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FINITE VOLUME METHOD FOR GENERAL MULTIFLUID FLOWS GOVERNED
BY THE INTERFACE STOKES PROBLEM

STELLA KRELL∗

Abstract. We study the approximation of solutions to the stationary Stokes problem with a piecewise constant
viscosity coefficient (interface Stokes problem) in the discrete duality finite volume (DDFV) framework. In order
to take into account the discontinuities and to prevent consistency defect in the scheme, we propose to modify the
definition of the numerical fluxes on the edges of the mesh where the discontinuity occurs. We first show how to
design our new scheme, called m-DDFV, and we analyze the well-posedness of the scheme and its convergence
properties. Finally, we provide numerical results which confirm that the m-DDFV scheme significantly improves the
convergence rate of the usual DDFV method for Stokes problems with discontinuous viscosity.

Key words. Interface Stokes problem, discontinuous coefficients, DDFV methods.

1. Introduction. In many numerical simulations the two phases are modeled by a single
set of conservation laws for the whole computational domain. Such an approach leads to
Navier-Stokes equations with discontinuous density and viscosity coefficients. For highly
viscous flows then the Stokes equations with discontinuous viscosity are a reasonable model
problem.

1.1. Stokes model. In this paper, we are concerned with the finite volume approxima-
tion of solutions to the steady interface Stokes problem with homogeneous Dirichlet boundary
conditions: Find a velocity u : Ω → R2 and a pressure p : Ω → R such that:

div (−2ηDu + pId) = f , div(u) = 0, in Ωi, for i = 1, 2,
∫
Ω

p(x)dx = 0,

u = 0, on ∂Ω, [u] = 0, [2ηDun⃗ − pn⃗] = 0, on Γ,
(1.1)

where Ω is a polygonal connected open bounded subset of R2, Du = 1
2 (∇u + t∇u) , f is a

function in (L2(Ω))2, a piecewise constant viscosity η, equal to ηi > 0 on Ωi, for i = 1, 2.
The sub-domains Ω1,Ω2 are assumed to be Lipschitz domains such that Ω1 ∩ Ω2 = ∅ and
Ω = Ω1 ∪ Ω2. By Γ, we denote the interface between the sub-domains Γ = ∂Ω1 ∩ ∂Ω2 and
is a closed C3 curve. Others notation are standard, n⃗ is an unit normal vector to Γ from Ω1

to Ω2 and [a]|Γ = (a|Ω1
− a|Ω2

)|Γ denoted the jump of a across Γ.

1.1.1. Regularity of solution. We note Cη=min(η1, η2) and Cη=max(η1, η2), we get

0 < Cη ≤ η(x) ≤ Cη, for a.e. x ∈ Ω. (1.2)

The well-posedness of the problem (1.1) is studied in [4, 14, 25] with a constant viscos-
ity and in [23] with a piecewise constant viscosity. In order to study the rates of conver-
gence of our approximate solution, we need to make some assumptions on the regularity of
a solution (u, p). Firstly, if Γ is a closed C3 curve and Ω is a convex polygon, we have
u|Ωi

∈ (H2(Ωi))2 and p|Ωi
∈ H1(Ωi), for i = 1, 2. On the other hand, we cannot expect this

regularity, when ∂Ω∩ Γ̄ ̸= ∅ and the maximum interior angle of ∂Ω1, ∂Ω2 at ∂Ω∩ Γ̄ is large
enough. For more details of these facts, we refer to [22]. Since the viscosity is discontinuous,
the pressure can have jumps. More precisely, we have [p] = [2ηDun⃗ · n⃗], on Γ in [18]. We
assume that (u, p) the solution of the problem (1.1) lies in (H2(ω))2 × H1(ω), that is:

(u, p) ∈ (H1(Ω))2 × L2(Ω), u|Ωi
∈ (H2(Ωi))2, p|Ωi

∈ H1(Ωi), for i = 1, 2. (1.3)
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1.1.2. Notation. We denote by Mm,n(R) the set of real m × n matrices (we note
Mn(R) when m = n). In the sequel, ∥ · ∥2 stands for the natural L2-norm when we con-
sider scalar valued and vector valued functions and for the Frobenius norm when we consider
matrix valued functions:

|||ξ|||22 =
∫

Ω

|||ξ(x)|||2Fdx, with |||ξ|||2F = (ξ : ξ) , ∀ξ ∈ L2(Ω,M2(R)),

∥v∥2
(H2(ω))2 = ∥v∥2

H1(Ω) + ∥∇2v∥2
L2(Ω1)

+ ∥∇2v∥2
L2(Ω2)

, ∀v ∈ (H2(ω))2,

∥q∥2
H1(ω) = ∥q∥2

L2(Ω) + ∥∇q∥2
L2(Ω1)

+ ∥∇q∥2
L2(Ω2)

, ∀q ∈ H1(ω),

where (ξ : ξ̃) =
∑

1≤i,j≤2

ξi,j ξ̃i,j = Tr(tξξ̃), ∀ξ, ξ̃ ∈ M2(R).

REMARK 1.1. The matrix norm |||·|||F satisfies
∣∣∣∣∣∣∣∣∣A+tA

2

∣∣∣∣∣∣∣∣∣
F
≤ |||A|||F , for all A ∈ M2(R).

1.2. The DDFV method. Finite volume approximation of Stokes problems with con-
stant viscosity on the whole domain is a current research topic, we refer to [7, 10, 13] for
the description and the analysis of the main available schemes up to now. We propose here a
staggered method: the discrete unknowns, the components of the velocity and the pressure,
are located on different nodes. The most celebrated staggered scheme is the MAC scheme
[15, 21] on cartesian grids. Actually, for a cartesian grid and constant viscosity, the scheme
we propose here is equivalent (except on the boundary) to two uncoupled MAC schemes
written on two different staggered meshes.

The presence of the symmetric part of the gradient Du imposes to address the problem
of the reconstruction of the full velocity gradient on the whole domain. Different methods
of gradient reconstruction for cell-centered finite volume have been proposed since the last
ten years, one can refer to [6], [9], [12] and [8, 17]. In all cases, the crucial feature is that
the summation-by-parts procedure permits to reconstruct the whole two dimensional discrete
gradient, starting from two point finite differences. Many of them have been compared in the
benchmark of the FVCA5 conference [16], for scalar diffusion problems.

We consider here the class of finite volume schemes called “Discrete Duality Finite Vol-
ume” (DDFV for short). The DDFV method reconstitutes gradients from finite differences in
two independent directions. Therefore, two finite volumes meshes are needed, noted T . The
second mesh of dual control volumes is built around the vertices of the primal mesh. Thus the
dual mesh is thorough defined thanks the primal control volumes and their “centers”. The pri-
mal mesh and the dual one play a symmetric role. Finally, these two meshes give a new mesh
called diamond mesh D, on which the discrete gradient operator ∇D is computed. Then, a
discrete divergence operator divT is built in order to be in duality with the discrete gradient
in a discrete sense (see Theorem 4.3).

1.2.1. Previous work. Let us comeback to the Stokes problem. Our strategy is to ap-
proximate the velocity u on the mesh T , denoted uT and the pressure on the diamond mesh
D, denoted pD. The principle to obtain the DDFV scheme in [19] is the following. We
integrate the momentum conservation law of the problem (1.1) on the primal mesh M and
the interior dual mesh M∗. The mass conservation equation is directly approached on the
diamond mesh using the discrete operator divD and a stabilized term −λh2

D∆DpD inspired
by the well known Brezzi-Pitkäranta method [5]. The velocity is imposed to be equal to zero
on boundary domain, that is denoted by uT ∈ E0. Finally, the integral of the pressure is
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imposed to be equal to zero. The stabilized DDFV scheme can be written as follows:

Find uT ∈ E0 and pD ∈ RD such that,
divM(−2ηDDDuT + pDId) = fM, divM∗

(−2ηDDDuT + pDId) = fM∗
,

divD(uT ) − λh2
D∆DpD = 0,

∑
D∈D

mDpD = 0,
(1.4)

where λ > 0 given. This stabilized DDFV scheme is proved to be well-posed for general
2D meshes. Hence, we succeeded in showing the convergence of such schemes and error
estimates in the case where the viscosity and the exact solution are assumed to be smooth.

THEOREM 1.1. We assume that the solution (u, p) of the Stokes problem (1.1) belongs
to (H2(Ω))2×H1(Ω) and that η belongs to C2(Ω̄). Let (uT , pD) ∈ E0×RD be the solution
of the scheme (1.4). There exists a constant C > 0 depending only on the regularity of the
mesh, on the viscosity and of the couple (u, p), such that:

∥u − uT ∥2 + |||∇u −∇DuT |||2 ≤ Csize(T ) and ∥p − pD∥2 ≤ Csize(T ).

We have extended this framework in 3D in [20]. In the case where η has discontinuous
coefficients, our results in [19] show that the scheme is still convergent but the error analysis
is no more valid.

1.2.2. Consideration of the discontinuities. Actually, it is known that such disconti-
nuities in the coefficients imply a consistency defect in the numerical fluxes of usual finite
volume schemes. It is needed to modify the scheme in order to take into account the jumps
of the coefficients of the problem and then to recover a better convergence rate. As in in
the scalar case [3], we need to introduce a new gradient operator and finally define a new
approximate viscous stress tensor on each diamond cell. The new gradient operator ∇N

Q we
propose to consider is built upon the usual DDFV gradient ∇D. It is chosen to be con-
stant on all the quarter diamond cells Q ∈ Q. Thanks to the modified discrete gradient, we
can define a new symmetric operator a modified discrete strain rate tensor DN

Q as follows

DN
QuT = 1

2

(
∇N

QuT + t(∇N
QuT )

)
. We also introduce an artificial pressure unknowns on

the quarter diamond cells, denoted pQ, that will depend on the symmetric part of the velocity
gradient DDuT and the pressure unknowns pD. Then, we propose a modified DDFV scheme
-that we called m-DDFV. The only difference with the scheme (1.4) introduced in [19] is in
the viscous stress tensor and the stabilization term, to take into account the jumps of the pres-
sure. We replace ηDDDuT (respectively −λh2

D∆DpD) by a modified viscous stress tensor,
denoted by Dη,N

D uT , (respectively −λh2
D∆DpQ) as follows:

Find uT ∈ E0 and pD ∈ RD such that,
divM(−2Dη,N

D uT + pDId) = fM, divM∗
(−2Dη,N

D uT + pDId) = fM∗
,

divD(uT ) − λh2
D∆DpQ = 0,

∑
D∈D

mDpD = 0.
(1.5)

This m-DDFV scheme is proved to be well-posed provided a new discrete Korn inequality
for the modified discrete operators (see Theorem 4.2) which is not just an extension of the
discrete Korn inequality proved in [19].

The aim of this work is to present a modified DDFV scheme which recovers the first
order convergence even if the viscosity is discontinuous. We provide an error estimate in
case where the exact solution of the problem (1.1) lies in the space (H2(ω))2 × H1(ω), we
prove a first order convergence of the scheme (1.5) in the L2-norm for the velocity gradient,
as well as for the velocity and for the pressure. Hence, our analysis provides a theoretical
confirmation of the behavior numerically observed in [19].
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1.3. Outline. This paper is organized as follows. In Section 2, we recall the DDFV
framework for the finite volume approximation of Stokes problems on unstructured grids. In
Subsection 2.4, we introduce the modified new discrete operators. In Section 3, we describe
the m-DDFV stabilized scheme. In Section 4, we present the main results of discrete func-
tional analysis necessary for the theoretical study of the finite volume method. These results
include properties of discrete operators proved in [19] but also properties of the modified dis-
crete operators, including a new discrete Korn inequality (see Theorem 4.2). In Section 5,
we prove the stability and well-posedness of the scheme. Then, in Section 6, we prove error
estimates in the case where the exact solution lies in (H2(ω))2 × H1(ω) (see Theorem 6.1).
Finally, in Section 7, theoretical error estimates are illustrated with numerical results.

2. The DDFV framework.

2.1. The meshes and notation.
The meshes. We recall here the main notation and definitions taken from [1]. A DDFV

mesh T is constituted by a primal mesh M ∪ ∂M and a dual mesh M∗ ∪ ∂M∗. An example
for square locally refined primal mesh is on Figure 2.1.

KK∗

xK∗

Inside node xK∗ of the dual cell

The boundary dual cell K∗

Node of the boundary dual cell xK∗
xK

Inside dual cell K∗
Primal control volumes

Primal node xK
xσ the middle of σ

xσ

FIG. 2.1. The mesh T .

The primal mesh M is a set of disjoint open polygonal control volumes K ⊂ Ω such that
∪K = Ω. We denote by ∂M the set of edges of the control volumes in M included in ∂Ω,
which we consider as degenerate control volumes. To each control volume and degenerate
control volume K ∈ M ∪ ∂M, we associate a point xK. For each degenerate control volume
K ∈ ∂M, we choose the point xK equal to the midpoint of the control volume K. This family
of points is denoted by X = {xK, K ∈ M ∪ ∂M}.

Let X∗ denote the set of the vertices of the primal control volumes in M that we split
into X∗ = X∗

int ∪ X∗
ext where X∗

int ∩ ∂Ω = ∅ and X∗
ext ⊂ ∂Ω. With any point xK∗ ∈ X∗

int

(resp. xK∗ ∈ X∗
ext), we associate the polygon K∗ ∈ M∗ (resp. K∗ ∈ ∂M∗) whose sides are

{[xK, xσ] such that xK ∈ X,xK∗ ∈ K ∩ σ, K ∈ M, σ ∈ E} (resp. {[xK∗ , xσ] such that σ ∈
∂M and xK∗ ∈ σ} ∪ {[xK, xσ] such that xK ∈ X,xK∗ ∈ K ∩ σ, K ∈ M, σ ∈ E}) sorted
with respect to the clockwise order of the corresponding control volumes. This defines the
set M∗ ∪ ∂M∗ of dual control volumes. It is usually called the barycentric dual mesh.

REMARK 2.1. Remark that our dual control volumes differ from the classic one proposed
in [8] or [1, 3, 19]. The classic dual cells are build by joining only the centers xK associated
to the elements of the primal mesh of which xK∗ is a vertex. Barycentric dual cells never
overlap, that is not always the case for classic dual cells.

For all control volumes K and L, we assume that ∂K ∩ ∂L is either empty or a common
vertex or an edge of the primal mesh denoted by σ = K|L. We note by E the set of such edges.
We also note σ∗ = K∗|L∗ and E∗ for the corresponding dual definitions.
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Given the primal and dual control volumes, we define the diamond cells Dσ,σ∗ being the
quadrangles whose diagonals are a primal edge σ = K|L = (xK∗ , xL∗) and a corresponding
dual edge σ∗ = K∗|L∗ = (xK, xL), (see Fig. 2.2(a)). Note that the diamond cells are not
necessarily convex. If σ ∈ E ∩ ∂Ω, the quadrangle Dσ,σ∗ degenerates into a triangle. The set
of the diamond cells is denoted by D and we have Ω = ∪

D∈D
D.

αL

xK∗

xK

xL∗
xL

n⃗σKK∗ n⃗σLK∗

n⃗σ∗K∗

σL = [xD, xL]

αK
n⃗σK

xD

σ∗ = [xK, xL] D

σ = [xK∗ , xL∗ ]

σK = [xK, xD]

(a) Notation in the diamond cells.

xK∗

xK

xL∗
xL

QL,L∗

QK,L∗

xD

QL,K∗
QK,K∗

(b) Quarter diamond cells.

FIG. 2.2. Diamond cells

REMARK 2.2. An important assumption for our analysis is that each DDFV mesh T is
conforming with respect to the two sub-domains Ω1, Ω2 in the following sense:

∃ Mi ⊂ M : ∪ {K|K ∈ Mi} = Ω̄i, i = 1, 2
∃ (M∗ ∪ ∂M∗)i ⊂ M∗ ∪ ∂M∗ : ∪ {K∗|K∗ ∈ (M∗ ∪ ∂M∗)i} = Ω̄i, i = 1, 2

This assumption is easily fulfilled if Ω1 and Ω2 are polyhedral sub-domains.
Notation. We recall here the main notation taken from [19]. For any primal control

volume K ∈ M ∪ ∂M, we note mK its Lebesgue measure, dK its diameter, EK the set of its
edges (if K ∈ M), or the one-element set {K} if K ∈ ∂M, DK = {Dσ,σ∗ ∈ D, σ ∈ EK},
BK := B(xK, ρK) ∩ ∂Ω ⊂ K the open ball of radius ρK > 0 for K ∈ ∂M, mBK its measure,
the value ρK is chosen such that the inclusion is verified. We will also use corresponding dual
notation for any dual cells K∗ ∈ M∗ ∪ ∂M∗: mK∗ , EK∗ , DK∗ , dK∗ , BK∗ , mBK∗ , ρK∗ .

For a diamond cell D = Dσ,σ∗ whose vertices are (xK, xK∗ , xL, xL∗), we note xD the
center of the diamond cell D, that is the middle point of the primal edge σ, hD its diameter,
mσ the length of the primal edge σ, mσ∗ the length of the dual edge σ∗, n⃗σK the unit vector
normal to σ oriented from xK to xL, n⃗σ∗K∗ the unit vector normal to σ∗ oriented from xK∗

to xL∗ , τ⃗ K,L the unit vector parallel to σ∗ oriented from xK to xL, τ⃗ K∗,L∗ the unit vector
parallel to σ oriented from xK∗ to xL∗ , αD the angle between τ⃗ K,L and τ⃗ K∗,L∗ , mD its
measure, equal to 1

2 sin(αD)mσmσ∗ , and dK∗,L (respectively dL∗,L) the length between xK∗

(respectively xL∗ ) and xL for any boundary degenerate diamond cell, s its edges (for example
s = [xK, xK∗ ]), ED = {s, s ∈ ∂D and s ̸⊂ ∂Ω} the set of interior edges of D, S = {s ∈
ED, ∀ D ∈ D} the set of interior edges of all diamond cells D ∈ D, ms the length of a
diamond edge s, n⃗sD the unit vector normal to s = D|D′ oriented from D to D′.

Since we use here the barycentric dual mesh, we introduce new notation in comparison to
the notation in [19]. For a diamond cell D = Dσ,σ∗ , we note σK (respectively σL) the segment
[xK, xD] (respectively [xD, xL]), σK∗ (respectively σL∗) the segment [xK∗ , xD] (respectively
[xD, xL∗ ]), n⃗σKK∗ the unit vector normal to σK oriented from xK∗ to xL∗ , n⃗σLK∗ the unit
vector normal to σL oriented from xK∗ to xL∗ , τ⃗ σKK∗ the unit vector parallel to σK oriented
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from xK to xD, τ⃗ σLK∗ the unit vector parallel to σL oriented from xD to xL, αK the angle
between −−−→xKxD and τ⃗ K∗,L∗ , αL the angle between −−−→xLxD and τ⃗ K∗,L∗ , mσK (respectively mσL)
the length of σK (respectively σL), mσK∗ (respectively mσL∗ ) the length of σK∗ (respectively
σL∗), xσ the middle point of the segment σ for each σ ∈ {σK, σL, σK∗ , σL∗}.

For any D ∈ D, we have mσ∗ n⃗σ∗K∗ = mσK n⃗σKK∗ + mσL n⃗σLK∗ . In a diamond cell
D ∈ D, we have different direct orthonormal basis: (τ⃗ K∗,L∗ , n⃗σK), (n⃗σ∗K∗ , τ⃗ K,L), (n⃗σKK∗ ,
τ⃗ σKK∗) and (n⃗σLK∗ , τ⃗ σLK∗). We distinguish the interior diamond cells and the boundary
diamond cells: Dext = {D ∈ D, D ∩ ∂Ω ̸= ∅}, Dint = D\Dext. For all D ∈ Dext, we have
mσK∗ = dK∗,L and mσL∗ = dL∗,L.

Each diamond cell D ∈ Dint (resp. D ∈ Dext) can naturally be split into a set QD of
four triangles (resp. two triangles), denoted by QK,K∗ , QK,L∗ , QL,K∗ and QL,L∗ Q ∈ QD,
as shown in Figure 2.2(b), and satisfying QK,K∗ ⊂ K ∩ K∗, · · · . If D ∈ Dint, we have
D̄ = QK,K∗ ∪ QK,L∗ ∪ QL,K∗ ∪ QL,L∗ and if D ∈ Dext, we have D̄ = QK,K∗ ∪ QK,L∗ . The set
of the quarter diamonds in the domain is denoted by Q = ∪

D∈D
QD. For a quarter diamond

cell Q ∈ Q, we note by mQ its measure, hQ its diameter.
REMARK 2.3. In order to right define the quarter diamond cells, we have chosen the

barycentric dual mesh. In the classic dual mesh, when the diamond cells are non-convex the
definition of the quarter diamond cells is not possible.

The presence of the two angles αK, αL takes a role in Definition 2.5 of the modified
discrete gradient, in the new discrete Korn inequality (see Theorem 4.2) and in the consistency
errors (see Lemma 6.4 and Corollary 6.1). The three last results rely on Lemma 2.2. In order
to prove this Corollary, we need to introduce the following criterion:

Criterion: For each D ∈ D, if |αK − αL| < ϵ0, we choose xD to be the intersection of
the primal edge σ and the dual edge σ∗ instead of the middle point of the edge σ.

REMARK 2.4. Now, for each D ∈ D, we have either |αK − αL| > ϵ0 or αK = αL.
It is needed since the proof of the estimate is divided into two cases: when αK = αL or

αK ̸= αL. We can not generalize the case |αK − αL| > ϵ0 when ϵ0 tends to 0. One hand,
when αK ̸= αL, we obtain estimate constant depending on ϵ0 which explode when ϵ0 tends
to 0. On the other hand, when αK = αL , we can prove in an other way the same estimate
with a finite constant.

Mesh regularity measurement. Set size(T ) the maximum of the diameters of the dia-
mond cells in D. To measure how flat the diamond cells can be, we note αT the unique real
in ]0, π

2 ] such that sin(αT ) := min
D∈D

(| sin(αK)|, | sin(αL)|). We introduce a positive number

reg(T ) that quantifies the regularity of a given mesh and is useful to perform the convergence
analysis of finite volume schemes:

reg(T ):=max

0

@

1

sin(αT )
, max
D∈D

max
Q∈QD

hD

min
σ∈∂Q

mσ

, max
K∈M

max
D∈DK

dK

hD
, max
K∗∈M∗∪∂M∗

max
D∈DK∗

dK∗

hD

1

A . (2.1)

The number reg(T ) should be uniformly bounded when size(T ) → 0 for the convergence
to hold. For instance, there exists a constant C depending on reg(T ) such that

hD√
mD

≤ hD√
mQ

≤ C, ∀Q ∈ QD, hD ≤ C min(mσ, mσ∗), ∀Dσ,σ∗ ∈ D.

2.2. Unknowns and discrete projections. The DDFV method associates to any primal
control volume K ∈ M∪∂M an unknown value uK ∈ R2 for the velocity, to any dual control
volume K∗ ∈ M∗ ∪ ∂M∗ an unknown value uK∗ ∈ R2 for the velocity and to any diamond
cell D ∈ D an unknown value pD ∈ R for the pressure. These unknowns are collected in the
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families :

uT =
(
(uK)K∈(M∪∂M) , (uK∗)K∗∈(M∗∪∂M∗)

)
∈

(
R2

)T
, pD =

(
(pD)D∈D

)
∈ RD.

We specify a discrete subset of
(
R2

)T needed to take into account the Dirichlet boundary
conditions: E0 = {vT ∈

(
R2

)T
s. t. vK = 0, ∀K ∈ ∂M and vK∗ = 0, ∀K∗ ∈ ∂M∗}.

We define a interior mean-value projection for any integrable vector function v on Ω:

P̃
M

mv =
((

1
mK

∫
K

v(x)dx

)
K∈M

)
, P̃

M∗

m v =
((

1
mK∗

∫
K∗

v(x)dx

)
K∗∈M∗

)
. (2.2)

We also note the mean-value projection for any integrable vector function v on Ω̄ as follows

PT
mv =

(̃
P

M

mv,

(
1

mBK

∫
BK

v(x)dx

)
K∈∂M

, P̃
M∗

m v,

(
1

mBK∗

∫
BK∗

v(x)dx

)
K∗∈∂M∗

)
.

(2.3)
In particular, the mean-value projection is well defined for any vector v lying in (H1(Ω))2.

2.3. Discrete operators. We recall the discrete operators introduced in [19].
DEFINITION 2.1 (Discrete gradient). We define a consistent approximation of the gradi-

ent operator denoted by ∇D : uT ∈
(
R2

)T 7→ (∇DuT )D∈D ∈ (M2(R))D, as follows:

∇DuT =
1

sin(αD)

[
uL − uK

mσ∗
⊗ n⃗σK +

uL∗ − uK∗

mσ

⊗ n⃗σ∗K∗

]
.

where ⊗ represents the tensor product.
DEFINITION 2.2 (Discrete divergence). We define a consistent approximation of the

divergence operator applied to discrete tensor fields denoted by divT : ξD = (ξD)D∈D ∈
(M2(R))D 7→ divT ξD ∈

(
R2

)T
, as follows:

divKξD =
1

mK

∑
σ∈∂K

mσξDn⃗σK, ∀K ∈ M, and divKξD = 0, ∀K ∈ ∂M,

divK∗
ξD =

1
mK∗

∑
σ∗∈∂K∗

mσ∗ξDn⃗σ∗K∗ , ∀K∗ ∈ M∗,

divK∗
ξD =

1
mK∗

( ∑
Dσ,σ∗∈DK∗

mσ∗ξDn⃗σ∗K∗ +
∑

Dσ,σ∗∈DK∗∩Dext

dK∗,LξDn⃗σK

)
, ∀K∗ ∈ ∂M∗.

To write the DDFV scheme, we also need to denote the discrete divergence on the primal
mesh and on the interior dual mesh as follows:

divMξD =
((

divKξD
)
K∈M

)
, divM∗

ξD =
((

divK∗
ξD

)
K∗∈M∗

)
.

Using the barycentric dual mesh, we also can write the discrete divergence like in [7]

divK∗
ξD =

1
mK∗

∑
σ∗∈∂K∗

(
mσKξDn⃗σKK∗ + mσLξDn⃗σLK∗

)
, ∀K∗ ∈ M∗.

Thanks to the discrete gradient we can define a discrete strain rate tensor and a discrete
divergence of a vector field in

(
R2

)T .
DEFINITION 2.3 (Discrete strain rate tensor). We define a discrete strain rate tensor of

a vector field in
(
R2

)T
, denoted by: DD : uT ∈

(
R2

)T 7→ (DDuT )D∈D ∈ (M2(R))D, with

DDuT =
∇DuT +

t(∇DuT )
2 , for all D ∈ D.

DEFINITION 2.4. We define a discrete divergence of a vector field in
(
R2

)T
, denoted by:

divD : uT ∈
(
R2

)T 7→ (divDuT )D∈D ∈ RD, with divDuT = Tr(∇DuT ), for all D ∈ D.



8 S. KRELL

2.4. Local modification of the discrete strain rate tensor. Assume that the viscosity
η is Lipschitz continuous on each quarter diamond cell: there exists Cη > 0 such that:

|η(x) − η(x′)| ≤ Cη|x − x′|, ∀x, x′ ∈ Q̄, for all Q ∈ Q. (2.4)

We note, for all Q ∈ Q, ηQ =
∫
Q̄

η(s)dµQ̄(s) where µQ̄ is a measure of probability. Further-
more, we always have Cη ≤ ηQ ≤ Cη , for all Q ∈ Q.

The point we are concerned with in this paper is that the DDFV scheme (1.4) suffers
from a lost of consistency in the case where η presents discontinuities. More precisely, we
present a way to recover the consistency of the fluxes even when η presents jumps. The
normal component of the stress tensor σ(u, p) = 2ηDu− pId is continuous across all primal
and dual edges. For instance, we have∫

σK

σ|QK,K∗ (u, p)n⃗σKds =
∫

σK

σ|QL,K∗ (u, p)n⃗σKds.

We need to ensure this consistency at the discret level. We introduce a discret stress tensor
φQ on quarter diamond cells. Thus we add additional unknowns pQD = (pQ)Q∈QD on
each diamond cell D and we must define a new discret strain rate tensor DN

Q on each quarter
diamond cell in order to define the discret stress tensor φQ as 2ηQDN

QuT − pQId.
We first recall the scalar case propose in [3]. The discrete gradient operator ∇DuT can

be understood as the gradient of the unique affine function ΠDuT on D whose value at the
middle of each side of the diamond D is the mean value between the two unknowns associated
to the extremities of this segment (sum up in Figure 2.3). We introduce the middle point
xσK , xσL , xσK∗ , xσL∗ of the segments σK, σL, σK∗ , σL∗ . The new gradient operator ∇N

Q is

uL+uK∗

2

uL+uL∗

2

xσK∗

xσK

xσL∗

xK∗

uK+uL∗

2

uK+uK∗

2

xσL

xK

xL∗

xL

FIG. 2.3. .

chosen to be constant on all the quarter diamond cells Q ∈ Q. It is the gradient of a function
Π̃DuT whose is a affine function on each Q ∈ QD which coincides with ΠDuT in the middle
of each side of D and which is continuous at each point xσK , xσL , xσK∗ , xσL∗ . We add four
new unknowns δD = (δK, δL, δK∗ , δL∗) defined to be the differences Π̃DuT (y) − ΠDuT (y)
for each y ∈ {xσK , xσL , xσK∗ , xσL∗ }. Now we can write ∇N

QuT = ∇DuT + BQδD, where
(BQ)Q∈QD is a family of matrices which can be explicitly compute. We have present the case
where D is a interior diamond, we can do the same when D ∈ Dext, thus we note nD = 4 if
D ∈ Dint and nD = 1 if D ∈ Dext. Here, we propose to adapt this framework to the vector
case. We will work now with δD = (δK, δL, δK∗ , δL∗) lying in (MnD,2(R))D and the family
of matrix BQ are the same.

2.4.1. Discrete operators on quarter diamond cells. DEFINITION 2.5 (Discrete gradi-
ent on quarter diamonds). We define a discrete gradient of a vector field of

(
R2

)T
on quarter

diamond cells: ∇N
Q :

(
R2

)T → (∇N
QuT )Q∈Q ∈ (M2(R))Q, such that for any D ∈ D and
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for any Q ∈ QD: ∇N
QuT = ∇DuT + tδDtBQ, where δD = (δD

1 , δD
2 ) ∈ (MnD,2(R))D is an

artificial set of unknowns and (BQ)Q∈QD
is a set of M2,nD (R) defined as follows:

• ∀D ∈ Dint, we take δD = t(δK, δL, δK∗ , δL∗) ∈ MnD,2(R) and four matrices BQ:

BQK,K∗=

 

mσK n⃗σKK∗

mQK,K∗
, 0,

mσK∗ n⃗σK

mQK,K∗
, 0

!

, BQK,L∗=

 

−
mσK n⃗σKK∗

mQK,L∗
, 0, 0,

mσL∗ n⃗σK

mQK,L∗

!

,

BQL,L∗=

 

0,−
mσL n⃗σLK∗

mQL,L∗
, 0,−

mσL∗ n⃗σK

mQL,L∗

!

, BQL,K∗=

 

0,
mσL n⃗σLK∗

mQL,K∗
,−

mσK∗ n⃗σK

mQL,K∗
, 0

!

.

• ∀D ∈ Dext, there is only two non-degenerate quarter diamonds in QD, we take
δD =

(
δK

)
∈ MnD,2(R) and the two corresponding matrices BQ are given by:

BQK,K∗ =

 

mσK n⃗σKK∗

mQK,K∗

!

, BQK,L∗ =

 

−
mσK n⃗σKK∗

mQK,L∗

!

.

In [3], they have introduced a new discrete gradient for a scalar field. Here we extend
this definition for a vector field. We use the same matrix BQ, the artificial set of unknowns is
now a matrix in MnD,2 instead of a vector in RnD . Thanks to the modified discrete gradient,
we can define a new symmetric operator a modified discrete strain rate tensor as follows.

DEFINITION 2.6 (Discrete strain rate tensor on quarter diamonds). We define a discrete
strain rate tensor of a vector field of

(
R2

)T
on the quarter diamonds: DN

Q :
(
R2

)T →
(DN

QuT )Q∈Q ∈ (M2(R))Q, such that for any Q ∈ Q: DN
QuT = 1

2

(
∇N

QuT + t(∇N
QuT )

)
.

The discrete strain rate tensor on quarter diamonds can be written as follows, for any D ∈ D
and for any Q ∈ QD, DN

QuT = DDuT + 1
2

(
tδDtBQ + BQδD

)
.

Furthermore, we easily see from the formulas above that
∑

Q∈QD
mQBQ = 0 for any

diamond cell D. Hence the following straightforward result holds
LEMMA 2.1. For any ξ ∈ M2(R), for any δ ∈ (MnD,2(R))D, we have for all D ∈ D

ξ =
1

mD

∑
Q∈QD

mQ

(
ξ +

1
2
(BQδ + tδtBQ)

)
.

This Lemma implies that the new strain rate tensor satisfied the following equality:

DDuT =
1

mD

∑
Q∈QD

mQDN
QuT , ∇DuT =

1
mD

∑
Q∈QD

mQ∇N
QuT , ∀ D ∈ D. (2.5)

Thanks to the modified discrete strain rate tensor, we can define a new viscous stress
tensor as follows.

DEFINITION 2.7 (Discrete viscous stress tensor on quarter diamonds). We define a dis-
crete viscous stress tensor of a vector field of

(
R2

)T
on diamond cells: Dη,N

D :
(
R2

)T →(
Dη,N

D uT
)
D∈D

∈ (M2(R))D, by Dη,N
D uT =

1
mD

∑
Q∈QD

mQηQDN
QuT , for any D ∈ D.

We define a stress tensor on quarter diamond cells as follows.
DEFINITION 2.8. We define a discrete stress tensor φQ, for all Q ∈ QD,
φQ(DDuT , δD, pQD ) = 2ηQDDuT + ηQ(BQδD + tδDtBQ) − pQId.

We want to eliminate the additional unknowns (δD, pQD ) on each diamond cell D in such
a way that the conservativity of the numerical fluxes on all diagonals of D is ensured. More
precisely, we want to choose (δD, pQD ) such that, we have ∀ D ∈ Dint, D = QK,K∗ ∪QK,L∗ ∪
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QL,K∗ ∪ QL,L∗ ,

φQK,K∗ (DDuT , δD, pQK,K∗ )n⃗σK = φQL,K∗ (DDuT , δD, pQL,K∗ )n⃗σK,

φQK,L∗ (DDuT , δD, pQK,L∗ )n⃗σK = φQL,L∗ (DDuT , δD, pQL,L∗ )n⃗σK,

φQK,K∗ (DDuT , δD, pQK,K∗ )n⃗σKK∗ = φQK,L∗ (DDuT , δD, pQK,L∗ )n⃗σKK∗ ,

φQL,K∗ (DDuT , δD, pQL,K∗ )n⃗σLK∗ = φQL,L∗ (DDuT , δD, pQL,L∗ )n⃗σLK∗ ,

Tr(tδDtBQ) = 0, ∀Q ∈ QD,
∑

Q∈QD

mQpQ = mDpD,

(2.6)

and ∀ D ∈ Dext, D = QK,K∗ ∪ QK,L∗ ,
φQK,K∗ (DDuT , δD, pQK,K∗ )n⃗σKK∗ = φQK,L∗ (DDuT , δD, pQK,L∗ )n⃗σKK∗ ,

Tr(tδDtBQ) = 0, ∀Q ∈ QD,
∑

Q∈QD

mQpQ = mDpD.
(2.7)

We are going to show that (2.6) or (2.7) uniquely define (δD, pQD) ∈ MnD,2(R) × RnD

as a function of DDuT and pD. For any D ∈ D, the existence of (δD, pQD ) is not only
a generalization of the work of [3], since we use the discrete strain rate tensor and not the
discrete gradient, we have BQδD + tδDtBQ instead of BQδD. Then we have to differentiate
two cases: the first one is when αK ̸= αL where we can prove the existence and uniqueness
and the second one is when αK = αL where we need to add an other condition.

PROPOSITION 2.1. The condition (2.6) and (2.7) are equivalent to for any D ∈ D∑
Q∈QD

mQφQ(DDuT , δD, pQ)BQ = 0, (2.8a)

Tr(tδDtBQ) = 0, ∀Q ∈ QD,
∑

Q∈QD

mQpQ = mDpD. (2.8b)

Since we work with the symmetric part of the gradient, we have to study the overdetermined
system, for all D ∈ D, tδDtBQ + BQδD = FQ, ∀Q ∈ QD. We determine its kernel and range
distinguishing the case where αK ̸= αL and αK = αL as follows.

PROPOSITION 2.2. Let D ∈ D. The kernel of tδDtBQ + BQδD = FQ, ∀Q ∈ QD, is:
• zero when αK ̸= αL,

• generated by δ0 =
t(

−
t n⃗σK

mσK

,
t n⃗σK

mσL

,
t n⃗σ∗K∗

mσK∗
,−

t n⃗σ∗K∗

mσL∗

)
when αK = αL.

To have the existence of δD, the second member have to satisfy the following conditions:
• when αK ̸= αL,

FQ have to be symmetric , ∀Q ∈ QD,
∑

Q∈QD

mQFQ = 0,

mQK,K∗
t τ⃗ K,LFQK,K∗ τ⃗ K,L + mQK,L∗

t τ⃗ K,LFQK,L∗ τ⃗ K,L = 0,
(2.9)

• when αK = αL,
FQ have to be symmetric , ∀Q ∈ QD,

∑
Q∈QD

mQFQ = 0,

mQK,K∗
t τ⃗ K,LFQK,K∗ τ⃗ K,L + mQK,L∗

t τ⃗ K,LFQK,L∗ τ⃗ K,L = 0,

mQK,K∗
t τ⃗ K∗,L∗FQK,K∗ τ⃗ K∗,L∗ + mQL,K∗

t τ⃗ K∗,L∗FQL,K∗ τ⃗ K∗,L∗ = 0.

(2.10)
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To sum up, if the second member satisfies the above conditions, there exists a unique δD ∈
MnD,2(R) satisfying tδDtBQ+BQδD=FQ, ∀Q ∈ QD, and if αK =αL, we add (δD, δ0) = 0.

PROPOSITION 2.3. We have ∀δ̂D ∈ MnD,2(R) such that Tr(BQδ̂D) = 0, ∀Q ∈ QD,

2
∑

Q∈QD

mQηQ(DN
QuT : BQδ̂D) =

∑
Q∈QD

mQηQ(DN
QuT : BQδ̂D +

t
δ̂DtBQ) = 0.

Proof. Multiplying (2.8a) by δ̂D and applying the trace operatorsince we have (Id : BQδ̂D) =
Tr(BQδ̂D), it implies the result. ¤

In particular, Proposition 2.3 implies that∑
Q∈QD

mQηQ(DN
QuT : BQδD + t

δDtBQ) = 0. (2.11)

Now we are able to prove the existence and uniqueness of (δD, pQD ) ∈ MnD,2(R) × RnD .
PROPOSITION 2.4. For any (DDuT , pD) ∈

(
R2

)T × RD, and for any D ∈ D, there
exists a unique (δD, pQD ) ∈ MnD,2(R) × RnD satisfying (2.8) and if αK = αL we impose

(δD, δ0) = 0, where δ0 =
t(
−

t n⃗σK
mσK

,
t n⃗σK
mσL

,
t n⃗σ∗K∗
mσK∗

,−
t n⃗σ∗K∗
mσL∗

)
.

Proof. We only give the proof for D ∈ Dint (so that nD = 4), since the case of boundary
diamond cells can be treated in the same way. We can write the systems (2.8) like a linear
rectangle system Aδ = b with δ = (δD

1 ; δD
2 ; pQD ) ∈ R3nD and A ∈ M3nD+1,3nD (R).

We are interesting in the injectivity of the matrix A. We assume that DDuT and pD are
zero, thus the second member b is zero. Thanks to Proposition 2.3 and to DDuT = 0, we get∑

Q∈QD

mQηQ(tδDtBQ + BQδD : BQδD) = 0.

Remark that the Frobenius scalar product of a symmetric and antisymmetric tensor is equal
to zero, we get

∑
Q∈QD

mQηQ|||tδDtBQ + BQδD|||2F = 0. Therefore, it implies BQδD +
tδDtBQ = 0, for all Q ∈ QD. Using the last equality in (2.6), we get that pQK,K∗ , pQL,K∗ ,
pQK,L∗ and pQL,L∗ are equal and thanks to

∑
Q∈QD

mQpQ = 0, we get pQD = 0.

•Case αK ̸= αL. Thanks to Proposition 2.2, we must have δD = 0 and pQD = 0. The
matrix A is injective. We determine the kernel of its transpose KertA:

KertA = Spant(0, · · · , 0, mQK,K∗ ,mQK,L∗ ,mQL,K∗ ,mQL,L∗ , 0).

For the existence of δ, we have to prove that b ∈ ImA =
(
KertA

)o
. Let X ∈

(
KertA

)o
. We

immediately get that (X, b) = 0.
•Case αK = αL. In this case, thanks to Proposition 2.2, we must have δD = λδ0, λ ∈ R,

dim(KerA)=1. The matrix A is not injective. Furthermore, we impose (δD, δ0) = 0 thus λ is
equal to zero. We determine the kernel of its transpose KertA. We have

KertA = Span
(

t(−n⃗σKK∗ , n⃗σKK∗ , n⃗σK,−n⃗σK, 0 · · · , 0),

t(0, · · · , 0,mQK,K∗ ,mQK,L∗ , mQL,K∗ , mQL,L∗ , 0)
)

.

For the existence of δ, we have to prove that b ∈ ImA =
(
KertA

)o
. Let X ∈

(
KertA

)o
,

we have prove in the case αK ̸= αL that for X equal to the second span vector, we have
(X, b) = 0. We just have to prove that for X = t(−n⃗σKK∗ , n⃗σKK∗ , n⃗σK,−n⃗σK, 0, 0, 0, 0, 0

)
,
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we also have (X, b) = 0. Using the fact that DDuT is symmetric, ie (DDuT n⃗σK, n⃗σKK∗) =
(DDuT n⃗σKK∗ , n⃗σK), we get

(X, b) =− 2(ηQK,K∗− ηQL,K∗ )(DDuT n⃗σK, n⃗σKK∗) + 2(ηQK,L∗− ηQL,L∗ )(DDuT n⃗σK, n⃗σKK∗)

+ 2(ηQK,K∗− ηQK,L∗ )(DDuT n⃗σKK∗ , n⃗σK) − 2(ηQL,K∗− ηQL,L∗ )(DDuT n⃗σKK∗ , n⃗σK)

We deduce (X, b) = 0. Therefore b ∈ ImA, we deduce the existence of δ. ¤
2.4.2. Properties of the artificial unknowns. Since we have the presence of the full

velocity tensor Du, we have to prove discrete Korn inequalities. We want now to prove one
for the new discrete operators DN

Q and ∇N
Q (see Theorem 4.2). The extension to this new

operator is far from straight forward. The difficulty leads on the new artificial unknowns δD.
First of all, we prove estimates between BQδD and BQδD + tδDtBQ. Like in the proof of
the existence of δD, the two cases αK = αL and αK ̸= αL have to been investigate. The
following Lemma is proved in Subsection 9.1.

LEMMA 2.2. For all D ∈ D, for all δD ∈ MnD,2(R) such that if αK = αL we have
(δD, δ0) = 0, there exists C1 > 0, depending only on reg(T ) and sin(ϵ0), such that∑

Q∈QD

mQ|||BQδD|||2F ≤ C1

∑
Q∈QD

mQ|||BQδD + t
δDtBQ|||2F ,

where δ0 =
t(
−

t n⃗σK
mσK

,
t n⃗σK
mσL

,
t n⃗σ∗K∗
mσK∗

,−
t n⃗σ∗K∗
mσL∗

)
.

We want to bring out the form of the artificial unknowns (δD, pQD) on the diamond cells.
REMARK 2.5. If η is constant per sub-domains, equal to η1 on Ω1 and to η2 on Ω2. For

xL∗

xK∗

η1

xD

η2

xL

xK

FIG. 2.4. The viscosity on D ∩ Γ ̸= ∅.

D ∩ Γ ̸= ∅ (see Figure 2.4), the solution (δD, pQD ) is equal to

δK = δL = 0, δK∗ = δL∗ = −
mQK,K∗ mQL,K∗ (η1 − η2)D

DuT n⃗σK · τ⃗ K,L

η2mQK,K∗ + η1mQL,K∗
τ⃗ K,L

pQK,K∗ = pD + 2(η1 − η2)D
DuT n⃗σK · n⃗σK

mQL,K∗

mQK,K∗ + mQL,K∗
, pQK,L∗ = pQK,K∗ ,

pQL,K∗ = pD + 2(η2 − η1)D
DuT n⃗σK · n⃗σK

mQK,K∗

mQK,K∗ + mQL,K∗
, pQL,L∗ = pQL,K∗ .

We generalize the form of pQD as follows. The result is proved in Subsection 9.2.
LEMMA 2.3. For any D ∈ D, any (DDuT , pD) ∈ M2(R) × R, there exists C2 > 0,

depending only on reg(T ) and Cη, and a function αs,D such that the solution (δD, pQD ) of
(2.8) with (DDuT , pD) as the following form

pQ = pD + αs,D(DDuT ), where s = ∂D ∩ ∂Q,

with |αs,D(qD)|2 ≤ C2|||qD|||2F , for any qD ∈ M2(R).
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2.5. Inner products and norms. We define the four following inner products

JvT ,uT KT =
1
2

( ∑
K∈M

mKuK · vK +
∑

K∗∈M∗∪∂M∗
mK∗uK∗· vK∗

)
, ∀uT ,vT∈

(
R2

)T
,

(pD, qD)D =
∑

D∈D

mDpDqD, ∀pD, qD ∈ RD,

(ξD : ϕD)D =
∑

D∈D

mD(ξD : ϕD), ∀ξD, ϕD ∈ (M2(R))D,

(ξQ : ϕQ)Q =
∑

Q∈Q

mQ(ξQ : ϕQ), ∀ξQ, ϕQ ∈ (M2(R))Q.

We define the corresponding norms as follows

∥uT ∥2 = JuT ,uT K 1
2
T , ∀uT ∈

(
R2

)T
,

∥pD∥2 = (pD, pD)
1
2
D, ∀pD ∈ RD, |||ξD|||2 = (ξD : ξD)

1
2
D, ∀ξD ∈ (M2(R))D,

∥qQ∥2 = (qQ, qQ)
1
2
Q, ∀qQ ∈ RQ, |||ξQ|||2 = (ξQ : ξQ)

1
2
Q, ∀ξQ ∈ (M2(R))Q.

For any D ∈ D, we define a norm over QD as follows

|||A|||2QD
=

∑
Q∈QD

∫
Q

|||A(z)|||2Fdz, ∀A ∈ L2(QD,M2(R)).

2.6. Preparation of the stabilization procedure. Now we can define the new stabiliza-
tion term, that considers the jumps of the pressure on quarter diamond cells.

DEFINITION 2.9. The new stabilization term is a non consistent discrete approximation
of the operator ∆p, denoted by ∆D : pQ ∈ RQ 7→ ∆DpQ ∈ RD, and defined as follows:

∆DpQ =
1

mD

∑
s=Q|Q′

=D|D′∈ED

h2
D + h2

D′

h2
D

(pQ′
− pQ), ∀ D ∈ D.

Note that we do not need a consistent approximation of the laplacian operator. In fact, a
consistent approximation based on a two-point flux formula would require the diamond mesh
to verify an orthogonality constraint as, for instance, in the case of admissible meshes [11],
which has no reason to hold here. Then, we define two other second order discrete difference
operators. The first one is the following.

DEFINITION 2.10. We define a non consistent discrete approximation of the Laplace
operator ∆p, denoted by ∆D : pD ∈ RD 7→ ∆DpD ∈ RD, and defined as follows:

∆DpD =
1

mD

∑
s=D|D′∈ED

h2
D + h2

D′

h2
D

(pD′
− pD), ∀ D ∈ D.

Related to this operator, we define a mesh dependent semi-norm | · |h over RD by:
DEFINITION 2.11. We define a discrete semi-norm for any pD ∈ RD:

|pD|2h =
∑

s=D|D′∈S

(h2
D + h2

D′)(pD′
− pD)2.

The semi-norm |p|h is the discrete counterpart of size(T )|∇p|2. We have that

−(h2
D∆DpD, pD)D = |pD|2h, ∀ pD ∈ RD. (2.12)
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The second one uses the function αs,D as follows.
DEFINITION 2.12. We define a new discrete laplacian for any qD ∈ (M2(R))D:

∆D
α(qD) =

1
mD

∑
s=D|D′∈ED

h2
D + h2

D′

h2
D

(αs,D′(qD′
) − αs,D(qD)), ∀D ∈ D,

where αs,D is the function defined in Lemma 2.3.
We introduce the corresponding semi-norm.
DEFINITION 2.13. We define a new discrete semi-norm for any qD ∈ (M2(R))D:

|qD|2α,h :=
∑

s=D|D′∈S

(h2
D + h2

D′)(αs,D′(qD′
) − αs,D(qD))2,

where αs,D is the function defined in Lemma 2.3.
Thanks to |αs,D(qD)|2 ≤ C2|||qD|||2F and relation (2.1), Cauchy-Schwarz inequality imply that

|qD|2α,h ≤ C3|||qD|||22, ∀ qD ∈ (M2(R))D, (2.13)

with C3 = 8C2reg(T )2(1 + reg(T )2). Lemma 2.3, Definition 2.10 and 2.12 imply that

h2
DmD∆DpQ = h2

DmD(∆D(pD) + µ∆D
α(DDuT )), with µ = 1. (2.14)

3. DDFV schemes for the Stokes equation. As claimed in introduction, we integrate
the momentum conservation law of the problem (1.1) on the primal mesh M and the interior
dual mesh M∗. The mass conservation equation is directly approached on the diamond mesh
using the discrete operator divD and a stabilized term inspired by the well known Brezzi-
Pitkäranta method [5]. We impose on ∂M and on ∂M∗ the Dirichlet boundary conditions.
Finally, the integral of the pressure is imposed to be equal to zero. The only difference
with the scheme 1.4 introduced in [19] is in the viscous stress tensor and the stabilization
term, to take into account the jumps of the pressure. We replace ηDDDuT (respectively
−λh2

D∆DpD) by Dη,N
D uT , defined by Definition 2.7, (respectively −λh2

D∆DpQ) as follows:
Find uT ∈ E0 and pD ∈ RD such that,
divM(−2Dη,N

D uT + pDId) = fM, divM∗
(−2Dη,N

D uT + pDId) = fM∗
,

divD(uT ) − λh2
D∆DpQ = 0,

∑
D∈D

mDpD = 0,
(3.1)

where λ > 0 given, fM = P̃
M

mf and fM∗ = P̃
M∗

m f where the projections are defined by (2.2),
and (δD, pQD ) ∈ MnD,2(R) × RnD satisfying (2.8). If we take µ = 0 in (2.14), we recover
the old stabilization term −λh2

D∆DpD. In this case, the scheme is well-posed nevertheless
the error estimates is an open problem, since we have take into account the jumps of pressure.
The numerical tests also bring out the role of the new stabilization term (µ = 1 in (2.14)).

4. Results on discrete operators. In this section, we present some several results on
the discrete operators. In Section 4.1.1, we begin with estimates between the modified and
old discrete strain rate tensor. Then, we want to obtain two discrete Korn inequality for the
old and modified discrete strain rate tensor. We show that the discrete Korn inequality for
the modified operators is not only an extension of the old one, it is obtained thanks to the
old one proved in [19] and Lemma 2.2. This Lemma proves estimate between BQδD and
BQδD + tδDtBQ. This is the main difference between the present study and the work of [3].
In other subsections, we sum up results of [19] and adapt them in the case of u ∈ (H2(ω))2.

4.1. Discrete strain rate tensor.
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4.1.1. Estimations of the discrete strain rate tensor. We recall results proved in [19],
and extend them on the quarter diamond cells. The first one is a consequence of Remark 1.1.

PROPOSITION 4.1. For all uT ∈
(
R2

)T
, we get

|||DDuT |||2 ≤ |||∇DuT |||2 and |||DN
QuT |||2 ≤ |||∇N

QuT |||2.

The discrete strain rate tensor and the modified one can be compared as follows.
LEMMA 4.1. Assume that η satisfies (1.2). There exists a constant C4 > 0, depending

only on Cη and Cη, such that for all uT ∈
(
R2

)T
:

|||DDuT |||2 ≤ |||DN
QuT |||2 ≤ C4|||DDuT |||2.

Proof. First estimate. Let D ∈ D. The relation 2.5 and Cauchy-Schwarz inequality give

mD|||DDuT |||2F =
∑

Q∈QD

mQ(DN
QuT : DDuT ) ≤

∑
Q∈QD

mQ|||DN
QuT |||F |||DDuT |||F .

We apply once more Cauchy-Schwarz inequality mD|||DDuT |||2F ≤
∑

Q∈QD

mQ|||DN
QuT |||2F ,

which concludes the first estimate.
Second estimate. Let D ∈ D. Definition 2.6 of DN

QuT and (2.11) imply that∑
Q∈QD

mQηQ|||DN
QuT |||2F =

∑
Q∈QD

mQηQ(DN
QuT : DDuT ).

Using (1.2) and applying Cauchy-Schwarz inequality, we obtain the result noting C4 = Cη

Cη
.
¤

4.1.2. Discrete Korn inequality. In this section, we recall the discrete Korn inequality
proved in [19], and prove one for the new operators defined on quarter diamond cells.

THEOREM 4.1 (Discrete Korn inequality). For all uT ∈ E0, we have

|||∇DuT |||2 ≤
√

2|||DDuT |||2.

THEOREM 4.2 (Discrete Korn inequality). Assume that η satisfies (1.2). There exists
C5 > 0 depending only on Cη , Cη , reg(T ) and sin(ϵ0) such that for all uT ∈ E0:

|||∇N
QuT |||2 ≤ C5|||DN

QuT |||2.

Proof. The equality (2.11), Cauchy-Schwarz inequality, (1.2) and Lemma 2.2 imply that

∑
Q∈QD

mQ|||BQδD|||2F ≤ C1

C
2

η

C2
η

mD|||DDuT |||2F .

Furthermore, the relation
∑

Q∈QD
mQBQ = 0 gives

∑
Q∈QD

mQ|||∇N
QuT |||2F ≤ mD|||∇DuT |||2F + C1

C
2

η

C2
η

mD|||DDuT |||2F .

Using the discrete Korn inequality Theorem 4.1 and than Lemma 4.1, we conclude

|||∇N
QuT |||22 ≤

(
2 + C1

C
2

η

C2
η

)
|||DDuT |||22 ≤

(
2 + C1

C
2

η

C2
η

)
|||DN

QuT |||22.
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¤
Using Lemma 4.1, these two discrete Korn inequalities imply the comparison between

the discrete gradient and the modified one, as follows.
LEMMA 4.2. Assume that η satisfies (1.2). There exists two constants C6, C7 > 0,

depending only on Cη, Cη, reg(T ) and sin(ϵ0) such that for all uT ∈ E0:

C6|||∇DuT |||2 ≤ |||∇N
QuT |||2 ≤ C7|||∇DuT |||2.

4.2. Discrete Stokes formula. In [19], the discrete gradient and discrete divergence for
a vector-value function are linked by a discrete Stokes formula, as follows.

THEOREM 4.3 (Discrete Stokes formula). For all ξD ∈ (M2(R))D, vT ∈ E0:

JdivT ξD,vT KT = −(ξD : ∇DvT )D.

Since we have introduced new discrete operators on the quarter diamond cells, we want to
rewrite the discrete Stokes formula for a specific tensor Dη,N

D uT on the quarter diamond cells.
THEOREM 4.4 (Formule de Green ). For all uT ,vT ∈

(
R2

)T × E0

JdivT (Dη,N
D uT ),vT KT = −(ηQDN

QuT : ∇N
QvT )Q.

Proof. Thanks to Proposition 2.4, there exists a unique (δ̂D, p̂QD ) ∈ MnD,2(R) × RnD

satisfied the conditions (2.8), with DDvT and pD. Using the symmetry of DDvT , we have

mD(Dη,N
D uT : 2DDvT ) =

∑
Q∈QD

mQηQ(DN
QuT : 2DN

QvT −
t
δ̂DtBQ −

t
δ̂DtBQ).

Furthermore, since for all Q ∈ QD, Tr(BQδ̂D) = 0, Proposition 2.3 implies that

∑
Q∈QD

mQηQ(DN
QuT : BQδ̂D +

t
δ̂DtBQ) = 0.

Finally, we deduce that mD(Dη,N
D uT : ∇DvT ) =

∑
Q∈QD

mQηQ(DN
QuT : DN

QvT ). The
symmetry of DN

QuT and the discrete Stokes formula 4.3 imply the result. ¤

4.3. Poincaré inequality. Properties of the mean-value projection operator. We re-
call results which are proved in [19] for the first four results or [1] for the last one. We begin
with the discrete Poincaré inequality.

THEOREM 4.5 (Discrete Poincaré inequality). Let T be a mesh of Ω. There exists a
constant C8 > 0, depending only on the diameter of Ω and reg(T ), such that

∥uT ∥2 ≤ C8|||∇DuT |||2, ∀uT ∈ E0.

We give below the main property of the mean-value projection onto the set of discrete func-
tions in our framework.

LEMMA 4.3. Let T be a mesh of Ω. There exists C9, C10 > 0 depending only on reg(T ),
such that for any function v in (H1(Ω))2, we have

|||∇DPT
mv|||2 ≤ C9|||∇v|||2 and

∑
D∈D

∫
D

pD (divD(PT
mv) − div(v)) dz ≤ C10|pD|h∥v∥H1 .
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LEMMA 4.4. Let T be a mesh of Ω. There exists C11 > 0 depending only on reg(T ),
such that for any pD ∈ RD, we have

|pD|h ≤ C11∥pD∥2.

Finally, the following result is similar to [1, Lemma 3.4].
LEMMA 4.5. There exists a number C12 > 0 such that for any bounded set P ⊂ R2 with

positive measure, any segment σ ⊂ R2 and any v ∈ H1(P), we have

|vP − vσ|2 ≤ 1
mσmP

∫
σ

∫
P
|v(x) − v(y)|2dxdy ≤ C12

diam(P̂σ)3

mσmP

∫
cPσ

|∇v(z)|2dz,

where vP denotes the mean value of v on P , vσ the mean value of v on the segment σ, and
P̂σ is the convex hull of P ∪ σ.

4.4. Properties of the center-value projection operator. By usual Taylor inside each
quarter diamond Q (see [3], for instance), we can easily show the main properties of the
center-value projection onto the set of functions in (H2(ω))2.

LEMMA 4.6. Let T be a mesh of Ω. There exists a number C13, C14 > 0, depending
only on reg(T ), such that for any function v in (H2(ω))2, we have

∥v − PT
c v∥2 ≤ C13size(T )∥v∥(H2(ω))2 ,

mD|||∇DPT
c v|||2F ≤ C14

∑
Q∈QD

∫
Q

(
|||∇v(z)|||2F + |∇2v(z)|2

)
dz.

We immediately have the inequality on the norm,

|||∇DPT
c v|||2 ≤ C14∥v∥(H2(ω))2 , ∀v ∈ (H2(ω))2. (4.1)

5. Stability of the scheme. In this section, we prove the uniform stability of our finite
volume scheme and its well-posedness. The proof of the uniform stability result relies on an
appropriate choice of the stabilization term. Let us introduce the bilinear form associated to
our DDFV scheme:

DEFINITION 5.1. We define the bilinear form associated to our DDFV scheme (3.1):

∀ (uT , pD), (euT , epD) ∈
`

R2´T × RD ,

B(uT , pD ; euT , epD) = JdivT (−2Dη,N
D uT + pDId), euT KT + (divD(uT ) − λh2

D∆D(pQ), epD)D ,

where the stabilization parameter λ is a positive number.
THEOREM 5.1 (Stability of the scheme). Assume that η satisfies (1.2) and λ <

4Cη

C3
.

Then there exists C15, C16 > 0, depending only on the diameter of Ω, λ, Cη , Cη, reg(T )
and sin(ϵ0), for each pair (uT , pD) ∈ E0 × RD such that

∑
D∈D

mDpD = 0, there exists

(ũT , p̃D) ∈ E0 × RD:

|||∇N
QũT |||2 + ∥p̃Q∥2 ≤ C15

(
|||∇N

QuT |||2 + ∥pQ∥2

)
, (5.1)

and

|||∇N
QuT |||22 + ∥pQ∥2

2 ≤ C16B(uT , pD; ũT , p̃D). (5.2)

with (δD, pQ) (resp. (δ̃D, p̃Q)) the solution of (2.8) for DDuT and pD (resp. DDũT and
p̃D), thus we have mDpD =

∑
Q∈QD

mQpQ, for all D ∈ D.

Proof. Let (uT , pD) ∈ E0 × RD such that
∑

D∈D

mDpD = 0. The proof of this Theorem is

obtained by building explicitly (ũT , p̃D) ∈ E0 × RD such that (5.1) and (5.2) hold.
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Step 1. We apply to B the two discrete Stokes formula 4.3 and 4.4, we get

B(uT , pD;uT , pD) =(2ηQDN
QuT : ∇N

QuT )Q − (λh2
D∆D(pQ), pD)D.

The symmetry of DN
QuT and (2.14) imply that

B(uT , pD ;uT , pD) = (2ηQDN
QuT : DN

QuT )Q − (λh2
D∆D(pD) + λh2

D∆D
α (DDuT ), pD)D .

Reorganizing the sum over s ∈ S, we have

−(h2
D∆D

α (DDuT ), pD)D =
∑

s=D|D′∈S

(h2
D + h2

D′)(αs,D′(DD′
uT ) − αs,D(DDuT ))(pD′

− pD).

Young inequality and (2.12) imply that

−(λh2
D∆D(pD) + λh2

D∆D
α (DDuT ), pD)D ≥ λ

2
|pD|2h − λ

2
|DDuT |2α,h.

Thanks to the inequality (1.2), we obtain

B(uT , pD;uT , pD) ≥2Cη|||DN
QuT |||22 +

λ

2
|pD|2h − λ

2
|DDuT |2α,h.

Thanks to (2.13) and Lemma 4.1, we have |DDuT |2α,h ≤ C3|||DN
QuT |||22. Finally we use the

discrete Korn inequality (Theorem 4.2) in order to get

B(uT , pD;uT , pD) ≥ C5

(
2Cη − C3

λ

2

)
|||∇N

QuT |||22 +
λ

2
|pD|2h. (5.3)

With λ <
4Cη

C3
, constants in the above estimate are non negative. Note that the above estimate

on the pressure is mesh dependent (the semi-norm |.|h is itself mesh dependent). That is why
we could not bound uniformly the L2-norm of the pressure by the semi-norm |.|h.

Step 2. We use the Nec̆as Lemma (see [14, Corollary 2.4] or [2, Lemma III.1.17]): since
pQ =

∑
D∈D

∑
Q∈QD

pQ1Q ∈ L2(Ω) and its integral over Ω is zero, there exists a constant C > 0

depending only on Ω, and v ∈ (H1
0 (Ω))2 such that div(v) = −pQ and

∥v∥H1 ≤ C∥pQ∥2. (5.4)

Let us choose vT = PT
mv the mean-value projection PT

mv, defined by (2.3). In particular,
we have vT ∈ E0. Thanks to Lemma 4.1, Proposition 4.1 and Lemma 4.3, we deduce

|||DN
QvT |||2 ≤ C4C9C∥pQ∥2. (5.5)

The discrete Stokes formula 4.4 implies

B(uT , pD;vT , 0) = 2(ηQDN
QuT : ∇N

QvT )Q − (pD,divD(vT ))D.

Using the fact that (ηQDN
QuT : ∇N

QvT )Q = (ηQ∇N
QuT : DN

QvT )Q and the Cauchy-
Schwarz inequality, we deduce

B(uT ,pD;vT , 0) ≥ −Cη|||∇N
QuT |||2|||DN

QvT |||2 −
∑

D∈D

∑
Q∈QD

∫
Q

pQdiv(v(z))dz

−
∑

D∈D

∫
D

pD (divD(vT ) − div(v(z))) dz +
∑

D∈D

∑
Q∈QD

∫
Q

(pQ − pD)div(v(z))dz.
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Since we have div(v) = −pQ and the inequality (5.5) gives

B(uT ,pD;vT , 0) ≥ −CηC4C9C|||∇N
QuT |||2∥pQ∥2 + ∥pQ∥2

2

−
∑

D∈D

∫
D

pD (divD(vT ) − div(v(z))) dz −
∑

D∈D

∑
Q∈QD

∫
Q

(pD − pQ)div(v(z))dz.

Thanks to Lemma 4.3 and to estimate (5.4), we obtain∑
D∈D

∫
D

pD (divD(vT ) − div(v(z))) dz ≤ CC10|pD|h∥pQ∥2.

Thanks to Lemma 2.3, we have pD − pQ = −αs,D(DDuT ), with s = ∂D ∩ ∂Q. Cauchy-
Schwarz implies

P

D∈D

P

Q∈QD

Z

Q
(pD − pQ)div(v(z))dz ≤ ∥div(v)∥2

 

P

D∈D

P

s∈ED

mD|αs,D(DDuT )|2
!

1
2

.

Thanks to div(v) = −pQ, Lemma 2.3, Lemma 4.1 and Remark 1.1 give∑
D∈D

∑
Q∈QD

∫
Q

(pD − pQ)div(v(z))dz ≤
√

C2∥pQ∥2|||∇N
QuT |||2.

We deduce that

B(uT , pD;vT , 0) ≥ ∥pQ∥2
2 − CηC4C9C∥pQ∥2|||∇N

QuT |||2 − (
√

C2 + CC10)|pD|h∥pQ∥2.

Using Young’s inequality, we obtain the existence of three constants C̃1, C̃2, C̃3 > 0, depend-
ing only on Ω, Cη and reg(T ), such that

B(uT , pD;vT , 0) ≥ C̃1∥pQ∥2
2 − C̃2|||∇N

QuT |||22 − C̃3|pD|2h. (5.6)

Step 3. By bilinearity of B,(5.3) and (5.6) give for each positive number ξ > 0:

B(uT , pD;uT + ξvT , pD)

≥
(

C5

(
2Cη − C3

λ

2

)
− ξC̃2

)
|||∇N

QuT |||22 + ξC̃1∥pQ∥2
2 +

(
λ

2
− ξC̃3

)
|pD|2h.

Choosing a value of ξ > 0 small enough, this inequality yields an estimate of the form (5.2).
As the relation (5.1) is clearly verified by the pair ũT = uT + ξvT and p̃D = pD, this
concludes the proof.

¤
A consequence of this stability inequality is the well-posedness of the scheme (3.1).
THEOREM 5.2. Assume that η satisfies (1.2). For all mesh T as described in section

2, the finite volume scheme (3.1) with 0 < λ <
4Cη

C3
admits a unique solution (uT , pD) ∈(

R2
)T × RD.

Proof. Let us consider the homogeneous discrete problem given by setting fT , the right-hand
side of (3.1), to zero. Thanks to Theorem 5.1, there exists ũT ∈ E0, p̃D ∈ RD, such that

|||∇N
QuT |||22 + ∥pQ∥2

2 ≤ C16B(uT , pD; ũT , p̃D).

Definition 5.1 of B implies that B(uT , pD; ũT , p̃D) = 0. It follows that ∇N
QuT = 0 and

pQ = 0, with (δD, pQ) the solution of (2.8) with DDuT and pD. We deduce that pD = 0.
The former identity implies that the degrees of freedom of the velocity uT are constant, since
uT ∈ E0, we conclude that uT = 0. ¤
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6. Error estimates.

6.1. Definitions. We define a projections of functions defined on Ω over the primal and
dual meshes T . We call the center-value projection for any continuous function v on Ω:

PT
c v = ((v(xK))K∈(M∪∂M), (v(xK∗))K∗∈(M∗∪∂M∗)), ∀v ∈ (H2(ω))2.

We also define a mean-value projection over the diamond mesh D and over the quarter dia-
mond mesh Q for any integrable functions q on Ω:

PD
mq =

((
1

mD

∫
D

q(x)dx

)
D∈D

)
, PQ

mq =
((

1
mQ

∫
Q

q(x)dx

)
Q∈Q

)
.

The following proposition is a consequence of Proposition 2.4.
PROPOSITION 6.1. Let (u, p) the solution of the Stokes problem (1.1). There exists

(δD
ex, p

QD
ex ) ∈ MnD,2(R) × RnD satisfying∑

Q∈QD

mQφQ(DDPT
c u, δD

ex, p
Q
ex)BQ= 0, Tr(tδD

ex
tBQ)= 0, ∀Q ∈ QD,

∑
Q∈QD

mQpQ
ex= mDPD

mp.

DEFINITION 6.1. Let p̃Q
ex = PQ

mp − pQ
ex, ∀Q ∈ Q, and

∑
Q∈QD

mQp̃Q
ex = 0.

As usual for the error analysis of the finite volume methods, the consistency error which
has to be studied is the error on the numerical fluxes across each of the edges and dual edges
in the mesh. We first give the precise definition of these terms, then we state the various
estimates need to prove the error estimates.

DEFINITION 6.2. For any Q ∈ Q, we define the consistency errors in Q by

Rv
Q(z) = η|Q(z)Dv|Q(z) − ηQDN

QPT
c v, Rp

Q(z) = PQ
mp − p|Q(z), ∀ z ∈ D.

We introduce the following consistency errors on the numerical fluxes, for all s = Q|Q′ ∈ EQ:

Ri
s,Q = −Ri

s,Q′ =
1

ms

∫
s

Ri
Q(z)n⃗sQdz, i = v, p.

We note the L2-norm of the consistency error as follows:

∥Ri
s,Q∥2

2 =
∑

Q∈Q

∑
s∈EQ

mQ|Ri
s,Q|2, i = v, p.

Thanks to Definition 6.1, we define for all s = Q|Q′ ∈ EQ:

Rs,Q = 2Ru
s,Q + Rp

s,Q − p̃Q
exn⃗sQ. (6.1)

6.2. Statement of the result and sketch of proof. We conclude by providing an error
estimate in case where the exact solution of the problem (1.1) lies in the space (H2(ω))2 ×
H1(ω). Our main result is the following

THEOREM 6.1. Assume that η satisfies (1.2) and (2.4) and 0 < λ <
4Cη

C3
. We assume that

the solution (u, p) of the Stokes problem (1.1) belongs to (H2(ω))2×H1(ω). Let (uT , pD) ∈(
R2

)T × RD be the solution of the scheme (3.1). There exists a constant C17 > 0 depending
only on reg(T ), λ, sin(ϵ0), Cη, Cη, Cη, ∥u∥(H2(ω))2 and ∥p∥H1(ω), such that:

∥u − uT ∥2 + |||∇u −∇N
QuT |||2 ≤ C17size(T ) and ∥p − pQ∥2 ≤ C17size(T ).

with (δD, pQ) the solution of (2.8) for DDuT and pD.
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Step 1. Let eT = PT
c u − uT ∈ E0 denote the approximation error for the velocity

solution field and eD = PD
mp − pD ∈ RD the approximation error for the pressure solution

field. Thanks to (3.1) and (1.1), we have ∀K ∈ M

divK(−2Dη,N
D uT + pDId) = fK = − 1

mK

∫
K

div(2η(x)Du(x))dx +
1

mK

∫
K

∇p(x)dx.

Therefore, Definition 2.2 of divK and the continuous Stokes formula imply that

mKdivK(−2Dη,N
D eT + eDId) =

∑
Q⊂K

∑
s∈EQ∩∂K

∫
s

2η(z)Du(z)n⃗sQdz

−
∑

D∈DK

mσ(2Dη,N
D PT

c u)n⃗σK +
∑

D∈DK

mσPD
mpn⃗σK −

∑
Q⊂K

∑
s∈EQ∩∂K

∫
s

p(z)n⃗sQdz.

Using Definition 2.8 of φQ and Definition 6.1, we deduce for any D ∈ DK,

mσ

mD

∑
Q∈QD

mQφQ(DDPT
c u, δD

ex, p
QD
ex )n⃗σK =mσK∗ φQK,K∗ n⃗σK + mσL∗ φQK,L∗ n⃗σK.

Thanks to Definition 6.2 of the consistency error and Definition 6.1, we deduce

mKdivK(−2Dη,N
D eT + eDId) =

∑
Q⊂K

∑
s∈EQ∩∂K

msRs,Q.

In the same way, for K∗ ∈ M∗. Finally, the couple (eT , eD) ∈ E0 × RD satisfies :{
divM(−2Dη,N

D eT + eDId) = RM, divM∗
(−2Dη,N

D eT + eDId) = RM∗ ,

divD(eT ) − λh2
D∆DeQ = RD,

∑
D∈D

mDeD = 0, (6.2)

where

RK=
1

mK

P

Q⊂K

P

s∈EQ∩∂K
msRs,Q, ∀ K ∈ M, RK∗=

1

mK∗

P

Q⊂K∗

P

s∈EQ∩∂K∗
msRs,Q, ∀ K∗ ∈ M∗,

RD = divD(PT
c u) − λh2

D∆DpQ
ex, ∀ D ∈ D, eQ = pQ

ex − pQ, ∀ Q ∈ Q.

Theorem 5.1 implies that there exists ẽT ∈ E0, ẽD ∈ RD such that :

|||∇N
QẽT |||2 + ∥ẽQ∥2 ≤ C15

(
|||∇N

QeT |||2 + ∥eQ∥2

)
, (6.3)

and

|||∇N
QeT |||22 + ∥eQ∥2

2 ≤ C16B(eT , eD; ẽT , ẽD). (6.4)

Thanks to Definition 5.1 of B and to 6.2, we have B(eT , eD; ẽT , ẽD) = I + T , with I :=JdivT (−2Dη,N
D eT + eDId), ẽT K and T := (divD(eT ) − λh2

D∆DeQ, ẽD)D. Using the fact
that ẽK∗ = 0 for any K∗ ∈ ∂M∗ and the definition of I , we have small

I =
∑

K∈M

∑
Q⊂K

∑
s∈EQ∩∂K

ms(Rs,Q, ẽK) +
∑

K∗∈M∗∪∂M∗

∑
Q⊂K∗

∑
s∈EQ∩∂K∗

ms(Rs,Q, ẽK∗).

Using the fact that RσK∗ ,QK,K∗=−RσK∗ ,QL,K∗ , we have

mσK∗

“

(RσK∗ ,QK,K∗ ,eeK) + (RσK∗ ,QL,K∗ ,eeL)
”

= − 2

sin(αK)
mQK,K∗RσK∗ ,QK,K∗∇

D
eeT τ⃗ K,L +

2

sin(αL)
mQL,K∗RσK∗ ,QL,K∗∇

D
eeT τ⃗ K,L.
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Reorganizing the summation over the set of diamond cells, we deduce

I ≤ 4
sin(αT )

∑
D∈D

∑
Q∈QD

∑
s∈EQ

mQ|Rs,Q||||∇DẽT |||F .

Thanks to the Cauchy-Schwarz inequality and to Lemma 4.2, we obtain

I ≤ 4
sin(αT )

C6∥Rs,Q∥2|||∇N
QẽT |||2.

We note T1 := −λ(h2
D∆DpQ

ex, ẽ
D)D. Reordering the summation over s ∈ S, we have

T1 =λ
∑

s=Q|Q′=D|D′∈S

(h2
D + h2

D′)(pQ′

ex − pQ
ex)(ẽ

D′
− ẽD).

The Cauchy-Schwarz inequality and Lemma 4.4 give

|T1| ≤ C112size(T )λ∥ẽD∥2

( ∑
s=Q|Q′=D|D′∈S

(pQ′

ex − pQ
ex)

2

) 1
2

.

For the term T , we have the following estimate:

|T | ≤ ∥ẽD∥2

2size(T )λC11

( ∑
s=Q|Q′=D|D′∈S

(pQ′

ex − pQ
ex)

2

) 1
2

+ ∥divDPT
c u∥2

 .

To sum up, using the fact that ∥ẽD∥2 ≤ ∥ẽQ∥2 and (6.3), (6.4) becomes

|||∇N
QeT |||22 + ∥eQ∥2

2

≤C̃1(|||∇N
QeT |||2 + ∥eQ∥2)(∥Rs,Q∥2 + ∥divDPT

c u∥2)

+ C̃2size(T )(|||∇N
QeT |||2 + ∥eQ∥2)

( ∑
s=Q|Q′=D|D′∈S

(pQ′

ex − pQ
ex)

2

) 1
2

,

(6.5)

where C̃1 = C16C15 max
(

4
sin(αT )C6, 1

)
and C̃2 = 2C16C15λC11. It remains to estimate

the consistency errors.

6.3. Consistency error for the pressure. LEMMA 6.1. For any mesh T on Ω, there
exists a constant C18, C19 > 0, depending only on reg(T ), such that for all p ∈ H1(ω)

∥Rp
s,Q∥2

2 ≤ C18h
2
D

∑
Q∈QD

∫
Q

|∇p(z)|2dz, and ∥Rp
Q∥2

2 ≤ C19h
2
D

∑
Q∈QD

∫
Q

|∇p(z)|2dz.

Proof. Definition 6.2 gives

∑
Q∈QD

∑
s∈EQ

mQ|Rp
s,Q|2 ≤

∑
Q∈QD

∑
s∈EQ

mQ

∣∣∣∣ 1
ms

∫
s

(PQ
mp − p(z))dz

∣∣∣∣2 .

Thanks to Lemma 4.5 and h3
Q

msmQ
≤ reg(T )3, we have

1
ms

∫
s

|PQ
mp − p(z)|2dz ≤ C12

h3
Q

msmQ

∫
Q

|∇p|2dz ≤ C12reg(T )3
∫

Q

|∇p|2dz. (6.6)
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Jensen inequality and (6.6) imply the first estimate. For the second estimate, we add and
subtract 1

ms

∫
s
p(x)dx on Rp

Q(z). Cauchy-Schwarz inequality implies that∫
Q

(p(z) − PQ
mp)2 dz ≤4mQ

1
mQms

∫
Q

∫
s

(p(z) − p(x))2 dxdz.

Thanks to (6.6), we get the result with C19 = 4C12reg(T )3.
¤

6.4. Properties of the velocity.

6.4.1. Definitions. DEFINITION 6.3. The consistency error Rv
Q can be split into three

different contributions Rv,η
Q , Rv,Dv

Q and Rv,z
Q . They originate, respectively, from the errors

due to the approximation with respect to the space variable of the viscous stress tensor, to the
approximation of the gradient and to the approximation of the viscosity: Rv

Q(z) = Rv,η
Q (z)+

Rv,Dv
Q + Rv,z

Q , where

Rv,η
Q (z) = η|Q(z)Dv|Q(z) − 1

mQ

∫
Q

η(x)Dv(x)dx,

Rv,Dv
Q =

1
mQ

∫
Q

η(x)(Dv(x) − DN
QPT

c v)dx,

Rv,z
Q =

(
1

mQ

∫
Q

η(x)dx − ηQ

)
DN

QPT
c v.

We also introduce the quantity, for all s = Q|Q′ ∈ EQ:

Rv,η
s,Q = −Rv,η

s,Q′ =
1

ms

∫
s

Rv,η
Q (z)n⃗sQdz.

DEFINITION 6.4. We define the projection PQ
c u of u on the set of quarter diamond cells

as follows. For each quarter diamond cell Q ∈ Q, the restriction of PQ
c u to the triangle

Q is the unique affine function PQ
c u which coincides with u at the middle point of the semi-

edges s ∈ EQ and whose value at the middle point of the third side of Q is the mean-value
of the value u at the extremities of this side. Remarks that this definition makes sense since
u|Q̄

∈ (H2(Q))2 ⊂ (C0(Q̄))2.

xK xD

xK∗

u(xσK∗ )

u(xσK )

xσK∗

xσK

1
2 (u(xK) + u(xK∗ ))

FIG. 6.1. The affine interpolation PQ
c on the quarter diamond cell Q = QK,K∗ .

For instance, in the case of the quarter diamond cell Q = QK,K∗ (Figure 6.1), it reads

PQ
c u(xσK) = u(xσK), PQ

c u(xσK∗ ) = u(xσK∗ ), PQ
c u

(
xK + xK∗

2

)
=

u(xK) + u(xK∗)
2

.

The following proposition is the vector-valued version of [3, inequality (5.4)].
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PROPOSITION 6.2. Let T be a mesh of Ω. There exists a constant C20 > 0, depending
only on reg(T ), such that for any function v in (H2(ω))2, we have for all Q ∈ Q∫

Q

|||∇v(z) −∇PQ
c v|||2Fdz +

∫
Q

|||Dv(z) − DPQ
c v|||2Fdz ≤ C20h

2
D

∫
Q

|∇2v(z)|2dz.

6.4.2. Approximation of the viscous stress tensor. LEMMA 6.2. Assume that η satis-
fies (1.2) and (2.4). Let T be a mesh of Ω. There exists a constant C21 > 0, depending only
on Cη, Cη and reg(T ), such that for any function v in (H2(ω))2, we have for all D ∈ D

mQ|Rv,η
s,Q|2 ≤ C21h

2
D

∫
Q

(|||∇v|||2F + |∇2v|2)dz, ∀ Q ∈ QD, ∀ s ∈ EQ.

Proof. Applying the Jensen inequality, we add and subtract η(s)Dv(x), Cauchy-Schwarz
inequality implies that

|||Rv,η
Q (s)|||2F ≤ 2

mQ

Z

Q
|η(s) − η(x)|2 |||Dv(x)|||2Fdx +

2

mQ

Z

Q
|η(s)|2 |||Dv(s) − Dv(x)|||2Fdx.

Jensen inequality, (1.2) and (2.4) give

mQ|Rv,η
s,Q|2 ≤ h2

D2C2
η

∫
Q

|||Dv(x)|||2Fdx +
2C

2

η

ms

∫
s

∫
Q

|||Dv(s) − Dv(x)|||2Fdxds.

For the second integral, we apply Lemma 4.5 on a edge s and the quarter diamond cell Q,
since h3

Q
ms

≤ reg(T )h2
D:

1
ms

∫
s

∫
Q

|||Dv(s) − Dv(x)|||2Fdxds ≤ C12reg(T )h2
D

∫
Q

|∇Dv(y)|2dy.

Finally, we deduce the result with C21 = max(2C2
η , 2C

2

ηC12reg(T )). ¤
6.4.3. Approximation of the viscosity. LEMMA 6.3. Assume that η satisfies (2.4). Let

T be a mesh of Ω. There exists a constant C22 > 0, depending only on Cη , such that for any
function v in (H2(ω))2, we have for all D ∈ D

mQ|||Rv,z
Q |||2F ≤ C22h

2
DmQ|||DN

QPT
c v|||2F , ∀ Q ∈ QD, ∀ s ∈ EQ.

Proof. The Jensen inequality and (2.4) give the result with C22 = C2
η. ¤

6.4.4. Approximation of the gradient. DEFINITION 6.5. We define R ∈ M2,4(R) as
follows

R =2

0

B

B

B

B

@

mσK (Ru,η
σK,QK,L∗ + Ru,z

σK,QK,L∗ − Ru,η
σK,QK,K∗ − Ru,z

σK,QK,K∗ )

mσL (Ru,η
σL,QL,L∗ + Ru,z

σL,QL,L∗ − Ru,η
σL,QL,K∗ − Ru,z

σL,QL,K∗ )

mσK∗ (Ru,η
σK∗ ,QL,K∗ + Ru,z

σK∗ ,QL,K∗ − Ru,η
σK∗ ,QK,K∗ − Ru,z

σK∗ ,QK,K∗ )

mσL∗ (Ru,η
σL∗ ,QL,L∗ + Ru,z

σL∗ ,QL,L∗ − Ru,η
σL∗ ,QK,L∗ − Ru,z

σL∗ ,QK,L∗ )

1

C

C

C

C

A

+

0

B

B

B

B

@

mσK (Rp
σK,QK,L∗ − Rp

σK,QK,K∗ )

mσL (Rp
σL,QL,L∗ − Rp

σL,QL,K∗ )

mσK∗ (Rp
σK∗ ,QL,K∗ − Rp

σK∗ ,QK,K∗ )

mσL∗ (Rp
σL∗ ,QL,L∗ − Rp

σL∗ ,QK,L∗ )

1

C

C

C

C

A

.



Finite volume method for general multifluid flows governed by the interface Stokes problem 25

PROPOSITION 6.3. Assume that η satisfies (1.2) and (2.4). Let T be a mesh of Ω. There
exists a constant C23 > 0, depending only on Cη, Cη, Cη and reg(T ), such that for all
D ∈ D, such that for any δD in M4,2(R), we have

mD|Tr(
t
δDR)|2 ≤ C23mD|||BQδD|||2QDh2

D
P

Q∈QD

Z

Q
(|||∇u(z)|||2F + |∇2u(z)|2 + |∇p(z)|2)dz.

Proof. First, Lemma 6.2 and 6.1 give the estimates on Ru,η
s,Q and Rp

s,Q. Then, Lemma 6.3,
Lemma 4.1, Proposition 4.1 and Lemma 4.6 imply the estimate on Ru,z

Q . To sum up, we get
P

Q∈QD

mQ
P

s∈EQ

(|Ru,η
s,Q|2+|Ru,z

Q |2+|Rp
s,Q|2) ≤ Ch2

D
P

Q∈QD

Z

Q

`

|||∇u(z)|||2F + |∇2u(z)|2 + |∇p(z)|2
´

dz.

(6.7)
Using (6.7), Cauchy-Schwarz inequality conclude the result. ¤

The following proposition is proved in Subsection 9.3.
PROPOSITION 6.4. Assume that η satisfies (1.2). There exists a constant C24 > 0,

depending only on Cη, Cη and reg(T ), and a function v such that ṽ ∈ (H1(D))2∩(H2(Q))2,
for all Q ∈ QD, such that ∇2ṽ = 0 on Q ∈ QD,

|||Dṽ − DN
QPT

c ṽ|||QD ≤ C24(∥p̃QD
ex ∥2 + |||Du − DN

QPT
c u|||QD + hD),

and

−
∑

Q∈QD

∫
Q

divṽp̃Q
exdz ≥ −C24|||Du − DN

QPT
c u|||2QD

+
1
2
∥p̃QD

ex ∥2
2 − C24size(T ).

We prove a consistency estimate for the new strain rate tensor DN
Q that we have intro-

duced. This is the main difference between the present study and our previous work since the
definition of the new discrete strain rate tensor depends on the jumps of η in each diamond
cell. Hence, the consistency estimate for this operator cannot be obtained as in the usual way,
that is, only by applying well-chosen Taylor formula. Note that here we use the fact that the
pair (u, p) is a smooth solution of the problem (1.1) and the estimate of Lemma 2.2.

LEMMA 6.4. Assume that η satisfies (1.2) and (2.4). We assume that (u, p), the solution
of the problem (1.1), lies in (H2(ω))2 × H1(ω) and 0 < λ <

4Cη

C3
. Let T be a mesh of Ω.

There exists a constant C25 > 0, depending only on Cη, Cη, Cη , reg(T ) and sin(ϵ0), such
that for all D ∈ D, we have

|||Du − DN
QPT

c u|||2QD
+ ∥p̃QD

ex ∥2
2 ≤ C25h

2
D

∑
Q∈QD

∫
Q

(|||∇u|||2F + |∇2u|2 + |∇p(z)|2)dz.

Proof. We note u =
(

u1

u2

)
. Let us give the proof in the case where the diamond cell D is an

interior diamond cell. The case D ∈ Dext can be treated in a same way.
Step 1. Since (u, p) solves (1.1), we have the conservativity of the fluxes through s =

Q|Q′ as follows∫
s

(2η|Q(z)Du|Q(z) − p|Q(z)Id)n⃗sQdz =
∫

s

(2η|Q′(z)Du|Q′(z) − p|Q′(z)Id)n⃗sQdz.

We recall that the discrete strain rate tensor satisfies Proposition 6.1, we can deduce that(
1

ms

∫
s

(2η|Q(z)Du|Q(z) − p|Q(z)Id)dz − (2ηQDN
QPT

c u − pQ
exId)

)
n⃗sQ

−
(

1
ms

∫
s

(2η|Q′(z)Du|Q′(z) − p|Q′(z)Id)dz − (2ηQ′DN
Q′PT

c u − pQ′

ex Id)
)

n⃗sQ = 0.
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Using Definition 6.2 and the last equality, we have

2
mQ

∫
Q

η(z) (Du(z) − DN
QPT

c u) n⃗sQdz − 2
mQ′

∫
Q′

η(z) (Du(z) − DN
Q′PT

c u) n⃗sQdz

− 1
mQ

∫
Q

(p(z) − pQ
ex) n⃗sQdz +

1
mQ′

∫
Q′

(
p(z) − pQ′

ex

)
n⃗sQdz

= 2Ru,η
s,Q′ + 2Ru,z

s,Q′ − 2Ru,η
s,Q − 2Ru,z

s,Q − Rp
s,Q + Rp

s,Q′ .

We sum over the quarter diamond cells Q ∈ QD∑
Q∈QD

∫
Q

2η(z) (Du(z) − DN
QPT

c u) dzBQ −
∑

Q∈QD

∫
Q

(p(z) − pQ
ex) dzBQ = tR, (6.8)

with R defined by Definition 6.5. We multiply (6.8) by tδD, thanks to the symmetry of
η(z)Du(z) − η(z)DN

QPT
c u, we obtain

∑
Q∈QD

∫
Q

t
δDtBQ2η(z) (Du(z) − DN

QPT
c u) dz −

∑
Q∈QD

mQ
t
δDtBQp̃Q

ex = t
δDR

Using the trace operator and the symmetry of the matrix η(z)Du(z)−η(z)DN
QPT

c u, it implies
that for all δD ∈ MnD,2(R) we have

P

Q∈QD

Z

Q
η(z)

“

BQδD +
t
δDtBQ : Du(z) − DN

QPT
c u
”

dz

−
P

Q∈QD

mQTr
“

t
δDtBQ

”

epQ
ex = Tr

“

t
δDR

”

.
(6.9)

Step 2. For u,v ∈ (H2(ω))2, and pQ, qQ ∈ RQ, we define a new bilinear form B as
follows

B(u, pQ ,v, qQ) =
P

Q∈QD

2

Z

Q
η(z)(Du − DN

QPT
c u : Dv − DN

QPT
c v)dz

−
P

Q∈QD

Z

Q
Tr(Dv − DN

QPT
c v)pQdz +

P

Q∈QD

Z

Q
Tr(Du − DN

QPT
c u)qQdz.

We easily have that

B(u, p̃QD
ex ,u, p̃QD

ex ) ≥ 2Cη|||Du − DN
QPT

c u|||2QD
. (6.10)

Thanks to Cauchy-Schwarz, using the function ṽ obtained in Proposition 6.4, we have

B(u, p̃QD
ex , ṽ, 0) ≥− 2Cη|||Du − DN

QPT
c u|||QD |||Dṽ − DN

QPT
c ṽ|||QD

−
∑

Q∈QD

∫
Q

divṽp̃Q
exdz +

∑
Q∈QD

mQTr(DN
QPT

c ṽ)p̃Q
ex.

Applying Proposition 2.4 with PT
c ṽ and PD

mp, there exists (δD, pQD ) ∈ MnD,2(R) × RnD

and Tr(DN
QPT

c ṽ) = Tr(DDPT
c ṽ). Finally, using Definition 6.1, Proposition 6.4 and Young

inequality, we conclude that

B(u, p̃QD
ex , ṽ, 0) ≥ −C|||Du − DN

QPT
c u|||2QD

+
1
4
∥p̃QD

ex ∥2
2 − Csize(T )2. (6.11)
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By bilinearity of B, the inequalities (6.10) and (6.11) give for each positive number ξ > 0:

B(u, p̃QD
ex ;u + ξṽ, p̃QD

ex ) + ξCsize(T )2 ≥
(
2Cη − ξC

)
|||Du − DN

QPT
c u|||2QD

+
ξ

2
∥p̃QD

ex ∥2
2.

Choosing a value of ξ > 0 small enough (depending only on Cη and Cη), this inequality
yields the following estimates such that ū = u + ξṽ ∈ (H2(ω))2

|||Dū − DN
QPT

c ū|||QD ≤ C
(
|||Du − DN

QPT
c u|||2QD

+ ∥p̃QD
ex ∥2 + hD

)
, (6.12)

and

|||Du − DN
QPT

c u|||2QD
+ ∥p̃QD

ex ∥2
2 ≤ CB(u, p̃QD

ex ; ū, p̃QD
ex ) + C3size(T )2. (6.13)

Step 3. We define now the consistency error for the projection PQ
c as follows

TQ̄,ū(z) = Dū(z) − DPQ
c ū, ∀ z ∈ Q, ∀ Q ∈ Q.

We want the existence of δ̃D ∈ MnD,2(R) such that

DPQ
c ū − DDPT

c ū =
1
2
(BQδ̃D +

t
δ̃DtBQ), ∀ Q ∈ QD. (6.14)

We verified that 2DPQ
c ū − 2DDPT

c ū satisfied the conditions (2.9) if αK ̸= αL and (2.10)
if αK = αL. Thanks to Proposition 2.2, there exists a unique δ̃D ∈ MnD,2(R) such that
(δ̃D, δ0) = 0 if αK = αL and satisfy (6.14). Thus with Definition 2.6 of the discrete strain
rate tensor DN

Q and Definition 6.1, we have DN
QPT

c ū = DDPT
c ū + 1

2 (BQδD
ex + tδD

ex
tBQ), we

note δ̂D = δ̃D − δD
ex ∈ (MnD,2(R))D which satisfies

DPQ
c ū − DN

QPT
c ū =

1
2
(BQδ̂D +

t
δ̂DtBQ), ∀ Q ∈ QD, (6.15)

and such that (δ̂D, δ0) = 0 if αK = αL. Replacing δD by δ̂D in (6.9) and using the fact that

1
2
(BQδ̂D +

t
δ̂DtBQ) = DPQ

c ū − DN
QPT

c ū = Dū(z) − DN
QPT

c ū − TQ̄,ū(z), (6.16)

we deduce that

Tr
“

t
cδDR

”

=
P

Q∈QD

Z

Q
2η(z)

`

Dū(z) − DN
QPT

c ū : Du(z) − DN
QPT

c u
´

dz +
P

Q∈QD

mQTr (TQ̄,ū(z)) epQ
ex

−
P

Q∈QD

Z

Q
2η(z)

`

TQ̄,ū(z) : Du(z) − DN
QPT

c u
´

dz −
P

Q∈QD

mQTr
`

Dū(z) − DN
QPT

c ū
´

epQ
ex.

Now we can link R and B as follows

B(u, p̃QD
ex ; ū, p̃QD

ex ) = Tr
(t

δ̂DR
)
−

∑
Q∈QD

mQTr (TQ̄,ū(z)) p̃Q
ex

+
∑

Q∈QD

∫
Q

2η(z) (TQ̄,ū(z) : Du(z) − DN
QPT

c u) dz +
∑

Q∈QD

mQTr (Du(z) − DN
QPT

c u) p̃Q
ex.

Thanks to (1.2) and the Cauchy-Schwarz inequality, Proposition 6.3 implies that

B(u, epQD
ex ; ū, epQD

ex ) ≤ ChD|||BQcδD|||QD

 

P

Q∈QD

Z

Q
(|||∇u(z)|||2F + |∇2u(z)|2 + |∇p(z)|2)dz

!
1
2

+ |||TQ̄,ū|||QD∥epQD
ex ∥2 + 2Cη|||Du − DN

QPT
c u|||QD |||TQ̄,ū|||QD + |||Du − DN

QPT
c u|||QD∥epQD

ex ∥2.
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Thanks to Lemma 2.2 and the estimate (6.16), we have∑
Q∈QD

mQ|||BQδ̂D|||2F ≤ C
(
|||Dū − DN

QPT
c ū|||2QD

+ |||TQ̄,ū|||2QD

)
.

Using (6.12) and (6.13), Proposition 6.2 implies

|||Du − DN
QPT

c u|||2QD + ∥epQD
ex ∥2

2 ≤ Ch2
D
P

Q∈QD

Z

Q
(|||∇u(z)|||2F + |∇2u(z)|2 + |∇p(z)|2)dz

+ChD

“

|||Du − DN
QPT

c u|||QD+∥epQD
ex ∥2

”

 

P

Q∈QD

Z

Q
(|||∇u(z)|||2F + |∇2u(z)|2 + |∇p(z)|2)dz

!
1
2

+|||Du − DN
QPT

c u|||QD∥epQD
ex ∥2.

Finally, Young inequality gives the result. ¤
REMARK 6.1. We immediately have the estimate on the whole norm for (u, p)

|||Du − DN
QPT

c u|||22 + ∥p̃QD
ex ∥2

2 ≤ C25size(T )(∥u∥(H2(ω))2 + ∥p∥H1(ω)). (6.17)

The following Corollary is obtained thanks to Lemma 2.2 and Lemma 6.4.
COROLLARY 6.1. Assume that η satisfies (1.2) and (2.4). We assume that (u, p), the

solution of the problem (1.1), lies in (H2(ω))2 × H1(ω). Let T be a mesh of Ω. There exists
a constant C26 > 0, depending only on Cη , Cη , Cη, reg(T ) and sin(ϵ0), such that

|||∇u −∇N
QPT

c u|||2 ≤ C26size(T )(∥u∥(H2(ω))2 + ∥p∥H1(ω)).

Proof. Like in the beginning of Step 3, (see (6.15)), we prove the existence of δ̂D, such that

DPQ
c u − DN

QPT
c u =

1
2
(BQδ̂D +

t
δ̂DtBQ). We deduce that ∇PQ

c u − ∇N
QPT

c u =
t
δ̂DtBQ.

Lemma 2.2, Lemma 6.4 and Proposition 6.2 give

∑
Q∈QD

mQ|||BQδ̂D|||2F ≤ C1

2
(C25 + C20)h2

D

∫
Q

(|||∇u(z)|||2F + |∇2u(z)|2 + |∇p(z)|2)dz.

(6.18)
Proposition 6.2 and (6.18) conclude the proof. ¤

LEMMA 6.5. Assume that η satisfies (1.2) and (2.4). We assume that (u, p), the solution
of the problem (1.1), lies in (H2(ω))2 ×H1(ω) with div u = 0. Let T be a mesh of Ω. There
exists a constant C27 > 0, depending only on Cη, Cη, Cη, reg(T ) and sin(ϵ0), such that

|divDPT
c u| ≤ 2|||DN

QPT
c u − Du|||QD , ∀ D ∈ D,

∥divDPT
c u∥2 ≤ C27size(T )(∥u∥(H2(ω))2 + ∥p∥H1(ω)).

Proof. Thanks to divD(PT
c u) = Tr(DDPT

c u) and div u = 0, the equality (2.5) gives

divD(PT
c u) = divD(PT

c u) − div u(z) =
1

mD

∑
Q∈QD

mQTr(DN
QPT

c u − Du(z)).

Cauchy-Schwarz inequality implies the first estimate. Lemma 6.5 and 6.17 imply the second
estimate with C27 = 2

√
C25. ¤
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6.5. Consistency error for the velocity. Now, we can control Ru
s,Q, as follows

LEMMA 6.6. Assume that η satisfies (1.2), (2.4) and that (u, p), the solution of the
problem (1.1), lies in (H2(ω))2 × H1(ω). For any mesh T on Ω, there exists a constant
C28 > 0, depending only on Cη, Cη, Cη, reg(T ) and sin(ϵ0), such that

∥Ru
s,Q∥2 ≤ C28size(T )(∥u∥(H2(ω))2 + ∥p∥H1(ω)).

Proof. Definition 6.3 implies that

∥Ru
s,Q∥2

2 ≤
∑

Q∈Q

mQ

∑
s∈EQ

|Ru,η
s,Q|2 + |||Ru,Du

Q |||22 + |||Ru,z
Q |||22. (6.19)

First, the inequality (1.2) and Lemma 6.4 imply

|||Ru,Du
Q |||22 ≤ C

2

ηC25size(T )2
∑

Q∈Q

∫
Q

(
|||∇u(x)|||2F + |∇2u(x)|2 + |∇p|2

)
dx. (6.20)

Substituting (6.20), and (6.7) into (6.19), we get the result.
¤

6.6. Jump of pressure. LEMMA 6.7. Assume that η satisfies (1.2), (2.4) and that (u, p),
the solution of the problem (1.1), lies in (H2(ω))2 × H1(ω). Let T be a mesh of Ω, there
exists C29 > 0, depending only on Cη , Cη , Cη , reg(T ) and sin(ϵ0), such that( ∑

s=Q|Q′=D|D′∈S

(pQ′

ex − pQ
ex)

2

) 1
2

≤ C29(∥u∥(H2(ω))2 + ∥p∥H1(ω)).

Proof. We note Ps
mp :=

1
ms

∫
s

p(y)dy, for any s ∈ S, adding and subtracting Ps
mp,

Cauchy-Schwarz inequality implies∑
s=Q|Q′=D|D′∈S

(pQ′

ex − pQ
ex)

2 ≤4
∑

D∈D

∑
Q∈QD

∑
s∈∂Q∩∂D

|pQ
ex − Ps

mp|2.

Then adding and subtracting PQ
mp, Cauchy-Schwarz inequality implies

P

s=Q|Q′=D|D′∈S

(pQ′
ex − pQ

ex)
2 ≤8

P

D∈D

P

Q∈QD

|pQ
ex − PQ

mp|2+8
P

D∈D

P

Q∈QD

P

s∈∂Q∩∂D
|PQ

mp − Ps
mp|2. (6.21)

Since p ∈ H1(Q), thanks to Lemma 4.5, we get

|PQ
mp − Ps

mp|2 ≤ C12reg(T )3
∫

Q

|∇p(z)|2dz. (6.22)

Lemma 6.4 and (6.22) conclude the proof with C29 = 8(C25 + C12reg(T )3).
¤

6.7. Proof of Theorem 6.1. We may now collect all the previous results in order to
conclude the proof of Theorem 6.1, that we started in Subsection 6.2.
Proof. Having denoted by eT = PT

c u − uT and eD = PD
mp − pD, we have obtained the

inequality (6.5)

|||∇N
QeT |||22 + ∥eQ∥2

2 ≤ eC1(|||∇N
QeT |||2 + ∥eQ∥2)(∥Rs,Q∥2 + ∥divDPT

c u∥2)

+ eC2size(T )(|||∇N
QeT |||2 + ∥eQ∥2)

 

P

s=Q|Q′=D|D′∈S

(pQ′
ex − pQ

ex)
2

!
1
2

.
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Using the estimate ∥Rs,Q∥2 ≤ 2∥Ru
s,Q∥2 +∥Rp

s,Q∥2 +∥p̃QD
ex ∥2, Lemmas 6.1, 6.17, 6.6 and

Lemma 6.5 imply ∥Rs,Q∥2 + ∥divDPT
c u∥2 ≤ Csize(T ). Finally, Lemma 6.7 gives

|||∇N
QeT |||2 ≤ Csize(T ) and ∥eQ∥2 ≤ Csize(T ). (6.23)

Estimate of ∥u−uT ∥2. We have ∥u−uT ∥2 ≤ ∥u− PT
c u∥2 + ∥PT

c u−uT ∥2. Lemma
4.6 and the discrete Poincaré inequality Theorem 4.5 imply

∥u − uT ∥2 ≤ Csize(T ) + C|||∇DPT
c u −∇DuT |||2.

Lemma 4.2 and (6.23) gives the estimate of ∥u − uT ∥2.
Estimate of |||∇u − ∇N

QuT |||2. We have |||∇u − ∇N
QuT |||2 ≤ |||∇u − ∇N

QPT
c u|||2 +

|||∇N
QPT

c u−∇N
QuT |||2. Finally, Lemma 6.1 and (6.23) imply the estimate of |||∇u−∇N

QuT |||2.
Estimate of ∥p−pQ∥2. Using (6.23), we obtain ∥PQ

mp−pQ∥2 ≤ Csize(T ). We conclude
thanks to Lemma 6.1. ¤

7. Numerical results. We show here some numerical results obtained on a rectangular
domain Ω =]0, 1[2. Error estimates are given for two different tests with a stabilization
coefficient λ = 10−3.

(a) Non conformal quadrangle mesh. (b) Quadrangle and triangle mesh.

FIG. 7.1. Family of meshes.

In order to illustrate error estimates, the family of meshes (see Figure 7.1) are obtained
by successive global refinement of the original mesh.

The first one is performed using a discontinuous viscosity function. The exact solution
(u, p) and the viscosity η being chosen, we define the source term f and the boundary data
g in such a way that (1.1) is satisfied. In all tests, in Figures 7.2 and 7.3, we compare the
errors in the three different norms the L2 norm of the error obtained with the DDFV scheme,

for the pressure
∥PQ

c p − pQ∥2

∥PQ
c p∥2

, for the velocity gradient
∥PQ

c ∇u −∇N
QuT ∥2

∥PQ
c ∇u∥2

and for the

velocity
∥PT

c u − uT ∥2

∥PT
c u∥2

respectively as a function of the mesh size, in a logarithmic scale,

for the original DDFV scheme (1.4), for the m-DDFV scheme (3.1) with µ = 0 in (2.14)
and for the m-DDFV scheme (3.1) with µ = 1 in (2.14).In the numerical tests, we have
smooth pressure on quarter diamond cells, thus we use the center-value projection on Q:
PQ

c p = ((p(xQ))Q∈Q) .

7.1. Test 1 - Discontinuous viscosity. The interface Γ is located at {y = 0.5}. Let us

consider the following exact solution u(x, y) =
(

u(x, y)
0

)
:

u(x, y) =

{
y2 − 0.5y for y > 0.5

104(y2 − 0.5y) else.
, p(x, y) = 2x − 1,
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and the discontinuous viscosity: η1 = 1, η2 = 10−4, which gives that Du is discontinuous
across Γ. We show the comparison between (1.4) and (3.1) schemes with a discontinuous
viscosity. We use the non conformal quadrangle mesh, locally refined where the discontinu-
ity occurs, shown on Figure 7.1(a). In this case, we only have convex diamond cells, thus
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FIG. 7.2. Test2, discontinuous viscosity on a non conformal quadrangle mesh Figure 7.1(a).

the (3.1) scheme behaviour is essentially the same with the classic dual mesh than with the
barycentric one. As predicted by the theory, the S-m-DDFV scheme provides a much better
convergence rate than the original S-DDFV scheme. Furthermore, the error (in any of the
three norms we consider) obtained by the S-m-DDFV scheme is better even in the case of
coarse meshes. Note that the convergence rates obtained with the (3.1) scheme are greater
than the theoretical one. This is related to some uniformity of the mesh away from the re-
finement area. Furthermore, let us emphasize that the convergence rate is not sensitive to the
presence of non conformal control volumes.

7.2. Test 2 - Discontinuous viscosity and discontinuous pressure. The interface Γ is
located at {x = 0.5}. We take the discontinuous viscosity: η1 = 102, η2 = 10−2. We note
c = − η2π

η1+0.5η2π . The exact solution is the following

u(x, y) =

0

B

B

B

B

B

B

B

@

8

<

:

(x − 0.5)(cx + sin(5.0πx))
4.0π cos(4.0πy)

0.5c + 1
, for x ≤ 0.5

(x − 0.5)(cos(πx) + 1)4.0π cos(4.0πy), elsewhere.
8

<

:

− (cx + sin(5.0πx) + (x − 0.5)(c + 5.0π cos(5.0πx)))
sin(4.0πy)

0.5c + 1
, for x ≤ 0.5

− (cos(πx) + 1 − π(x − 0.5) sin(πx)) sin(4.0πy), elsewhere.

1

C

C

C

C

C

C

C

A

,

p(x, y) =

(

8.0π(η1 − η2) cos(4πy) + cos(4πx) sin(4πy), for x ≤ 0.5

cos(4πx) sin(4πy), elsewhere.

As predicted in Theorem 6.1, we observe a first order convergence for the L2-norm of
the velocity gradient and of the pressure, which seems to be optimal. We obtain a second
order convergence for the L2-norm of the velocity. This super-convergence of the L2-norm is
classical for finite volume method, however its proof still remains an open problem see [24].
Figure 7.3 brings out the role of the new stabilization term. With the old stabilization term,
using Definition 2.10, we observe that the scheme is still convergent even if we have lost the
first order convergence, as expected.

8. Conclusion. In this paper, we provide a modification of the stabilized DDFV scheme
with Dirichlet boundary conditions for the interface Stokes problem on general 2D grids
in order to take into account discontinuities in the viscosity. The S-m-DDFV scheme we
obtained is proved to present a better consistency of the fluxes at the discontinuities. We
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FIG. 7.3. Test2, discontinuous viscosity on a quadrangle mesh Figure 7.1(b).

prove a first order convergence of the DDFV scheme in the L2 norm for the velocity gradient
|||∇u − ∇DuT |||2, for the velocity and for the pressure. The performance of the scheme is
illustrated by numerical results.

9. Appendix.

9.1. Proof of Lemma 2.2. Proof. Estimate between δD and the symmetric part of
BQδD. Let us explicit the components of δD in the local basis of the diamond cell.

tδK =µKτ⃗ K∗,L∗ + λKn⃗σK, tδL = µLτ⃗ K∗,L∗ + λLn⃗σK,
tδK∗ =µK∗ τ⃗ σKK∗ + λK∗ n⃗σKK∗ , tδL∗ = µL∗ τ⃗ σKK∗ + λL∗ n⃗σKK∗ ,

where µ., λ. lie in R. Using notation SQ = BQδD + tδDtBQ, for all Q ∈ QD, and the fact that
tXBQδDX = tXtδDtBQX for any X ∈ R2, the definition of BQ and the decomposition of
δD imply four equations:

µKmσK(X, τ⃗ K∗,L∗)(n⃗σKK∗ , X) + λKmσK(X, n⃗σK)(n⃗σKK∗ , X)
+ mσK∗ µK∗(X, τ⃗ σKK∗)(n⃗σK, X) + λK∗mσK∗ (X, n⃗σKK∗)(n⃗σK, X)

=
mQK,K∗

2
tXSQK,K∗ X,

(9.1a)

− mσKµK(X, τ⃗ K∗,L∗)(n⃗σKK∗ , X) − λKmσK(X, n⃗σK)(n⃗σKK∗ , X)
+ mσL∗ µL∗(X, τ⃗ σKK∗)(n⃗σK, X) + λL∗mσL∗ (X, n⃗σKK∗)(n⃗σK, X)

=
mQK,L∗

2
tXSQK,L∗ X,

(9.1b)

mσLµL(X, τ⃗ K∗,L∗)(n⃗σLK∗ , X) + λLmσL(X, n⃗σK)(n⃗σLK∗ , X)
− mσK∗ µK∗(X, τ⃗ σKK∗)(n⃗σK, X) − λK∗mσK∗ (X, n⃗σKK∗)(n⃗σK, X)

=
mQL,K∗

2
tXSQL,K∗ X,

(9.1c)

− mσLµL(X, τ⃗ K∗,L∗)(n⃗σLK∗ , X) − λLmσL(X, n⃗σK)(n⃗σLK∗ , X)
− mσL∗ µL∗(X, τ⃗ σKK∗)(n⃗σK, X) − λL∗mσL∗ (X, n⃗σKK∗)(n⃗σK, X)

=
mQL,L∗

2
tXSQL,L∗ X.

(9.1d)
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We deduce the different value of µ. by taking X = τ⃗ σKK∗ in (9.1a)-(9.1b) and by taking
X = τ⃗ K∗,L∗ in (9.1c)-(9.1d). Thanks to the relation (2.1), we have the following estimate

µ2
. ≤ C(reg(T ))

∑
Q∈QD

mQ|||SQ|||2F . (9.2)

•Case αK ̸= αL. We have (n⃗σLK∗ , τ⃗ σKK∗) ̸= 0. We deduce the different value of λ. by
taking in (9.1c) respectively X = τ⃗ σKK∗ and X = τ⃗ σLK∗ , and in (9.1d) X = τ⃗ σLK∗ . The
value λK is deduced from (9.1a). Using the criterion ϵ0 and the estimate (9.2), we obtain

λ2
. ≤ C(reg(T ), sin(ϵ0))

∑
Q∈QD

mQ|||SQ|||2F . (9.3)

Finally, we deduce thanks to (9.2) and (9.3) that

∥δD∥2
2 ≤ C

∑
Q∈QD

mQ|||SQ|||2F = C(reg(T ), sin(ϵ0))
∑

Q∈QD

mQ|||BQδD + t
δDtBQ|||2F .

•Case αK = αL. We have chosen δD such that (δD, δ0) = 0. We write the system on λ.

as follows Bλ = F, where B is a following matrix in M5,4(R)

B =

0

B

B

B

B

@

mσK 0 mσK∗ 0
−mσK 0 0 mσL∗

0 mσL −mσK∗ 0
0 −mσL 0 −mσL∗

− 1
mσK

1
mσL

1
mσK∗

− 1
mσL∗

1

C

C

C

C

A

,

λ = t(λK, λL, λK∗ , λL∗) is a vector in R4 and F = t(FQK,K∗ , FQK,L∗ , FQL,K∗ , FQL,L∗ , 0) is
a vector in R5. We have

∑
Q∈QD

FQ = 0 and using the estimate (9.2), for all Q ∈ QD

|FQ|2 ≤ C(reg(T ))h2
D

∑
Q∈QD

mQ|||SQ|||2F . (9.4)

The solution of Bλ = F is

λL∗ =
b

b∗
, λK∗ =

1
mσK∗

(
FQK,K∗ + FQK,L∗ − mσL∗

b

b∗

)
,

λL =
1

mσL

(
−FQL,L∗ − mσL∗

b

b∗

)
, λK =

1
mσK

(
−FQL,K∗ + mσL∗

b

b∗

)
,

(9.5)

where

|b|2 ≤ C(reg(T ))
1

h2
D

∑
Q∈QD

mQ|||SQ|||2F and |b∗| = −b∗ ≥ C(reg(T ))
1

hD
. (9.6)

We deduce thanks to (9.5), (9.4) and (9.6) that

λ2
. ≤ C(reg(T ))

∑
Q∈QD

mQ|||SQ|||2F . (9.7)

Finally, we deduce thanks to (9.2) and (9.7) that

∥δD∥2
2 ≤ C(reg(T ))

∑
Q∈QD

mQ|||SQ|||2F = C(reg(T ))
∑

Q∈QD

mQ|||BQδD + t
δDtBQ|||2F .

Estimate between BQδD and δD. Thanks to hD ≤ C min(mσK ,mσK∗ ), we deduce
|||BQδD|||2F ≤ C 1

h2
D
∥δD∥2

2. Thanks to reg(T ), we obtain
∑

Q∈QD
mQ|||BQδD|||2F ≤ C∥δD∥2

2,
that concludes the proof. ¤
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9.2. Proof of Lemma 2.3. Proof. We improperly note αs,D(DDuT ) = αQ = pQ − pD

when s = ∂D ∩ ∂Q. We have that (δD, αQD ) satisfied the following system∑
Q∈QD

mQφQ(DDuT , δD, αQ)BQ = 0, Tr(tδDtBQ)=0, ∀Q ∈ QD,
∑

Q∈QD

mQαQ =0. (9.8)

Using the value of φQ in (9.8), we deduce that∑
Q∈QD

mQαQBQ = 2
∑

Q∈QD

mQηQDN
QuT BQ. (9.9)

We have that |||mQK,K∗ BQK,K∗ |||2F = m2
σK

+ m2
σK∗ ≤ 2h2

D. The same estimate holds for all
Q ∈ QD. We estimate the right hand side of (9.9) thanks to Cauchy-Schwarz inequality

|||2
∑

Q∈QD

mQηQDN
QuT BQ|||F ≤ 2CηhD

( ∑
Q∈QD

|||DN
QuT |||2F

) 1
2

. (9.10)

Then we have that the norm of the left-hand side of (9.9) is

|||
∑

Q∈QD

mQαQBQ|||2F =m2
σK

(αQK,K∗ − αQK,L∗ )2 + m2
σL

(αQL,K∗ − αQL,L∗ )2

+ m2
σK∗ (αQK,K∗ − αQL,K∗ )2 + m2

σL∗ (αQK,L∗ − αQL,L∗ )2

(9.11)
Using (9.10)-(9.11), (2.1) and Lemma 4.1, ∀Q,Q′ ∈ QD such that Q̄ ∩ Q̄′ ̸= ∅, we obtain

|αQ − αQ′ | ≤ 2Cηreg(T )
reg(T )Cη√

2Cη

|||DDuT |||F . (9.12)

Now we can estimate |αQ| with differences like αQ′ −αQ′′ , using (9.8). Thanks to (9.12), we

obtain the result with C2 = 6 reg(T )2C
2
η√

2Cη

.

¤
9.3. Proof of Proposition 6.4. Proof. We define FQ as follows

FQK,K∗ =
Id

mQK,K∗
, FQK,L∗ =− Id

mQK,L∗
, FQL,K∗ =− Id

mQL,K∗
, FQK,L∗ =

Id
mQL,L∗

.

We verified that FQ satisfied the conditions (2.9) if αK ̸= αL and (2.10) if αK = αL. Thus,
there exists δ̄D ∈ MnD,2(R) such that (BQδ̄D + t

δ̄DtBQ) = FQ, ∀ Q ∈ QD. Taken δD equal
to δ̄D in (6.9), we deduce that∑
Q∈QD

∫
Q

η(z) (FQ :Du(z)−DN
QPT

c u) dz −
∑

Q∈QD

mQTr (FQ) p̃Q
ex =Tr

(
t
δ̄DR

)
. (9.13)

We construct a function ṽ such that ṽ ∈ (H1(D))2 ∩ (H2(Q))2, for all Q ∈ QD, such that

div(ṽ)(x) =


− p̃Q

ex +
divD(PT

c u)
2mQ

∫
Q

η(z)dz − 1
2
Tr(t δ̄DR), if x ∈ QK,K∗ ,

− p̃Q
ex +

divD(PT
c u)

2mQ

∫
Q

η(z)dz, if x ∈ Q, Q ∩ QK,K∗ = ∅,
(9.14)

with R defined by Definition 6.5. We choose ṽ linear per quarter diamond cells of this form

ṽ(x) =
(

αQ 0
0 βQ

)
x, if x ∈ Q,
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it implies that ∇2ṽ = 0 on Q. The continuity over the edge of Q imposes that

βQK,K∗=βQL,K∗ := β1, αQL,K∗=αQL,L∗ := α2, βQK,L∗=βQL,L∗ := β2, αQK,K∗=αQK,L∗ := α1.

We obtain four unknowns αi, βi which are solutions of

α1 + β1 = − epex
QK,K∗ +

divD(PT
c u)

2mQK,K∗

Z

QK,K∗
η(z)dz − 1

2
Tr(

t
δ̄DR) := b1

α2 + β1 = − epex
QL,K∗ +

divD(PT
c u)

2mQL,K∗

Z

QL,K∗
η(z)dz := b2

α1 + β2 = − epex
QK,L∗ +

divD(PT
c u)

2mQK,L∗

Z

QK,L∗
η(z)dz := b3

α2 + β2 = − epex
QL,L∗ +

divD(PT
c u)

2mQL,L∗

Z

QL,L∗
η(z)dz := b4

Thanks to (9.13) (b1 − b2 − b3 + b4 = 0), we get

4α1 = b3 − b1 − b2, 4α2 = b3 − 5b1 + 3b2, 4β1 = 5b1 + b2 − b3, 4β2 = b1 + b2 + 3b3.

We get using (1.2) and Lemma 6.5

∥ṽ∥H1(D) ≤ C(∥p̃QD
ex ∥2 + |||Du − DN

QPT
c u|||QD +

√
mD|Tr(t δ̄DR)|). (9.15)

We have mD|||BQδ̄D|||2QD
≤ C(reg(T )). Thanks to Proposition 6.3, we deduce

mD|Tr(t δ̄DR)|2 ≤ Ch2
D

∑
Q∈QD

∫
Q

(|||∇u(z)|||2F + |∇2u(z)|2 + |∇p(z)|2)dz. (9.16)

Proposition 4.1 gives that |||Dṽ − DN
QPT

c ṽ|||QD ≤ ∥ṽ∥H1(D) + |||∇N
QPT

c ṽ|||QD . Lemma 4.2,
(4.1), (9.15) and (9.16) imply that

|||Dṽ − DN
QPT

c ṽ|||QD ≤ C(∥p̃QD
ex ∥2 + |||Du − DN

QPT
c u|||QD + ChD).

Furthermore, we have

−
P

Q∈QD

Z

Q
divevepQ

exdz ≥ ∥epQD
ex ∥2

2 − divDPT
c u

P

Q∈QD

Z

Q
η(z)dzepQ

ex − mQK,K∗ Tr(
t
δ̄DR)epex

QK,K∗ .

Furthermore, thanks to divu = 0, Proposition 6.3 gives

−
P

Q∈QD

Z

Q
divevepQ

exdz ≥ ∥epQD
ex ∥2

2 − C|||Du − DN
QPT

c u|||QD∥epQD
ex ∥2 − Csize(T )|∥epQD

ex ∥2.

Young inequality concludes the proof. ¤
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