,)C*)
maa(Rgﬁ,gﬁyf_* —Rgc,ga‘m)
Moy (R")c* Cro* Rg}c* Qe Kc*
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PROPOSITION 6.3. Assume that 1 satisfies (1.2) and (2.4). Let T be a mesh of Q). There
exists a constant Ca3 > 0, depending only on C,, C,, G, and reg(7T), such that for all
D € D, such that for any §” in M4 2(R), we have

mp|Tr("67 R)|* < Casmo || Bod” [, b3 ngp/ (IVu)li% + [V2u(z)]” + [Vp(2)*)dz.
Qe Q

Proof. First, Lemma 6.2 and 6.1 give the estimates on R¢’g and R . Then, Lemma 6.3,
Lemma 4.1, Proposition 4.1 and Lemma 4.6 imply the estimate on R5’*. To sum up, we get

Somo 3 (IRES+RS™*+|RE of*) < Chi ZD/(HIVU(Z)HI? +|V*u(2)[* + |Vp(2)|*)dz.
Q€ENp s€€g oenpl/o
6.7)

Using (6.7), Cauchy-Schwarz inequality conclude the result. U
The following proposition is proved in Subsection 9.3.
PROPOSITION 6.4. Assume that 1 satisfies (1.2). There exists a constant Cyy > 0,
depending only on C,, C, and reg(T ), and a function v such thatv € (H'(p))?’N(H?())?,
forall @ € Oy, such that V>v =0on 0 € Qy,

IDY — DXPTV]ap < Coa(|lp22 |2 + IDu — DYFTulla, + hio).

and

- > / divvpS.dz > —Chy[|Du — DYPZul|f, + %Hﬁg’) |5 — Coysize(T).
oc0p Jo

We prove a consistency estimate for the new strain rate tensor DYy that we have intro-
duced. This is the main difference between the present study and our previous work since the
definition of the new discrete strain rate tensor depends on the jumps of 7 in each diamond
cell. Hence, the consistency estimate for this operator cannot be obtained as in the usual way,
that is, only by applying well-chosen Taylor formula. Note that here we use the fact that the
pair (u, p) is a smooth solution of the problem (1.1) and the estimate of Lemma 2.2.

LEMMA 6.4. Assume that 1) satisfies (1.2) and (2.4). We assume that (u, p), the solution

of the problem (1.1), lies in (H?(w))?> x HY(w) and 0 < \ < 4&". Let T be a mesh of Q.

There exists a constant Co5 > 0, depending only on Qn’ 6,7, Cn,‘reg(T) and sin(eg), such
that for all D € ®, we have

IDu — DYPZully, +IPE2 13 < Cashy 32 [ (IVull% + [V2ul® + [Vp(2)*)dz.

ocQp Jo

1
Proof. We note u = (Zz) Let us give the proof in the case where the diamond cell D is an

interior diamond cell. The case D € D, can be treated in a same way.
Step 1. Since (u, p) solves (1.1), we have the conservativity of the fluxes through s =
o|¢’ as follows

/ (200 (=)Dug(2) — pig(2)d)fegdz = / (219 (2)Dugr(2) — pigr(2)d)Heodz.

We recall that the discrete strain rate tensor satisfies Proposition 6.1, we can deduce that

(s [CngleDug(e) - palea): - (21DEFTu - 1510 ) fuo

ms Jq

1 R
(52 [@rg@Dug () - pgr ()1 ~ (2o DEFTu -~ pE1) ) g =
5

S
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Using Definition 6.2 and the last equality, we have

2
— D — D¥PZu) figodz —
ooz [ 1) (Du(e) ~ DIPTw Haadz — =

/ n(z) (Du(z) — DY/PZu) figodz
Q/

1 1 /
/; (p(z) pex) nﬁgdz + Moy L’ (p(z) pex) nﬁgdz

mg

=2R%, +2RYZ, — 2R%T — 2R

z
5,0/ 5,0’ ,Q

_ RP p
Rs,g + Rs,g/'

We sum over the quarter diamond cells ¢ € Q,,

> /2n(z)(Du(Z)—DgPZu)dng— > /(p(Z)—pfx)dngztR, (6.8)

Q€0 eep

with R defined by Definition 6.5. We multiply (6.8) by "6, thanks to the symmetry of
n(z)Du(z) — n(z)DYPZ u, we obtain

> / 5P Bo2n(z) (Du(z) — DYPZu)dz — 3 mo 0P BopS = "0°R
Q

€0 €D

Using the trace operator and the symmetry of the matrix 7(z)Du(z) —n/(z) DY P u, it implies
that for all 6” € M,,, »(R) we have

> / n(z) (BQ(SD +'67'Bg : Du(z) — DgIP’Z—u> dz
2eQpJo
(6.9)
~ Y moTr (%’”Bg) 72 =Tr (tSDR) :

eedp

Step 2. For u,v € (H?(w))?, and p2,¢2 € R, we define a new bilinear form B as
follows

B(u,p?,v,¢?)= 3 2/ n(z)(Du — DYPZ u : Dv — DYP? v)dz
Q€N p Q

- > Tr(Dv — DSPI v)p°dz 4+ 3 Tr(Du — DY P7 u)gdz.

Q€N Q Q€N Q
We easily have that
B(u, p? u, pex?) > 2C, |Du — DYPZull . (6.10)

Thanks to Cauchy-Schwarz, using the function v obtained in Proposition 6.4, we have

B(u,p57,¥,0) > — 2C, |Du — DYPT ullg, |DV — DYPIVila,

- / divvpedz + Y moTr(DYPIV)P.
Q

Q€0 Q€D
Applying Proposition 2.4 with PZv and P2 p, there exists (67, p2?) € M,,, 2(R) x R"?

and Tr(DY¥P7v) = Tr(DPPZ V). Finally, using Definition 6.1, Proposition 6.4 and Young
inequality, we conclude that

- 1
B(u,pe?,v,0) > ~C||Du— DYPTuld, + leﬁi” I3 — Csize(T)?. (6.11)
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By bilinearity of B, the inequalities (6.10) and (6.11) give for each positive number £ > 0:
X

Blu, 5275w+ 69,737 + ECsize(T)? > (2C,  £C) [Du — DYPTullh, + 5122 3.

Choosing a value of { > 0 small enough (depending only on C, and Cn), this inequality
yields the following estimates such that i = u + v € (H?(w))?

IDa —~ DYPZilla, < C (|[Du—~DIPZulld, + P52z + ho) (6.12)
and
|Du —DYPZul|g, + P27 < CB(u, 5P 8, peiP) + Casize(T)?. (6.13)

Step 3. We define now the consistency error for the projection P£ as follows
Tsa(z) =Du(z) —DP2a, Vzeo, Voeq.
We want the existence of 67 € M, 2(R) such that
1 ~ ot~
DP%a — D?PZda = §(BQ(5D + 0?'B,), Vo€ Q. (6.14)

We verified that 2DP2a — 2DPP?Z @ satisfied the conditions (2.9) if e # a, and (2.10)
if axx = «a,. Thanks to Proposition 2.2, there exists a unique 6P € M, 2(R) such that
(;5‘5, do) = 0if ac = . and satisfy (6.14). Thus with Definition 2.6 of the discrete strain
rate tensor DY and Definition 6.1, we have DYPZ 1 = DPPZ @ + & (Bod2, + 02" B,), we
note 0% = 62 — 62, € (My,, 2(R))® which satisfies

1 —~ ot~
DPZG — DYPTa = (Bab® + '551B,), Vo€, (6.15)
and such that (573, 00) = 0if ac = a,. Replacing 6 by 57 in (6.9) and using the fact that

c o-c

1 o~ ot
5 (Bab® + '$7'B,) = DP%i — DYPTd = Dii(2) — DYPTd — Toa(z),  (6.16)
we deduce that

Tr (tSER): Y [ 2n(z) (Du(z) — DXPT @ : Du(z) — DAPTu) dz + 3 moTr (To a(2)) P
ceplo e p

- > / 2n(z) (T@yﬁ(z) : Du(z) — DgIP’cTu) dz— > moTr (Dﬁ(z) - DgIP’CTﬁ) P
QeQpJQ Q€N P

Now we can link R and B as follows

B(u7§g(1>;ﬁ7ﬁgf>) =Tr (té/gR) — % moTr (Ts.a(2)) P
Qe D

+ > | 2n(2) (Ta,u(2) : Du(z) — D¥PZu)dz + > moTr (Du(z) — DYPZ u) p2.
o€/ o 2€Qp

Thanks to (1.2) and the Cauchy-Schwarz inequality, Proposition 6.3 implies that

1

2

B(u, el 6, 5a”) < Cho || Bod? oy ( 2
Q

€Qp

/Q(IHVH(Z)HI? +[V2u(2)]” + IVp(Z)IQ)dZ>

~0 al N N ~0
+ 1T sllas 1Pe2 12 + 2C, IDu = DRPT ullas 175 .6llap + [Du — D P ulla [|[7ar Il2-
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Thanks to Lemma 2.2 and the estimate (6.16), we have

Z;) mol|Bod® |7 < C (D@ — DYPZal3, + | Ta.ald,) -
Qe D

Using (6.12) and (6.13), Proposition 6.2 implies

IDu - DSPZula, + 1552113 < Okl %J (IVa()l% + [V?u(2)]” +[Vp(2)*)dz
(oS Q

1
2

+Cho([IDu ~ DYPT ullap+ 527 12) < GEQD/(IHVU(Z)IH? + V() + Vp(Z)|2)dZ)
Q Q
+[Du — DEPT ullap IPaP l2-

Finally, Young inequality gives the result. t
REMARK 6.1. We immediately have the estimate on the whole norm for (u, p)

IDu — DYPTul + 722 3 < Consize(T)([ulls2wye + Ipllinc)). (617)

The following Corollary is obtained thanks to Lemma 2.2 and Lemma 6.4.
COROLLARY 6.1. Assume that n satisfies (1.2) and (2.4). We assume that (u,p), the
solution of the problem (1.1), lies in (H?(w))? x H*(w). Let T be a mesh of §). There exists

a constant Cag > 0, depending only on C,, C,), Cy, reg(T) and sin(eo), such that

[Vu — VEPz ulla < Cesize(T)(lull (z2(w))2 + 1ol a1 w))-

Proof. Like in the beginning of Step 3, (see (6.15)), we prove the existence of 5P , such that

1 —~ t—~ t o~
DPSu — DAPZu = §(BQ5D + 07'Bg). We deduce that VP2u — V¥PZu = 67" B,,.
Lemma 2.2, Lemma 6.4 and Proposition 6.2 give

—, _C
> molBob? |7 < 71(C25 + Cy0)h3, /(IIIVU(Z)HI% + [V2u(2)]* + |Vp(2)[*)dz.

2€0p Q
(6.18)
Proposition 6.2 and (6.18) conclude the proof. (]
LEMMA 6.5. Assume that n) satisfies (1.2) and (2.4). We assume that (u, p), the solution
of the problem (1.1), lies in (H*(w))? x H(w) with divu = 0. Let T be a mesh of ). There

exists a constant Cy7 > 0, depending only on Qn’ C,,, Cy, reg(7) and sin(ey), such that

|div®PZu| < 2|DYPTu — Duflg,, VpeD,
|div®PTulls < Carsize(T)(Jull a2 wyye + Iplla o)-

Proof. Thanks to div” (P2 u) = Tr(D?PZ u) and div u = 0, the equality (2.5) gives

div? (PZu) = div? (PZu) — div u(z) = 1 > moTr(DYPZu— Du(z)).

Mp ocHp

Cauchy-Schwarz inequality implies the first estimate. Lemma 6.5 and 6.17 imply the second
estimate with Co7 = 24/Coas. O
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6.5. Consistency error for the velocity. Now, we can control R ,, as follows

LEMMA 6.6. Assume that 1 satisfies (1.2), (2.4) and that (u, ) the solution of the
problem (1.1), lies in (H?*(w))? x H'(w). For any mesh T on Q, there exists a constant
Cas > 0, depending only on C,, C,, C,, reg(7) and sin(eo), such that

RS qll2 < Cassize(T)([[ull(az(wy)z + IPIlE1 ()
Proof. Definition 6.3 implies that

IR a5 < Z mo Y REZP+IRGTIS + IRS"I5- (6.19)

s€€o

First, the inequality (1.2) and Lemma 6.4 imply
u,Du =2 .
[REPUI3 < €, Cossize(T)? ZQ (IVa@)|% + [V*u(@)* +[Vp]*) dz.  (6.20)
cen o
Substituting (6.20), and (6.7) into (6.19), we get the result.

0

6.6. Jump of pressure. LEMMA 6.7. Assume that 1 satisfies (1.2), (2.4) and that (u, p),
the solution of the problem (1.1), lies in (H?*(w))? x HY(w). Let T be a mesh of ), there
exists Cag > 0, depending only on C,, C,,, Cy, reg(T) and sin(ey), such that

2
< (P& —pfx)2> < Coo([lullmrz(wy)z + [Pl 1 (w))-
5=Q|Q’'=D|D'c6
Proof. We note P}, p == — / y)dy, for any s € &, adding and subtracting P}, p,
Cauchy-Schwarz inequality 1mphes
(P& —P8)*<4 > X X & —PhLpl
s=0Q|Q'=D|D'eS DED Q€N s€0QNID

Then adding and subtracting P2 p, Cauchy-Schwarz inequality implies

> (e —pS)?<8Y Lpa—Paplf+8Y X X PRp—PLpl (621
s=0|Q'=D|D'c& DEDOEN p DED QEN psEIONID

Since p € H'(9), thanks to Lemma 4.5, we get
P p — B2 pl2 < Coreg(T)? / Vp(z)dz. 6.22)
Q

Lemma 6.4 and (6.22) conclude the proof with Cag = 8(Cas + Ciareg(T)3).
O

6.7. Proof of Theorem 6.1. We may now collect all the previous results in order to
conclude the proof of Theorem 6.1, that we started in Subsection 6.2.
Proof. Having denoted by €7 = PZu — u? and €® = P2p — p®, we have obtained the
inequality (6.5)

0 ~ Q .
IVHTI + €213 <Cr(IVEeT 2 + e 2)(IRe,llz + div® P ull)
1
2

+ Cosize(T) (V3 e [l + [le7|2) ( > (pex — pe%f)
5s=0|Q/'=D|D'€&
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Using the estimate | R, oll2 < 2[R qlla+[RY gll2 + P22 ||2, Lemmas 6.1, 6.17, 6.6 and
Lemma 6.5 imply || R, o2 + || div®PZ ul|y < Csize(T). Finally, Lemma 6.7 gives

[V&eT|l2 < Csize(T) and |[|e?s < Csize(T). (6.23)

Estimate of |[u — u” ||o. We have [[u—u7||2 < |[[lu—PZul2 + ||PZu—u”|;. Lemma
4.6 and the discrete Poincaré inequality Theorem 4.5 imply

lu—u” ||y < Csize(T) + C||VPPZu — V2u .

Lemma 4.2 and (6.23) gives the estimate of ||ju — u” ||5.
Estimate of |[Vu — VEuT [l2. We have [Vu — V¥u7 [z < [[Vu — VEPZuf2 +
[VEPZ u—V¥u”|s. Finally, Lemma 6.1 and (6.23) imply the estimate of [|[Vu— VYu”||.
Estimate of |p—p2||2. Using (6.23), we obtain ||P2p—p2 ||, < Csize(T). We conclude
thanks to Lemma 6.1. U

7. Numerical results. We show here some numerical results obtained on a rectangular
domain 2 =]0,1[2. Error estimates are given for two different tests with a stabilization
coefficient A = 1073,

(a) Non conformal quadrangle mesh. (b) Quadrangle and triangle mesh.
FIG. 7.1. Family of meshes.

In order to illustrate error estimates, the family of meshes (see Figure 7.1) are obtained
by successive global refinement of the original mesh.

The first one is performed using a discontinuous viscosity function. The exact solution
(u, p) and the viscosity 7 being chosen, we define the source term f and the boundary data
g in such a way that (1.1) is satisfied. In all tests, in Figures 7.2 and 7.3, we compare the
errors in the three different norms the L2 norm of the error obtained with the DDFV scheme,

P2p — p2 P2Vu — V{u”
for the pressure W for the velocity gradient IPe Pav i|3 l2 and for the
¢ Pli2 ¢ vuj2
. |PZu—u"|> . . L .
velocity W respectively as a function of the mesh size, in a logarithmic scale,
c Uul2

for the original DDFV scheme (1.4), for the m-DDFV scheme (3.1) with © = 0 in (2.14)
and for the m-DDFV scheme (3.1) with ¢ = 1 in (2.14).In the numerical tests, we have
smooth pressure on quarter diamond cells, thus we use the center-value projection on £:

P2p = ((p(zo))oca) -
7.1. Test 1 - Discontinuous viscosity. The interface I is located at {y = 0.5}. Let us

ulz, y>>:

consider the following exact solution u(x,y) = ( 0

2
y“— 0.5y fory > 0.5
u(x,y) = , T,y) =2x — 1,
(@9) { 10*(y? — 0.5y) else. p(@:9)
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and the discontinuous viscosity: 7; = 1, 7, = 10, which gives that Du is discontinuous
across I'. We show the comparison between (1.4) and (3.1) schemes with a discontinuous
viscosity. We use the non conformal quadrangle mesh, locally refined where the discontinu-
ity occurs, shown on Figure 7.1(a). In this case, we only have convex diamond cells, thus

Error in L 2-norm of the pressure Errorin H éfnorm of the velocity - Error in L 2-norm of the velocity
10 o 10 —
10 T
rate : 0.85_~
—t rate : 0.35 et g
| e ~ 1035 -2
10 Frate:0.78 4+ 107 —t 10
+ %/®
——DDFV
1072 rate : 1.86 ——DDFRV 107 —+—DDFV 1073 rate : 1.9 ~
186 ~©-m-DDDFV =0 rate : 1.38 - m-DDDFV = —©-m-DDDFV p=0|
rate : 1. _ rate : 1.93 -DDDFV p=1|
—-m-DDDFV p=1] rate : 1.38 —¥-m-DDDFV p=1] Sem -
-3 3| -
10 10 10
107 107 10° 107 107 10° 107 10" 10°
Mesh size Mesh size Mesh size
D D DpT DT T T
IPep —p”ll2 IVZPEu—VZu|> [PEu—u]>

(a) (d) (©)

P2 pll2 IVoPZ ull2 IPZ ull2

FI1G. 7.2. Test2, discontinuous viscosity on a non conformal quadrangle mesh Figure 7.1(a).

the (3.1) scheme behaviour is essentially the same with the classic dual mesh than with the
barycentric one. As predicted by the theory, the S-m-DDFV scheme provides a much better
convergence rate than the original S-DDFV scheme. Furthermore, the error (in any of the
three norms we consider) obtained by the S-m-DDFV scheme is better even in the case of
coarse meshes. Note that the convergence rates obtained with the (3.1) scheme are greater
than the theoretical one. This is related to some uniformity of the mesh away from the re-
finement area. Furthermore, let us emphasize that the convergence rate is not sensitive to the
presence of non conformal control volumes.

7.2. Test 2 - Discontinuous viscosity and discontinuous pressure. The interface I' is
located at {x = 0.5}. We take the discontinuous viscosity: 17; = 102, 7o = 1072, We note

¢ = ——™RT — The exact solution is the following
n1+0.5n27
4.0 4.0
(z —0.5)(cz + sin(&').()ﬂac))M7 forz < 0.5
0.5c+1
(z — 0.5)(cos(mz) + 1)4.07 cos(4.0my), elsewhere.
u(z,y) = in(4.0m5) ;
— (cz + sin(5.0nz) + (z — 0.5)(c + 5.0 Cos(5.0w:p)))%, forz < 0.5
5e
— (cos(mz) + 1 — 7(z — 0.5) sin(mz)) sin(4.0my), elsewhere.

(.9 { 8.0m(m — n2) cos(4my) + cos(4nz) sin(4ry), forz < 0.5
p\z,y) =

cos(4mz) sin(4wy), elsewhere.

As predicted in Theorem 6.1, we observe a first order convergence for the L2-norm of
the velocity gradient and of the pressure, which seems to be optimal. We obtain a second
order convergence for the L2-norm of the velocity. This super-convergence of the L?-norm is
classical for finite volume method, however its proof still remains an open problem see [24].
Figure 7.3 brings out the role of the new stabilization term. With the old stabilization term,
using Definition 2.10, we observe that the scheme is still convergent even if we have lost the
first order convergence, as expected.

8. Conclusion. In this paper, we provide a modification of the stabilized DDFV scheme
with Dirichlet boundary conditions for the interface Stokes problem on general 2D grids
in order to take into account discontinuities in the viscosity. The S-m-DDFV scheme we
obtained is proved to present a better consistency of the fluxes at the discontinuities. We
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Error in L 2-norm of the pressure Error in H é—norm of the velocity ) Error in L 2-norm of the velocity
10 o 10 r
10
——DDFV
——DDFV —ooFv
~©-m-DDDFV =0 ~©-m-DDDFV =0 107 S~ M-DDDFV =0 %
- = - —-m-DDDFV p=1]
—%-m-DDDFV p=1] % m-DDDFV =1 5
=t | 2
10 10 10 Fate : 1.16
rate : 0.504 frate 1 1.28
rate : 0.59 rate - 0.67 10 rate : 1.98
ate : 0.80
2|rate : 1,10 -2|rate : 1.00 -
10 10 10
10 10° 10™ 10° 10° 107 10™ 10° 10° 107 107 10°
Mesh size Mesh size Mesh size
T T
IP2p —p22 P2 Vu - Vyu~ || [PEu—u™]
. c c 0 c
@ =y, ® 2 © Tl
P2 pll2 [P2Vull2 [P ull2

FIG. 7.3. Test2, discontinuous viscosity on a quadrangle mesh Figure 7.1(b).

prove a first order convergence of the DDFV scheme in the L? norm for the velocity gradient
[Vu — V®Pu7||,, for the velocity and for the pressure. The performance of the scheme is
illustrated by numerical results.

9. Appendix.

9.1. Proof of Lemma 2.2. Proof. Estimate between §” and the symmetric part of
Bod™P. Let us explicit the components of 67 in the local basis of the diamond cell.

tfs)c :,Uf)c'?;c*,c* + A, t6£ = ,uc'?rc*,c* + Aciig g,
t(src* :,U)c*"_:a,crc* + )\)C*ﬁo-;clc*v t(SL* = Nﬁ*?a,c;c* + >\L*ﬁa,crc*7
where 1., A_lie in R. Using notation S = Bod” + 07" By, for all @ € 9, and the fact that
EXBo6”X = 'X"'6P"B,X for any X € R?, the definition of B, and the decomposition of
0% imply four equations:
Mo (X7 'F;c*,c*)(ﬁa,crc* , X) + )\}Cmo)c (X7 ﬁaK)(ﬁaKK* , X)
+ mU}C* Mxc* (X7 ?a,cic*)(ﬁc;m X) + )\}C*mo'}c* (X7 ﬁcr;cic*)(ﬁaic) X) (913)

mQ;c,)c* t
= 5 XSo . X,

— My frc (X, $n*,c*)(ﬁaxm*7X) =AM (X, ﬁ,,c)(ﬁ’c,,c,c*,X)

+ Mo o (X, Toporcr) (o X) + A (X, g ) (on, X) (9.1b)

me *
_ K,L* t
= — 5L XSy o X,

maL,UL(Xa ?n*,z*)(ﬁa,;rc* , X) + )‘Cmo'g (Xa ﬁalc)(ﬁaclc*vX)
— Mo Mo (X7 ?U;CKZ*)<ﬁo'KZ7 X) - )\}C*molc* <X7 ﬁa,crc*)<ﬁaic7 X) 9.1¢)

ch,lc* t
= 5" XSq, . X,

- mo’g,u’L(Xa %’K*,L*)(ﬁaLIC*vX) - )\ngc (X7 ﬁoﬁ)(ﬁa—LK*aX)
— Mo e (X’ ?axK*)(ﬁaKv X) - Aﬁ*mdc* (X’ ﬁa;cic*)(ﬁaic’ X) (9.1d)

sz:,L* t
= — 55 XS0, . X.



Finite volume method for general multifluid flows governed by the interface Stokes problem 33

We deduce the different value of p. by taking X = ?,K,C* in (9.1a)-(9.1b) and by taking
X = T, 2+ in (9.1¢)-(9.1d). Thanks to the relation (2.1), we have the following estimate
p? < Clreg(T)) Y mollSal% 9.2)

€0

eCase oy # . Wehave (1, e+, To ) 7 0. We deduce the different value of A by
taking in (9.1c) respectively X = ¥, ,« and X = ¥, _,«, andin (9.1d) X = 7, _,~. The

value A\ is deduced from (9.1a). Using the criterion €y and the estimate (9.2), we obtain
A2 < C(reg(T),sin(e0)) Y- mollSoll% 9.3)

2€0p

Finally, we deduce thanks to (9.2) and (9.3) that

16715 < C 32 mollSollF = Clreg(T),sin(en)) 3. mollBod” + 67 Boll3-

2€0p 2€0p

eCase e = a.. We have chosen §” such that (67, Jp) = 0. We write the system on \,
as follows BA = F, where B is a following matrix in M3 4(R)

Moy 0 Moy 0
—Mgy 0 0 Mo
B = 0 Mo, Mo 0 ,
0 —Mop 0 —Mg
! 1 1 1
mﬂ)c m("ﬁ mUK:* m(TL*

A= t()\,c,)\ﬁ, Ay Az+ ) is a vector in R* and F = t(FQ,C,,C*,FQ,C s P, s Fo, .0, 0)is
a vector in R®. We have . F, = 0 and using the estimate (9.2), for all ¢ € Q,,

QEN D
|Fol? < Clreg(T))h7 > mollSallF- (9.4)
Q€D
The solution of BA = F'is
b 1 b
A = ij A = My . (FQ)C,IC* + FQ}C,L* — Mo b*) ’
* 9.5)
1 b 1 b
)\L = — _FQL,L* —mgﬁ*b—* s )\)c = Mo _FQL,}C* —i—mc,L*b—* s
where

1
b < Clrea(T)) 2y 5 malSelly and 0] = —b* > Clrea(T));—  96)

D QEND D

We deduce thanks to (9.5), (9.4) and (9.6) that
N < Oreg(T)) 3 mollSoll% 9.7

2€0p

Finally, we deduce thanks to (9.2) and (9.7) that

167113 < Clreg(T)) 32 mollSollF = Clreg(T)) 32 moll Bod® + 67 Boll7-.

€0 Q€D

Estimate between 5,07 and 6”. Thanks to i, < Cmin(me,,ms,. ), we deduce

I1Bod?)|% < C’%Hé”“% Thanks to reg(7), we obtain Y .o mol|Bod”[|% < C[67][3,

that concludes the proof. (]
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9.2. Proof of Lemma 2.3. Proof. We improperly note s »(D?u”) = ag = p° — p”
when s = 0p N 0. We have that (7, ag,, ) satisfied the following system

S Mmoo (DPu”, 07, ag)Bo=0, Tr("07'By) =0, Vo € Qp, 3. moao=0. (9.8)

[aSSe L) €D

Using the value of ¢, in (9.8), we deduce that

> moagBg =2 > mgnoDY¥u”Bg. 9.9
Q€0p Q€D

2

We have that [|me, . Bo . |7 = m2, +m7 _, < 2h%. The same estimate holds for all

0 € Q. We estimate the right hand side of (9.9) thanks to Cauchy-Schwarz inequality

2
12 > anQDguTBQmJ:SQCnhD< )y |||DguTlll2f> : (9.10)

2€0p 2€Qp

Then we have that the norm of the left-hand side of (9.9) is

Hl GZQ mQaQBQm,QF :mgm(agm,}c* - aQ}c,L* )2 +m§£ (aQL,IC* - aQC,E* )2
Q D

+ ma,@ (aQ)C,}C* - any)c* )2 + mg'c* (aQ}C,L* - aQﬁ,L* )2

9.11)
Using (9.10)-(9.11), (2.1) and Lemma 4.1, Vo, @’ € Q such that 3 N &’ # (), we obtain
— reg(7)C
lag — agr| < 2C,reg(T) g(7)Cy IDPu™ || £. 9.12)

Vac,

Now we can estimate |« | with differences like avgr — v/, using (9.8). Thanks to (9.12), we

272
obtain the result with Cy = 6%.
O
9.3. Proof of Proposition 6.4. Proof. We define F, as follows
Id Id Id Id
F ) F x — ) F x« — ) F . = .
o mQ)c,)c* e mQ}c,L* Sex mQL,)c* o mQL,L*

We verified that F, satisfied the conditions (2.9) if o # a, and (2.10) if o = a. Thus,
there exists 6” € My, 2(R) such that (Bo6” + tSDtBQ) = F,,V 0 € Q. Taken 6§ equal
to 47 in (6.9), we deduce that

S [ n0(2) (Fo:Du(z)—DY¥PTu)dz — 3 moTr (Fo) p2 =Tr (tSDR) . (9.13)

eeNp/Q €0

We construct a function v such that v € (H!(p))? N (H?())?, for all ¢ € 9, such that

_, . div?(PZ 1 -
— Dex %/ n(z)dz — §Tr(t5”R), ifx € Qx x~,
div(v)(z) = div® (]P?Tu) 2 (9.14)
— P2 70/ n(z)dz, ifz € 9, 9N Qx - =10,
2mg °

with R defined by Definition 6.5. We choose v linear per quarter diamond cells of this form

V(x) = (0‘09 ;@) z,  ifzco,
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it implies that V2V = 0 on . The continuity over the edge of ¢ imposes that
5Q,CW,C*:5QL,C*5: B, QAo o= Qo (4= (2, ﬂgm‘ﬁ*:ﬂgﬁwﬂ*: B2, QAo ox= Qg (4 i= Q1.

We obtain four unknowns «;, (; which are solutions of

ex div® (PZ 1 _
ar+ 01 =—Pgo . + %/ n(z)dz — §Tr(t673R) =b
' xS ox kx

az+pi=—pg, .+ 7;;1 (Fe ) / n(z)dz := by
' Qe Jop kx

~ex div” (P7
a1+ P2 =—Po, .. + v”(Peu) / n(z)dz := b3
)

QmQK,C* K,L*

~ex div” (PZ
a2+52:*pgﬁﬁ*+u/ n(z)dz := by
' ngc,a* Qp r*
Thanks to (9.13) (by — by — b3 + by = 0), we get
4oy = bz — by — ba, 4 = bz — 5by + 3()27 461 = 5b1 + ba — b3, 402 = by + by + 3bs.

We get using (1.2) and Lemma 6.5
~ .
¥l 0y < CUIPE ll2 + IDu = DYPE ullay, + v/mo | Te("67 R))). ©.15)
We have m || Bo6” 1%, < C(reg(T)). Thanks to Proposition 6.3, we deduce

mo|Tr(‘"6°R)| < Ch3, ZD (IVu()l% + [V*u(2)]* +[Vp(2)[)dz. (9.16)
QE

Q

Proposition 4.1 gives that [|[DV — DYPZ V]a, < |[V|ai () + [[VEPE V[ a,- Lemma 4.2,
(4.1), (9.15) and (9.16) imply that
IDY — DYPTFlla, < C(IF2 > + [Du — DYPTula, + Cho).

Furthermore, we have

. o~ . te ~eX
. /Q AivipSdz > [P )2 — div®PTu 3 /Q n(2)dzp — may . Te('5°R)F

Qi i+
Q€ p Q€eqp ’

Furthermore, thanks to divu = 0, Proposition 6.3 gives
- 2 / divvpgdz > [[pEP |3 — CIDu — DEP ullay PP |2 — Csize(T)| ([P |l2-
eeNpJa

Young inequality concludes the proof. ([
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