
HAL Id: hal-00473754
https://hal.science/hal-00473754v1

Submitted on 16 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Invariant Synthesis for Programs Manipulating Lists
with Unbounded Data

Ahmed Bouajjani, Cezara Dragoi, Constantin Enea, Ahmed Rezine, Mihaela
Sighireanu

To cite this version:
Ahmed Bouajjani, Cezara Dragoi, Constantin Enea, Ahmed Rezine, Mihaela Sighireanu. Invariant
Synthesis for Programs Manipulating Lists with Unbounded Data. 2010. �hal-00473754�

https://hal.science/hal-00473754v1
https://hal.archives-ouvertes.fr

Invariant Synthesis for Programs Manipulating Lists
with Unbounded Data ⋆

A. Bouajjani1, C. Drăgoi1, C. Enea1, A. Rezine2, and M. Sighireanu1
1 LIAFA, University of Paris Diderot and CNRS, 75205 Paris 13,France,

{abou,cezarad,cenea,sighirea}@liafa.jussieu.fr
2 Uppsala University, Sweden,rahmed@it.uu.se

Abstract. We address the issue of automatic invariant synthesis for sequential
programs manipulating singly-linked lists carrying data over infinite data do-
mains. We define for that a framework based on abstract interpretation which
combines a specific finite-range abstraction on the shape of the heap with an ab-
stract domain on sequences of data, considered as a parameter of the approach.
We instantiate our framework by introducing different abstractions on data se-
quences allowing to reason about various aspects such as their sizes, the sums
or the multisets of their elements, or relations on their data at different (linearly
ordered or successive) positions. To express the latter relations we define a new
domain whose elements correspond to an expressive class of first order univer-
sally quantified formulas. We have implemented our techniques in an efficient
prototype tool and we have shown that our approach is powerful enough to gen-
erate non-trivial invariants for a significant class of programs.

1 Introduction

Invariant synthesis is an essential ingredient in various program verification and analysis
methodologies. In this paper, we address this issue for sequential programs manipulat-
ing singly-linked lists carrying data over infinite data domains such as integers or reals.
Specifications of such programs typically involve constraints on various aspects such as
the sizes of the lists, the multisets of their elements, as well as relations between data
at their different positions, e.g., ordering constraints or even more complex arithmetical
constraints on consecutive elements, or combining relations between the sizes, the sum
of all elements, etc., of different lists.

Consider for instance the procedureDispatch3 given in Figure 1(b). It puts all the
cells of the input list which have data larger than 3 to the list grt, and it puts all the
other ones to the listless. Naturally, the specification of this procedure (at line 12)
includes (1) the property expressed by the universally-quantified first-order formula

∀y. grt ∗
−→y⇒ data(y)≥ 3 ∧ ∀y. less ∗

−→y⇒ data(y) < 3 (A)

which say that all elements ofgrt (resp.less) have data larger (resp. smaller) than
3, and (2) the preservation property corresponding to the fact that the multiset of the
input list is equal to the union of the multisets of the two output lists. This property is
expressed by the equality

⋆ A full version is available at http://www.liafa.jussieu.fr/∼cezarad/inv.pdf

ms init= ms(grt)∪ms(less) (B)

where the variablems init represents the multiset of the elements of the input list, and
ms(grt) (resp.ms(less)) denotes the multiset of the elements ofgrt (resp.less).

procedure Fibonacci(list* head)
1: { list *x=head;
2: int m1=1;
3: int m2=0;
4: while (x != NULL)
5: { x->data=m1+m2;
6: m1=m2;
7: m2=x->data;
8: x=x->next;
9: }
10:}

procedure Dispatch3(list* head)
1: { list *tmp=null, grt=null, less=null;
2: while (head != null)
3: { tmp=head->next;
4: if (head->data >= 3) {
5: head->next=grt;
6: grt=head; }
7: else {
8: head->next=less;
9: less=head; }
10: head=tmp;
11: }
12:}

(a) (b)

Fig. 1. ProceduresFibonacci andDispatch3.

The specification of sorting algorithms is similar since it includes an ordering con-
straint on the output list that is easily expressible using auniversally quantified first-
order formula, and a preservation constraint saying that the input and output lists have
the same elements that is expressible using multiset constraints.

Moreover, an interesting property of the procedureDispatch3 above is that the
sum of all the elements in the listgrt is larger than 3 times the size of that list. This is
expressible by the inequality

grt +−−→null∧ ∑
grt

∗
−→y

data(y)−3×len(grt +−−→null)≥ 0 (C)

Consider now the procedureFibonacci given in Figure 1(a). It takes a list as an
input and initializes its elements following the Fibonaccisequence. The natural specifi-
cation for the procedure (at line 10) is expressed by the universally-quantified formula

∀y1,y2,y3. head
∗−→y1−→y2−→y3⇒ data(y3) = data(y2)+data(y1) (D)

which corresponds precisely to the definition of the Fibonacci sequence. Moreover, an
interesting property of the Fibonacci sequence{ fi}i≥1 is that∑i=n

i=0 fi = 2 fn + fn−1−1.
This can be expressed (again at line 10) by the following constraint

∑
(head

∗−→y)

data(y) = 2×m2+m1−1 (E)

The automatic synthesis of invariants like those shown above is a challenging prob-
lem since it requires combining in a nontrivial way different analysis techniques. This
paper introduces a uniform framework based on abstract interpretation for tackling this
problem. We define a generic abstract domainAHS for reasoning about dynamic lists
with unbounded data which includes an abstraction on the shape of the heap and which
is parametrized by some abstract domain on finite sequences of data (a data words ab-
stract domain,DW-domain for short). The latter is intended to abstract the sequences

of data in the lists by capturing relevant aspects such as their sizes, the sums or the mul-
tisets of their elements, or some class of constraints on their data at different (linearly
ordered or successive) positions.

We instantiate our framework by defining newDW-domains corresponding to the
aspects mentioned above. In particular, we define new abstract domains for reasoning
about the multisets of elements of lists, and about the sums of the elements of integer
lists. Moreover, we introduce aDW-domain where objects are composed of first-order
formulas such that their (quantified) universal part is of the form∀y. (P⇒U), wherey
is a vector of variables on the positions in the word,P is a constraint on the positions
(seen as integers) associated with they’s, andU is a constraint on the data values at these
positions, and possibly also on the positions when data are of numerical type. Then, we
assume that ourDW-domain on first-order properties is parametrized by some abstract
data domain, and we consider thatU is defined as an object in that abstract domain. For
the sake of simplicity of the presentation, we consider in the rest of the paper that the
data are always of type integer (and therefore it is possibleto take as abstract data do-
mains the standard octagons or polyhedra abstract domains for instance). Our approach
can in fact be applied to any other data domain. As for the syntax of the constraintP,
we assume that we are given a finite set of fixed patterns (or templates) such as, for
instance, order constraints or difference constraints.

Then, an object in the domainAHS is a finite collection of pairs(G̃,W̃) such that
(1) G̃ is a graph (where each node has an out-degree of at most 1) representing the
set of all the garbage-free heap graphs that can be obtained by inserting sequences of
non-shared nodes (nodes with in-degree 1) between any pair of nodes inG̃ (thus edges
in G̃ represents list segments without sharing), and (2)W̃ is an abstract object in the
consideredDW-domain constraining the sequences of data attached to eachedge inG̃.
So, all the shared nodes in the concrete heaps are present inG̃, but G̃ may have nodes
which are not shared. Non-shared nodes which are not pointedby program variables are
called simple nodes. We assume that objects in our abstract domain have graphs with a
bounded number of simple nodes, for some given boundk that is also a parameter of the
domain. This assumption implies that the number of such graphs is finite (since for a
given program with lists it is well known that the number of shared nodes is bounded).

We define sound abstract transformers for the statements in the class of programs
we consider. Due to the bound on the number of simple nodes, and since heap transfor-
mations may add simple nodes, we use a normalization operation that shrinks paths of
simple nodes into a single edge. This operation is accompanied with an operation that
generalizes the known relations on the data attached to the eliminated simple nodes in
order to produce a constraint (in theDW-domain) on the data word associated with the
edge resulting from the normalization. This step is actually quite delicate and special
care has to be taken in order to keep preciseness. In particular, this is the crucial step
that allows to generate universally quantified properties from a number of relations be-
tween a finite (bounded) number of relations on the data attached to linearly ordered
or successive simple nodes (depending on the allowed patterns for constraining the po-
sitions in the universal formulas). We have defined sufficient conditions on the sets of
allowed patterns under which we show that we obtain best abstract transformers.

We have implemented (in C) a prototype toolCINV based on our approach, and
we have carried out several experiments (more than 30 examples) on list manipulating
programs (including for instance sorting algorithms such as insertion sort, and the two
examples in Figure 1). The tool is powerful enough to synthesize nontrivial invariants
such as all those mentioned above in this section. All the examples we have considered
have been carried out in less that 1 sec, which is, we believe,quite encouraging.

2 Modeling and reasoning about programs with singly-linkedlists

We consider a class of strongly typed imperative programs manipulating dynamic singly
linked lists. We suppose that all manipulated lists have thesame type, i.e., reference to a
record calledlist including one reference fieldnext and one data fielddata of integer
type. While the generalization to records with several datafields is straightforward, the
presence of a single reference field is important for this work. The programs we consider
do not contain procedure calls or concurrency constructs.

Program syntax Programs are defined on a set of data variablesDVar of type Z and
a set of pointer variablesPVar of typelist (which includes the constantnull). Data
variables can be used indata termsbuilt using operations overZ and in boolean condi-
tions built using predicates overZ. Pointers can be used in assignments corresponding
to heap manipulation like memory allocation/deallocation(new/free), selector field
updates (p->next=. . . , p->data=. . .), and pointer assignments (p=. . .). Boolean con-
ditions on pointers are built using predicates (p==q andp==null) testing for equality
and definedness of pointer variables. No arithmetics is allowed on pointers. We allow
sequential composition (;), conditionals (if-then-else), and iterations (while). The
full syntax is given in Figure 2.

p,q∈ PVar pointer variables P predicate overZ
d ∈DVar data variable O operator overZ

pt ::= null | p | p→ next

dt ::= d | p→ data|O(dt1, · · · ,dtn)
cond ::= p == q | p == null | P(dt1, · · · ,dtn) |

!cond| cond∧cond
asgnStmt::= p = new | free(p) | p = pt |

p→ next = pt | p→ data = dt | d = dt
ifStmt ::= if condthen {stmt}∗ [else {stmt}∗]

whileStmt::= while conddo {stmt}∗

stmt ::= whileStmt| ifStmt| asgnStmt
program ::= {stmt}∗

Fig. 2.Syntax for programs with singly linked lists.

For simplicity, we consider that all programs are precompiled as follows. Each
pointer assignment of the formp=new, p=q or p=q→ next is immediately preceded
by an assignment of the formp=null. A pointer assignment of the formp=p→ next

is turned intoq=p, p=null, p=q→ next, possibly introducing a fresh variableq.
Each pointer assignment of the formp→ next=q is immediately preceded byp→
next=null.

Program semanticsA configuration of a program is given by a configuration for the
program heap and a valuation of data variables. Heaps can be represented naturally by a
directed graph. Each object of typelist is represented by a node. The constantnull is
represented by a distinguished node♯. The pointer fieldnext is represented by edges.
The nodes are labeled by the values of the data fielddata and by the program pointer
variables which are pointing to the corresponding objects.Every node has exactly one
successor, except for the node representingnull. For example, the graph in Figure 3(a)
represents a heap containing two lists[4,0,5,2,3] and[1,4,3,6,2,3] which share their
two last cells. Two of the nodes are labeled by the pointer variablesx andy. A node
which is labeled by a pointer variable or which has at least two predecessors is called a
cut point. Otherwise, it is called asimple node.

In this work, we use an equivalent representation for heaps obtained as follows. Let
G be a graph as above. It can be encoded (1) by a graphH containing at least all the cut
points inG such that two nodes are connected by an edge if there exists a path between
them inG, and (2) by a function that associates to each noden in H a word overZ
which represents the data values fromG of the path starting inn and ending before the
successor ofn in H. For example, Figure 3(b) and Figure 3(c) give possible encodings
for the graph in Figure 3(a).

Definition 1. A heap graph overPVarandDVar is a tuple H= (N,S,V,L,D) where:
– N is a finite set of nodes which contains a distinguished node♯,
– S: N ⇀ N is a successor partial function s.t. only S(♯) is undefined,
– V : PVar→N is a function associating nodes to pointer variables s.t. V(null) = ♯,
– L : N ⇀ Z

+ is a partial function associating nodes to non-empty words over Z s.t.
only L(♯) is undefined, and
– D : DVar→ Z is a valuation for the data variables.

A heap graphH is called ak-heap graphif the number of simple nodes is at mostk.
Figure 3(b) pictures a 2-heap graph wheren3 andn5 are the simple nodes.

32

4 3

y

x
#

61

4 0 5

(a)

{y}
n5

n1: (4,0,5)
n2: (2)
n3: (3)
n4: (1,4)
n5: (3,6)

#n2 n3n1
{x}

n4

(b)

n4

n2

{y}

n1
{x}

#
n1: (4,0,5)

n4: (1,4,3,6)
n2: (2,3)

(c)

Fig. 3. A representation for program heaps

In the following, we consider only heap graphs without garbage, i.e. all the nodes
are reachable from nodes labeled by pointer variables. We define a postcondition op-
erator, denotedpost(St,H), for any statementSt and anyk-heap graphH. In general
post(St,H) is not ak-heap graph; it may contain more thank simple nodes.

Some interesting cases in the definition ofpost(St,H) are given in Figure 4. For
the statementp := new we add to the heap graph a noden whose successor is♯ and

which is labeled by a singleton data word obtained using the proceduresglt(L,n). The
latter updatesL(n) by a random word of length 1..

If p points to the node representingnull then post(free(p),H) returnsHerr

which is a special sink heap configuration. (The same happensfor othernull deref-
erences likep = q, p→ next= q, andq = p→ next whenp points to♯.) Otherwise,
post(free(p),H) modifiesH by removing the list element pointed byp. Remember
that the noden in H pointed byp may represent more list elements at once. Thus, we
start by calling the procedureUncover(H, p) described in the right of Figure 4. The
goal of this procedure is to obtain a heap graphH ′ = (N′,S′,V ′,L′,D′) representing the
same heap asH in which the word associated to the node pointed byp is of length 1. It
uses two procedures on words overZ, split andisSglt. For anyn∈ N such that the
word L(n) is of size at least 2,split(L,n,m) returns a functionL′ obtained fromL by
assigning ton a singleton word containing the first symbol inL(n) and by settingL(m)
to be the word containing all symbols inL(n) except the first one. Also,isSglt(L,n)
returns 1 if the length ofL(n) is 1 and 0, otherwise. Then,post(free(p),H) applies
RemNode which removes from the current heap graph the noden pointed byp (for any
predecessorm of n, S(m) is set to♯), andRemGrb which models the garbage collec-
tor. For the latter,post calls a projection operatorproj(L,n) that removesn from the
domain ofL.

n 6∈N is a fresh node
post(p := new,H) = (N∪{n},S[n 7→ ♯],V[p 7→ n],sglt(L,n),D)

V(p) 6= ♯ (N′,S′,V ′,L′,D′) = Uncover(H, p)

post(free(p),H) = RemGrb (RemNode ((N′,S′,V ′,L′,D′) , p))

V(p) 6= ♯

post(p.data= dt,H) = UpdateData(H, p,dt)

procedure Uncover(H,p) {
n = V(p);
if(isSglt(L,n)) {
N′ = N;L′ = L;S′ = S; }

else {
N′ = N∪{m}; // m 6∈ N
L′ = split(L,n,m);
S′ = S [n 7→ m,m 7→ S(n)] ; }

return (N′,S′,V,L′,D); }

Fig. 4.The postcondition operatorpost.

The definition ofpost for p.data:= dt calls the procedureUpdateData(H, p,dt)
which, for any input heap graphH = (N,S,V,L,D) such thatV(p) = n, returns the heap
graph(N,S,V,updateFirst((L,D),n,dt,V)).

The procedureupdateFirst((L,D),n,dt,V) substitutes the first symbol in the
word associated ton by the value ofdt. The mappingV is used to substitute indt any
termp->data by the first symbol of the word associated toV(p). The same procedure
updateFirst is used for assignments of the formd=dt, whered is a data variable.

The postcondition operatorpost can be extended to obtain a postcondition operator
onk-heap graphs, denotedpostk, by

postk(St,H) = Normalizek(post(St,H)),

whereNormalizek takes as input a heap graphH and, ifH is not ak-heap graph then it
returns a 0-heap graph (a heap graph with no simple nodes) which represents the same

heap asH. Suppose thatV1, . . . ,Vt are all the (disjoint) paths inH of length greater
than 1 between a cut-point and a predecessor of some cut-point. Normalizek calls the
procedureconcat(L,V1, . . . ,Vt) which modifies the functionL. For any 1≤ i≤ t, if Vi =
n0 . . .n j then the domain ofL′ = concat(L,V1, . . . ,Vt) does not containn1, . . . ,n j and
L′(n0) is the concatenation ofL(n0), . . . ,L(n j). The procedureNormalizek removes
from the graph all the nodes removed from the domain ofL. A collecting semantics can
be defined as usual by extendingpostk to sets ofk-heap graphs.

3 Abstract domain for program configurations

The elements of this abstract domain are finite sets of graphswith constraints on the
data words attached to their nodes and on the program data variables. Constraints are
expressed using abstract domains on words capturing various aspects such as the size of
the words, the multiset of their elements, or other properties that relate data at different
positions. For example, Figure 5(a) pictures a possible heap configuration at line 2
of the procedureDispatch3 from Figure 1(b). Different abstractions of it are defined
using the same graph together with the constraints from Figure 5(b), Figure 5(c), and
Figure 5(d). In the following, because all the data updates affect only the first symbol
of the words, we refer separately to the head of a word (i.e. its first symbol) and its
tail (i.e., the suffix that starts with the second symbol). The constraints from Figure
5(b) characterize the sum of the symbols of a word. They use variables representing
words (which have the same name as the nodes of the graph) and terms interpreted
as integers:hd(n) denotes the first symbol in the word represented byn, len(n) its
length, andsum tl(n) the sum of the symbols in its tail. The integer variableinit sum
denotes the sum of the integers contained in the initial list. The constraints from Figure
5(c) characterize the multiset containing the symbols of a word. They use variables
to represent words and terms interpreted as multisets:ms hd(n) denotes the multiset
containing the first symbol andms tl(n) denotes the multiset containing all symbols
from the tail. The multiset variableinit ms denotes the multiset containing the integers
from the initial list. Finally, we can define an abstraction using constraints expressed by
universally quantified first-order formulas. In Figure 5(d), y is a variable interpreted as a
position in some word,y∈ tl(n2) means thaty belongs to the tail of the word denoted
by n2, andn2[y] is a term interpreted as the data at the positiony of n2.

In the following, an abstract domainA is a tuple(L,⊑,⊓,⊔,⊤,⊥), where(L,⊑)
is a lattice whose greatest lower bound (meet) operator is⊓ and lowest greater bound
(join) operator is⊔. The top element is denoted by⊤ and the bottom element by⊥. The
domainA represents a domain of concrete elementsC by a Galois connection, that is, a
pair of monotone functions(α : C → A ,γ : A → C) such thatα(C)⊑A iff C⊆ γ(A). As
usual in the abstract interpretation framework [6],∇ represents the widening operator.

3.1 Data words abstract domains

An abstract domain representing words is called adata words abstract domain(DW-
domain, for short). LetDWVarsbe a set of variables called data word variables and
C (DWVars,DVar) be the lattice of sets of pairs(L,D) with L : DWVars→ Z

+ and
D : DVar→ Z.

n1

{head,tmp}

n2

n3

{grt}

{less}

#

n1 : (3,4,5)
n2 : (5,6)
n3 : (1,2)

(a)

Sums:

hd(n2)+sum tl(n2)+hd(n3)+sum tl(n3) = init sum

hd(n2)+sum tl(n2)≥ 3×len(n2)
hd(n3)+sum tl(n3) < 3×len(n3)

(b)

Multisets:

ms hd(n2)∪ms tl(n2)∪ms hd(n3)∪ms tl(n3) = ms init

(c)

Universally quanti f ied f ormulas:

∀y. y∈ tl(n2)⇒ n2[y]≥ 3
∀y. y∈ tl(n3)⇒ n3[y] < 3

(d)

Fig. 5.Different abstractions for some configuration ofDispatch3

Definition 2. An abstract domainAW =
(
LW,⊑W,⊓W,⊔W,⊤W,⊥W

)
is called aDW-

domainif there exists a Galois connection(αW,γW) fromAW into C (DWVars,DVar).

In the following, we give twoDW-domains which formalize the abstractions from
Figure 5(b) and (c). The abstract domain used in Figure 5(d) will be defined in Section 4.

DW-domain AΣ: To reason about the sum of data in a word, we define aDW-
domain based on an arbitrary numerical abstract domain whose dimensions represent
integer program variables or terms of the formhd(w), len(w), andsum tl(w), with
w∈ DWVars. In our experiments, we have used such aDW-domain based on the poly-
hedra domain [8], denotedAΣ.

DW-domain AM: To reason about multisets of data of a word, we consider theDW-
domainAM whose elements are conjunctions of formulas of the formT = T ′ with T
andT ′ terms of the formv1∪v2∪·· ·∪vp, wherep≥ 2. Here,v1,v2, . . . ,vp are variables
interpreted as multisets or termsms hd(w), ms tl(w), andms(d) with w∈DWVarsand
d ∈ DVar. The termms(d) represents the singleton containing the value of the program
variabled. We suppose thatv1,v2, . . . ,vp are distinct.

Let⊤M be the formulat = t and⊥M the formulat∪t = t. To define lattice operators
we start by defining a procedureSaturate(µ), whereµ is a value inAM, which applies
the commutativity of= and∪, the associativity of∪, and substitutions in order to obtain
new atomic formulas that are implied by the existing ones. The substitutions are applied
as follows:

– if T1 = T2 is an atomic formula then we add more atomic formulas by substituting:
• in every union term of the formT3∪T1, T1 by T2;
• in every union term of the formT3∪T2, T2 by T1;

Let µ1 and µ2 be two elements inLM. We defineµ1 ⊑
M µ2 if for every atomic

formulaT1 = T2 in µ2 there exists:

– union termsT1
1 , T2

1 ,. . .,T p
1 such thatT1 = T1

1 ∪T2
1 · · · ∪T p

1 ,
– union termsT1

2 , T2
2 ,. . .,T p

2 such thatT2 = T1
2 ∪T2

2 · · · ∪T p
2 , and

– atomic formulasT i
1 = T i

2, for any 1≤ i ≤ p, in Saturate(µ1).

We defineµ1⊔
M µ2 to be the conjunction of atomic formulas that appear in both

Saturate(µ1) andSaturate(µ2). The meet operatorµ1⊓
M µ2 is defined to be the

conjunction of atomic formulas that appear inSaturate(µ1) or Saturate(µ2). Since
our abstract domain contains a finite number of elements, we may consider∇M = ⊔M.

3.2 Abstract heap graphs

Abstractions ofk-heap graphs as in Figure 5 are calledk-abstract heap graphs. In the
following definition, we assume that for each node of a heap graph there exists a data
word variable with the same name.

Definition 3. A k-abstract heap overPVar, DVar, and aDW-domainAW is a tuple

H̃ =
(

N,S,V,W̃
)

where N,S,V are as in the definition of k-heap graphs, andW̃ is an

abstract value inAW over the data word variables N−{♯} and the data variables DVar.

Next, we define the domain ofk-abstract heap graphs parametrized byAW, denoted
by AH(k,AW). Two abstract heap graphs areisomorphicwhen their underlying graphs

are isomorphic. Formally,̃H =
(

N,S,V,W̃
)

andH̃ ′ =
(

N′,S′,V ′,W̃′
)

are isomorphic,

denotedH̃ ∼ H̃ ′, if there exists an isomorphismh : N→N′ between the labeled graphs
(N,S,V) and(N′,S′,V ′). To emphasize the graph isomorphism, we may writeH̃ ∼h H̃ ′.

The lattice operators of this domain are obtained by applying the corresponding
operators fromAW between abstract values which belong to isomorphic abstract heap

graphs. Thus, for anỹH =
(

N,S,V,W̃
)

andH̃ ′ =
(

N′,S′,V ′,W̃′
)

in AH(k,AW) such

thatH̃ ∼h H̃ ′ we have that (1)̃H ⊑H H̃ ′ if W̃⊑W W̃′ [h(n) 7→ n|n∈N] (we have unified
the abstract values such that they use the same variable for isomorphic nodes) and (2) for
any ‡∈ {⊔,⊓,∇}, H̃ ‡H H̃ ′ is the abstract heap(N,S,V,W̃′′), whereW̃′′ is the abstract
valueW̃ ‡W W̃′ [h(n) 7→ n|n∈N]. The join and the widening (meet, resp.) of two non-
isomorphic abstract heap graphs is⊤W (⊥W, resp.).

Proposition 1. The entailment relation⊑H is sound, that is,H̃ ⊑H H̃ ′ impliesγH(H̃)⊆

γH(H̃ ′). Also,⊔H and⊓H are the least upper bound and greatest lower bound, respec-
tively, and∇H is a widening operator.

Proof: The properties of⊑H, ⊔H, and⊓H, resp. follow directly from similar properties
of ⊑W, ⊔W, and⊓W, resp. The proof for the widening operator relies on the factthat
the heaps generated by the class of programs considered in Section 2 contain a bounded
number of cut points [17]. 2

Notice that⊑H is notcomplete. That is, we can find two abstract heapsH̃ andH̃ ′

such thatγH(H̃)⊆ γH(H̃ ′) does not implyH̃ ⊑H H̃ ′.
Based on the Galois connection(αW,γW) we define the Galois connection(αH,γH)

between the lattice of sets ofk-heap graphs andAH(k,AW). The value ofαH for a set of
isomorphick-heap graphsS is the underlying graph of the input heap graphs together
with a value inAW obtained by applyingαW to

{(L,D) | (N,S,V,L,D) ∈ S }.

The value ofαH for a set ofk-heap graphs containing at least two non-isomorphic heap
graphs is⊤H. The concretization functionγH is defined usingγW in a similar manner.

3.3 Abstract heap sets

We defineAHS(k,AW) =
(
LHS(k,AW),⊑HS,⊓HS,⊔HS,⊤HS,⊥HS

)
as a finite powerset

domain corresponding toAH(k,AW). Its elements are calledk-abstract heap sets.

Definition 4. A k-abstract heap set overPVar, DVar, and aDW-domainAW is a finite
set of non-isomorphic k-abstract heap graphs over PVar, DVar, andAW.

The operators associated toAHS(k,AW) and its widening operator are obtained from
those ofAH(k,AW) as usual [7]. The entailment relation⊑HS is the usual Hoare power-
domain partial order [1], that is, for anyAH andA′H in AHS(k,AW), AH ⊑

HS A′H iff for

anyH̃ ∈ AH there exists̃H ′ ∈ A′H such thatH̃ ⊑H H̃ ′.
Let AH and A′H ∈ LHS. To make uniform the definitions of all operators of the

abstract domain, we suppose that for any abstract heap
(

N,S,V,W̃
)
∈ AH for which

we can not find an isomorphic abstract heap inA′H we add toA′H the abstract heap
(N,S,V,⊥W) and vice-versa. Then, for any ‡∈ {⊔,⊓,∇} we defineAH ‡HS A′H to be

the abstract heap set that contains for any two abstract heaps H̃ =
(

N,S,V,W̃
)
∈ AH

andH̃ ′ =
(

N′,S′,V ′,W̃′
)
∈ A′H with H̃ ∼h H̃ ′, the abstract heap(N,S,V,W̃′′), where

W̃′′ is the abstract valuẽW ‡W W̃′ [h(n) 7→ n|n∈ N].

Proposition 2. The entailment relation⊑HS is sound, that is, AH ⊑
HS A′H implies

γHS(AH) ⊆ γHS(A′H). Also,⊔HS and⊓HS are the least upper bound and greatest lower
bound, respectively, and∇HS is a widening operator.

Proof: Directly from the properties of⊑H, ⊔H, ⊓H, and∇H. 2

As in the previous case, notice that⊑HS is notcomplete.
The Galois connection(αHS,γHS) between the lattice of sets ofk-heap graphs and

AHS(k,AW) is defined as follows. The abstraction functionαHS applied to some set of
k-heap graphsS returns a finite set ofk-abstract heap graphs, one for each equivalence
class ofS with respect to the isomorphism relation. Thisk-abstract heap graph is defined
by applyingαH to the set of heap graphs in the equivalence class. The concretization
functionγHS is a point-wise extension ofγH.

3.4 Abstract postcondition operator

The abstract postcondition operator on abstract heap sets corresponding to
postk, denotedpost#

k, is obtained by replacing every concrete transformerF ∈
{sglt,isSglt,split,proj,updateFirst,concat} with its abstractionF#. For ex-
ample, the abstract version of the procedureUncover, denotedUncover#, used in

post#
k(free(p),AH) is given in Figure 6. For any abstract heap graphH̃ =

(
N,S,V,W̃

)

in the abstract heap setAH , Uncover#(AH,p) does one of the following:

– if W̃ implies that the length of the data word associated to the noden pointed byp
is 1 (i.e.,isSglt#(W̃,n) = 1), then the abstract heap graph is added to the output
abstract heap set;

– if W̃ implies that the length of the data word associated ton is strictly greater than
1 (i.e.,isSglt#(W̃,n) = 0), then we add to the output abstract heap set an abstract
heap graph obtained (1) by adding the nodem which represents the immediate
successor ofn and (2) by updating the abstract value inAW to split#(W̃,n,m);

– otherwise, (i.e.isSglt#(W̃,n) = −1), we add to the output abstract heap set two
abstract heap graphs: (1) an abstract heap graph obtained from H̃ by adding the
constraint that the length of the data word associated ton is 1 (this is done by
calling the proceduremakeSglt#(W̃,n)), and (2) an abstract heap graph build from
H̃ by adding the constraint that the length of the data word associated ton is strictly
greater than 1 (this is done by calling the proceduremakeNonSglt#(W̃,n)) and by
applying the same transformations as in the case “isSglt#(W̃,n) = 0”.

procedure Uncover#(AH,p) {
A′
H

=⊥HS;
for each H̃= (N,S,V, W̃) ∈ AH do {

n = V(p);
if (isSglt#(W̃,n) = 1)

A′
H

= A′
H
⊔HS {H̃};

else if (isSglt#(W̃,n) = 0){
N′ = N∪{m}; // m 6∈ N
S′ = S [n 7→ m,m 7→ S(n)] ;
W̃′ = split#(W̃,n,m);
A′
H

= A′
H
⊔HS {(N′,S′,V, W̃′)}; }

else {
A′
H

= A′
H
⊔HS {(N,S,V,makeSglt#(W̃,n))};

N′ = N∪{m}; // m 6∈ N
S′ = S [n 7→ m,m 7→ S(n)] ;
W̃′ = makeNonSglt#(W̃,n);
W̃′ = split#(W̃′,n,m);
A′
H

= A′
H
⊔HS {(N′,S′,V, W̃′)}; }

return A′
H
; }

Fig. 6.The abstract transformerUncover#.

Remark 1.For any call toconcat#(W̃,V1, . . . ,Vt) made bypost#
k, the sum|V1|+ . . .+

|Vt | is bounded by some constant which depends onk and on the number of program
variables. This follows from the fact that the heaps generated by the class of programs
considered in Section 2 contain a bounded number of cut points [17]. Consequently, we
can defineDW-domainsAW parametrized byk such thatconcat#(W̃,V1, . . . ,Vt) with
W̃ ∈ AW is undefined if|V1|+ . . .+ |Vt | is greater than or equal than this constant.

For any abstract transformer, we have to prove soundness andprecision properties
[6]. Let (α,γ) be a Galois connection associated to some abstract domain. For any con-

crete transformerF , its abstractionF# is sound ifF(γ(W̃))⊆ γ(F#(W̃)), for any abstract
valueW. F# is abest abstractionif α(F(γ(W))) = F#(W) and it is anexact abstraction
if F(γ(W)) = γ(F#(W)), for any valueW. The following result holds.

Theorem 1. For any k-abstract heap set AH in AHS(k,AW), the following hold:
– (soundness)postk(St,γHS(AH))⊑HS γHS(post#

k(St,AH));
– (precision) if all the abstract transfer functions in the domainAW are best (exact,
resp.) abstractions thenpost#

k is also a best (exact, resp.) abstraction.

In the following, we give sound abstract transformers forAM andAΣ.

DW-domain AΣ: Suppose thatµ is an abstract value inAΣ. Then,

– sglt#(µ,x) adds toµ three dimensionshd(x), len(x), andsum tl(x), and outputs
update#(µ,len(x) = 1), whereupdate# is the abstract transformer in the polyhe-
dra domain corresponding to assignments;

– makeSglt#(µ,x) returnsµ⊓Z len(x) = 1;
– makeNonSglt#(µ,x) returnsµ⊓Z len(x) > 1;
– isSglt#(µ,x) returns returns 1 ifµ⊑Σ len(x) = 1, it returns 0 ifµ⊑Σ len(x) > 1,

and -1, otherwise;
– split#(µ,x,z) substitutes inµ the variablesum tl(x) by sum tl(x) + z[0] +
sum tl(z);

– updateFirst#(µ,x,dt,β) applies

update#(µ,hd(x) = dtβ), if x∈ DWVars, and
update#(µ,x = dtβ), if x∈ DVar,

wheredtβ is the expressiondt in which p→ data is replaced byhd(β(p));
– concat#(µ,V1, . . . ,Vp) replaces, for anyVi = (s1

i ,s
2
i , . . . ,s

ki
i), 1≤ i ≤ p, the term

sum tl(s1
i)+hd(s2

i)+sum tl(s2
i)+ . . .+hd(ski

i)+sum tl(ski
i)

by sum tl(s1
i), and then it projects out from the current abstract value thevariables

hd(w), len(w), andsum tl(w), with w∈ (V1\ {s1
1})∪·· ·∪ (Vp\ {s1

p}).

Example 1.Consider the procedureDispatch3 in Figure 1(b). In the following, we de-
scribe some interesting steps in the analysis of this program using the abstract domain of
1-abstract heap sets (we allow abstract heap with at most onesimple node) parametrized
by the data words abstract domainAΣ presented above. Suppose that in the initial state,
head points to a non-empty list such that the sum of its elements equals the value of the
variables. This is described by the abstract heap in Figure 7(a). The shape of the heap
is given by the graph: a noden labeled byhead connected to the distinguished node #
representingnull which is pointed bytmp, grtC, andlessC. The constraints regarding
the length of the list and the data in the list are given by the abstract value written below
the graph.

Two of the abstract heaps obtained after the first iteration of the loop are given
in Figure 7(b) and (c). Notice that, the statementtmp=x->next produces two abstract

heaps depending on the length of the list pointed byhead. If this length is 1 then we
obtain an abstract heap with 2 nodes similar to the one in Figure 7(b), and, otherwise,
we obtain an abstract heap with three nodes, one for the successor ofn, denotedn1.
The latter involves a call to the abstract transformersplit# which modifies the abstract
value in Figure 7(a) tolen(n) = 1∧ hd(n)+ sum tl(n)+ hd(n1)+ sum tl(n1) = s.
The abstract heaps mentioned above are produced when the test of theif statement is
true, and consequently, they contain the constrainthd(n) ≥C. Analogously, when the
test of theif statement is false, we obtain two abstract heaps: they contain the constraint
hd(n) < C and the labelslessC andgrtC are interchanged.

After another two iterations, one of the obtained abstract heaps is the one in Figure
7(e). It is obtained by applying the abstract transformerNormalizek

on the abstract
heap in Figure 7(d) which induces a call toconcat# on the abstract value fromLΣ

contained in this abstract heap. The latter consists concatenationg the words associated
to n2, n1 andn into one word which will be associated ton2. Thus, the length of the
word associated ton2 in the output abstract value is updated to the sum of the lengths
of the words associated ton2, n1, andn in the input abstract value. Also, we substitute
the termhd(n1)+sum tl(n1)+hd(n)+sum tl(n) by sum tl(n2).

Notice that the abstract heaps in Figure 7(c) and (e) are similar and their join is an
abstract heap defined by the same graph as Figure 7(c) and by the abstract value

len(n) ∈ [1,3]∧hd(n)≥C∧hd(n)+sum tl(n)+hd(n1)+sum tl(n1) = s. (F)

After some iterations, the current abstract heap set will contain abstract heaps to cover
all possible cases: when the lists pointed bygrtC andlessC are non-empty or when
one of these lists is empty. If we apply the widening operator∇HS starting with the
fourth iteration, which induces a call to∇Σ, constraints likelen(n) ∈ [1,3] in (F) will
disappear and the analysis will terminate.

Similarly, using the abstract domain for multisetsAM we can prove that the union
of the multisets containing the elements of the list pointedby grtC andlessC, respec-
tively, equals the multiset containing the elements of the starting list.

DW-domain AM: For any abstract valueµ in AM,

– sglt#(µ,x) adds toµ two dimensions forms hd(x) andms tl(x),
– split#(µ,x,z) replaces inµ the multiset variablems tl(x) by the union term
ms tl(x)∪ms hd(z)∪ms tl(z);

– isSglt#(µ,x) returns always -1;
– makeSglt#(µ,x) andmakeNonSglt#(µ,x) returnµ;
– updateFirst#(µ,x,dt,β) considers the following cases:
• if x∈ DVar anddt = d ∈ DVar then it adds toµ the atomic formulams(x) =
ms(d),
• if x ∈ DWVars and dt = p→ data then it adds toµ the atomic formula
ms hd(x) = ms hd(β(p)),
• otherwise, it returns⊤M.

– concat(µ,V1, . . . ,Vp) appliesSaturate(µ) and then, for anyVi = (s1
i ,s

2
i , . . . ,s

ki
i),

1≤ i ≤ p, it replaces the union term:

ms tl(s1
i) ∪ ms hd(s2

i) ∪ ms tl(s2
i) ∪ ·· ·∪ ms hd(ski

i) ∪ ms tl(ski
i)

n #

{head} {tmp,grt,less}

len(n) > 0
∧hd(n)+sum tl(n) = s

(a)

n #

{head,grtC} {tmp,lessC}

len(n) = 1∧hd(n)≥C
∧hd(n)+sum tl(n) = s

(b)

{lessC}
#n1

n

{grtC}

{head,tmp}

len(n) = 1∧hd(n)≥C
∧hd(n)+sum tl(n)+hd(n1)
+sum tl(n1) = s

(c)

n1 nn2

{grtC}

#n3

{head,tmp} {lessC}

len(n) = 1∧len(n1) = 1∧len(n2) = 1
∧hd(n)≥C∧hd(n1) ≥C∧hd(n2)≥C
∧hd(n2)+sum tl(n2)+hd(n1)+sum tl(n1)
+hd(n)+sum tl(n)+hd(n3)+sum tl(n3) = s

(d)

n2

#n3

{head,tmp}
{lessC}

{grtC}

len(n2) = 3∧hd(n2)≥C
∧hd(n2)+sum tl(n2)+hd(n3)
+sum tl(n3) = s

(e)

Fig. 7. Abstract heaps for the procedureDispatch3

byms tl(s1
i). Afterwards, the atomic formulas that still contain data word variables

in (V1\ {s1
1})∪·· ·∪ (Vp\ {s1

p}) are deleted.

4 A DW-domain over universally-quantified formulas

We define theDW-domainAU =
(
LU,⊑U,⊓U,⊔U,⊤U,⊥U

)
whose elements are univer-

sally quantified first-order formulas.

4.1 Syntax of formulas

The elements ofAU are formulas of the formE(V)∧
V

P∈P (V) ∀y. P(y,V)⇒UP(y,V),
whereV is a set of data word variables. The sub-formulaE is quantifier-free and it
characterizes the lengths and the first symbols of the words.It is an arithmetical formula
over termshd(w) andlen(w) with w∈ V . The variablesy are interpreted as positions
from the tail of the words represented by the variables inV . P is a formula, called
pattern, which constrains the positions denoted byy. It belongs to the setP (V) of
formulas obtained from a finite setP by substituting, in any possible way, the data
words variables with the ones inV . The setP is supposed to be given by the user and it
is a parameter of the domainAU. The formulasUP, for anyP∈ P (V), are arithmetical
formulas over the terms inE plusw[y] andy, for anyw∈ DWVarsandy∈ y. Together
with E they represent abstract values in some numerical abstract domainAZ which is
also a parameter ofAU. For example, the following formula specifies that the word
denoted byw1 is a copy of the word denoted byw2:

len(w1) = len(w2)∧∀y1,y2. (y1∈ tl(w1)∧y2∈ tl(w2)∧y1 = y2)⇒w1[y1] = w2[y2],

and the following formula expresses the specification ofFibonacci from Figure 1(a):

hd(w) = 1∧∀y1,y2,y3. ((y1,y2,y3) ∈ tl(w)∧y1 <1 y2 <1 y3)⇒ w[y3] = w[y1]+w[y2].

Above, the arithmetical formulas represent values from thePolyhedra domain [8].
Based on Remark 1,AU is also parametrized by an integerk.

Syntax of patterns The patterns describe a set of positions belonging to the tails
of different words. They specify the word to which the positions belong, they fix an
order between the positions belonging to the same word, and they put arithmetical
constraints on some of these positions (which are the first oneach word). For exam-
ple, the formulas above contain the patternsy1 ∈ tl(w1)∧ y2 ∈ tl(w2)∧ y1 = y2 and
(y1,y2,y3) ∈ tl(w)∧y1 <1 y2 <1 y3.

Let (w1, . . . ,wq) and w be two vectors of data words variables. Also, letyi =
(y1

i , . . . ,y
pi
i), for any 1≤ i ≤ q, be vectors ofposition variablesinterpreted as integers

s.t.yi ∩yj = /0, for anyi 6= j. A patternP(y1,w1 . . . ,yq,wq,w) is a formula of the form
^

1≤i≤q

Pi
R(yi,wi)∧PL(y

1
1, . . . ,y

1
q,w), where (G)

– Pi
R(yi ,wi) is of form yi ∈ tl(wi)∧ y1

i ∼1 y2
i ∼2 . . . ∼pi−1 ypi

i , where∼1, . . . ,∼pi−1

is either the strict increasing order<, either the predicate “greater than or equal”≤,
or the “immediate successor” predicate<1 (i.e., y <1 y′ iff y′ = y+ 1). The formula
yi ∈ tl(wi) states that the positions denoted by the variables inyi belong towi and
thatlen(wi) ≥ |yi |+1 (that is, the tail of the word denoted bywi contains at least|yi |
positions).
– PL is a boolean combination of linear constraints over variablesy1

1, . . . ,y
1
q andlen(w)

with w∈w. We assume thatPL does not constrain the lengths of the words inw, that is,
len(w) > 0 implies∃y1

1, . . . ,y
1
q. PL, for anyw∈ w.

4.2 Semantics of formulas

A model for a formula inLU is a pair of valuations for the free variables,L : DWVars→
Z

+ andD : DVar→ Z. In the following we give the semantics of these formulas. The
fact that(L,D) is a model ofW̃ ∈ LU is denoted by(L,D) |= W̃.

LetW̃ be the formula

E∧
^

P∈P (V)

∀y1, . . . ,yq. P(y1,w1 . . . ,yq,wq,w)⇒UP.

We have that(L,D) |= φ1∧ φ2 iff (L,D) |= φ1 and(L,D) |= φ2. Also, (L,D) |= E
iff the function f : {l [w],w[0] | w ∈ DWVars} → Z, defined byf (l [w]) = |L(w)| and
f (w[0]) = L(w)[0] belongs toγZ(E) whereγZ is the concretization function associated
to AZ.

Let yi = y1
i . . .ypi

i , for any 1≤ i ≤ q, be a set of vectors of position variables. Then,

(L,D) |= ∀y1 . . .∀yq.

((
^

1≤i≤q

yi ∈ tl(wi)∧y1
i ∼1 y2

i ∼2 . . .∼pi−1 ypi
i

)
∧PL(y

1
1, . . . ,y

1
q,w)

)
⇒UP

iff for every π : y1∪ . . .yq→N
+ such that

– yi ≤ |L(wi)|+1, for any 1≤ i ≤ q,

– π(yr
i) ∈ [1, |L(wi)|], for any 1≤ i ≤ q and 1≤ r ≤ pi ,

– π(y1
i)∼1 π(y2

i)∼2 . . .∼pi−1 π(ypi
i), for any 1≤ i ≤ q,

– g : {l [w] | w ∈ w}∪ {y1
1, . . . ,y

1
q} → N

+ defined byg(l [w]) = |L(w)| andg(y1
r) =

π(y1
r), for any 1≤ r ≤ q, satisfies the formulaPL(y1

1, . . . ,y
1
q,w),

the function

h : {l [w],w[0] | w∈DWVars}∪y1∪ . . .∪yq∪{wi [y] | 1≤ i ≤ q andy∈ yi}→ Z

defined byh(l [w]) = |L(w)|, h(w[0]) = L(w)[0], h(y) = π(y), for anyy∈ y1∪ . . .∪ yq,
andh(wi [y]) = L(wi)[π(y)], for any 1≤ i ≤ q andy∈ yi belongs to the concretization
of UP, γZ(UP).

4.3 Lattice operators

In this subsection, we define the entailment relation between elements ofAU, the join,
the meet, and the widening operators. Thus, letW̃ be the abstract value

E∧
^

P∈P (V)

∀y1, . . . ,yq. P(y1,w1, . . . ,yq,wq,w)⇒UP

andW̃′ be the value

E′∧
^

P∈P (V)

∀y1, . . . ,yq. P(y1,w1, . . . ,yq,wq,w)⇒U ′P.

Then,W̃ ⊑U W̃′ iff (1) E ⊑Z E′, and (2) for every patternP(y1,w1 . . . ,yq,wq,w), if
E ⊑Z len(wi) < |yi |+1 does not hold, for every 1≤ i ≤ q, thenE⊓Z UP⊑

Z U ′P.

Also, for any ‡∈ {⊔,⊓,∇}, W̃ ‡U W̃′ is an abstract value of the form

E′′∧
^

P∈P (V)

∀y1, . . . ,yq. P(y1,w1, . . . ,yq,wq,w)⇒U ′′P,

where

– E ‡Z E′,
– for anyP(y1,w1, . . . ,yq,wq,w) ∈ P (V), we have that:
• if E ⊑Z len(wi) < |yi |+1, for some 1≤ i ≤ q, then we defineU ′′P = U ′P,

• if E′ ⊑Z len(wi) < |yi |+1, for some 1≤ i ≤ q, then we defineU ′′P = UP,
• otherwise,U ′′P = UP ‡Z U ′P.

Proposition 3. The entailment relation⊑U is sound, that is,W̃⊑U W̃′ impliesγU(W̃)⊆
γU(W̃′). Also,⊔U and⊓U are the least upper bound and greatest lower bound, respec-
tively, and∇U is a widening operator.

Proof: The properties of⊑U, ⊔U, ⊓U, resp. follow directly from similar properties
of ⊑Z, ⊔Z, and⊓Z, resp. The proof for the widening operator relies on the widening
operator∇Z and on the fact that the set of patternsP is fixed. 2

The Galois connection between the latticeC (DWVars,DVar) andAU is defined
according to the semantics given in Section 4.2.

4.4 Closed sets of patterns

In the abstract transformerconcat# we have to transfer properties from a set of words
to their concatenation. This implies that we must be able to describe data from posi-
tions which belong to intervals that overlap two or more words. To describe these sets
of positions we compute for each pattern a set of patterns denotedClosure(P,k). This
computation can be done automatically and it is not trivial in the presence of arithmeti-
cal constraints.Then,Closure(P,k) is extended as usual to sets of patterns. A set of
patterns isclosedif it equalsClosure(P ,k), for some set of patternsP . The preci-
sion result forconcat# given in the next sub-section is obtained only for closed sets
of patterns. We begin by an example and afterwards, we give the formal definition of
Closure(P,k).

Example 2.Let P be(y1,y2,y3)∈ tl(w)∧y1 <1 y2 <1 y3. Suppose thatw is interpreted
as the concatenation of two words denoted byn1 andn2. If we want to deduce a prop-
erty of w of the form∀y1,y2,y3. P⇒U from properties ofn1 andn2, we have to use
universally quantified formulas having as left partP[w← n1], P[w← n2], and one of
the following patterns:

P1(n1) := (y1) ∈ tl(n1)∧y1 = len(n1)−1, P2(n2) := (y3) ∈ tl(n2)∧y3 = 1
P3(n1) := (y1,y2) ∈ tl(n1)∧y1 <1 y2∧y1 = len(n1)−2, and

P4(n2) := (y2,y3) ∈ tl(n2)∧y2 <1 y3∧y2 = 1.

These patterns characterize any three consecutive positions in the word denoted by
w. UsingP1 andP2, we capture the case wheny1 is the last position ofn1 andy2,y3 are
the first two positions ofn2. Because patterns characterize positions in tails of words,
y2 does not appear explicitly. Its data can be characterized using the quantifier-free part.
The case wheny1 andy2 are the last positions ofn1 andy3 is the first position ofn2 is
considered usingP2. The patternP3 describes the case wheny1, y2, andy3 are the first
three positions ofn2. Finally, P[w← n1] andP[w← n2] consider the situations when
all the positions belong to the same word.

Formal definition of Closure(P,k): Let P(y1,w1 . . . ,yq,wq,w) be a pattern

(
^

1≤i≤q

(
yi ∈ tl(wi)∧y1

i ∼1 y2
i ∼2 . . .∼pi−1 ypi

i

)
)
∧PL(y

1
1, . . . ,y

1
q,w)

and letu1,. . .,uq be vectors of data word variables. Suppose thatwi represents the con-
catenation of the words denoted byui , 1≤ i ≤ q. The procedureClosure(P,u1, . . . ,uq)
contains two steps:

1. we define all the patterns which constrain the positionsyi , for any 1≤ i ≤ q, such
that they belong to one of the words inui and they satisfy the ordering constraints
in Pi

R and the arithmetical constraints inPL;
2. for any patternP′ obtained in the first step and for any subsetu ⊆ u1∪ . . .∪ uq

we put inClosure(P,u1, . . . ,uq) a pattern containing all the atomic formulas over
position variables which are constrained, byP′, to belong to a word denoted by one
of the variables inu.

Following the steps described above,Closure(P,u1, . . . ,uq) is defined as follows:

ComputeTuples(Pi
R,v1, . . . ,vm): Let v1,. . ., vm be a sequence of data words variables

and letPi
R(yi ,wi) be the formula:

yi ∈ tl(wi)∧y1
i ∼1 y2

i ∼2 . . .∼ j−1 y j
i ,

where∼1, . . . ,∼ j−1∈ {<,≤,<1}. Intuitively, Tuples(Pi
R,v1, . . . ,vm) shows all the

possible ways of choosingj positions satisfying the order constraint inPi
R on the

word representing the concatenation of the wordsv1,. . .,vm. Roughly, it will con-
sider all the possible ways of choosing an arbitrary number of positions on the word
v1, an arbitrary number of positions on the wordv2, etc.
Clearly, if m= 1 thenTuples(Pi

R,v1, . . . ,vm) = Pi
R[wi ← v1].

Otherwise, ifm≥ 2, we begin by considering the case when we choose positions
that are not first symbols of the wordsv1,. . .,vm. Thus, we considerm′ formulas,
φ1, . . ., φm′ , which characterizej positions on the the concatenation of the words
v1,. . .,vm that are not first symbols of these words:

φ1 = (y1
i , . . . ,y

q1
i) ∈ tl(vs1)∧y1

i ∼1 . . .∼q1−1 yq1
i

φ2 = (yq1+1
i , . . . ,yq2

i) ∈ tl(vs2)∧yq1+1
i ∼q1+1 . . .∼q2−1 yq2

i
· · ·

φm′ = (y
qm′−1+1
i , . . . ,y j

i) ∈ tl(vsm′
)∧y

qm′−1+1
i ∼qm′−1+1 . . .∼ j−1 y j

i ,

where the following hold:
– 1≤m′ ≤mand 1≤ s1 < s2 < .. . < sm′ ≤m,
– 1≤ q1 < q2 < .. . < qm′−1≤ j,
– if m′ > 1 then∼q1 6=<1,. . .,∼qm′−1

6=<1.
Above,φ1 characterizesq1 positions belonging to the wordvs1, for some 1≤ s1 ≤
m, which obey the same restrictions as the firstq1 positions inPi

R. Then,φ2 char-
acterizesq2 positions belonging to the wordvs2, for some 1≤ s2 ≤m greater than

s1, which obey the same restrictions as the nextq2−q1 positions inPi
R. Obviously,

the positionsyq1
i andyq1+1

i can not be immediate successors because we have con-

sidered the case whenyq1+1
i can not be the first symbol ofvs2. Thus,πq1 6= 1. The

same happens with all the remaining formulasφ3,. . .,φm′ .
Thenφ1∧ . . .∧φm′ ∈ Tuples(P

i
R,v1, . . . ,vm), for anys1,. . .,sm′ andq1,. . .,qm′−1 as

above.
Now, for the general case, we considerm′ formulasψ1, . . ., ψm′ as follows:

ψ1 = (yt0
i , . . . ,yq1

i) ∈ tl(vs1)∧yt0
i ∼t0 . . .∼q1−1 yq1

i
ψ2 = (yq1+t1

i , . . . ,yq2
i) ∈ tl(vs2)∧yq1+t1

i ∼q1+t1 . . .∼q2−1 yq2
i

· · ·

ψm′ = (y
qm′−1+tm′−1
i , . . . ,y j

i) ∈ tl(vsm′
)∧y

qm′−1+tm′−1
i ∼qm′−1+tm′−1

. . .∼ j−1 y j
i ,

where the following hold:
– 1≤m′ ≤mand 1≤ s1 < s2 < .. . < sm′ ≤m,
– 1≤ t0 < q1 < q2 < .. . < qm′−1≤ j,
– t0 < s1 +1 andtr ≤ sr+1−sr +1, for any 1≤ r < m′,
– qr + tr < qr+1, for any 1≤ r < m′−1, andqm′−1 + tm′−1 < j,
– if m′ > 1 andtr+1 = 1 then∼qr 6=<1, for any 1≤ r < m′−1.

Above,ψ1 describesq1− t0 positions belonging to the wordvs1, for some 1≤ s1≤
m, which obey the same restrictions as the positionsyt0

i ,. . .,yq1
i in Pi

R. It is supposed
that the firstt0− 1 positions are mapped to first symbols of some of the words
v2,. . .,vs1. For this, we must havet0 < s1 + 1. Then,ψ2 describesq2− (q1 + t1)
positions belonging to the wordvs2, for some 1≤ s2 ≤ m, which obey the same
restrictions as the positionsyq1+t1

i ,. . .,yq2
i in Pi

R. It is supposed that the positions

yq1+1
i ,. . .,yq1+t1−1

i are mapped to first symbols of some of the wordsvs1+1,. . .,vs2.

Consequently,t1≤ s2−s1+1 must hold. Ift1 = 1, then betweenyq1
i andyq1+1

i there
is at least one symbol (the first symbol ofvs2). Consequently,πq1 must be different
from 1. The same happens for the other formulas.
Thenψ1∧ . . .∧ψm′ ∈ Tuples(P

i
R,v1, . . . ,vm), for anys1,. . .,sm′ , t0, q1,. . .,qm′−1, and

t1,. . .,tm′−1 as above.

The output in the first step of Closure(P,u1, . . . ,uq): We compute in this step the
set of all patterns of the form:

^

1≤i≤q

Qi
R(yi ,ui)∧P′L(y

1
1, . . . ,y

1
q,w)∧P′′L , where

– Qi
R(yi ,ui) ∈ Tuples(Pi

R,ui),
– P′L(y

1
1, . . . ,y

1
q,w) is obtained fromPL(y1

1, . . . ,y
1
q,w) by:

• for any 1≤ i ≤ q, we substitutel [wi] with l [u1
i]+ l [u2

i]+ · · ·+ l [u j i
i], where

ui = (u1
i ,u

2
i , . . . ,u

j i
i),

• for any 1≤ i ≤ q, if y1
i is a position of the worduo+1

i , for some 1< o < j i ,
then we substitutey1

i with y1
i + l [u1

i]+ . . .+ l [uo
i].

– P′′L is a conjunction of linear constraints build as follows:

• for any 1≤ i ≤ q, for any sub-formula ofQi
R(yi ,ui) of the form

(yr , . . . ,yr ′) ∈ tl(v)∧yr <πr . . . <πr′−1
yr ′ ,

with r < r ′ < |yi |, if πr = . . . = πr ′−1 = πr = 1 (πr is known fromPi
R) then

we add toP′′L the constrainty1 = len(v)− r.

The output in the second step ofClosure(P,u1, . . . ,uq): Let P′ be a pattern com-
puted in the first step of the form:

^

1≤i≤q

Qi
R(yi ,ui)∧P′L(y

1
1, . . . ,y

1
q,w)∧P′′L .

Also, let u ⊆ u1∪ . . .∪uq. We denote byyi
′ ⊆ yi the set of variablesy for which

there exist some variableu ∈ u and some vectory ⊆ yi with y ∈ y such that
y ∈ tl(u) is an atomic formula inQi

R(yi ,ui). Let Qi
R(yi ,ui ∩ u) denote the con-

junction of atomic formulas inQi
R(yi ,ui) over position variables inyi

′. Then,
Closure(P,u1, . . . ,uq) contains the pattern

(
^

1≤i≤q

Qi
R(yi ,ui ∩u)

)
∧Pu

L ,

wherePu
L is the quantifier-free formula equivalent to∃Y.

(
P′L(y

1
1, . . . ,y

1
q,w)∧P′′L

)
.

Here,Y contains all the position variables inP′L(y
1
1, . . . ,y

1
q,w)∧P′′L which are not

present in
V

1≤i≤qQi
R(yi ,ui ∩u).

Notice that if the patternP contains no arithmetical constraints then
Closure(P,k) = Closure(P,k+ 1), for anyk greater than or equal to the number of
position variables inP.

By taking all the setsClosure(P,u1, . . . ,uq) which correspond to concatenations
of at mostC words, whereC is the constant mentioned in Remark 1, we obtain
Closure(P,k). Then,Closure(P,k) is extended as usual to sets of patterns. A set of
patterns isclosedif it equalsClosure(P ,k), for someP .

4.5 Abstract transformers

In this section, we define the abstract transformers associated to theDW domainAU.
We prove that these abstract transformers are sound with respect to the concrete opera-
tions and we identify conditions under which they are precise. First, we will present a
particular class of abstract values for which we can prove the precision of the abstract
transformers. In the following, the projection of some element X̃ from some abstract
domainA on some set of variablesV is denotedX̃↓ V. The projection of an abstract
elementX̃ on all the variables except some set V is denotedX̃↑V.

Closed abstract valuesIn general, there may be more than one abstract value inLU

having the same concretization. For example,

hd(w) = 0∧len(w) = 6
∧∀y1. (y1) ∈ tl(w)⇒ (1≤ w[y1]≤ 5)∧∀y1,y2. ((y1,y2) ∈ tl(w)∧y1 < y2)⇒ w[y1] < w[y2].

and

hd(w) = 0∧len(w) = 6
∧∀y1. (y1) ∈ tl(w)⇒ (w[y1] = y1)∧∀y1,y2. ((y1,y2) ∈ tl(w)∧y1 < y2)⇒⊤

Z.

represent the same data wordw = 012345. In some of the results that follow we need
a canonical representation for the abstract values inLU. Such representations are called
closed abstract values.

Definition 5. An abstract value W∈ LU is closedif αU(γU(W)) = W.

The intuition behind the notion of closure is given by the following lemma. Roughly,
an abstract valueW is closed iff it is the smallest (w.r.t.⊑U) between all values having
the same concretization asW.

Lemma 1. An abstract value W∈ LU is closed iff for any W′ ∈ LU with γU(W′) =
γU(W), we have that W⊑U W′.

Proof: “ ⇒ ” Let W′ ∈ LU such thatγU(W) = γU(W′). By the fact thatW is closed,
we have thatαU(γU(W′)) = αU(γU(W)) = W. By the fact that(αU,γU) is a Galois con-
nection, fromγU(W′)⊆ γU(W′) we obtain thatαU(γU(W′)) ⊑U W′. The latter, implies
W ⊑U W′.
“ ⇐ ” from the definition of the Galois connection we have thatαU(γU(W))⊑U W. Let
W′ = αU(γU(W)). If we can prove thatγU(W) = γU(W′) then, by the hypothesis, we
obtain thatW⊑U W′ = αU(γU(W)).

SinceαU(γU(W)) ⊑U αU(γU(W)) and(α,γ) is a Galois connection, we obtain that
γU(W) ⊆ γU(W′). Then, sinceαU(γU(W)) ⊑U W and γ is monotonic, we obtain that
γU(W′)⊆ γU(W). 2

For anyW ∈ LU, we define itsclosureas the abstract elementαU(γU(W)). The
following result holds.

Lemma 2. For any W∈ LU, its closure is a closed abstract value

Proof: LetV = αU(γU(W)). We have to prove thatV = αU(γU(V)), that is,

αU(γU(W)) = αU(γU(αU(γU(W)))).

To this we try to prove
γU(W) = γU(αU(γU(W))).

To prove the implication from left to right, we start from

αU(γU(W))⊑U αU(γU(W)),

which by the property of the Galois connection, implies,

γU(W)⊆ γU(αU(γU(W))).

To prove the implication from right to left, we start from

αU(γU(W))⊑U W,

which by the monotonicity of the concretization functionγU, implies

γU(αU(γU(W)))⊆ γU(W).

2

The definition and the lemma above hold also for other abstract domains, instead of
AU. In the following, we will give a characterization for some class of closed abstract
values which are defined on some specific class of patterns calledsimple patterns.

Definition 6. A pattern P(y1,w1 . . . ,yq,wq) with yi = y1
i . . .ypi

i , for any1≤ i ≤ q, of the
form:

^

1≤i≤q

yi ∈ tl(wi)∧y1
i ≤ y2

i ≤ . . .≤ ypi
i

is called asimple pattern. An abstract value belonging to the abstract domainAU

parametrized by a set of simple patterns is called asimple abstract value.

For any simple abstract valueW ∈ AU, we defineγU(W) | f st∪len as the set which
contains, for any(L,D) ∈ γU(W), the function

f(L,D) : {hd(w),len(w),d | w∈ V ,d ∈ DVar}→ Z,

defined by f(L,D)(hd(w)) = L(w)[0] and f(L,D)(len(w)) = |L(w)|, for any w ∈ V ⊆
DWVars, and f(L,D)(d) = D(d), for anyd ∈ DVar. Also, for anyP∈ P (V) as in Defi-
nition 6, we defineγU(W) |P as the set which contains, for any(L,D) ∈ γU(W), all the
functions

g(L,D) :
(

y∪{wi[y
j
i] | 1≤ i ≤ q,1≤ j ≤ pi}∪{hd(w),len(w),d |w∈ V ,d ∈ DVar}

)
→Z,

where y = y1 ∪ . . . ∪ yq, such that the values assigned toy by g(L,D) satisfy P,
g(L,D)(w[y]) = L(w)[g(L,D)(y)], for any w ∈ {w1, . . . ,wq} and y ∈ y, g(L,D)(hd(w)) =
L(w)[0] andg(L,D)(len(w)) = |L(w)|, for anyw ∈ V , andg(L,D)(d) = D(d), for any
d ∈ DVar.

Lemma 3. If the numerical abstract domainAZ contains an exact projection operator↑
and an exact meet operator⊓Z (i.e.,γZ(X⊓Z Y) = γZ(X)∩ γZ(Y)) then, for any simple
abstract value W∈ AU of the form

W ::= E∧
^

P∈P (V)

∀y1, . . . ,yq. P(y1,w1 . . . ,yq,wq,w)⇒UP,

we have that W is closed iff

1. γU(W) | f st∪len= γZ(E),
2. for any P∈ P (DWVars) γU(W) |P= γZ(UP),
3. the abstract values E, and UP, for any P∈ P (DWVars), are closed.

Proof: “ ⇒ ” First, we want to prove thatγU(W) | f st∪len= γZ(E). SinceW is closed, by
the definition of the abstraction functionαU, we obtain that

αZ(γU(W) | f st∪len) = E. (H)

This implies thatαZ(γU(W) | f st∪len)⊑
Z E, which by the property of the Galois connec-

tion, implies
γU(W) | f st∪len⊆ γZ(E).

Then, property (H) impliesE ⊑Z αZ(γU(W) | f st∪len), which together with
αZ(γZ(E))⊑Z E implies

αZ(γZ(E))⊑Z αZ(γU(W) | f st∪len).

The latter, by the property of the Galois connection, implies

γZ(E)⊆ γZ(αZ(γU(W) | f st∪len))

Remember that the formulaUP is defined over the variables inE, therefore from the
definition ofγU and by the fact that the projection operator inAZ is exact, we have that
γU(W) | f st∪len equals

γZ(E)∩
\

P∈P (V)

γZ(UP↑yP),

whereyP includes the position variables inP and the terms of the formw[y] with y a
position variable inP. Thus,

γZ(E)⊆ γZ(αZ(γZ(E)∩
\

P∈P (V)

γZ(UP↑yP))),

which by the fact that⊓Z is exact implies

γZ(E)⊆ γZ(αZ(γZ(E⊓Z⊓Z

P∈P (V)UP↑yP))).

SinceγZ ◦αZ ◦ γZ = γZ, we obtain that

γZ(E)⊆ γZ

(
E⊓Z⊓Z

P∈P (V)UP↑yP

)
.

Using again that⊓Z is exact we conclude that

γZ(E)⊆

γZ(E)∩

\

P∈P (V)

γZ(UP↑yP)

= γU(W) | f st∪len .

The prove of the second fact follows the same ideas.

“ ⇐ ” Let W′ = αU(γU(W)). From the definiton ofαU,γU follows that

W′ = αZ(γU(W) | f st∪len)∧
^

P∈P (V)

αZ(γU(W) |P).

Then, using hypothesises 1 and 2 we obtain that

W′ = αZ(γZ(E))∧
^

P∈P (V)

αZ(γZ(UP)).

Moreover, using the third hypothesis we conclude thatW′ = E∧
V

P∈P (V)UP, there-
foreW′ = W.

2

Next, we describe a procedure which, for some class of abstract valuesW ∈ LU

returns closed abstract values having the same concretization asW. This procedure
works only for abstract values defined oversimple patterns. It relies on the existence of
a similar procedure for abstract values inAZ.

The closure procedure LetW be a simple abstract element inLU, with

W ::= E∧
^

P∈P (V)

∀y1, . . . ,yq. P(y1,w1 . . . ,yq,wq,w)⇒UP.

This procedure builds a closed abstract value, denotedCl(W), such thatγU(Cl(W)) =
γU(W).

If E is unsatisfiable (that is,γZ(E) is empty) thenCl(W) is the bottom element⊥U.
Otherwise, we defineCL(W) to be the abstract value

ES∧
^

P∈P (V)

∀y1, . . . ,yq. P(y1,w1 . . . ,yq,wq,w)⇒US
P,

where the numeric abstract values are obtained in the following steps:

Step 1: We setES = E and we enforce the quantifier-free part ofCl(W) from the
universal formulas ofW. Thus, for anyP(y1,w1 . . . ,yq,wq,w) ∈ P (V), such that
E ⊑Z

Vq
i=1len(wi) > 1 we apply,

ES = ES⊓Z (UP↓ {len(w),hd(w) |w∈ V })

Step 2: We setUS
P =UP⊓

Z ES, for anyP∈ P (V). Then, we enforce universal formulas
based on other universal formulas. To see the intuition behind this consider the
following example. LetV = {w}, P (V) = {(y1,y2)∈ tl(w)∧y1≤ y2,y∈ tl(w)},
andW as follows:

∀y1,y2. ((y1,y2) ∈ tl(w)∧y1≤ y2)⇒U(y1,y2)∧ ∀y. (y∈ tl(w))⇒⊤Z,

whereU(y1,y2) = w[y1] < w[y2]∧w[y1]≥ 2∧w[y2]≤ 5.

Notice that the sub-formula with two universal variables implies that every data
symbol in the word is between 2 and 5. This property can be expressed by a formula
with only one universal variable but it is not implied by the second conjunct of
W. The procedureCl enforces this sub-formula according to this remark. Thus, it
replaces the second conjunct ofW by ∀y. ((y) ∈ tl(w))⇒

(
⊤Z⊓Z U(y)

)
, where

U(y) is a formula deduced from the first conjunct ofW. We start from the fact that
y1 andy2 can be interpreted to all symbols ofw starting from the second one till the
last one. Consequently, to obtain a property of all symbols starting with the second
one we define

U(y) ::=
(
((U (y1,y2)↑y2) [y1← y])⊓Z ((U (y1,y2)↑y1) [y2← y])

)
.

The same approach can be extended to more general patterns. Thus, letP∈ P (V)
be a pattern of the form

P(y1,w1 . . . ,yq,wq) ::=
^

1≤i≤q

yi ∈ tl(wi)∧y1
i ≤ y2

i ≤ . . .≤ ypi
i .

In the following, we show how we can enforceUS
P using the information stored in

the other universal formulas. Thus, letP′ ∈ P (V) be another pattern of the form

P′(y′1,w
′
1 . . . ,y′q′ ,w

′
q′) ::=

^

1≤i≤q′
y′i ∈ tl(w

′
i)∧y1

i ≤ y2
i ≤ . . .≤ y

p′i
i ,

such that there exists 1≤ p ≤ min(q,q′) with wi = w′i , for any 1≤ i ≤ p and
the length of the words described by the patternP′ is at least 2, i.e.E ⊑Z

Vq
i=1len(wi) > 1.

Let Σ be the set of tuplesσ = (σ1, . . . ,σp), whereσi : y′i → yi maps elements ofy′i
to elements ofyi . We have two cases:

– if pi > p′i thenσi is any injective total mapping,
– if pi ≤ p′i thenσi mapspi elements ofy′i into distinct elements ofyi.

To enforceUS
P using the information stored inUS

P′ , we do the following: for any
σ = (σ1, . . . ,σp) ∈ Σ, if Yσ ⊆ y′1∪ . . .∪ y′p is the set of variables not appearing in
the domain of someσi then we apply

US
P = US

P⊓
Z
((

US
P′↑Yσ

)
[y← σ(y)]

)
.

Step 3: For any universal sub-formula corresponding to some pattern P of the form
^

1≤i≤q

yi ∈ tl(wi)∧y1
i ≤ y2

i ≤ . . .≤ ypi
i ,

for which ES⊑Z len(wi) <= 1, for some 1≤ i ≤ q, we defineUS
P = ⊥Z. This is

possible because the right part can be any element ofAZ, even⊥Z, since the guard
has only the empty model.

Step 4: For any universal sub-formula not considered in Step 3, corresponding to some
patternP of the form

^

1≤i≤q

yi ∈ tl(wi)∧y1
i ≤ y2

i ≤ . . .≤ ypi
i ,

we apply

US
P = US

P⊓
Z

^

1≤ i ≤ q
1≤ j ≤ pi

1≤ y j
i ≤ len(wi)

 .

Step 5: For any universal sub-formula corresponding to some pattern P, we apply on
US

P the canonization procedure from the numerical abstract domainAZ.

The following theorem states the correctness of the procedure above.

Theorem 2. Let W∈ LU be a simple abstract value. Then,Cl(W) is a closed abstract
value withγU(Cl(W)) = γU(W).

Remark 2.The procedure above can not be extended to more general patterns. Thus, if
we consider patterns of the form

^

1≤i≤q

yi ∈ tl(wi)∧y1
i < y2

i < .. . < ypi
i

then some of the universal properties depend on the length ofthe words. For example,
let V = {w}, P (V) = {(y1,y2) ∈ w∧y1 < y2,y1 ∈ w}, andW be the abstract element

hd(w) = 0∧len(w) = 6
∧∀y1. (y1) ∈ tl(w)⇒ (1≤ w[y1]≤ 5)

∧∀y1,y2. ((y1,y2) ∈ tl(w)∧y1 < y2)⇒ w[y1] < w[y2].

Notice that the two universal formulas inW and the fact that the length ofw is 6
induce the following property

∀y1. (y1) ∈ tl(w)⇒ (w[y1] = y1) (I)

and consequently, a smaller abstract value thanW (w.r.t.⊑U) is

hd(w) = 0∧len(w) = 6
∧∀y1. (y1) ∈ tl(w)⇒ (w[y1] = y1∧1≤ w[y1]≤ 5)

∧∀y1,y2. ((y1,y2) ∈ tl(w)∧y1 < y2)⇒ w[y1] < w[y2].

The procedure that we have presented uses the projection from A Z, which in this
case cannot induce a relation between positions and data.

If we consider the patterns describing consecutive positions, i.e. of the form
^

1≤i≤q

yi ∈ tl(wi)∧y1
i <1 y2

i <1 . . . <1 ypi
i

we encounter a similar difficulty. For example, letV = {w}, P (V) = {(y1,y2) ∈
tl(w)∧y1 <1 y2,y1 ∈ w}, andW be the abstract element

hd(w) = 0∧len(w) = 6
∧∀y1. (y1) ∈ tl(w)⇒ (1≤ w[y1]≤ 5)∧∀y1,y2. ((y1,y2) ∈ tl(w)∧y1 <1 y2)⇒w[y2] = w[y1]+1.

As in the previous case, the universal formulas and the fact that the length ofw is 6
induce the following property

∀y1. (y1) ∈ tl(w)⇒ (w[y1] = y1)

which is not obtaind from projections since it does not take into consideration the length
of w and the succesor relation betweeny1 andy2.

In the following we formally define the abstract transformers. To obtain the pre-
cision results (best abstract transformers) we suppose that last step of their definition
consists in applying the procedure ofA Z that computes closed abstract values, for all
abstract elements inA Z that define the current abstract element ofA U.

The projection operator First, we give the definition of the projection operator and
then we present correctness and precision results.

LetW̃ be an element inAU of the following form:

E∧
^

P∈ P (V)

∀y1 . . .∀yq. P(y1,w1, . . . ,yq,wq,w)⇒UP.

For any data word variablew, we want to define an abstract elementproj#(W̃,w)
which contains no reference ofw such that its concretization is an over-approximation
of the concretization of̃W when considering only words not denoted byw. We start by
projecting out fromE the variableslen(w) andhd(w) corresponding to the length and
the first symbol ofw. Next, we consider only the universally quantified conjuncts over
data words variables whose lenght is strictly greather thenone:

∀y1 . . .∀yq. P(y1,w1, . . . ,yq,wq,w)⇒UP such thatE ⊑Z

q̂

i=1

len(wi) > 1. (J)

Then with respect to the these universal formulas, we do the following:

– for any universal sub-formula as in (J) containing the data word variablew, we
project out from the right part of the implication,UP, the position variablesy and
the terms build over the variablew, len(w) andhd(w), and then we apply the meet
operator inAZ between the obtained abstract value and the quantifier-freepart of
W̃. Formally, we apply

E = E⊓Z (UP↑(y∪{w[y] | y∈ y}∪{len(w),hd(w)})) .

– for any sub-formula of̃W as in (J) of the form:

∀y1 . . .∀yq.

(
^

1≤i≤q

Pi
R(yi ,wi)∧PL(y

1
1, . . . ,y

1
q,w)

)
⇒UP, (K)

such thatw 6= wi , for all 1≤ i ≤ q, andw∈w, let P′ be the pattern

^

1≤i≤q

Pi
R(yi ,wi)∧PL(y

1
1, . . . ,y

1
q,w)↑len(w),

wherePL(y1
1, . . . ,y

1
q,w)↑len(w) is the quantifier-free Presburger formula corre-

sponding to∃len(w). PL(y1
1, . . . ,y

1
q,w). If there existsP′′ ∈ P (V \ {w}) with the

same number of data words variables asP′ and the same number of position vari-
ables on each data word such thatP′′ ⇒ P′ (⇒ is the usual implication between
quantifier-free Presburger formulas) then we modify the universal formula corre-
sponding toP′′ by

UP′′ = UP′′ ⊓
Z (UP↑{len(w),hd(w)}) .

– for any sub-formula of̃W of the form:

∀y1 . . .∀yq.

(
^

1≤i≤q

Pi
R(yi ,wi)∧PL(y

1
1, . . . ,y

1
q,w)

)
⇒UP, (L)

such thatw = wj , for some 1≤ j ≤ q, let P′ be the pattern

^

1≤i≤q,i 6= j

Pi
R(yi ,wi)∧PL(y

1
1, . . . ,y

1
q,w)↑{len(w),y1

j }.

If there existsP′′ ∈ P (DWVars\ {w}) with the same number of data words vari-
ables asP′ and the same number of position variables on each data word such that
P′′⇒ P′ then we modify the universal formula corresponding toP′′ by

UP′′ = UP′′ ⊓
Z (UP↑(y j ∪{w[y] | y∈ y j}∪{len(w),hd(w)})) .

The correctness and the precision of the projection operator are proved in the fol-
lowing results.

Theorem 3. LetAU be as above such that the numerical abstract domainAZ contains
a sound projection operator and an exact meet operator. For anyW̃ inAU, the following
holds

αU

(
{(proj(L,w) ,D) | (L,D) ∈ γU(W̃)}

)
⊑U proj#(W̃,w).

Theorem 4. LetAU be as above such that the numerical abstract domainAZ contains
a sound projection operator and an exact meet operator. If the projection operator in
AZ is exact then

αU

(
{(proj(L,w) ,D) | (L,D) ∈ γU(W̃)}

)
= proj#(W̃,w),

for any closed abstract valuẽW.

The abstract transformer sglt# Let W̃ be an element inLU of the form

E∧
^

P∈ P (V)

∀y1 . . .∀yq. P(y1,w1, . . . ,yq,wq,w)⇒UP.

The output ofsglt#(W̃,x) is

E′∧
^

P∈ P (V ∪x)

∀y1 . . .∀yq. P(y1,w1, . . . ,yq,wq,w)⇒UP,

whereE′ is obtained fromE by adding two dimensions forlen(x) andhd(x) and by
applyingE′ = E⊓Z len(x) = 1, and for everyP∈ P (V ∪x)\P (V), UP =⊥U.

Theorem 5. LetAU be as above such that the numerical abstract domainAZ contains
an exact meet operator. For anỹW inAU, the following holds

αU

(
{(sglt(L,x) ,D) | (L,D) ∈ γU(W̃)}

)
⊑U sglt#(W̃,x).

Theorem 6. LetAU be as above such that the numerical abstract domainAZ contains
an exact meet operator. If the abstract transformer inAZ corresponding to assignments
x = 1, where x is an integer variable, is exact then,

αU

(
{(sglt(L,x) ,D) | (L,D) ∈ γU(W̃)}

)
= sglt#(W̃,x),

for any closed abstract valuẽW.

The abstract transformer isSglt# LetW̃ be an element inAU. Then,isSglt#(W̃,x)
returns 1 if

E ⊑Z l [x] = 1,

it returns 0 ifE ⊑Z l [x] > 1, and -1, otherwise.

The abstract transformer updateFirst# LetW̃ be an element inAU of the following
form

E∧
^

P∈ P (V)

∀y1 . . .∀yq. P(y1,w1, . . . ,yq,wq,w)⇒UP,

x∈ V ∪DVar, dt a data expression, andβ : PVar→ DWVars.
Let dtβ be the expressiondt in which p→ data is replaced byhd(β(p)). The ab-

stract valueupdateFirst#(W̃,x,dt,β) is obtained fromW̃ by replacing the quantifier-
free part with

update#(E,hd(x) = dtβ), if x∈ V , or
update#(E,x = dtβ), if x∈ DVar

and for each patternp∈ P (V), the corresponding abstract element fromAZ is

update#(UP,hd(x) = dtβ)if x∈ V , or
update#(UP,x = dtβ), if x∈ DVar.

whereupdate# is the abstract transformer inAZ corresponding to assignments.
The next results prove the correctness of the abstract transformerupdateFirst#

and identify conditions under which it is a best abstract transformer.

Theorem 7. Let W̃ be an element inAU such that the numerical abstract domainA Z

contains a sound assignment operator, then the following holds

αU

(
{(updateFirst(L,x,dt,β) ,D) | (L,D) ∈ γU(W̃)}

)
⊑U updateFirst#(W̃,x,dt,β).

Theorem 8. Let W̃ be an element inAU such that the numerical abstract domainA Z

contains a sound assignment operator. If the assignment abstract transformer inAZ is
exact for data expressions of the form dt then

αU

(
{(updateFirst(L,x,dt,β) ,D) | (L,D) ∈ γU(W̃)}

)
=U updateFirst#(W̃,x,dt,β),

for any closed abstract valuẽW.

The abstract transformer split# The proceduresplit#(W̃,x,z) with W̃ ∈ AU splits
the data word represented byx into a word representing its first symbol and a word
representing its tail. In the output, the first word is represented byx and the second one
byz(z is not a variable iñW). First, the abstract values fromAZ are updated such that the
length ofx becomes 1 and the length ofz is len(x)−1. Then, the universally quantified
formulas inW̃ that characterize the tail ofx should be removed. Before doing this, we
use them to generate (1) relations between the first symbol ofz and the first symbol
of other words which are used to straighten the quantifier-free part, and (2) universal
formulas that characterize the tail ofz. We begin by an example and then we give the
formal definition.

n #

{head} {tmp,grt,less}

len(n) > 1∧hd(n)≤ 7
∧∀y. y∈ tl(n)⇒ n[y]≤ 7

(a)

n1 nn2

{grtC}

#n3

{head,tmp} {lessC}

len(n) = 1∧len(n1) = 1∧len(n2) = 1
∧3≤ hd(n)≤ 7∧3≤ hd(n1)≤ 7∧3≤ hd(n2) ≤ 7
∧∀y. y∈ tl(n3)⇒ n3[y]≤ 7

(c)

n1n

{head}

#
{grt,less}

{tmp}

len(n) = 1
∧len(n1) > 0∧hd(n1)≤ 7
∧∀y. y∈ tl(n1)⇒ n1[y]≤ 7

(b)

n2

#n3

{head,tmp}
{lessC}

{grtC}

len(n2) = 3∧3≤ hd(n2)≤ 7∧
∧∀y. y∈ tl(n3)⇒ n3[y]≤ 7
∧∀y. y∈ tl(n2)⇒ 3≤ n2[y]≤ 7

(d)

Fig. 8. Abstract heaps for the procedureDispatch3

Example 3.Suppose that we analyze the procedureDispatch3 from Section 1 using
the abstract domain of 1-abstract heap sets (we allow abstract heaps with at most one
simple node) parametrized by theDW-domainAU over the set of patternsP = {y ∈
w}, the Polyhedra domain, andk = 1. Also, suppose that the initial state is described
by thek-abstract heap in Figure 8(a). Then, during the first iteration of the loop, the
output oftmp= head→ next is pictured in Figure 8(b). The abstract value fromAU

is obtained by applyingsplit#(W̃,n,n1), whereW̃ is the formula in Figure 8(a). The
constrainthd(n1)≤ 7 and the universal formula fromsplit#(W̃,n,n1) are implied by
the universal formula iñW.

LetW̃ be an element inAU of the following form

E∧
^

P∈ P (V)

∀y1 . . .∀yq. P(y1,w1, . . . ,yq,wq,w)⇒UP.

Updating the quantifier-free part:For everyP∈ P (V) of the form

P(y1,w1 . . . ,yq,wq,w) ::=
^

1≤i≤q

Pi
R(yi ,wi)∧PL(y

1
1, . . . ,y

1
q,w) (M)

such thatwj = x, for some 1≤ j ≤ q, if

PL(y
1
1, . . . ,y

1
q,w)∧E∧y1

j = 1

is a satisfiable Presburger formula, we defineE′UP
:

E′UP
=
(
UP↑

(
y1∪ . . .∪

(
yj \ {y

1
j}
)
∪ . . .∪yq

))[
wj [y

1
j]← hd(z)

]
.

Let E′′ be the greatest lower bound inAZ between the valueE in W̃ to which we
have added a new dimension forhd(z) and all the valuesE′UP

associated to patterns
P∈ P (DWVars) speaking about the data wordx.

The quantifier-free part of the abstract value outputted bysplit#(W̃,x,z) is ob-
tained by adding toE′′ one more dimension forlen(z) and by applying the following:

E′′ = E′′ [len(x)← len(z)+1]
E′′ = update#(E′′,len(x) := 1),

whereupdate# is the abstract transformer inAZ corresponding to assignments.

Updating universal formulas:With respect to universal formulas, we preserve the ones
that do not characterize the tail of the data word denoted byx or that do not use the
term len(x) for the length ofx. An universal formula characterizing the data of the
words w1,. . .,wq with wj = x, for some 1≤ j ≤ q, may imply an universal formula
characterizing the data ofw1,. . .,wj−1,wj+1,. . .,wq or a formula characterizing the data
of w1,. . .,wj−1,z,wj+1,. . .,wq.

By this transformer, we add the data word variablez and consequently, the out-
putted abstract value will contain new universal formulas corresponding to patterns
P(y1,w1 . . . ,yq,wq,w) ∈DWVarswith z= wj , for some 1≤ j ≤ q, orz∈w. This set of

patterns is denotedP ′. These universal formulas are deduced from universal formulas
speaking about the data wordx as follows. To start, we add tõW universal formulas

∀y1 . . .∀yq. P(y1,w1, . . . ,yq,wq,w)⇒U ′P,

with U ′P =⊤Z, for anyP∈ P ′, andUP′ = UP, otherwise. Then, we consider all patterns
speaking aboutx and eventually, we modify all the universal formulas definedabove.

Therefore, for everyP∈ P (V) like in (M) such thatwj = x, for some 1≤ j ≤ q, we
do the following:

– if PL(y1
1, . . . ,y

1
q,w)∧E∧ y1

j = 1 is a satisfiable Presburger formula then, using the
universal formula corresponding toP, we may find relations between the first sym-
bol of the wordz, hd(z) and the tail of other words (including the word denoted by
z). Let P′ be the pattern

P′ ::=
^

1≤i≤q,i 6= j

Pi
R(yi ,wi)∧P j

R(y j \{y
1
j},z)∧

((
PL(y

1
1, . . . ,y

1
q,w)↑y1

j

)
[len(x)← len(z)+1]

)
,

whereP j
R(y j \{y1

j},z) is obtained fromP j
R(y j ,z) by forgetting the position variable

y1
j (if |yj | = 1 then we deleteP j

R). If there existsP′′ ∈ P (V ∪{z}) with the same
number of data words variables asP′ and the same number of position variables on
each data word such thatP′′⇒ P′ (⇒ is the usual implication between quantifier-
free Presburger formulas) then we modify the abstract valueU ′P′′ corresponding to
P′′ by

U ′P′′ = U ′P′′ ⊓
Z

UP

x[y1
j]← hd(z),

yk
j ← yk

j +1
x[yk

j]← z[yk
j]

y1
j ← 1

 .

– if PL(y1
1, . . . ,y

1
q,w)∧E∧ y1

j > 1 is a satisfiable Presburger formula then, using the
universal formula corresponding toP, we may find relations between the tail of the
wordzand the tail of other words. Thus, letP′ be the pattern

P′ ::=
^

1≤i≤q,i 6= j

PR(yi,wi)∧PR(y j ,z)∧
(
PL
(
y1

1, . . . ,y
1
q,w
)
[len(x)← len(z)+1]

)
.

If there existsP′′ ∈ P (V ∪{z}) with the same number of data words variables as
P′ and the same number of position variables on each data word such thatP′′⇒ P′

then we modify the output universal formula corresponding to P′′ by

U ′P′′ = U ′P′′ ⊓
Z

(
UP

[
yk

j ← yk
j +1,x[yk

j]← z[yk
j]
])

Finally, if the termlen(x) appears in universal formula then this term should be substi-
tuted withlen(z)+1.

The next results prove the correctness of the abstract transformersplit# and iden-
tify conditions under which it is a best abstract transformer.

Theorem 9. LetAU be an abstract domain as above parametrized by a set of patterns
P and by a numerical abstract domainAZ which contains a sound projection operator
and an exact meet operator. For anỹW inAU, the following holds

αU

(
{(split(L,x,z) ,D) | (L,D) ∈ γU(W̃)}

)
⊑U split#(W̃,x,z).

Theorem 10. LetAU be an abstract domain as above parametrized by a set of patterns
P and by a numerical abstract domainAZ which contains a sound projection operator
and an exact meet operator. If (1)P contains only simple patterns (2) the projection
operator,⊑Z, and the abstract transformer inAZ corresponding to assignments x=
z−1, where x,z are integer variables, are exact then,

αU

(
{(split(L,x,z) ,D) | (L,D) ∈ γU(W̃)}

)
= split#(W̃,x,z),

for anyW̃ a closed abstract value.

The abstract transformer concat#: Let V1,. . .,Vt be vectors of data word variables.
Then,concat#(W̃,V1, . . . ,Vt) transformsW̃ such that the first variable inVi will rep-
resent a word which is the concatenation of the words denotedby the variables inVi,
for every 1≤ i ≤ t. There are three main steps in the definition of this operation: (1)
using the constraints from the quantifier-free part, we identify the maximal sub-vectors
of Vi containing only variables which represent singletons (words of length 1), (2) we
replace the constraints from the quantifier-free part characterizing these singletons with
universally quantified formulas that describe abstractions of the concatenations of these
sequences, and (3) we apply transformations on the current formula which correspond
to concatenations of words of length strictly greater than 1. In the third step, we re-
place constraints in the form of universally quantified formulas with new universally
quantified formulas that describe abstractions of concatenations. In order to be precise
during the third step, we have to consider closed sets of patterns. We start be a couple
of examples and then, we give the formal definition of this abstract transformer.

Example 4 (Concatenating sequences of singletons).Suppose that we continue the
analysis from Example 3. After several iterations of the loop, we obtain the ab-
stract heap in Figure 8(d) which is obtained by applyingNormalizek

on the ab-
stract heap in Figure 8(c). The formula in Figure 8(d) is obtained by applying
concat#(W̃′,(n2,n1,n)), whereW̃′ is the formula in Figure 8(c). Since the length of
the words denoted byn2, n1, andn is 1, we have to apply the second step inconcat#.
We search for a formula∀y. y ∈ tl(n2)⇒ U which holds whenn2 is interpreted to
the concatenation of the singletons represented byn2, n1, andn. Since the length of
the concatenation is 3, there are only two values fory such thaty∈ tl(n2), y = 1 and
y = 2. To these values we associate two abstract valuesU1 andU2 obtained from the
quantifier-free part of̃W′ (1) by substitutinghd(n1) andhd(n2), respectively, byn2[y],
(2) by updatinglen(n2) to 3, and (3) by projecting out terms containing data word vari-
ables in{n1,n2} (using a projection operator defined inAZ. In this case, we obtain two
identical formulasUγ1 andUγ2 of the form 3≤ n2[y] ≤ 7∧3≤ n2[0]≤ 7∧ l [n2] = 3,
and we defineU = Uγ1 ⊔

Z Uγ2.

Example 5 (Concatenating words of length greater than 1).Suppose that we ana-
lyze the procedureFibonacci from Section 1 using the abstract domain of 3-abstract
heap sets parametrized byAU over P = Closure(P,3), where P := (y1,y2,y3) ∈
tl(n)∧y1 <1 y2 <1 y3, the Polyhedra numerical domain, andk = 3. The analysis starts
from an initial state in whichhead points to a non-empty list. After executing some
iterations of the loop, we obtain an abstract heap having 7 nodes in a row,ni , 1≤ i ≤ 6,
and # such thatn1 andn6 are pointed by the program variableshead andx, resp. We
apply Normalizek

which callsconcat#(W̃,(n1,n2,n3,n4,n5)), whereW̃ is the for-
mula in LU associated to this abstract heap. The formulaW̃ is a conjunction between
the quantifier-free part

E := len(n1) = 5∧hd(n1) = 1∧hd(n2) = 8∧hd(n3) = 13∧hd(n4) = 21
∧hd(n5) = 34∧m1= 13∧m2 = 21

and some universally-quantified formulas, including

∀y1,y2,y3. ((y1,y2,y3) ∈ tl(n1)∧y1 <1 y2 <1 y3)⇒ (n1[y3] = n1[y1]+n1[y2]) .

We identify the sub-vector of variables(n2,n3,n4,n5) representing singletons and
we apply the second step inconcat#. Consequently, the data words variablesn3, n4,
andn5 are removed and new universally quantified formulas are added corresponding
to the patterns inP and the data word variablen2. Now, the word represented byn1

satisfies the same constraints as inW̃ and the word represented byn2 is an abstraction
of the concatenation of the singletons denoted byn2, n3, n4, andn5. One of formulas
generated during the final step ofconcat# has the form∀y1,y2,y3. P⇒U . The valueU
is the join of several numerical abstract values representing properties of three consec-
utive positions on the concatenation of the words denoted byn1 andn2. These abstract
values are obtained using the quantifier-free part and the abstract values from the for-
mulas associated to the patterns inClosure(P,n1n2) from Example 2. For example, the
abstract value representing the property of the last symbolin n1 and the first two sym-
bols inn2 is the meet between the abstract value associated toP1(n1), the quantifier-free
part in whichhd(n1) is substituted byn[y2], and the right part associated toP2(n2).

LetW̃ be an abstract element of the form

E∧
^

P∈ P (V)

∀y1 . . .∀yq. P(y1, . . . ,yq)⇒UP.

The three steps of the procedureconcat#(W̃,V1, . . . ,Vt) are defined as follows:

Step 1: we begin by identifying maximal sub-vectorsv = v1 . . .vr , r > 1, of variables
fromVi, for any 1≤ i ≤ t, such that each component of these sub-vectors represents
a data word of length one, i.e.E⊑Z l [v j] = 1, for all 1≤ j ≤ r. We denote bySgVars
the subset ofDWVars that contains, for every such sub-vector, all the elements
without the first one.

Step 2: For each sub-vectorv = v1 . . .vr identified in the previous step, we apply toE
and allUP, P ∈ P (V), the abstract transformer corresponding to the assignment
l [w] = r (since each word represented by somevi is of length 1, then the word
representing the concatenation has the lengthr).

We continue by searching for universally quantified properties which hold over
these sub-vectors. We begin by considering universal properties that describe only
these sub-vectors and then, we will consider properties that relate these sub-vectors
to other words inW̃.
For everyq-tuple(v1, . . . ,vq) of sub-vectors as above, wherevi = (v0

i , . . . ,v
ti
i), for

any 1≤ i ≤ q, and for every patternP(y1,v0
1, . . . ,yq,v0

q,w) ∈ P with |yi | ≤ |vi |−1,
for any 1≤ i ≤ q, we want to discover a universal property of the form

∀y1 . . .∀yq. P(y1,v
0
1, . . . ,yq,v

0
q,w)⇒UP,

which is true when for any 1≤ i ≤ q, v0
i will be interpreted to the word

hd(v0
i) . . .hd(v

ti
i). Eachv0

i will represent the concatenation of the words invi.
To this, letΠP be the set of all possible mappingsπ : y1∪ . . .∪ yq→ N

+ between
position variables inP and positions in the tail of the words represented byv0

1,. . .,v0
q

defined above. Thus, the variables inyi are mapped by anyπ ∈ ΠP to values from
the interval[1, ti], for all 1≤ i ≤ q, such thatE implies

P(y1,v
0
1, . . . ,yq,v

0
q,w) [y← π(y) | y∈ y1∪ . . .∪yq] .

For eachπ ∈ ΠP we denote byEπ the abstract element obtained fromE in two
steps:

– we introduce terms denoting symbols in the new words represented byv0
1,. . .,v0

q
at positions represented by the position variables inP according to the mapping
π. Thus, ifπ(y j

i) = s, for some 1≤ i ≤ q and 1≤ j ≤ |yi|, then we substitute
the term denoting the only symbol invs

i , hd(v
s
i), by the termv0

i [y
j
i];

– we project out all terms containing variables inSgVars.
Formally,Eπ is

(
E

[
hd(v

π(yj
i)

i)← wi [y
j
i] | 1≤ i ≤ q,1≤ j ≤ |yi |

])
↑{len(v),hd(v) | v∈ SgVars}.

Then, we define the abstract elementUP ∈ AZ mentioned above by

UP =
G

π∈ΠP

Z Eπ.

Now, we continue by searching for universal properties thatrelate words obtained
by concatenation as above to other words described byW̃. W.l.o.g. we suppose
that P ∈ P (V) is a pattern that speaks about a set of wordsw1,. . .,wq not in the
sub-vectors above and a set of wordsv0

1,. . .,v0
r obtained by concatenation, of the

following form:

^

1≤i≤q

Pi
R(yi ,wi)∧

^

1≤i≤r

Qi
R(xi ,v

0
i)∧PL(y

1
1, . . . ,y

1
q,x

1
1, . . . ,x

1
r ,w),

wherew⊆ DWVars\SgVars.

If PL is a conjunction between a formulaP1
L(y1

1, . . . ,y
1
q,w) and a formula

P2
L(x1

1, . . . ,x
1
r ,w) and ifP (V) contains a pattern

P′(y1,w1, . . . ,yq,wq,w) ::=
^

1≤i≤q

Pi
R(yi,wi)∧P1

L(y1
1, . . . ,y

1
q,w),

then letΠP′′ be the set of mappingsπ : x1∪ . . .∪xr →N
+ defined as above for the

pattern

P′′(x1,v
0
1, . . . ,xr ,v

0
r ,w) ::=

^

1≤i≤r

Qi
R(xi ,v

0
i)∧P′′L (x1

1, . . . ,x
1
r ,w).

We define the abstract elementUP corresponding toP by:

UP =
G

π∈ΠP′′

Z EUπ,

whereEUπ is similar toEπ except the fact that all the substitutions and projections
are applied toE⊓Z UP′ instead ofE.
After deducing all the new universally quantified properties we modifyE by pro-
jecting out all variables inSgVars.

Step 3: Suppose that, for any 1≤ i ≤ t, V ′i is the vector of data word variables obtained
from Vi by replacing each sub-vectorv = v1 . . .vr considered in the first step with
the data word variablev1.
For any 1≤ i ≤ t, we apply toE andUP, P∈ P (V), the abstract transformer corre-
sponding to the assignmentl [zi] = ∑w∈V′i

len(w) (the length of the word represent-
ing the concatenation of the words represented by variablesin V ′i is the sum of the
lengths of all these words).
W.l.o.g. suppose thatP is a pattern inP (DWVars) that speaks about a set of words
w1,. . .,wq in DWVars\ {V0

1 , . . . ,V0
t } and a set of wordsV0

1 ,. . .,V0
r representing the

concatenations ofV ′1,. . .,V′r , of the following form:

^

1≤i≤q

Pi
R(yi ,wi)∧

^

1≤i≤r

Qi
R(xi ,V

0
i)∧PL(y

1
1, . . . ,y

1
q,x

1
1, . . . ,x

1
r ,w),

wherew⊆ (DWVars\ (V1∪ . . .∪Vt))∪{V0
1 , . . . ,V0

t }.
We search for an abstract elementUP such that the universal property

∀y1 . . .∀yq,∀x1 . . .∀xr . P(y1,w1, . . . ,yq,wq,x1,V
0
1 , . . . ,xq,V

0
q ,w)⇒UP,

is true when for any 1≤ i ≤ r, V0
i is interpreted to the word representing the con-

catenation ofV ′i .
To this, we use the patterns fromClosure(P,w1, . . . ,wq,V ′1, . . . ,V

′
r). Thus, letP′ be

a pattern inClosure(P,w1, . . . ,wq,V ′1, . . . ,V
′
r) of the form:

^

1≤i≤q

Pi
R(yi ,wi)∧

^

1≤i≤r

T i
R(xi ,V

0
i)∧P′L(y

1
1, . . . ,y

1
q,x

1
1, . . . ,x

1
r ,w),

whereT i
R∈ Tuples(Q

i
R,V ′i). As we have seen in the definition ofTuples(Qi

R,V ′i),
some variables inxi may be omitted fromT i

R. It is supposed that they will be
mapped to first symbols of words inV ′i . Thus, we identify a set of partial map-
pingsΓP′ between terms of the formhd(v) with v∈ V ′1∪ . . .∪V ′r and variables in
x1∪ . . .∪xr depending on eachT i

R as follows.
Suppose thatV ′i = v1 . . .vm andxi = x1

i . . .x j
i . By definition,T i

R = ψ1∧ . . .∧ψm′ ,
where

ψ1 = (xt0
i , . . . ,xq1

i) ∈ tl(vs1)∧xt0
i ∼t0 . . .∼q1−1 xq1

i
ψ2 = (xq1+t1

i , . . . ,xq2
i) ∈ tl(vs2)∧xq1+t1

i ∼q1+t1 . . .∼q2−1 xq2
i

· · ·

ψm′ = (x
qm′−1+tm′−1
i , . . . ,x j

i) ∈ tl(vsm′
)∧x

qm′−1+tm′−1
i ∼qm′−1+tm′−1

. . .∼ j−1 x j
i ,

such that:
– 1≤m′ ≤mand 1≤ s1 < s2 < .. . < sm′ ≤m,
– 1≤ t0 < q1 < q2 < .. . < qm′−1≤ j,
– t0 < s1 +1 andtr ≤ sr+1−sr +1, for any 1≤ r < m′,
– qr + tr < qr+1, for any 1≤ r < m′−1, andqm′−1 + tm′−1 < j,
– if m′ > 1 andtr+1 = 1 then∼qr 6=<1, for any 1≤ r < m′−1.

For each 1≤ r < m′−1, we add toΓP′ all the possible mappings between the terms
hd(vsr+1),. . .,hd(vsr+1) and the termsV0

i [xqr+1
i],. . .,V0

i [xqr+tr−1
i].

Then, we define the abstract elementUP by

UP =
G

P′ ∈ Closure(P,w1, . . . ,wq,V ′1, . . . ,V
′
r)

γ ∈ ΓP′

Z
((

UP′ ⊓
Z E
)

γ
)
↑
((

V ′1 \ {V
0
1 }
)
∪ . . .∪

(
V ′t \ {V

0
t }
))

,

where
(
UP′ ⊓

Z E
)

γ is obtained from the abstract elementUP′ ⊓
Z E by applying the

substitutionγ.
After deducing all the new universally quantified properties we modifyE by pro-
jecting out all variables in

((
V ′1 \ {V

0
1 }
)
∪ . . .∪

(
V ′t \ {V

0
t }
))

.

Concerning this abstract transformer we can prove the following results.

Theorem 11. LetAU be an abstract domain as above parametrized by a set of patterns
P and by a numerical abstract domainAZ which contains a sound projection operator
and an exact meet operator. For any abstract valueW̃ inAU, we have that

αU

(
{(concat(L,V1, . . . ,Vt) ,D) | (L,D) ∈ γU(W̃)}

)
⊑U concat#(W̃,V1, . . . ,Vt).

Theorem 12. LetAU be an abstract domain as above parametrized by a set of patterns
P and by a numerical abstract domainAZ which contains a sound projection operator
and an exact meet operator. If (1)P is closed and it contains only simple patterns
(2) the projection operator,⊑Z, and the abstract transformer inAZ corresponding to
assignments x= z1 + . . .+zt , where x,z1, . . . ,zt are integer variables, are exact then,

αU

(
{concat((L,D) ,V1, . . . ,Vt) | (L,D) ∈ γU(W̃)}

)
= concat#(W̃,V1, . . . ,Vt),

for anyW̃ a closed abstract value

The precision results hold only if they are applied on closedabstract values. For-
tunately, when considering simple patterns, all the abstract transformers preserve the
closure property, that is, they output closed values when applied on closed values.

5 Experimental results

We have implemented the general method presented in this paper, i.e., the abstract
reachability analysis using theAHS(AW) abstract domain. Our implementation is
generic in three dimensions. First, theAHS(AW) abstract domain is interfaced with the
APRON platform [15], so we are able to use the fix-point computationengines provided
by this platform; currently, we are usingINTERPROC. Second, the implementations of
theDW-domains can be plugged in theAHS(AW) domain. We have implemented the
DW-domainAΣ as well as theAU domain for a significant class of patterns allowing
to handle a large class of programs. Currently, we are working on the implementation
of theAM domain. Third, the implementedDW-domains are generic on the numerical
domainAZ used to represent data and length constraints. For this, we use again the
APRON interface to access domains like octagons or polyhedra.

We have carried out experiments on a wide spectrum of programs including pro-
grams performing list traversal to search or to update data,programs with destructive
updates and changes in the shape (e.g., list dispatch or reversal, sorting algorithms such
as insertion sort), and programs computing complex arithmetical relations. We present
hereafter some3 of the specifications that can be synthesized using our approach.

Ordering and data preservation constraints:For sorting algorithms or the algorithms
testing data ordering, our tool was able to synthesize constraints with respect to order
preservation:∀y1,y2. head

+
−−→y1

+
−−→y2⇒ data(y1)≤ data(y2) and∀y. head +

−−→y⇒
data(head)≤ data(y). Although, the multisetDW-domainAM is not yet implemented
we were able to manually check the preservation of the data inthe list. On the other
hand, the tool has synthesized usingAHS(AΣ) a weaker property namely the preserva-
tion of the sum of the elements of the list and the preservation of the length of the list.
Another example for which the analysis synthesizes the constraint of sum and length
preservation is the program doing a copy with reversal of a list head into a list rev:

∑
head

∗
−→y

data(y) = ∑
rev

∗
−→y

data(y)∧len(head +−−→null) = len(rev +−−→null).

Relating data and lengths of lists:Consider the programDispatch3 in Figure 1(b). Us-
ing the domainAHS(AΣ), respectivelyAHS(AU), the tool synthesized the post-condition
(C), respectively (A), given in the introduction. Moreover, we are able to obtain con-
straints relating data and lengths inside the universal constraints, e.g., in the pro-
gram initializing the data in a listhead with the first even numbers. When analyz-
ing this program withAHS(AU), the generated post-condition contains the constraint
data(head) = 0∧∀y. head +−−→y⇒ data(y) = 2× len(head +−−→y) meaning that the
data stored in theith cell of the list is equal to 2i.

Relations over different lists:Our tool is able to generate constraints relating data
in different lists. Consider the program which copies in thelist new each da-

3 A detailed presentation is available athttp://www.liafa.jusieu.fr/cinv/.

tum of the list head incremented by 2 (the two lists have equal length). Us-
ing the domainAHS(AU), the tool generates the post-conditiondata(head) +

2 = data(new)∧ len(head +
−−→null) = len(new +

−−→null)∧ ∀y1,y2. (head +
−−→y1∧

new +−−→y2∧len(head
+−−→y1) = len(new +−−→y2))⇒ data(y1)+2 = data(y2). Using

more complex patterns, not yet implemented in our domain, wesynthesize manually
the post-condition of the program copying in sequence two list A andB into a third list
C, i.e.,∀y1,y2. (B

∗
−→y1∧C

∗
−→y2∧y2 = len(A ∗

−→null)+y1)⇒ data(y1) = data(y2).
The analysis withAHS(AΣ) of the program that creates a copy of a list, generates

the post-condition 2×len(head ∗−→null)+ ∑
head

∗−→y
data(y) = ∑

new
∗−→y

data(y).

Complex arithmetical relations:We have applied our tool on theFibonacci example
usingAHS(AU) over different sets of patterns. The constraint (D) given inthe intro-
duction is generated using the pattern with three universals successively ordered (and
the patterns in its closure). Using a pattern with two universals, we obtain that the list
head is sorted, and using a pattern with one universal, we obtain that∀y. head +−−→y⇒
(data(y)+1≥ len(head +−−→y)). Furthermore, the constraint (E) (in the introduction)
is generated usingAHS(AΣ).

Performances:Each of the examples has been carried out in less than 1 secondusing
between 4KB to 63MB. The most expensive example is the insertion sort (with destruc-
tive updates) which takes 0.99s and 62.2MB. Traversal algorithms such as search and
local update algorithms, require only few hundredths of a second, e.g., 0.02s for the
maximum calculation. Properties of programs such asFibonacci are generated in few
tenths of seconds, e.g., 0.42s for (E).

6 Conclusion and related work
We have defined powerful invariant synthesis techniques fora significant class of pro-
grams manipulating dynamic lists with unbounded data. Future work includes (1) ex-
tending the framework to handle a wider class of data structures, e.g. doubly-linked lists,
composed data structures, (2) developing heuristic techniques for automatic synthesis
of the patterns used inAU, and (3) defining other abstract domains for data sequences,
in particular, domains based on different classes of universally quantified formulas.
Related Work:Invariant synthesis for programs with dynamic data structures has been
addressed using different approaches including constraint solving [2, 13], abstract inter-
pretation [14, 9–12, 18, 19], Craig interpolants [16], and automata-theoretic techniques
[3, 4]. The contributions of our paper are (1) a generic framework for combining an
abstraction for the heap with various abstraction for data sequences, (2) new abstract
domains on data sequences to reason about aspects beyond thereach of the existing
methods such as the sum or the multiset of all elements in a sequence, as well as a
new domain for generating an expressive class of first order universal formulas, and (3)
precision results of the abstract transformers for a significant class of programs. Sev-
eral works [14, 9, 18] consider invariant synthesis for programs with uni-dimensional
arrays of integers. These programs can be straightforwardly encoded in our frame-
work. In [12], a synthesis technique for universally quantified formulas is presented.
Our technique differs from this one by the type of user guiding information. Indeed,
the quantified formulas considered in [12] are of the form∀y. F1⇒ F2, whereF2 must

be given by the user. In contrast, our approach fixes the formulas in left hand side of
the implication and synthesizes the right hand side. Therefore, the two approaches are
in principle incomparable. The techniques in [14, 9] are applicable to programs with
arrays. The class of invariants they can generate is included in the one handled by our
approach usingAHS(AU). These techniques are based on an automatically generated
finite partitioning of the array indices. We consider a larger class of programs for which
these techniques can not be applied. The analysis introduced in [18] for programs with
arrays can synthesize invariants on multisets of the elements in array fragments. This
technique differs from ours based on the domainAHS(AU) by the fact that it can not be
applied directly to programs with dynamic lists. Finally, the analysis in [11] combines
a numerical abstract domain with a shape analysis. It is not restricted by the class of
data structures but it considers only properties related tothe shape and to the size of the
memory, assuming that data have been abstracted away. Our approach is less general
concerning shape properties but it is more expressive concerning properties on data.

References

1. S. Abramsky and A. Jung. Domain theory. volume 3 ofHandbook of Logic in Computer
Science, pages 1–168. Clarendon Press, 2007.

2. D. Beyer, T.A. Henzinger, R. Majumdar, and A. Rybalchenko. Invariant synthesis for com-
bined theories. InProc. of VMCAI, volume 4349 ofLNCS, pages 378–394. Springer, 2007.

3. A. Bouajjani, M. Bozga, P. Habermehl, R. Iosif, P. Moro, and T. Vojnar. Programs with lists
are counter automata. InCAV, volume 4144 ofLNCS, pages 517–531. Springer, 2006.

4. M. Bozga, P. Habermehl, R. Iosif, F. Konecný, and T. Vojnar. Automatic verification of
integer array programs. InProc. of CAV, volume 5643 ofLNCS, pages 157–172, 2009.

5. R. Clarisó and J. Cortadella. The octahedron abstract domain. InProc. of SAS, volume 3148
of LNCS, pages 312–327. Springer, 2004.

6. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In POPL, pages 238–252, 1977.

7. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. InProc. of
POPL, pages 269–282, 1979.

8. P. Cousot and N. Halbwachs. Automatic discovery of linearrestraints among variables of a
program. InProc. of POPL, pages 84–96, 1978.

9. D. Gopan, T.W. Reps, and S. Sagiv. A framework for numeric analysis of array operations.
In Proc. of POPL, pages 338–350, 2005.

10. A. Gotsman, J. Berdine, and B. Cook. Interprocedural shape analysis with separated heap
abstractions. InProc. of SAS, volume 4134 ofLNCS, pages 240–260. Springer, 2006.

11. S. Gulwani, T. Lev-Ami, and M. Sagiv. A combination framework for tracking partition
sizes. InProc. of POPL, pages 239–251, 2009.

12. S. Gulwani, B. McCloskey, and A. Tiwari. Lifting abstract interpreters to quantified logical
domains. InProc. of POPL, pages 235–246, 2008.

13. A. Gupta, R. Majumdar, and A. Rybalchenko. From tests to proofs. In Proc. of TACAS,
volume 5505 ofLNCS, pages 262–276. Springer, 2009.

14. N. Halbwachs and M. Péron. Discovering properties about arrays in simple programs. In
Proc. of PLDI, pages 339–348, 2008.

15. B. Jeannet and A. Miné. Apron: A library of numerical abstract domains for static analysis.
In Proc. of CAV, volume 5643 ofLNCS, pages 661–667. Springer, 2009.

16. R. Jhala and K.L. McMillan. Array abstractions from proofs. In W. Damm and H. Hermanns,
editors,Proc. of CAV, volume 4590 ofLNCS, pages 193–206. Springer, 2007.

17. R. Manevich, E. Yahav, G. Ramalingam, and S. Sagiv. Predicate abstraction and canonical
abstraction for singly-linked lists. InVMCAI, volume 3385 ofLNCS, pages 181–198, 2005.

18. V. Perrelle and N. Halbwachs. An analysis of permutations in arrays. InProc. of VMCAI,
volume 5944 ofLNCS, pages 279–294. Springer, 2010.

19. S. Sagiv, T.W. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.ACM
Trans. Program. Lang. Syst., 24(3):217–298, 2002.

