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Drift-diffusion kinetics of a confined colloid

Yves Leroyer and Alois Würger
CPMOH, Université Bordeaux 1 & CNRS, 351 cours de la Libération, 33405 Talence, France

The drift-diffusion equation on a finite interval with reflecting boundary conditions is solved by
Laplace transformation. The Green function is obtained as a series in powers of e−hu/D, where u is
the drift velocity, D the diffusion coefficient, and h the width of the interval. In the drift-dominated
regime hu/D≫ 1, the first terms provide an exact solution in the limit of short and long times, and
a good approximation in the intermediate regime. As a possible application, we discuss confined
colloidal suspensions subject to an external field.

I. INTRODUCTION.

Drift-diffusion models describe stochastic processes
with accumulation and noise terms [1]. The simplest case
corresponds to a Fokker-Planck equation with constant
drift velocity and diffusion coefficient [2], with applica-
tions ranging from decision tasks in cognitive science [3]
to the evolution of droplet size distributions in turbulent
clouds [4]. More complex variants deal with the effects of
confinement on Brownian motion with a spatially vary-
ing mobility, or study how a discontinuous diffusion coef-
ficient or drift velocity affect the mean first-passage time
[5—7].

In colloid science, the interplay of drift and diffusion
determines both the transient and stationary states of
a suspension confined in a thin film or in a microchan-
nel subject to an external field. Colloidal transport is
of great interest for microfluidic devices and their appli-
cations [8, 9]. Fractionation or active mixing in complex
fluids require external forces acting on the suspended par-
ticles or macromolecules. Body forces such as gravity and
optical tweezers vary with the volume and thus are less
efficient for small solutes, whereas the transport veloc-
ity due to interfacial forces is independant of the particle
size. If electric fields are widely used in applications [10—
13], in recent years thermal and chemical gradients have
been shown to provide an alternative tool for manipulat-
ing colloidal suspensions on a microscale.

The kinetics of separation and mixing arise from the
competition of Brownian motion and the forces acting
on the suspended particles or macromolecules. With the
Einstein coefficient D ∼ µm2/s, one finds that diffusive
transport on the length scale of a microchamber, is much
slower than one micron per second. Thermal and chemi-
cal gradients may result in velocities of several µm/s and
thus provide an effecient means for moving particles. For
comparison, the electrophoretic velocity may attain mil-
limeters per second [14].

A chemical gradient has been used for focussing or dis-
persing a collodial suspension in a Ψ-shaped microflu-
idic device [15]. The lateral diffusion of the mobile ions
gives rise to a non-uniform salinity n0, which in turn
drives the silica beads towards regions of higher elec-
trolyte strength. With an appropriate choice for the
electrolyte solution, this diffusiophoretic effect permits
to rapidly spread the suspension over the whole channel

or, on the contrary, to concentrate the colloidal parti-
cles in the center [15]. Thermally driven sedimentation
of charged latex beads in a microchamber was shown to
confine the colloid within a layer of a few microns at the
lower boundary [16, 17], similar to electrophoretic depo-
sition [18]. Colloidal particles, ionic micelles, proteins,
and DNA are equally sensitive to thermal forces [19]. A
radial temperature gradient in a thin film has been used
for enhancing the concentration of charged particles in
a colloid-polymer mixture by more than two orders of
magnitude [20].
In most of these situations, the steady-state probability

distribution is readily obtained; yet the time evolution of
a given intial state and its kinetics towards the stationary
density are less obvious. In the present paper we study
the kinetics of the probability distribution n(x, t) for con-
stant D and u. In Sect. 2 we present the model and rel-
evant experimental situations. In Sects. 3 and 4 we give
the Green function in terms of an infinite series and deal
with the special case of a constant initial density. Sect.
5 discusses particular aspects in view of applications to
colloidal systems and compares our result with previous
theoretical work.

II. DIFFUSION WITH DRIFT IN ONE

DIMENSION

The state of a colloidal suspension at time t is described
by the density n(x, t) where the coordinate is restricted
to the interval 0 ≤ x ≤ h. The particle current consists
of two contributions,

J = un−Ddn
dx
, (1)

where the first one describes the drift at speed u due to
an external field and the second one accounts for diffusion
with the Einstein coefficient D.
The steady-state distribution is obtained by solving

J(x) = 0. Assuming D and u to be constant one finds
the stationary particle density

neq(x) = n0
h

ℓ

e−x/ℓ

1− e−h/ℓ (2)

where the total number of particles is conserved. We have
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FIG. 1: Schematic view of the constant density n = n0 for
zero field at t = 0, and of the stationary state n = neq after
relaxation in an applied field.

defined the average concentration

n0 =
1

h

∫ h

0

n(x, t) dx,

and introduced the length scale

ℓ =
D

|u|

that gives the width of steady-state distribution.
For micron-sized particles one has D ∼ µm2/s. Typi-

cal transport velocities are of the order u ∼ µm/s; such a
value is attained, for example, for thermophoresis driven
by a temperature difference of 20 K across a 100 microns
wide channel. Thus one finds that the colloid will even-
tually concentrate in a layer of a few microns. Formally
Eq. (2) is similar to sedimentation where the excess mass
m of a particle gives rise to the buoyancy force mg.
The density and current satisfy the conservation equa-

tion

∂J

∂x
+
∂n

∂t
= 0, (3)

and the condition of zero current at the boundaries

J(0) = 0 = J(h). (4)

With the above definition of the current, one obtains the
diffusion equation for the number density

∂n

∂t
= D

∂2n

∂x2
− u∂n

∂x
, (5)

and corresponding boundary conditions from (4).
Previous work on this drift-diffusion model has con-

centrated on the effective diffusion coefficient [2]. Here
we consider the transport kinetics, that is, the time evo-
lution of the number density n of colloidal particles and
its relaxation towards the equilibrium distribution.
Before starting evaluation of the solution of (5), we dis-

cuss relevant experimental situations. The simplest one
is shown in Fig. 1, a colloidal suspension in a thin film
subject to a perpendicular field along the x-axis. If the
field is constant and if the initial distribution n(x, t = 0)
does not depend on the in-plane coordinates y and z, the
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l
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FIG. 2: Schematic view of a microchannel of width h with
ambiant flow velocity v0. In the grey zone an applied field per-
pendicular to the channel axis acts on the colloidal particles
and thus enhances the concentration at the lower boundary.
In the stationary state the colloidal distribution is charac-
terized by a confinement length ℓ. (a) The initial density is
uniform. (b) Same as figure 2(a) but with a localised beam
of injected particles at x = x1.

one-dimensional Eq. (5) constitutes a complete descrip-
tion of the problem. Indeed, diffusion in the y-z-plane
does not affect the density distribution n(x, t). The sit-
uation of Fig. 1 corresponds to the setup of Ref. [16],
where a temperature gradient is applied to a microcham-
ber of 20 µm; in the steady state the suspended latex
beads are confined to a layer of thickness ℓ ∼ µm.

In Figs. 2 we show a microchannel with ambiant flow
velocity; a transverse field along the x-axis is applied in
the grey region. These situations are approximately de-
scribed by the 1D model, if one replaces the parabolic
velocity profile across the channel by a constant value v0
and if the latter is significantly larger than the lateral
drift velocity, u≪ v0. With these assumptions, diffusion
along the channel in z-direction is negligible; the y-axis
is of no relevance, and the transverse kinetics reduces to
a one-dimensional problem. In the experiment of Ref.
[15], the ratio u/v0 is of the order 10−3; neglecting the
lateral velocity profile is expected to affect only the de-
tails close to the lower boundary. The upstream colloidal
density defines the initial distribution n(x, 0) : Fig 2(a)
corresponds to an inital constant density ; this case is
treated in Sect. 4. The situation describes in the Fig.
2(b) corresponds to the Green function of the problem,
which we derive in the following section.
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III. THE GREEN FUNCTION

For the sake of notational convenience we introduce
the dimensionless variables

τ = t
|u|
ℓ
, ξ =

x

ℓ
, ξ0 =

h

ℓ
. (6)

In term of these variables the equation (5) becomes

∂n

∂τ
=
∂2n

∂ξ2
+
∂n

∂ξ
; (7)

where we suppose u < 0, i.e., the applied field drives
the solute in negative x-direction towards the boundary
at x = 0; the opposite case u > 0 is accounted for by
defining ξ = ξ0 − x/ℓ.
The parameter ξ0 can be expressed as

ξ0 =
h

ℓ
=

|u|
D/h

which is the ratio of the advection velocity u to that of
diffusion over the channel width D/h, and is known as
the Péclet number for particle diffusion [21]. This point
will be discussed in paragraph V-A

In experiments the initial distribution of the colloidal
particles may be homogeneous through the whole chan-
nel as in Fig. 2a or be finite in one part as realized in
the experiment of Ref. [15]. In order to deal with the
general case, we define the Green function of the process,
g(ξ, ξ1; τ), which is the probability for a particle located
at position ξ1 à time τ = 0 to be at position ξ at time
τ . This function allows to describe the time evolution of
the initial distribution n(ξ, 0) :

n(ξ, τ) =

∫ ξ0

0

g(ξ, ξ1; τ)n(ξ1, 0)dξ1 (8)

Inserting (8) in the diffusion equation (7) one finds that
the Green function satisfies the diffusion equation

∂g

∂τ
=
∂2g

∂ξ2
+
∂g

∂ξ
; (9)

with the initial condition

g(ξ, ξ1; τ = 0) = δ (ξ − ξ1) (10)

The zero current condition (4) results in

[
g +

∂g

∂ξ

]

ξ=0

= 0 =

[
g +

∂g

∂ξ

]

ξ=ξ0

. (11)

This boundary condition problem is solved after
Laplace transformation. The detailed calculation is given

in the appendix; here we quote the result,

g(ξ, ξ1, τ) =
e−ξ

1− e−ξ0

+ e−ξ
∞∑

k=−∞
e−kξ0E(2kξ0 + ξ1 + ξ, τ)

+ e−(ξ−ξ1)/2
∞∑

k=−∞

∑

±
w (2kξ0 + ξ ± ξ1, τ) ,

(12)

where we have defined the functions

w(ξ, τ) =
1

2
√
πτ
e−

τ2+ξ2

4τ , E(ξ, τ) =
1

2
erf

(
τ − ξ
2
√
τ

)
− 1
2
.

(13)
The Error function defined by erf(z) =
2√
π

∫ z
0
exp(−y2)dy is an odd function of z : erf(z) =

− erf (−z).
We briefly discuss the behavior at short and long times.

For τ ≪ 1 the functions E are equal to −1 for k ≥ 0 and
zero for negative k; with

∑∞
k=0 e

−kξ0 = 1/(1− e−ξ0) one
finds that the corresponding series cancels the first term
on the right-hand side of (12). The functions w in the
remaining series are exponentially small, except for the
second term at k = 0, that is e−(ξ−ξ1)/2w (ξ − ξ1, τ). As
a consequence, at short times the Green function is given
by

g (ξ, ξ1, τ) =
1

2
√
πτ
e−

(ξ−ξ1+τ)
2

4τ (τ ≪ 1). (14)

This form ceases to be valid as soon as its values at the
boundaries ξ = 0 and ξ0 become significant. Not sur-
prisingly, in physical coordinates x and t we recover the
free diffusion propagator, that is, a Gaussian of width√
Dt and a maximum position x1 + ut which moves
at a constant drift velocity u. Furthermore we can
check that the initial condition is satisfied: The limit
limτ→0 g(ξ, ξ1, τ) = δ (ξ − ξ1) implies that the probabil-
ity density at τ = 0 is concentrated at ξ1.
Now we turn to the long-time limit τ ≫ ξ0. From

the functions w and E it is clear that both series in (12)
vanish; thus g tends towards the stationary probability
distribution

geq (ξ) =
e−ξ

1− e−ξ0 (15)

and becomes independent of ξ1 and τ . The first term on
the right-hand side accounts for the stationary distribu-
tion, whereas the series describe the transient from the
inital state.
Most experimental situations realize the case of strong

confinement, where the sedimentation length ℓ is signifi-
cantly smaller than the width h, that is, ξ0 ≫ 1. Because
of the exponential decay of the functions E and w, then
the series in eq. (12) can be truncated by discarding the
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FIG. 3: Variation of the reduced Green function g (ξ, ξ1, τ)
with the variable ξ at different times τ .

terms for which the absolute value of the spatial argu-
ment of E and w is larger than ξ0, resulting in

g(ξ, ξ1, τ) = e
−(ξ−ξ1)/2 {{w (ξ1 + ξ, τ)}
+w (ξ − ξ1, τ) +w (2ξ0 − ξ1 − ξ, τ)}

+ e−ξ {1 +E (ξ + ξ1, τ)
+eξ0E (ξ + ξ1 − 2ξ0, τ)

}
. (16)

This expression provides a very good approximation for
ξ0 ≥ 5. It is plotted in Fig. 3 as a function of ξ for the
width ξ0 = 5 and initial position ξ1 = 3 at the reduced
times τ = 0.1; 0.4; 1; 5.

At the shortest times the curves can hardly be distin-
guished from a Gaussian of width

√
τ and mean position

ξ1 − τ (see eq.(14)). A more complex behavior occurs at
τ ∼ 1: Besides the maximum of the shifted initial distri-
bution, the steady current towards the left gives rise to a
second maximum at the lower boundary. At long times
τ ≫ ξ0 the probability distribution relaxes towards the
steady state geq .

IV. CONSTANT INITIAL DISTRIBUTION

The time-dependent probability distribution for an ar-
bitrary initial condition is given by Eq. (8). Here we
consider in more detail the particular case of a flat initial
density n(ξ1, 0) = n0, where

n(ξ, τ) = n0

∫ ξ0

0

g(ξ, ξ1; τ)dξ1.

The integration of the series of the Green function can
easily be performed term by term. Starting from the ex-
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FIG. 4: Time evolution of an initial flat density n(ξ, 0) =
n0. The curves show the density distribution at τ =
0.05, 0.5, 2, 5.

pression of Eq. (12) we find after some algebra

n (ξ, τ) = neq (ξ) + n0

∞∑

k=−∞

{
e−ξ/2W (2kξ0 + ξ, τ)

−e(ξ0−ξ)/2W [(2k + 1) ξ0 + ξ, τ ]
}

where we have defined the functions

W (ξ, τ) = 2τw(ξ, τ)

+ e−ξ/2 (τ − ξ + 1)E(ξ, τ) + eξ/2E(−ξ, τ)

and the equilibrium value

neq (ξ) = n0ξ0
e−ξ

1− e−ξ0 . (17)

For ξ0 ≫ 1 the density can be approximated to a good
degree of accuracy by discarding in the sum the terms
for which the absolute value of the spatial argument of
W exceeds ξ0,

n (ξ, τ) = neq + n0e
−ξ/2{W (ξ, τ)− eξ0/2W (ξ − ξ0, τ)

− eξ0/2W (ξ + ξ0, τ)}

The last term contributes significantly only for large
times. In Fig. 4 we plot n (ξ, τ) as a function of ξ for
ξ0 = 5 and the reduced times τ = 0.05; 0.5; 2; 5. At
short times τ ≪ 1 the external field carries the suspended
particles at constant velocity u towards the left; the de-
pression arising at the right appears as an excess density
at the left boundary, whereas the inner part of the chan-
nel shows a plateau. As the reduced time τ becomes
comparable to ξ0, the depression and the bump extend
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through the channel; at longer times, they evolve towards
the exponential distribution of the steady state (17). The
latter is reached when the reduced time is of the order of
the channel width, τ ∼ ξ0.

V. DISCUSSION

A. The Péclet number ξ0

We have seen in paragraph III that the parameter ξ0

ξ0 =
h

ℓ
=

|u|
D/h

.

is the Péclet number of the flow, defined as the ratio of
the advection velocity u to that of diffusion over the chan-
nel width D/h. According to (2), efficient confinement
requires a sedimentation length significantly smaller than
the channel width, that is, a Péclet number much larger
than unity, ξ0 ≫ 1.
We briefly discuss this condition in view of different

driving mechanisms. For an aqueous suspension of mi-
cron sized particles in a 100 µm wide channel, the dif-
fusive velocity D/h is smaller than 10 nm/s. The drift
velocity due to an applied electric field may attain mil-
limeters per second, resulting in a very large Péclet num-
ber. A temperature gradient induces a thermoosmotic
flow along the particle surface; with ∇T ∼ 0.1 K/µm
and the coefficient DT ∼ 10 µm2/Ks [22, 23], the result-
ing transport velocity u = −DT∇T may attain several
microns per second. The sedimentation length of micron
sized particles has been shown to be comparable to their
diameter [16]. A non-uniform electrolyte gives rise to a
drift velocity u = DDP∇n0 of several microns per sec-
ond; in the experiment of Ref. [15] the salinity gradient
∇n0 is not constant, thus giving rise to a more complex
flow pattern than that studied in the present work. These
estimates show that chemical and thermal gradients may
be used for strong confinement with Péclet numbers of
the order of 100.

B. Relevant time scales

Both the stationary state and the transient kinetics are
determined by the competition between drift at velocity
u and diffusion with the Einstein coefficient D. The cor-
responding time scales are given by the duration of driven
transport across the channel width h,

tT =
h

|u| , (18)

and by the diffusion time of a Brownian particle over a
length h,

tD =
h2

D
. (19)
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FIG. 5: The Green function g(0, ξ0, ξ0t/tT ) which gives the
probability for a particle starting at time t = 0 from the
upper side of the channel (ξ1 = ξ0) to arrive at the opposite
side (ξ = 0) at time t. This probability density is plotted as
a function of the time in units of tT for different values of
ξ0 = 10 (dash), 30 (dot), 100 (dash-dot), 300 (solid).

These times are related by the coupling parameter ξ0
according to tD = ξ0tT . For a weak external field (ξ0 < 1)
diffusion is faster, and the probability distribution relaxes
on a time scale tD.

Here we are interested in the opposite case ξ0 > 1.
Then drift prevails and the stationary state is reached
after a time tT . We discuss the transient state in terms
of the probability for a particle that started at t = 0
at the upper boundary x = h, to arrive at the lower
boundary x = 0 after a time t; this probability is given
by the Green function g. For large Péclet number, say
ξ0 > 5, it is sufficient to retain linear corrections in the
small parameter e−ξ0 in the expression of g eq.(12), and
the Green function reads as

g(0, ξ0, τ) = 1+4e
ξ0/2w (ξ0, τ)+E (ξ0, τ)+e

ξ0E (−ξ0, τ) .
(20)

It turns out convenient to write the variable τ in the
form τ = ξ0t/tT . In Fig. 5 we plot g(0, ξ0, ξ0t/tT ) as a
function of the reduced time t/tT for different values of
the parameter ξ0. Its time dependence at a given value
for ξ0 is best understood by a glance at Fig. 5. At
short times t≪ tT the probability density is concentrated
at x = h or ξ = ξ0, and it is very unlikely to find a
particle at x = 0. In the long-time limit t ≫ tT one
reaches the asymptotic value geq = 1/(1 − e−ξ0) which
is very close to unity. Fig. 5 shows that in the reduced
variable t/tT the intermediate range becomes narrower
with increasing ξ0. The width of the crosso-over region
is readily obtained from Eq. (20): For large values of ξ0
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this function simplifies to 1 +E (ξ0, τ), or

g

(
0, ξ0, ξ0

t

tT

)
=
1

2
+
1

2
erf

(
t− tT
2
√
ttT

√
ξ0

)
(ξ0 ≫ 1).

(21)
Thus the width of the cross-over region of Fig. 5 between
the short time and the long time regimes, decreases with
the inverse square root of the Péclet number,

∆t ∼ tT√
ξ0
. (22)

In the limit ξ0 → ∞, the error function is given by the
sign of its argument, and propagator tends towards a
step function g (0, ξ0, ξ0t/tT ) → Θ(t − tT ). In this limit
diffusion is completely overwhelmed by the drift process;
Brownian motion is irrelevant on the time scale tT which
is the duration of particle transport across the channel.

C. Hydrodynamic interactions

The present work relies on a single-particle picture
which is valid at sufficiently low concentrations. Collec-
tive effects on transport coefficients comprise “thermo-
dynamic” and hydrodynamic contributions [24]. Thus
collective diffusion in a semidilute colloidal suspension
enhances the Einstein coefficient according to

D = D0(1 + 2Bφ+ 6.55φ),

where φ is the volume fraction. The virial coefficient B
is due to two-particle interactions; it is negative for at-
tractive forces, whereas steric interactions and the cor-
responding excluded volume lead to a positive value of
B. The second term with the numerical coefficient 6.55
describes the hydrodynamic drag exerted by a moving
bead on the surrounding fluid [25]. Similar corrections
of opposite sign occur for the gravity-driven sedimenta-
tion velocity. On the contrary, motion driven by sur-
face forces such as electroosmosis or thermoosmosis in
the particle’s electric double layer, are hardly affected by
hydrodynamic interactions. In a bulk colloid, the drift
velocity u is independent of the volume fraction.
Additional effects occur close to the solid boundaries.

The diffusion coefficient D shows a reduction linear in
the inverse distance from the confining wall [21, 26]. The
drift velocity u is reduced by a term that varies with
the cube of the inverse distance from the wall [27]; thus
boundary effects are significantly weaker than for the dif-
fusion coefficient. In general boundary effects are negli-
gible as long as the film thickness is much larger than the
bead size.

D. Comparison with an approach based on Fourier

series

In a very recent paper, Zhang et al. solved the drift-
diffusion equation (9) by expanding the initial state in

a Fourier series and separating the variables x and t [3].
Rewriting their Eqs. (A4—A16) in our notation, we ob-
tain the Green function in the form

g (ξ, ξ1, τ) = geq (ξ) + e
−ξ/2

∞∑

n=1

gn(ξ1)e
−λnτ×

×
[
cos (qnξ)−

sin (qnξ)

2qn

]
, (23)

with the wave vector and the relaxation rate

qn = n
π

ξ0
, λn = q

2
n +

1

4
. (24)

For the initial condition g (ξ, ξ1, 0) = δ(ξ − ξ1) the coef-
ficients gn(ξ1) become

gn (ξ1) =
2eξ1/2

ξ0
(
1 + 1

4q
−2
n

)
[
cos (qnξ1)−

sin (qnξ1)

2qn

]
. (25)

We briefly discuss the convergence of this series expan-
sion.
For large n the sine functions vanish in both (23) and

(25). Thus the spatial part of each term reads, up to
a numerical prefactor, as e−(ξ−ξ1)/2 cos (qnξ) cos (qnξ1).
At τ = 0 the series doesn’t converge smoothly, as is
well known for the Fourier representation of a delta peak
δ(ξ − ξ1). At finite times the exponential factor e−λnτ
vanishes for large enough n; in order to obtain a good
representation for g (ξ, ξ1, τ), the sum over n has to be

pushed well beyond n∗ = τ−
1
2 ξ0/π. Thus the Fourier se-

ries converges rapidly at long times and for small values
of ξ0; in the short-time limit, more and more terms have
to be retained as τ decreases.
Our Eq. (12) gives the Green function as a series in

powers of e−ξ0 which converges smoothly for any τ and ξ.
For short times τ ≪ 1 one recovers the exact expression
(14); in the opposite limit τ ≫ ξ0 the series disappears
and leaves the steady state distribution geq . For a suffi-
ciently strong drift term, say ξ0 > 5, the few terms given
in (16) provide a very good approximation in the inter-
mediate range.

VI. SUMMARY

For the drift-diffusion model in a finite interval with
constant coefficients, we have obtained an exact solution
in terms of a series in powers of e−ξ0 where ξ0 is the Péclet
number. In drift-dominated applications (ξ0 ≫ 1), such
as colloidal transport in confined geometries, the Green
function of the diffusion equation is very well approxi-
mated by (16) in terms of a few elementary functions.
The characteristic time for transport at velocity u over

the length h is, not surprisingly, given by tT in (18).
In the vicinity of t ∼ tT the Green function g(0, ξ0, τ)
increases from 0 to the steady state value 1/(1 − e−ξ0),
as illustrated in Fig. 5. The duration∆t of this cross-over
decreases with the Péclet number according to (22).
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The drift-diffusion kinetics shown in Fig. 3, and in
particular the two-peak structure at intermediate times,
should be visible for confined colloidal suspensions sub-
ject to an external field.

VII. APPENDIX :

We solve the boudary value problem Eqs. (9,10,11) by
Laplace transformation. Let G(ξ, ξ1, p) = Lτ {g} be the
Laplace transform of g(ξ, ξ1, τ); the equations (9,10) lead
to

pG− ∂2ξG− ∂ξG = δ (ξ − ξ1)

The general solution of this equation is

G(ξ, ξ1, p) = A(p)e
− δ+1

2 ξ +B(p)e
δ−1
2 ξ

+
1

δ
e−(ξ−ξ1)/2 e−

δ
2 |ξ−ξ1| (26)

where

δ =
√
1 + 4p

The boundary conditions (eq. 11) remain unchanged,

G+
∂G

∂ξ

∣∣∣∣
ξ=0

= 0 = G+
∂G

∂ξ

∣∣∣∣
ξ=ξ0

From these equations we get for the fonctions A (p) and
B (p),

A (p) =
1

δ

eξ1/2

1− e−δξ0

[
e−

δ
2 (2ξ0−ξ1) +

δ + 1

δ − 1e
− δ
2 ξ1

]
,

B (p) =
1

δ

eξ1/2 e−δξ0

1− e−δξ0

[
e−

δ
2 ξ1 +

δ − 1
δ + 1

e
δ
2 ξ1

]
.

Replacing in these expressions
1

1− e−δξ0 by
∑∞
k=0 e

−kδξ0

we can express the solution G(ξ, ξ1, p) (eq.(26)) as follows

e(ξ−ξ1)/2 G(ξ, ξ1, p)

= v (|ξ − ξ1|)

+
∞∑

k=0

v [(2k + 2) ξ0 − ξ1 + ξ] + v (2kξ0 + ξ1 + ξ)

+ v [(2k + 2) ξ0 − ξ1 − ξ] + v [(2k + 2) ξ0 + ξ1 − ξ]
+ v+ (2kξ0 + ξ1 + ξ) + v− [(2k + 2) ξ0 − ξ1 − ξ] .

where

v(ξ, p) =
e−δξ/2

δ
, v± (ξ, p) =

e−δξ/2

2p

(
1

δ
± 1
)
,

The inverse Laplace transform is expressed in terms of

w(ξ, τ) = L−1 {v (ξ, p)} , w±(ξ, τ) = L−1 {v± (ξ, p)} .

where

w(ξ, τ) =
1

2
√
πτ
e−

τ2+ξ2

4τ

has already been defined in (13), and

w±(ξ, τ) =
1

2
e∓ξ/2

[
erf

(
τ ∓ ξ
2
√
τ

)
± 1
]

we get

g(ξ, ξ1, τ)

= e−(ξ−ξ1)/2
∞∑

k=0

{w (2kξ0 − ξ1 + ξ) +w (2kξ0 + ξ1 + ξ)

+w [(2k + 2) ξ0 − ξ1 − ξ] + w [(2k + 2) ξ0 + ξ1 − ξ]
+w+ (2kξ0 + ξ1 + ξ) +w− [(2k + 2) ξ0 − ξ1 − ξ]}.

It is easy to show that each term of order k in the series
is bounded by e−kξ0 thus insuring a quick convergence for
ξ0 ≫ 1.

This expression can be simplified by expressing w± by

E(ξ, τ) =
1

2
erf

(
τ − ξ
2
√
τ

)
− 1
2

and by noticing that w is an even function of ξ

g(ξ, ξ1, τ) =
e−ξ

1− e−ξ0 + e
−(ξ−ξ1)/2×

∞∑

k=−∞
{w (2kξ0 + ξ1 + ξ) +w [2kξ0 + ξ − ξ1]}

+ e−ξ
∞∑

k=−∞
e−kξ0E(2kξ0 + ξ1 + ξ, τ) (27)

Since the functions w and E vanish at long times, the
Green function tends towards the stationary state,

lim
τ→∞

g(ξ, ξ1, τ) = geq(ξ) =
e−ξ

1− e−ξ0

In the short-time limit we recover the initial condition
for g. Noting that E tends towards a step function,
E(ξ, τ) → −Θ(ξ) as τ → 0, and that limτ→0w(ξ, τ)
vanishes for ξ �= 0 and diverges at ξ = 0, one readily
finds

lim
τ→0

g(ξ, ξ1, τ) = δ (ξ − ξ1)
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