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Abstract. We address the issue of automatic invariant synthesis fpresgial
programs manipulating singly-linked lists carrying datgemwinfinite data do-
mains. We define for that a framework based on abstract iepon which
combines a specific finite-range abstraction on the shapgeedig¢ap with an ab-
stract domain on sequences of data, considered as a parahtte approach.
We instantiate our framework by introducing different ahstions on data se-
guences allowing to reason about various aspects such iasittes, the sums
or the multisets of their elements, or relations on theiadatdifferent (linearly
ordered or successive) positions. To express the latt@iont we define a new
domain whose elements correspond to an expressive clagstadrfier univer-
sally quantified formulas. We have implemented our tectesqgn an efficient
prototype tool and we have shown that our approach is powenfough to gen-
erate non-trivial invariants for a significant class of pags.

1 Introduction

Invariant synthesis is an essential ingredientin varisagram verification and analysis
methodologies. In this paper, we address this issue foresdigl programs manipulat-
ing singly-linked lists carrying data over infinite data dainms such as integers or reals.
Specifications of such programs typically involve constigon various aspects such as
the sizes of the lists, the multisets of their elements, dsagerelations between data
at their different positions, e.g., ordering constraintsywen more complex arithmetical
constraints on consecutive elements, or combining relati@tween the sizes, the sum
of all elements, etc., of different lists.

Consider for instance the procedi¥espat ch3 given in Figure 1(b). It puts all the
cells of the input list which have data larger than 3 to thedig , and it puts all the
other ones to the lidtess. Naturally, the specification of this procedure (at line 12)
includes (1) the property expressed by the universallyatified first-order formula

vy.grt sy=-data(y) >3 A Vy.less-—y=-data(y)<3 (A)
which say that all elements gft (resp.l ess) have data larger (resp. smaller) than
3, and (2) the preservation property corresponding to tbetfeat the multiset of the

input list is equal to the union of the multisets of the twoputlists. This property is
expressed by the equality

* A full version is available at http://www.liafa.jussiet/£ cezarad/inv.pdf



ms_init =ms(grt)Ums(less) (B)

where the variables_init represents the multiset of the elements of the input list, an
ms(grt) (respms(less)) denotes the multiset of the elementgof (respl ess).

procedure Fibonacci (list* head) procedure Dispatch3(list* head)
1. { list *x=head, 1. { list *tnp=null, grt=null, less=null;
2: int nml=1; 2: while (head !'= null)
3 int n2=0; 3: { tnp=head- >next;
4: while (x !'= NULL) 4: if (head->data >= 3) {
5: { x->data=nl+n2; 5: head- >next =grt;
6 ml=nP; 6: grt=head; }
7 n2=x->dat a; 7 el se {
8 X=X- >next; 8: head- >next = ess;
9: } 9: | ess=head; }
10:} 10: head=t np;
11}
12:}
@) (b)

Fig. 1. Proceduresi bonacci andDi spat ch3.

The specification of sorting algorithms is similar sincenitludes an ordering con-
straint on the output list that is easily expressible usinm&ersally quantified first-
order formula, and a preservation constraint saying thatrthut and output lists have
the same elements that is expressible using multiset comistr

Moreover, an interesting property of the procedDrepat ch3 above is that the
sum of all the elements in the ligtt is larger than 3 times the size of that list. This is
expressible by the inequality

grt —=null A zdata(y)—3x|en(grtLnuu)zo (C)
grt i>y

Consider now the procedukébonacci given in Figure 1(a). It takes a list as an

input and initializes its elements following the Fibonasegquence. The natural specifi-
cation for the procedure (at line 10) is expressed by theausally-quantified formula

Vy1,Y2,y3. head —y; —y>—y3= data(ys) = data(y,) +data(y;) (D)

which corresponds precisely to the definition of the Fib@naequence. Moreover, an
interesting property of the Fibonacci sequefi€gi>1 is thaty| =g fi = 2fn + fh_1 — 1.
This can be expressed (again at line 10) by the following traim

z data(y)=2xm+nl—1 (E)
(head =)

The automatic synthesis of invariants like those shown ali®a challenging prob-
lem since it requires combining in a nontrivial way diffet@malysis techniques. This
paper introduces a uniform framework based on abstracpirgtion for tackling this
problem. We define a generic abstract domaijry for reasoning about dynamic lists
with unbounded data which includes an abstraction on thgesbBthe heap and which
is parametrized by some abstract domain on finite sequeifckda(a data words ab-
stract domainDW-domain for short). The latter is intended to abstract tripieaces



of data in the lists by capturing relevant aspects such asdilzes, the sums or the mul-
tisets of their elements, or some class of constraints andla¢a at different (linearly
ordered or successive) positions.

We instantiate our framework by defining n@&@W-domains corresponding to the
aspects mentioned above. In particular, we define new @bskoanains for reasoning
about the multisets of elements of lists, and about the sdrtteeaelements of integer
lists. Moreover, we introduce@W-domain where objects are composed of first-order
formulas such that their (quantified) universal part is effiwmvy. (P = U), wherey
is a vector of variables on the positions in the wdPds a constraint on the positions
(seen as integers) associated withytiseandU is a constraint on the data values at these
positions, and possibly also on the positions when datafareroerical type. Then, we
assume that oubW-domain on first-order properties is parametrized by sonseatt
data domain, and we consider thhts defined as an object in that abstract domain. For
the sake of simplicity of the presentation, we consider erdst of the paper that the
data are always of type integer (and therefore it is possibleke as abstract data do-
mains the standard octagons or polyhedra abstract donmimstance). Our approach
can in fact be applied to any other data domain. As for theasyaf the constrainP,
we assume that we are given a finite set of fixed patterns (goléees) such as, for
instance, order constraints or difference constraints.

Then, an object in the domaimgs is a finite collection of pair$(§7v~\/) such that
(1) Gisa graph (where each node has an out-degree of at most Esesping the
set of all the garbage-free heap graphs that can be obtajnedrting sequences of
non-shared nodes (nodes with in-degree 1) between anyfozades inG (thus edges
in G represents list segments without sharing), and2s an abstract object i in the
consideredW-domain constraining the sequences of data attached toeel@ehnG
So, all the shared nodes in the concrete heaps are pres(énbutG may have nodes
which are not shared. Non-shared nodes which are not pdigtpcbgram variables are
called simple nodes. We assume that objects in our absatid have graphs with a
bounded number of simple nodes, for some given bduthdt is also a parameter of the
domain. This assumption implies that the number of suchtgrépfinite (since for a
given program with lists it is well known that the number o&std nodes is bounded).

We define sound abstract transformers for the statement®iolass of programs
we consider. Due to the bound on the number of simple noddssiane heap transfor-
mations may add simple nodes, we use a normalization operdat shrinks paths of
simple nodes into a single edge. This operation is accorefdamith an operation that
generalizes the known relations on the data attached tdithmated simple nodes in
order to produce a constraint (in tB&V-domain) on the data word associated with the
edge resulting from the normalization. This step is acjugllite delicate and special
care has to be taken in order to keep preciseness. In partithis is the crucial step
that allows to generate universally quantified propertiesifa number of relations be-
tween a finite (bounded) number of relations on the datatsthto linearly ordered
or successive simple nodes (depending on the allowed pafi@r constraining the po-
sitions in the universal formulas). We have defined suffictemditions on the sets of
allowed patterns under which we show that we obtain bestatigtansformers.



We have implemented (in C) a prototype tamNv based on our approach, and
we have carried out several experiments (more than 30 exainph list manipulating
programs (including for instance sorting algorithms suglmaertion sort, and the two
examples in Figure 1). The tool is powerful enough to syn#eesontrivial invariants
such as all those mentioned above in this section. All thengkas we have considered
have been carried out in less that 1 sec, which is, we belggits encouraging.

2 Modeling and reasoning about programs with singly-linkedlists

We consider a class of strongly typed imperative progranmipodating dynamic singly
linked lists. We suppose that all manipulated lists havestimee type, i.e., reference to a
record called i st including one reference fieltext and one data fieldat a of integer
type. While the generalization to records with several €iatds is straightforward, the
presence of a single reference field is important for thiskwbhe programs we consider
do not contain procedure calls or concurrency constructs.

Program syntax Programs are defined on a set of data variabar of type Z and

a set of pointer variableBVar of typel i st (which includes the constanti11). Data
variables can be used data termsbuilt using operations oveéZ and in boolean condi-
tions built using predicates ov&r. Pointers can be used in assignments corresponding
to heap manipulation like memory allocation/deallocat{oew/ r ee), selector field
updates{- >next =..., p- >dat a=...), and pointer assignments=(..). Boolean con-
ditions on pointers are built using predicatpsHg andp==null) testing for equality
and definedness of pointer variables. No arithmetics isva@tbon pointers. We allow
sequential composition ), conditionalsi(f - t hen- el se), and iterationsvi | €). The

full syntax is given in Figure 2.

p,q € PVar pointer variables P  predicate oveZ
d € DVar data variable O operator ove#

pt ::=null | p| p— next
dt ::=d| p— data| O(dty,--- ,dty)
cond::= p==q| p==null | P(dty,---,dty) |
Icond| condA cond
asgnStmt:= p =new | free(p) | p= pt |
p—next =pt| p—data=dt|d=dt
ifStmt::= if condthen {Stmf* [else {stm{*]
whileStmt::= while conddo {stmg*
stmt::= whileStm{ ifStmt| asgnStmt
program::= {stmg*

Fig. 2. Syntax for programs with singly linked lists.
For simplicity, we consider that all programs are precopwids follows. Each

pointer assignment of the forpenew, p=q or p=q — next is immediately preceded
by an assignment of the forprnull. A pointer assignment of the forpep — next



is turned intog=p, p=null, p=q — next, possibly introducing a fresh variabtp
Each pointer assignment of the forpr— next=q is immediately preceded by —
next=null.

Program semanticsA configuration of a program is given by a configuration for the
program heap and a valuation of data variables. Heaps capbesented naturally by a
directed graph. Each object of typest is represented by a node. The constaritl is
represented by a distinguished nddd@he pointer fielchext is represented by edges.
The nodes are labeled by the values of the data fietch and by the program pointer
variables which are pointing to the corresponding objdetgry node has exactly one
successor, except for the node representind . For example, the graph in Figure 3(a)
represents a heap containing two ligt€0,5,2,3] and[1,4, 3,6, 2, 3] which share their
two last cells. Two of the nodes are labeled by the pointeialségsx andy. A node
which is labeled by a pointer variable or which has at leastivedecessors is called a
cut point Otherwise, it is called aimple node

In this work, we use an equivalent representation for hebfasmed as follows. Let
G be a graph as above. It can be encoded (1) by a dfapdntaining at least all the cut
points inG such that two nodes are connected by an edge if there exiath dgtween
them inG, and (2) by a function that associates to each nodeH a word overZ
which represents the data values fr@nof the path starting im and ending before the
successor ofi in H. For example, Figure 3(b) and Figure 3(c) give possible dimgs
for the graph in Figure 3(a).

Definition 1. A heap graph ovePVarandDVar is a tuple H= (N,SV,L,D) where:
— N is a finite set of nodes which contains a distinguished fipde

—S: N — N is a successor partial function s.t. onlgBis undefined,

—V:PVar— N is a function associating nodes to pointer variables sthid 1) =,
—L:N — Z%" is a partial function associating nodes to non-empty wordsr & s.t.
only L() is undefined, and

—D: DVar — Z is a valuation for the data variables.

A heap grapH is called ak-heap graptif the number of simple nodes is at mdst
Figure 3(b) pictures a 2-heap graph whe8andn5 are the simple nodes.

. nl: (4,0,5 . _ Nl (4,0,5)
ﬁHQ_"SHEHfH# 9 @ @ # na: (2 g}; # - (2,3)
X / n3: (3) n4: (1,4,3,¢
1 4 3 8 (nd—(n9 nd: (1,4)
{v}

g/H.H.H n5: (3,6) 1%
(a) (b) ©

Fig. 3. A representation for program heaps

In the following, we consider only heap graphs without gagda.e. all the nodes
are reachable from nodes labeled by pointer variables. \fieede postcondition op-
erator, denotegost(St H), for any statemen$t and anyk-heap graptH. In general
post(St H) is not ak-heap graph; it may contain more thiasimple nodes.

Some interesting cases in the definitionpekt(St H) are given in Figure 4. For
the statemenp := new we add to the heap graph a nodevhose successor isand



which is labeled by a singleton data word obtained using tbegrluresg1t(L,n). The
latter updates (n) by a random word of length 1..

If p points to the node representimgll then post(free(p),H) returnsHer
which is a special sink heap configuration. (The same hapjoerathernull deref-
erences likgp = q, p — next = @, andq = p — next whenp points tof.) Otherwise,
post(free(p),H) modifiesH by removing the list element pointed lpy Remember
that the noden in H pointed byp may represent more list elements at once. Thus, we
start by calling the proceduféncover(H, p) described in the right of Figure 4. The
goal of this procedure is to obtain a heap gragih= (N',S,V’,L’,D’) representing the
same heap dd in which the word associated to the node pointegliy of length 1. It
uses two procedures on words oersplit andisSglt. For anyn € N such that the
wordL(n) is of size at least Z3plit(L,n,m) returns a functioh.’ obtained from_ by
assigning to a singleton word containing the first symbollitn) and by settind-(m)
to be the word containing all symbols irfn) except the first one. Alsd,sSglt(L,n)
returns 1 if the length oE(n) is 1 and 0, otherwise. Theppst(free(p),H) applies
RemNode which removes from the current heap graph the nodeinted byp (for any
predecessom of n, S(m) is set tot), andRemGrb which models the garbage collec-
tor. For the latterpost calls a projection operat@iroj(L,n) that removes from the
domain ofL.

) procedure Uncover(H,p) {
n¢ N is a fresh node n="V(p);

POSt(p:: new,H) = (N U {n}vs[n = ﬁLV[p’—’ n]vsglt(Lvn)vD) if(iSSglt(Ln)) {
V(p)#4 (N,S,V/.L',D') = Uncover(H, p) N=NL=LSs =S}

1
poatEree(p) H) = Rendrd (Remiods (N SV U D) e ly oo
V(p) #4 L' = split(L,n,m);
post(p.data= dt,H) = UpdateData(H, p,dt) §'=8[n+—mm— S(n)]; }

return (N',s',V,L.D); }

Fig. 4. The postcondition operat@ost.

The definition ofpost for p.data:= dt calls the procedurépdateData(H, p,dt)
which, for any input heap grapgth = (N, S V,L,D) such tha¥ (p) = n, returns the heap
graph(N,S,V,updateFirst((L,D),n,dt,V)).

The procedureipdateFirst((L,D),n,dt,V) substitutes the first symbol in the
word associated to by the value ofit . The mapping/ is used to substitute i@t any
termp- >dat a by the first symbol of the word associated(p). The same procedure
updateFirst is used for assignments of the fodwndt , whered is a data variable.

The postcondition operatppst can be extended to obtain a postcondition operator
onk-heap graphs, denotedst,, by

post, (St H) = Normalizex(post(St H)),

whereNormalizey takes as input a heap grabhand, ifH is not ak-heap graph then it
returns a 0-heap graph (a heap graph with no simple nodeshwépresents the same



heap adH. Suppose thats,...,\; are all the (disjoint) paths il of length greater
than 1 between a cut-point and a predecessor of some cut-poimalizey calls the
procedureoncat(L,Vs,...,\t) which modifies the functioh. Forany 1<i <t, if V =
No...Nn; then the domain of’ = concat(L,Vs,...,Vt) does not contaimy,...,n; and
L'(no) is the concatenation df(ng),...,L(n;). The procedur&lormalizex removes
from the graph all the nodes removed from the domain. & collecting semantics can
be defined as usual by extendipgst, to sets ok-heap graphs.

3 Abstract domain for program configurations

The elements of this abstract domain are finite sets of grajithsconstraints on the
data words attached to their nodes and on the program daédbhes. Constraints are
expressed using abstract domains on words capturing \saai&pects such as the size of
the words, the multiset of their elements, or other propetthat relate data at different
positions. For example, Figure 5(a) pictures a possible leeafiguration at line 2
of the procedur® spat ch3 from Figure 1(b). Different abstractions of it are defined
using the same graph together with the constraints fromr€ig(b), Figure 5(c), and
Figure 5(d). In the following, because all the data updatiextonly the first symbol
of the words, we refer separately to the head of a word (sdfirst symbol) and its
tail (i.e., the suffix that starts with the second symbol)eTdonstraints from Figure
5(b) characterize the sum of the symbols of a word. They usablas representing
words (which have the same name as the nodes of the graphgans interpreted
as integershd(n) denotes the first symbol in the word representechb¥en(n) its
length, andsum_t1(n) the sum of the symbols in its tail. The integer varialbiet _sum
denotes the sum of the integers contained in the initialTise constraints from Figure
5(c) characterize the multiset containing the symbols ofoadwThey use variables
to represent words and terms interpreted as multisgtsid(n) denotes the multiset
containing the first symbol angs_t1(n) denotes the multiset containing all symbols
from the tail. The multiset variabieni t _nms denotes the multiset containing the integers
from the initial list. Finally, we can define an abstracti®ing constraints expressed by
universally quantified first-order formulas. In Figure 5¢gdis a variable interpreted as a
position in some wordy € t1(n2) means thay belongs to the tail of the word denoted
by n2, andn2|y] is a term interpreted as the data at the posigiofin2.

In the following, an abstract domainm is a tuple(L,C,M,U, T, L), where(L,C)
is a lattice whose greatest lower bound (meet) operatarasd lowest greater bound
(join) operator ig I. The top element is denoted Byand the bottom element hy. The
domaina represents a domain of concrete elemenky a Galois connection, that is, a
pair of monotone function® : ¢ — 4,y: 2 — ¢) such thati(C) C Aiff CC y(A). As
usual in the abstract interpretation framework [B]epresents the widening operator.

3.1 Data words abstract domains

An abstract domain representing words is calledha words abstract domaifDW-
domain, for short). LeDWVarsbe a set of variables called data word variables and
c (DWVarsDVar) be the lattice of sets of paird.,D) with L : DWVars— Z* and

D :DVar — Z.



{head,tmp}

Sums
{9”}\ ni:(3,4,5) hd(n2) + sum_t1(n2) +hd(n3) + sum_t1(n3) = init_sum

(n2 w2 g g nd(n2) + sum_tl(ng > 3x len(n2)
fess) T hd(n3) + sum_t1(n3) < 3x len(n3)
(b)
(@)
Multisets: Universally quantified formulas

Vy.y € t1(n2) = n2ly] >3
Vy.y € t1(n3) = n3[y] < 3
(© (d)

ms_hd(n2) Ums_t1(n2) Ums_hd(n3) Ums_t1(n3) = ms_init

Fig. 5. Different abstractions for some configurationDb&pat ch3

Definition 2. An abstract domaitry = (LW, C%, 1%, 1%, TW, 1 W) is called aDW-
domainif there exists a Galois connectiga™,y") from 4y into ¢ (DWVarsDVar).

In the following, we give twdDW-domains which formalize the abstractions from
Figure 5(b) and (c). The abstract domain used in Figure 5{tha/defined in Section 4.

DW-domain 4s: To reason about the sum of data in a word, we defirg@V&-
domain based on an arbitrary numerical abstract domain evtiimsensions represent
integer program variables or terms of the ford(w), len(w), andsum_t1(w), with

w € DWVars In our experiments, we have used sudbV&-domain based on the poly-
hedra domain [8], denoteds.

DW-domain 4y;: To reason about multisets of data of a word, we consideDitie
domainay; whose elements are conjunctions of formulas of the férm T/ with T
andT’ terms of the fornv, UvoU- - - Uvp, wherep > 2. Here vy, vy, ..., vp are variables
interpreted as multisets or terms_hd(w), ms_t1(w), andms(d) with w € DWVarsand

d € DVar. The termms(d) represents the singleton containing the value of the progra
variabled. We suppose that, v, ..., vp are distinct.

Let T™ be the formula =t and L™ the formula Ut =t. To define lattice operators
we start by defining a proceduseturate([), wherepis a value inay;, which applies
the commutativity of= andu, the associativity ofJ, and substitutions in order to obtain
new atomic formulas that are implied by the existing one® Jibstitutions are applied
as follows:

— if T =T, is an atomic formula then we add more atomic formulas by #utisg:
e in every union term of the forfig U Ty, Ty by To;
e in every union term of the forfig U T,, T by Tq;

Let yp and iz be two elements in™. We definep; CM b, if for every atomic
formulaT; = T, in Y there exists:

— union termsTE, T2,..., TP such thafly = TPUTZ---UTY,
— union termsT3, T£,... T, such thafl, = TAUTZ---U T}, and
— atomic formulasl] = T,, forany 1<i < p, in Saturate(jy).



We definepy LM pp to be the conjunction of atomic formulas that appear in both
Saturate(p;) andSaturate(lp). The meet operatay M |, is defined to be the
conjunction of atomic formulas that appearSaturate(|;) or Saturate(jy). Since
our abstract domain contains a finite number of elements, syeagonsideI™ = M,

3.2 Abstract heap graphs

Abstractions ok-heap graphs as in Figure 5 are calledbstract heap graphsn the
following definition, we assume that for each node of a heaplgthere exists a data
word variable with the same name.

Definition 3. A k-abstract heap ove?Var, DVar, and aDW-domain 4w is a tuple
H= (N,SV,W) where NS,V are as in the definition of k-heap graphs, andis an
abstract value imw over the data word variables N{t} and the data variables DVar.

Next, we define the domain &fabstract heap graphs parametrizedalyy, denoted
by am(k, 2w). Two abstract heap graphs asemorphicwhen their underlying graphs

are isomorphic. Formallyy = (N,SV,W) andH’ = (N’,S’,V’,VV) are isomorphic,

denotecH ~ H’, if there exists an isomorphisht N — N’ between the labeled graphs

(N,S\V) and(N’,S,V’). To emphasize the graph isomorphism, we may vHitey, H.
The lattice operators of this domain are obtained by apglyive corresponding

operators fromayw between abstract values which belong to isomorphic akistesap

graphs. Thus, for anid = (N,SV,W) andH’ = (N/,S’,V/,VN\/’) in ap(k, 4w) such

thatH ~p, H’ we have that (1 CH H’ if W % W/ [h(n) — n|n € N] (we have unified
the abstract values such that they use the same variabsefoorphic nodes) and (2) for
any fe€ {U,n, 0}, H £ H’ is the abstract heaiN,S,V,W”), whereW” is the abstract
valueW ¥ W’ [h(n) — n|n € N]. The join and the widening (meet, resp.) of two non-
isomorphic abstract heap graphgi$ (LY, resp.).

Proposition 1. The entailment relatio® is sound that is,H C¥ H’ impliesy® (H) C
Y (H’). Also,L™ andm™ are the least upper bound and greatest lower bound, respec-
tively, andd™ is a widening operator.

Proof: The properties of®, L, andm, resp. follow directly from similar properties
of C%, LW, andn%, resp. The proof for the widening operator relies on the tlaat
the heaps generated by the class of programs considerectiors2 contain a bounded
number of cut points [17]. ]

Notice thatCH is notcomplete That is, we can find two abstract he&ﬁ;semdﬁ
such that(H) C v (H’) does not implyH CE H'.

Based on the Galois connectitm” y*") we define the Galois connectiga™, y)
between the lattice of sets kfheap graphs andy (k, 4y ). The value o™ for a set of
isomorphick-heap graphs is the underlying graph of the input heap graphs together
with a value inaw obtained by applying" to

{(L,D) | (N,S\V,L,D) € s}.



The value ofa™ for a set ofk-heap graphs containing at least two non-isomorphic heap
graphs isTH. The concretization functioyi’ is defined using" in a similar manner.

3.3 Abstract heap sets

We defineays(k, aw) = (L5 (k, aw), CH, 88, LHS THS | HS) as a finite powerset
domain corresponding tay (k, 4w). Its elements are callddabstract heap sets

Definition 4. A k-abstract heap set ovBiar, DVar, and aDW-domaina is a finite
set of non-isomorphic k-abstract heap graphs over PVar,rDafad 2.

The operators associated4gs (k, 2w) and its widening operator are obtained from
those ofag(k, 2w) as usual [7]. The entailment relatiaii’ is the usual Hoare power-
domain partial order [1], that is, for amyy andAy; in ags(k, aw), Aq T A iff for
anyH € Ay there exist$’ € A, such that C H’,

Let Ay and A € LES. To make uniform the definitions of all operators of the
abstract domain, we suppose that for any abstract }QM@V,VNV) € Ay for which
we can not find an isomorphic abstract heapAjp we add toA[; the abstract heap
(N,SV, LW) and vice-versa. Then, for anyet{LJ,r,0} we defineAy 15 A}, to be
the abstract heap set that contains for any two abstracshéap (N,SV,W) €Ay

andH’ = (NQS@VQVV) € A, with H ~y, H, the abstract heafN,S,V,W"), where
W” is the abstract valu&/ £ W’ [h(n) — n|n € N].

Proposition 2. The entailment relatior_® is sound that is, Ay C™ A{, implies
VIS (An) C VES(A). Also, LS and S are the least upper bound and greatest lower
bound, respectively, arid™® is a widening operator.

Proof: Directly from the properties of®, L, M, andO®. O

As in the previous case, notice that® is notcomplete

The Galois connectiof™, y®) between the lattice of sets kfheap graphs and
aps(k, 4w ) is defined as follows. The abstraction functmf® applied to some set of
k-heap graphs returns a finite set df-abstract heap graphs, one for each equivalence
class ofs with respect to the isomorphism relation. Tkiabstract heap graph is defined
by applyinga™ to the set of heap graphs in the equivalence class. The dizatien
functiony™ is a point-wise extension gf'.

3.4 Abstract postcondition operator

The abstract postcondition operator on abstract heap setseesponding to
post,, denotedpostf, is obtained by replacing every concrete transforriee
{sglt,isSglt,split,proj,updateFirst,concat} with its abstractiorF*. For ex-
ample, the abstract version of the proceduneover, denotedUncover”, used in
postl(free(p),Ay) is given in Figure 6. For any abstract heap gréph (N7 S,V7V~\/)

in the abstract heap sy, Uncover”(Ag,p) does one of the following:



— if W implies that the length of the data word associated to the ngubinted byp
is1 (i.e.,isSglt#(W, n) = 1), then the abstract heap graph is added to the output
abstract heap set;

— if W implies that the length of the data word associated istrictly greater than
1 (i.e.,isSglt#(W, n) = 0), then we add to the output abstract heap set an abstract
heap graph obtained (1) by adding the nodevhich represents the immediate
successor ofi and (2) by updating the abstract valuedty to split#(W,n,m);

— otherwise, (i.eisSglt#(W,n) = —1), we add to the output abstract heap set two
abstract heap graphs: (1) an abstract heap graph obtaimadfrby adding the
constraint that the length of the data word associated i 1 (this is done by
calling the procedurﬁakeSglt#(W, n)), and (2) an abstract heap graph build from
H by adding the constraint that the length of the data wordcata ton is strictly
greater than 1 (this is done by calling the procedlaBeNogSglt#(W, n)) and by
applying the same transformations as in the cassg1t*(W,n) = 0”.

procedure Uncover” (Ay,p) {
HS.
Ay =17 -
for each H= (N,S,V,W) € Ay do {
n=V(p);
if (isSglt¥(W,n) =1)
Aj = Ay UFS (R
else if (isSglt*(W,n) = 0){
N =NU{m}; //m¢gN
§'=8[n—mm+— S(n);
W = split#(W,n,m);
By — WU (V.S V) }
else {
Al = AL UFS (N8, V, makeSglt¥(W,n))};
N =NU{m}; //m¢gN
§'=8[n—mm+— S(n);
W = makeNonSglt#(W,n);
W = split?(W,n,m); N
Ay = A UTS {(W, 8", v, W)} }
return Aj; }

Fig. 6. The abstract transform®ncover”.

Remark 1.For any call toconcat*(W, Vi, ..., k) made bypost!, the sumVy| +... +
[Vt is bounded by some constant which depend& and on the number of program
variables. This follows from the fact that the heaps gemeray the class of programs
considered in Section 2 contain a bounded number of cutpid}. Consequently, we
can defindDW-domainsayw parametrized bk such thatoncat#(w,vl, ..., ) with
W € ay is undefined ifVy] + ... 4 |Vt| is greater than or equal than this constant.

For any abstract transformer, we have to prove soundnesgranision properties
[6]. Let (a,y) be a Galois connection associated to some abstract donwaiani con-



crete transformef, its abstractiofr* is sound ifF (y(W)) C y(F#(W)), for any abstract
valueW. F# is abest abstractioiif o(F (y(W))) = F#(W) and it is arexact abstraction
if F(y(W)) = y(F#(W)), for any valueW. The following result holds.

Theorem 1. For any k-abstract heap setAn ays(k, 2w ), the following hold:

— (soundnesgost (St Y (Ay)) CHS S (postf (St An));

— (precision) if all the abstract transfer functions in therdain 2w are best (exact,
resp.) abstractions thep\ost]ﬂE is also a best (exact, resp.) abstraction.

In the following, we give sound abstract transformersdgrand as.

DW-domain 45: Suppose thatis an abstract value ias. Then,

— sglt¥(u,x) adds tou three dimensionsd(x), 1en(x), andsum_t1(x), and outputs
update”(l, 1en(x) = 1), whereupdate® is the abstract transformer in the polyhe-
dra domain corresponding to assignments;

— makeSglt¥ (i, x) returnsur? len(x) = 1;

— makeNonSglt#(, x) returnsum? len(x) > 1;

— isSglt¥(,x) returns returns 1 ifi C* 1en(x) = 1, it returns 0 ifu == len(x) > 1,
and -1, otherwise;

— split#(y,x,2) substitutes iny the variablesum_t1(x) by sum_t1(x) + Z[0] +
sum_t1(2);

— updateFirst?(y,x, dt, ) applies

update” (W hd(x) = dtB), if x € DWVars and
update”(pu, x = dtp), if x € DVar,

wheredtf is the expressiodt in which p — datais replaced byd(B(p));
— concat®(WL Vi, ...,V,) replaces, for any; = (st,<,...,5), 1<i < p, the term

sum_t1(s') + hd(s) + sumt1() + ... +hd($) + sum_£1(59)

by sum_t1(s!), and then it projects out from the current abstract valuedniables
hd(w), len(w), andsum_t1(w), withw e (V1 \ {s})U--- U (Vp\ {sp}).

Example 1.Consider the proceduB spat ch3 in Figure 1(b). In the following, we de-
scribe some interesting steps in the analysis of this progisang the abstract domain of
1-abstract heap sets (we allow abstract heap with at mostiomée node) parametrized
by the data words abstract domaig presented above. Suppose that in the initial state,
head points to a non-empty list such that the sum of its elemenialsdhe value of the
variables. This is described by the abstract heap in Figure 7(a). Thpesbf the heap
is given by the graph: a nodelabeled byhead connected to the distinguished node #
representinguull which is pointed by np, grt C, andl essC. The constraints regarding
the length of the list and the data in the list are given by thsract value written below
the graph.

Two of the abstract heaps obtained after the first iteratioth® loop are given
in Figure 7(b) and (c). Notice that, the statememi=x- >next produces two abstract



heaps depending on the length of the list pointechésd. If this length is 1 then we
obtain an abstract heap with 2 nodes similar to the one inrEig(b), and, otherwise,
we obtain an abstract heap with three nodes, one for the ssmrcefn, denotednl.
The latter involves a call to the abstract transforeeiri t# which modifies the abstract
value in Figure 7(a) tden(n) = 1 Ahd(n) 4+ sum_t1(n) + hd(nl) 4+ sum_t1(nl) =S
The abstract heaps mentioned above are produced when tloé tiesi f statement is
true, and consequently, they contain the constitadiih) > C. Analogously, when the
testof tha f statement is false, we obtain two abstract heaps: theyioghtaconstraint
hd(n) < C and the labelsessCandgrt Care interchanged.

After another two iterations, one of the obtained abstraeps is the one in Figure
7(e). It is obtained by applying the abstract transforihemalize,” on the abstract
heap in Figure 7(d) which induces a call ¢oncat” on the abstract value from®™
contained in this abstract heap. The latter consists cenatibng the words associated
to n2, n1 andn into one word which will be associated t@. Thus, the length of the
word associated tn2 in the output abstract value is updated to the sum of theteng
of the words associated 2, n1, andn in the input abstract value. Also, we substitute
the termhd(nl) 4+ sum_t1(nl) 4+ hd(n) + sum_t1(n) by sum_t1(n2).

Notice that the abstract heaps in Figure 7(c) and (e) aréagiamd their join is an
abstract heap defined by the same graph as Figure 7(c) and bpsltract value

len(n) € [1,3] Ahd(n) > CAhd(n) + sum_t1(n) +hd(nl) + sumtl(nl)=s (F)

After some iterations, the current abstract heap set wilt@io abstract heaps to cover
all possible cases: when the lists pointedgbyC and!l essC are non-empty or when
one of these lists is empty. If we apply the widening operaitt starting with the
fourth iteration, which induces a call {67, constraints likeLen(n) € [1,3] in (F) will
disappear and the analysis will terminate.

Similarly, using the abstract domain for multisets; we can prove that the union
of the multisets containing the elements of the list poirtgdr t C andl essC, respec-
tively, equals the multiset containing the elements of taetisg list.

DW-domain ay;: For any abstract valugin 4y,

— sglt¥(u, x) adds tou two dimensions foms_hd(x) andms_t1(x),
split¥(ux,2) replaces inu the multiset variablens_t1(x) by the union term
ms_t1(X) Ums_hd(z) Ums_t1(2);
isSglt*(y,x) returns always -1;
makeSglt? (W, X) andmakeNonSglt# (|, X) returny;
updateFirst#(y x, dt, ) considers the following cases:
e if x € DVar anddt = d € DVar then it adds tqu the atomic formulans(x) =
ms(d),
e if x € DWVarsand dt = p — data then it adds top the atomic formula
ms_hd(X) =ms_hd(B(p)),
e otherwise, it returng ™.,
— concat(LVi,...,V,) appliesSaturate(y) and then, for any; = (st,s,...,5%),
1<i < p,itreplaces the union term:

ms_t1(S') Ums_hd(s?) Ums_t1(s?) U ---Ums_hd(§%) Ums_t1 ()



{head,tmp}

{Ies#sC}
{head}  mp grt less {head grtC} 45 lessc
(n) # (n) # {onc)

len(n) >0 len(n) =1Ahd(n) >C

Ahd(n) +sumtl(n) =S | Ahd(n)+sum_tl(n)=s len(n) =1Ahd(n) >C

@) (b) Ahd(n) 4+ sum_t1(n)+hd(nl)
+sum_tl(nl) =s
(©)
{head,tmp} {|eZsC} {head,tmp} flessC)

#

oo o0

len(n) =1Alen(nl) =1Alen(n2) =1

Ahd(n) > CAhd(nl) > CAhd(n2) >C len(n2) =3Ahd(n2) >C
Ahd(n2) + sum_t1(n2) +hd(nl) + sum_t1(n1) ABd(N2) + sum._t1(n2) +hd(n3)
+hd(n) + sum_t1(n) +hd(n3) + sum t1(n3) = s +sumt1(n3) :(S)

(d)

Fig. 7. Abstract heaps for the procedudespat ch3

byms_t1(s!). Afterwards, the atomic formulas that still contain dataewariables
in (Vi\{st})U---U(Vp\{sp}) are deleted.

4 A DW-domain over universally-quantified formulas

We define thé@W-domainay = (LY, CY, 1Y, 1Y, TY, 1Y) whose elements are univer-
sally quantified first-order formulas.

4.1 Syntax of formulas

The elements ofiy are formulas of the forr& () A Apcyp () VY- P(Y, V) = Up(y, V),
where v is a set of data word variables. The sub-formEl& quantifier-free and it
characterizes the lengths and the first symbols of the wiiidsan arithmetical formula
over termshd(w) andlen(w) with w € 9. The variabley are interpreted as positions
from the tail of the words represented by the variable9’inP is a formula, called
pattern which constrains the positions denoted yoyit belongs to the ser (7)) of
formulas obtained from a finite st by substituting, in any possible way, the data
words variables with the ones . The setr is supposed to be given by the user and it
is a parameter of the domain;. The formuladJp, for anyP € #(v), are arithmetical
formulas over the terms i& pluswly] andy, for anyw € DWVarsandy € y. Together
with E they represent abstract values in some numerical absiatid 27 which is
also a parameter ofiy. For example, the following formula specifies that the word
denoted byw; is a copy of the word denoted by:



len(wp) = len(Wa) AVy1,Yo. (Y1 € t1(W1) AY2 € t1(W2) Ay = Y2) = Wy [y1] = Walyz],

and the following formula expresses the specificatioRidonacci from Figure 1(a):

hd(w) = 1A YY1,Y2,Y3. ((Y1,Y2,Y3) € t1(W) Ayr <1Y2 <1Y3) = W[y3] = W[y1] +W[y2].

Above, the arithmetical formulas represent values fromPblyhedra domain [8].
Based on Remark Ky is also parametrized by an inteder

Syntax of patterns The patterns describe a set of positions belonging to the tai
of different words. They specify the word to which the pasis belong, they fix an
order between the positions belonging to the same word, lagy put arithmetical
constraints on some of these positions (which are the firgamh word). For exam-
ple, the formulas above contain the patteyng t1(wi) Ay € t1(wy) Ayr = y2 and
(Y1,¥2,¥3) € t1(W) Ay1 <1Y2 <1Y3.

Let (wi,...,wq) andw be two vectors of data words variables. Also, Yet=
(yh,... ,yipi), for any 1<i < g, be vectors oposition variablesnterpreted as integers
s.t.yiny; =0, foranyi # j. A patternP(y1, w1 ...,Yq,Wq,W) is a formula of the form

A\ PR(Yi,Wi) APL(YL, - . Vg, W), where (G)
1<i<q

— PL(yi,wi) is of formy; € t1(Wi) Ay ~1 Y2 ~o ... ~p_1 YD, where~y,....~p 1
is either the strict increasing order, either the predicate “greater than or equal’
or the “immediate successor” predicate (i.e.,y <1y iff y =y+1). The formula
yi € t1(w;) states that the positions denoted by the variableg imelong tow; and
thatlen(w;) > |y;| + 1 (that is, the tail of the word denoted ly contains at leagy;|
positions).
— P is a boolean combination of linear constraints over vaeisy, . .. ,yé andlen(w)
with w € w. We assume thd&_ does not constrain the lengths of the wordwirthat is,
len(w) > 0 implies3yf,...,yg. PL, for anyw € w.

4.2 Semantics of formulas

A model for a formula ir_V is a pair of valuations for the free variablés,DWVars—
Z* andD : DVar — Z. In the following we give the semantics of these formulase Th
fact that(L,D) is a model ofV € LY is denoted byL,D) = W.

LetW be the formula

EA A Wyi....Yq P(y1,Wa....Yq,Wg,wW) = Up.
Pee(v)

We have thatL,D) = ¢ A @ iff (L,D) E @ and(L,D) = @. Also, (L,D) F E
iff the function f : {I[w],w[0] | w € DWVars — Z, defined byf(I[w]) = |L(w)| and
f(w[0]) = L(w)[0] belongs toy”(E) wherey” is the concretization function associated
to 4y.



Lety; =Vyi.. .yipi, forany 1<i < g, be a set of vectors of position variables. Then,

(L,D) =Vy1...Vyq. << A i Etl(wi)Ayi1~1yi2~z---~pi1yipi>APL(y%,...,yé,vv)> =Up

1<i<q
iff for every mt: y1U...yq — N* such that
-y <|L(w)|+1, forany 1<i <q,
= T(y;) € [1,[L(w)[], forany 1<i<qgand 1<r < p;,
= Ty~ TU(Y?) ~a .~ THYP), forany 1<i <,

- g:{Iw |wew}U{yj,...,yq} — N* defined byg(I[w]) = |L(w)| andg(y;) =
m(y;), for any 1<r < g, satisfies the formulBL(yi, ..., y5,w),

the function
h: {lw],w[0] |[we DWVarg Uy U...Uyqu{wily] |1<i<gandyecy;} - Z

defined byh(I[w]) = [L(w)|, h(w[0]) = L(w)[0], h(y) = Ti(y), for anyy € y1U...Uyq,
andh(wi[y]) = L(w;)[mi(y)], for any 1<i < g andy € y; belongs to the concretization
of Up, yZ(Up).

4.3 Lattice operators

In this subsection, we define the entailment relation betvesements ofay, the join,
the meet, and the widening operators. Thus\Weie the abstract value

EA /\ \v/ylv"'ayCI'P(ylvwla"'ayChWCIvW)jUP
Pee(v)

andW’ be the value

E'A A Wi, Yq P(y1,wa,...,Yq,Wg, W) = Up.
Pe?(v)

ThenW CV W' iff (1) E CZ E/, and (2) for every patterR(y1,ws . .. ,Yq, Wg, W), if
E C%len(w) < |yi| + 1 does not hold, for every 4 i < g, thenE % Up C% U}.
Also, for any f€ {L,r,0}, W1YW' is an abstract value of the form

E"A A WYi.-...Yg P(Y1,Wi,...,Yq,Wg,W) = Up,
Pee(v)
where

- E2E/,
— for anyP(y1,wa,...,Yq,Wq, W) € (7 ), we have that:
e if ECZ1en(W) < |yi| + 1, for some i < g, then we defin®&f = U},



e if E' CZ len(w) < lyi| + 1, for some < i < g, then we defin&J} = Up,
e otherwiseU§ = Up $2U}.

Proposition 3. The entailment relation" is sound that is W CY W’ impliesy” (W) €
YW(W'). Also,LlV andrV are the least upper bound and greatest lower bound, respec-
tively, anddV is a widening operator.

Proof: The properties of=7, LY, MY, resp. follow directly from similar properties
of CZ%, L%, andrn?, resp. The proof for the widening operator relies on the wiolg
operatoi]” and on the fact that the set of pattemss fixed. m|

The Galois connection between the latticéDWVarsDVar) and 4y is defined
according to the semantics given in Section 4.2.

4.4 Closed sets of patterns

In the abstract transformebncat” we have to transfer properties from a set of words
to their concatenation. This implies that we must be ableescdbe data from posi-
tions which belong to intervals that overlap two or more vgrtb describe these sets
of positions we compute for each pattern a set of patternstddalosure(P k). This
computation can be done automatically and it is not trivighie presence of arithmeti-
cal constraints.Therglosure(P k) is extended as usual to sets of patterns. A set of
patterns isclosedif it equalsClosure(?,k), for some set of patterns. The preci-
sion result forconcat” given in the next sub-section is obtained only for closed set
of patterns. We begin by an example and afterwards, we g&dattmal definition of
Closure(P k).

Example 2.LetP be(y1,Y2,y3) € t1(W) Ay1 <1 Y2 <1Ys3. Suppose thatis interpreted
as the concatenation of two words denotechbyndns. If we want to deduce a prop-
erty of w of the formVy1,y»,y3. P = U from properties oh; andny, we have to use
universally quantified formulas having as left pBifiv — nq], P[w < np], and one of
the following patterns:

Pi(ng) := (y1) € t1(m)Ay1=1en(n) — 1, Po(ny) :=(y3) € tl(np) Ayz =1
Ps(n1) := (y1,Y¥2) € t1(n1) Ay1 <1 Y2 Ay1 = len(ni) — 2, and
Pa(nz) = (y2,y3) € t1(n2) Ay2 <1yzAYy2 = 1.

These patterns characterize any three consecutive pwsitidhe word denoted by
w. UsingP; andP,, we capture the case whgnis the last position ofi; andys,,y3 are
the first two positions oh,. Because patterns characterize positions in tails of words
y2 does not appear explicitly. Its data can be characterizied tise quantifier-free part.
The case whegy andy, are the last positions af; andys is the first position oh; is
considered using,. The patterrP; describes the case whegq y», andys are the first
three positions ofip. Finally, P[w < ni] andP[w < ny] consider the situations when
all the positions belong to the same word.



Formal definition of Closure(P,k): LetP(y1,ws...,Yq,Wq, W) be a pattern

( N (yi € t1(wi) Ay} ~1yi2~2...~pi1yipi)> APL(YL, - Yg: W)

1<i<q

and letuy,...,uq be vectors of data word variables. Suppose thaepresents the con-
catenation of the words denotediy 1 <i < g. The procedur@losure(P,ug,...,uq)
contains two steps:

1. we define all the patterns which constrain the positignfor any 1<i < q, such
that they belong to one of the wordsunand they satisfy the ordering constraints
in P,iQ and the arithmetical constraintshp;

2. for any patterrP’ obtained in the first step and for any subsef ui U...Uugq
we put inClosure(P,us,...,Uq) a pattern containing all the atomic formulas over
position variables which are constrained ®yto belong to a word denoted by one
of the variables in.

Following the steps described abog@psure(P,u,...,uq) is defined as follows:

Compute Tu_ples(P,iQ,Vl, ...,Vm): Letwvy,..., vm be a sequence of data words variables
and letPg(y;,w;) be the formula:

Vi € t1(W) Ay~ Y2~ Njflyija

where~q,...,~j_1€ {<, <, <1} Intuitively, Tuples(PIiQ,Vl, ...,Vm) shows all the
possible ways of choosingpositions satisfying the order constraintFPh on the
word representing the concatenation of the wargs. .,vy. Roughly, it will con-
sider all the possible ways of choosing an arbitrary numbpositions on the word

Vi, an arbitrary number of positions on the wag etc.

Clearly, ifm= 1 thenTuples(Pk,Vv1,...,Vm) = Pk[Wi « v1].

Otherwise, ifm> 2, we begin by considering the case when we choose positions
that are not first symbols of the words,...,vm. Thus, we considem’ formulas,

@1, --., @y, Which characterizg positions on the the concatenation of the words
vi,...,Vm that are not first symbols of these words:

o=y Y € t1(Ve) AV~ g1 Y

+1 +1
Q= (YR €t1(Ve) AV g - g1 Y

[o vy +1 i Oy _ +1 i
@y = (y;m 7---aYiJ)€t1(Vs,d)AYi"{ N gy 1Y

where the following hold:

—1<mM<mand 1< <H < ... <Sy <M,

— 1< <@e<...<On-1<,

— if M > 1then~g #<1,...,~q,, , 7<1.
Above, @, characterizes; positions belonging to the wond, , for some 1< §; <
m, which obey the same restrictions as the fifspositions inP,iQ. Then,q, char-
acterizegy, positions belonging to the wong,, for some 1< s, < m greater than



s1, which obey the same restrictions as the ripxt g; positions inP,iq. Obviously,

the positionsryiql andyiql+1 can not be immediate successors because we have con-
sidered the case wheyﬁ“l can not be the first symbol of,. Thus,mg, # 1. The
same happens with all the remaining formujgs. .,@y .

Then@ A ... A @y € Tuples(Pg,Va,...,Vm), for anysi,...,Sy andqy,...,Gy_1 as
above.

Now, for the general case, we considérformulasys, ..., Uy as follows:

l‘lJl = (y}O ’J;t' . 7yiql) € tl(Vsl) /\YTO Nt0+'t' - Yo—-1 y|ql
P2 = (" W) € E1 (V) AW gt - a1 Y

Oy — 1ty — j Oy — 1ty - j
LIJTT‘( :(y| ! 17"'7yiJ) Etl(vﬁfﬂ)/\m ' 1qu/71+'[m/71 ---Njflyija

where the following hold:

—1l<m<mand1<g < <... <Sy <m,

—1<to<q<g2<...<On-1<,

—to<s+landt <si1—s+1,forany 1<r <m,

— O +t < Qry1, forany 1<r <m' —1, andgpy_1 +ty_1 < |,

— if M >1andt ;1 =1then~g#<q, forany 1<r <m —1.
Above, 1 describes|; —to positions belonging to the wosd, , for some 1< s; <
m, which obey the same restrictions as the posit'y?ns .,yiq1 in P,‘q. It is supposed
that the firstty — 1 positions are mapped to first symbols of some of the words
Vo,...,V. For this, we must havey < s; + 1. Then,y, describesy, — (01 +t1)
positions belonging to the wond,, for some 1< s, < m, which obey the same
restrictions as the positiond™,...,y® in PL. It is supposed that the positions

yutt  y#t! are mapped to first symbols of some of the wovgsy,. . .,Vs,.

Consequently < s, —s;+1 must hold. Ift; = 1, then betweey™ andy™ " there

is at least one symbol (the first symbohgf). Consequentlyiy, must be different
from 1. The same happens for the other formulas.

Theni A... AUy € Tuples(Ph, Vi, ..., Vm), foranys,.. .Sy, to, du,. . .,0 1, and

t1,...tw_1 as above.

The output in the first step of Closure(P,u1,...,uq): We compute in this step the
set of all patterns of the form:

N\ QR(Yi,U) APL(YL,...,y5,W) AP/, where

1<i<q

— Qk(Yi,Uj) € Tuples(PL,uj),
— P{(Y,.-.,Ys,W) is obtained fronPL(yi,...,ys, W) by:
o forany 1<i < g, we substituté[w;] with I[ut] +1[u?] + - -- +1[u/'], where
up = (ul,u?,... ),
e forany 1<i < q, if y! is a position of the Wordlic’“, for some I< o < jj,
then we substitutg! with y: +1[ul] + ... +1{u?).
— P’ is a conjunction of linear constraints build as follows:



e forany 1<i < q, for any sub-formula oQiR(yi,ui) of the form
(VrseesYer) € LLV)AYr <mp - <r,, Vs

withr <r’ <y, if 4 =... =Ty_, =1 = 1 (1% is known fromP}{) then
we add toP’ the constrainy; = len(v) —r.

The output in the second step oflosure(Pus,...,uq): Let P’ be a pattern com-
puted in the first step of the form:

/\ QIR(y|7u|)/\Pll_(y%7"'7yé7w)/\P|/_/'

1<i<q

Also, letu C up U...Uug. We denote by’ C y; the set of variableg for which
there exist some variable € u and some vectoy C y; with y € y such that
y € t1(u) is an atomic formula irQk(yi, u;). Let Qk(yi,u Nu) denote the con-
junction of atomic formulas irQiR(yi,ui) over position variables iry;’. Then,
Closure(P uy,...,uq) contains the pattern

( A QiR(yhUiﬂU)) AP,

1<i<q

whereP!' is the quantifier-free formula equivalent®Y. (R (v1,...,y5,w) AP).
Here,Y contains all the position variables Rf (y1,...,yg,W) AR which are not
present in/\;<j<q Qr(Yi, Ui Nu).

Notice that if the patternP contains no arithmetical constraints then
Closure(P k) = Closure(P,k+ 1), for anyk greater than or equal to the number of
position variables irP.

By taking all the set€losure(P,ug,...,uq) Which correspond to concatenations
of at mostC words, whereC is the constant mentioned in Remark 1, we obtain
Closure(P k). Then,Closure(P,K) is extended as usual to sets of patterns. A set of
patterns ilosedif it equalsClosure(?,k), for somer.

4.5 Abstract transformers

In this section, we define the abstract transformers adsokcia theDW domainay.
We prove that these abstract transformers are sound witkece® the concrete opera-
tions and we identify conditions under which they are predirst, we will present a
particular class of abstract values for which we can proeepttecision of the abstract
transformers. In the following, the projection of some ed@X from some abstract
domaina on some set of variablas is denotedX | V. The projection of an abstract
elementX on all the variables except some set V is denat¢d.



Closed abstract valuesin general, there may be more than one abstract vall€ in
having the same concretization. For example,

hd(w) =0Alen(w) =6
AVY1. (Y1) € t1(W) = (1 < Wly1] < 5)AVy1,Y2. ((Y1,Y2) € t1(W) Ayr < Y2) = Wly1] < Wya].

and

hd(w) =0Alen(w) =6
AVY1. (Y1) € t1(W) = (Wly1] = y1) AVY1,Y2. ((Y1,Y2) € t1(W) Ay1 <Yy2) = TZ.

represent the same data wavd= 012345. In some of the results that follow we need
a canonical representation for the abstract valué§irSuch representations are called
closed abstract values

Definition 5. An abstract value W& LY is closedif a¥ (y/(W)) =W.

The intuition behind the notion of closure is given by thddaling lemma. Roughly,
an abstract valu#/ is closed iff it is the smallest (w.r..2¥) between all values having
the same concretization ®é.

Lemma 1. An abstract value We LY is closed iff for any We LY with y?(W') =
yY(W), we have that W=Y W',

Proof: “ = " Let W' € LY such thaty(W) = yY(W’). By the fact thatV is closed,
we have thattV (y/(W')) = a (y/(W)) = W. By the fact thata",y") is a Galois con-
nection, fromy” (W) C yY(W') we obtain thatV (Y’ (W')) CY W'. The latter, implies
wclw.
“ <" from the definition of the Galois connection we have thdfy’ (W)) CUW. Let
W' = aV(yY(W)). If we can prove thay’ (W) = yY(W’) then, by the hypothesis, we
obtain thaww Y W' = aV(yY(W)).

Sincea” (YW (W)) CY aV(y(W)) and(a,y) is a Galois connection, we obtain that
Y(W) C yW(W). Then, sincex (y/(W)) CY W andy is monotonic, we obtain that

Y (W) CyI(W). o
For anyW € LY, we define itsclosureas the abstract elemeat’ (Y’ (W)). The
following result holds.
Lemma 2. For any We LY, its closure is a closed abstract value
Proof: LetV = a(yY(W)). We have to prove that = a”(yY(V)), that is,
o’ (! (W) = a” (¥ (@ (y (W)))).

To this we try to prove
Y (W) =y (a” (v’ (W))).

To prove the implication from left to right, we start from

a’(y’(W)) £ a” (v’ (w)),



which by the property of the Galois connection, implies,
¥y (W) Sy (@ (v (W))).
To prove the implication from right to left, we start from
a’(y’ (W) C¥w,
which by the monotonicity of the concretization functigh implies

¥ (@ (Y’ (wW))) Sy (W).

O

The definition and the lemma above hold also for other abisdi@oains, instead of
A4y. In the following, we will give a characterization for somiass of closed abstract
values which are defined on some specific class of patterlesisahple patterns

Definition 6. A pattern Ry, wy ..., Yq, W) Withy; = y'...y”, foranyl <i < g, of the
form: '
N yietiw)ay<y?P<... <y

1<i<q

is called asimple pattern. An abstract value belonging to the abstract domain
parametrized by a set of simple patterns is callesiraple abstract value

For any simple abstract valW ¢ ay, we definey’ (W) |tswien @s the set which
contains, for anyL, D) € y” (W), the function

fiLp) : {hd(w),len(w),d [we v,d € DVar} — Z,

defined byf p)(hd(w)) = L(W)[0] and f_ p)(len(w)) = |L(w)|, for anyw € ¢ C
DWVars andf(_p)(d) = D(d), for anyd € DVar. Also, for anyP € # (%) as in Defi-
nition 6, we defing/’ (W) |p as the set which contains, for afly, D) € y’ (W), all the
functions

gLp): (yU{Wi[Yij] [1<i<qg1<j<pi}U{hd(w),len(w),d|wev.de DVar}) —Z,

wherey =y U... Uyq, such that the values assigned ytoby g p) satisfy P,
9oy (WY]) = LW)[gwp) (Y)], for anyw € {w,...,wq} andy €y, g_p)(hd(w)) =
L(w)[0] andg(_ p)(Llen(w)) = |L(w)], for anyw € v, andg_p)(d) = D(d), for any
d € DVar.

Lemma 3. If the numerical abstract domainz contains an exact projection operator
and an exact meet operator” (i.e., Y (X2Y) = y*(X) Nny~#(Y)) then, for any simple
abstract value We gy of the form

Wi=EA A Wyi,...,¥q P(y1,Wi...,Yq,Wg,W) = Up,
Per(v)

we have that W is closed iff



1. VIU(W) |fstu|en:VZ(E),
2. for any Pc » (DWVarg y/(W) |p= y*(Up),
3. the abstract values E, andUfor any Pe #» (DWVars, are closed.

Proof: “ = " First, we want to prove that’ (W) |tswien= Y*(E). SinceW is closed, by
the definition of the abstraction functiorY, we obtain that

o”(Y? (W) |tstien) = E. (H)

This implies thatZ (Y (W) |tstien) £Z E, which by the property of the Galois connec-
tion, implies

VU(W) | tstulenS VZ(E)

Then, property (H) impliesE CZ aZ(yY(W) |tswien), Which together with
a’(y*(E)) CZ E implies

GZ(VZ(E)) EZ GZ(VU(W) |fstu|en)-

The latter, by the property of the Galois connection, inglie

VZ(E) C VZ(GZ(W(W) |fstu|en))

Remember that the formuldp is defined over the variables B, therefore from the
definition ofy! and by the fact that the projection operatorin is exact, we have that

V(W) [1stien €quals
Y(E)N (] Y:(Uelye),

Per (V)

whereyp includes the position variables Piand the terms of the form(y] with y a
position variable irP. Thus,

Y(E) Sy (@*(Y'(E)n [ ¥*(Uplye))),

Per (1)
which by the fact thati? is exact implies
Y (E) C V(0 (Y (EM* Mgy (4 UpTYR)))-
Sincey” o aZ oy = y*, we obtain that
VA(E) € ¥* (EM* My () UpTye)
Using again that” is exact we conclude that

Y:(E) S (VZ(E)ﬂ N VZ(UPTyP)) =Y’ (W) [tstuten -

Per(v)

The prove of the second fact follows the same ideas.



“ <" LetW = aY(yY(W)). From the definiton oV, yV follows that

W' = aZ(y" (W) |tstien) A /\ o”(Y? (W) |p).

Pee(v)

Then, using hypothesises 1 and 2 we obtain that

W=a®(yV(E)n A o (v'(Up)).

Pee(v)

Moreover, using the third hypothesis we conclude Wat EA Apc, (1) Up, there-
forew =W.
O

Next, we describe a procedure which, for some class of aftsteduesw < LY
returns closed abstract values having the same concietizas\W. This procedure
works only for abstract values defined oganple patternsit relies on the existence of
a similar procedure for abstract valuesip.

The closure procedure LetW be a simple abstract elementliH, with

Wi=EA A Vyi,...,yq P(y1,Wi...,Yq,Wg,W) = Up.
Per(v)

This procedure builds a closed abstract value, dencitéd/), such that’ (C (W)) =

Y (W).
If E is unsatisfiable (that i”(E) is empty) therc1(W) is the bottom element V.
Otherwise, we defineéL(W) to be the abstract value

ESA A Wyi.....¥q P(Y1,Wi....Yq,Wg,W) = U§,
Per(v)

where the numeric abstract values are obtained in the folpsteps:

Step 1: We setES = E and we enforce the quantifier-free part @f(W) from the
universal formulas ofV. Thus, for anyP(y1,Wi...,Yq,Wq, W) € 2 (%), such that
ECZ Al len(w) > 1 we apply,

ES=ESM” (Up] {len(w),hd(W) |we 7'})

Step 2: We selUs = UprZES, for anyP € 2 (#). Then, we enforce universal formulas
based on other universal formulas. To see the intuitionrgktiis consider the
following example. Let’ = {w}, 2 (7) = {(y1,¥2) € t1(W) Ay1 <Y,y € t1(w)},
andW as follows:

VY1, Yo. ((Y1,¥2) € tL(W) Ay <y2) = U(y1,y2) A VY. (Y€ t1(w)) = T7,

whereU (y1,Y2) = Wly1| < Wlyz] AW[y1] > 2Awly,] <5.



Notice that the sub-formula with two universal variablepii@s that every data
symbol in the word is between 2 and 5. This property can bessged by a formula
with only one universal variable but it is not implied by thecend conjunct of
W. The procedur€ enforces this sub-formula according to this remark. Thius, i
replaces the second conjunctwfby Vy. ((y) € t1(w)) = (TZM%U(y)), where
U(y) is a formula deduced from the first conjunctif We start from the fact that
y1 andy, can be interpreted to all symbolswfstarting from the second one till the
last one. Consequently, to obtain a property of all symbalding with the second
one we define

U(y) = (((U (y2,y2)Ty2) [yr < YD) 1% (U (Y1,¥2) Tya) [y2 < Y])) -

The same approach can be extended to more general patteuss.|@tP € 2 (7))
be a pattern of the form

Py, Wi...,Yq.Wg) = /\ yi€tl(W) Ay <yP<...<yP

1<i<q

In the following, we show how we can enforblgf‘ using the information stored in
the other universal formulas. Thus, Rtc 2 (7 ) be another pattern of the form

PYLW .Yy Wy) o= A\ Vi et1tw) Ayt <y <. <y,

1<i<q

such that there exists 4 p < min(qg,q’) with w; = w/, for any 1<i < p and
the length of the words described by the patt&nis at least 2, i.eE CZ
AL len(w) > 1.
Let > be the set of tuples = (01,...,0p), whereo; : y; — y; maps elements of
to elements of;. We have two cases:

— if pi > p{ theng; is any injective total mapping,

— if pi < p{ theno; mapsp; elements of/{ into distinct elements of;.
To enforceUgS using the information stored itig’,, we do the following: for any
0= (01,...,0p) € Z, if Yo Cyj U... Uy is the set of variables not appearing in
the domain of some; then we apply

US=US" ((Up1Yo) [y — o(y)]).
Step 3: For any universal sub-formula corresponding to some pat@f the form

A vietiw) Ayt <y <<y,

1<i<q

for which ES CZ len(wi) <= 1, for some I< i < g, we defineUs = LZ. This is
possible because the right part can be any elemea pévenlZ, since the guard
has only the empty model.

Step 4: For any universal sub-formula not considered in Step 3esponding to some
patternP of the form

N\ Vietiw) Ay <yE<. <yl

1<i<q



we apply

US=US*| A 1<y <len(w)
1<i<q
1<j<npi

Step 5: For any universal sub-formula corresponding to some paRewe apply on
US‘ the canonization procedure from the numerical abstractitony,.
The following theorem states the correctness of the praesahove.

Theorem 2. Let W € LY be a simple abstract value. ThegL(W) is a closed abstract
value withy” (0 (W)) = Y7 (W).

Remark 2.The procedure above can not be extended to more generahgaff@us, if
we consider patterns of the form

A Vietlw) Ay <y?<...<yP

1<i<q

then some of the universal properties depend on the lengtieofords. For example,
letv ={w}, 2(¥) = {(y1,y2) € WAY1 < y2,y1 € W}, andW be the abstract element

hd(w) =0Alen(w) =6
AVY1. (Y1) € t1(W) = (1 <wly1] <5)
AVY1LY2. ((Y1,Y2) € t1(W) Ay1 < Y2) = Wly1] < W[yz].

Notice that the two universal formulas W and the fact that the length @f is 6

induce the following property
VY1 (Y1) € t1(W) = (Wlya] = y1) 0]
and consequently, a smaller abstract value Wagwv.r.t. CY) is
hd(w) =0Alen(w) =6
AVYL. (Y1) € £1(W) = (Wly1] =y1 A1 <wy1] <5)
AVY1,Y2. ((Y1,Y2) € t1(W) Ay1 < Y2) = Wly1] < Wy].
The procedure that we have presented uses the projectiongfq which in this

case cannot induce a relation between positions and data.
If we consider the patterns describing consecutive pasitioe. of the form

/\ Vi etl(w.)/\yi1<1yi2<1---<1yipi

1<i<q

we encounter a similar difficulty. For example, let = {w}, 2(v) = {(y1,y2) €
t1(W) Ay1 <1Y2,¥1 € W}, andW be the abstract element

hd(w) =0Alen(w) =6
AVY1. (Y1) € £1(W) = (1 < Wy1] <5)AVY1,Y2. ((Y1,Y2) € t1(W) AY1 <1Y2) = Wly2] =W[y1] + 1.



As in the previous case, the universal formulas and the fiattthe length ofvis 6
induce the following property

Yy1. (Y1) € t1(W) = (W]y1] = y1)

which is not obtaind from projections since it does not taike consideration the length
of w and the succesor relation betwegrandys,.

In the following we formally define the abstract transformefo obtain the pre-
cision results (best abstract transformers) we supposéastastep of their definition
consists in applying the procedure of that computes closed abstract values, for all
abstract elements in? that define the current abstract elemenudf

The projection operator First, we give the definition of the projection operator and
then we present correctness and precision results.
LetW be an element ity of the following form:

EA A Wyi...Vyg. P(ys.Wa,...,Yq,Wg,W) = Up.
Per(v)

For any data word variable, we want to define an abstract elemenbj*(W,w)
which contains no reference wfsuch that its concretization is an over-approximation
of the concretization dfV when considering only words not denotedveyWe start by
projecting out fromE the variabled en(w) andhd(w) corresponding to the length and
the first symbol ofn. Next, we consider only the universally quantified conjsrmter
data words variables whose lenght is strictly greather tren

q
Vy1...Vyg. P(Y1,Wi,...,Yq,Wg,W) = Up such thaE C* A len(wi) > 1.  (J)
i=1
Then with respect to the these universal formulas, we dodh@fing:

— for any universal sub-formula as in (J) containing the datedwariablew, we
project out from the right part of the implicatiodp, the position variableg and
the terms build over the variablg 1en(w) andhd(w), and then we apply the meet
operator in4z between the obtained abstract value and the quantifiepaeeof
W. Formally, we apply

E = E% (Up1(yU{wiy] |y € y} U{Len(w),ndw)})).

— for any sub-formula ofV as in (J) of the form:

Vy1...Vyq. ( A P,i;(yi,wi)/\PL(yi,...,y(l],W)> = Up, (K)

1<i<q



such thatv # w;, for all 1 <i < g, andw € w, let P’ be the pattern

A\ PR(Yi. W) APL(YE,....Yg,W)Tlen(w),

1<i<q

where P._(y%,...,yé,w)Tlen(w) is the quantifier-free Presburger formula corre-
sponding todlen(w). PL(yi,...,yg,W). If there exists®” € 2 (v \ {w}) with the
same number of data words variableasnd the same number of position vari-
ables on each data word such tR4t=- P’ (= is the usual implication between
quantifier-free Presburger formulas) then we modify theverrsial formula corre-
sponding toP” by

Up// = Up// |_|Z (UpT{len(W),hd(W)}) .
— for any sub-formula oV of the form:
W1...Vyq. < A P&(yi,wom(y%,-..,ya,w)> = Up, L
1<i<q

such thatv = wj, for some 1< j < g, letP’ be the pattern
A PRI, W) APLYE -, g, W) T{len(w),yj }.
1<i<q,i#]

If there existsP” € »(DWVars\ {w}) with the same number of data words vari-
ables a$’ and the same number of position variables on each data wokdtisat
P’ = P’ then we modify the universal formula correspondingtdby

Ups = Ups 117 (Up1 (y; U {wiy] | Y € yj} U {Len(w), ha(w)})).

The correctness and the precision of the projection opesaproved in the fol-
lowing results.

Theorem 3. Let Ay be as above such that the numerical abstract donmjrcontains
a sound projection operator and an exact meet operator. Ry in 4y, the following
holds

a” ({(proj (L), D) | (L,D) € Y (W)} ) £ proj*(W,w).
Theorem 4. Let 4y be as above such that the numerical abstract dormirtontains

a sound projection operator and an exact meet operator.dfgtojection operator in
A4y is exact then

o’ ({(proj (L.w).D) | (L.D) € Y’ (W)} ) = pro*(W,w)

for any closed abstract valud .



The abstract transformer sglt* LetW be an element ih? of the form

EA A Wyi...Vyg. P(ys.Wa,...,Yq,Wg,W) = Up.
Pee(v)

The output ofsg1t#(W, x) is

E'A A Wy1... Vg P(yz,wa,...,Yq,Wg,W) = Up,
Pe (v UXx)
whereE’ is obtained fronE by adding two dimensions fdren(x) andhd(x) and by
applyingE’ = Er” len(x) = 1, and for ever € 2 (v Ux)\ 2 (¢ ),Up = LY.
Theorem 5. Let 4y be as above such that the numerical abstract donmircontains
an exact meet operator. For aNy in 4y, the following holds

a’ ({(sglt (L,x),D) | (L,D) ey’ (W)}) CU sglt*(W,x).

Theorem 6. Let 4y be as above such that the numerical abstract dormajrcontains
an exact meet operator. If the abstract transformenrjncorresponding to assignments
x =1, where x is an integer variable, is exact then,

o’ ({(sg1t(LX),D) | (L,D) € Y’ (W)} ) = sg1t*(W,X),
for any closed abstract valud .

The abstract transformer isSglt* LetW be an element imy. Then,isSglt*(W, x)
returns 1 if
EC?IX =1,

it returns 0 ifE CZ 1[x] > 1, and -1, otherwise.

The abstract transformer updateFirst* LetW be an elementimy of the following
form
EA A Wyi...Vyg P(ys,wa,...,Yq,Wg,W) = Up,
Per(v)

x € v UDVar, dt a data expression, afid PVar— DWVars

Let dtp be the expressiodt in which p — datais replaced byhd(B(p)). The ab-
stract ValumpdateFirst#(W,X, dt,B) is obtained fromW by replacing the quantifier-
free part with

update”(E,hd(x) = dtB), if x€ v, or
update®(E,x = dtp), if x € DVar

and for each patterp € 2 (%), the corresponding abstract element framis

update”(Up,hd(x) = dt)if x € ¢/, or
update”(Up,x = dtf), if x € DVar.
whereupdate” is the abstract transformer iy, corresponding to assignments.

The next results prove the correctness of the abstractftnraner updateFirst?
and identify conditions under which it is a best abstrastsfarmer.



Theorem 7. LetW be an element iy such that the numerical abstract domairf
contains a sound assignment operator, then the followirdsho

av ({(updateFirst(L,X,dt, B),D)|(L,D) e W(VV)}) CY updateFirst*(W,x,dt,B).

Theorem 8. LetW be an element imy; such that the numerical abstract domair¥
contains a sound assignment operator. If the assignmertaadbsransformer inaz is
exact for data expressions of the form dt then

av ({(updateFirst(L,x,dt, B),D)| (L,D) e VU(W)}) =Y updateFirst?(W,x,dt,B),
for any closed abstract valud .

The abstract transformer sp1it* The procedureplit#(w,x, z) with W € ay splits
the data word represented kyinto a word representing its first symbol and a word
representing its tail. In the output, the first word is repraged byx and the second one
by z(zis not a variable iW). First, the abstract values fram;, are updated such that the
length ofx becomes 1 and the lengthois 1en(x) — 1. Then, the universally quantified
formulas inW that characterize the tail afshould be removed. Before doing this, we
use them to generate (1) relations between the first symbobafl the first symbol
of other words which are used to straighten the quantife-frart, and (2) universal
formulas that characterize the tail ofWe begin by an example and then we give the
formal definition.

{head,tmp}

{lessC])
{head} {tmp,grt,less #
# {grtC} /
len(n) > 1Ahd(n) <7 @
AVY.y € t1(n) = ny] < 7 len(n) =1Alen(nl) =1Alen(n2) =1
A3<hd(n) < 7A3<hd(nl) <7A3<hd(n2) <7
(a) AVY.y€t1(n3) = n3[y] <7
(©)
{head,tmp} {lessC)
{head} {tmp} {grt,less. #
O < * {g1tC} /
len(n)=1 @
Alen(nl) >0Ahd(nl) <7 len(n2) = 3A3 <hd(n2) < 7A
AVy.y€tl(nl) =nlly] <7 AVY.y€t1(n3) = n3y] <7
(b) AVY.y€t1(n2) =3<n2ly] <7
(d)

Fig. 8. Abstract heaps for the procedudespat ch3



Example 3.Suppose that we analyze the procediirgpat ch3 from Section 1 using
the abstract domain of 1-abstract heap sets (we allow a@b$ieaps with at most one
simple node) parametrized by tf&V-domainay over the set of patterns = {y €

w}, the Polyhedra domain, akd= 1. Also, suppose that the initial state is described
by the k-abstract heap in Figure 8(a). Then, during the first iteratf the loop, the
output oftmp = head — next is pictured in Figure 8(b). The abstract value fram

is obtained by applyingplit#(W, n,nl), whereW is the formula in Figure 8(a). The
constraintd(nl) < 7 and the universal formula froep1it#(W, n,n1) are implied by
the universal formula V.

LetW be an element imy of the following form

EA A Wyi...Vyg. P(ys,Wa,...,Yq,Wg,W) = Up.
Pee(v)

Updating the quantifier-free parEor everyP € 2 (%) of the form

P(ys,Wi...,Yq,Wq,W) =\ PR(Yi, W) APL(YL, ... Vg, W) (M)

1<i<q

such thaiv; = x, forsome 1< j <q, if

PO Vg W) AEAY =1

is a satisfiable Presburger formula, we defjg:

Elp = (UpT(y1U...U (Y \{yjl}) U...Uyq)) [wj [yjl] —hd(2)].

Let E” be the greatest lower bound iy, between the valug in W to which we
have added a new dimension fad(z) and all the valueg/,, associated to patterns
P € #(DWVarg speaking about the data waxd

The quantifier-free part of the abstract value outputte(i;pyit#(w,x, 2) is ob-
tained by adding t&” one more dimension fdren(z) and by applying the following:

E” =E"[len(X) «+ len(z) + 1]
E” = update*(E” 1en(x) := 1),

whereupdate” is the abstract transformer iy, corresponding to assignments.

Updating universal formulasiVith respect to universal formulas, we preserve the ones
that do not characterize the tail of the data word denoted bythat do not use the
term len(X) for the length ofx. An universal formula characterizing the data of the
wordswy,...,Wq with wj = x, for some 1< j < g, may imply an universal formula
characterizing the data ®fy,...,wj_1,wj+1,...,Wq Or a formula characterizing the data
of Wy,...,\Wj_1,ZWj41,...,Wg.

By this transformer, we add the data word variablend consequently, the out-
putted abstract value will contain new universal formulasresponding to patterns
P(y1,W1...,Yq,Wg,W) € DWVarswith z=wj, for some 1< j < g, orz€ w. This set of



patterns is denoted’. These universal formulas are deduced from universal ftasnu
speaking about the data woxas follows. To start, we add ¥ universal formulas

Vy1...Yyq. P(y1,Wa,...,Yq, Wq,W) = Up,

with Up = TZ, for anyP € 2/, andUp' = Up, otherwise. Then, we consider all patterns

speaking about and eventually, we modify all the universal formulas definbdve.
Therefore, for every € 2 (7) like in (M) such thatw; = x, for some 1< j < g, we

do the following:

— if PL(YL, .., Y5W) AEAY] = 1is a satisfiable Presburger formula then, using the
universal formula corresponding By we may find relations between the first sym-
bol of the wordz, hd(z) and the tail of other words (including the word denoted by
2). LetP’ be the pattern

Pi= A PROYLW)APKY AV DA (LYY W) 1Y) [Len(x) — Len(z) +1]),
1<i<q,i#]

WhereP,%(yj \ {yjl},z) is obtained fronP,%(yj ,Z) by forgetting the position variable
yj1 (if ly;| = 1 then we delet®)). If there existsP” € » (v U {z}) with the same
number of data words variables@sand the same number of position variables on
each data word such thBf = P’ (= is the usual implication between quantifier-
free Presburger formulas) then we modify the abstract vdjiecorresponding to
P” by
xlyj] < hd(2),
S — Vh 4 1
U/// - U/// |_|Z U yiJ( ylj(
PR " <2y
yj—1

—if PL(Y4,... ,yé,w) A E/\yj1 > 1 is a satisfiable Presburger formula then, using the
universal formula corresponding B we may find relations between the tail of the
word z and the tail of other words. Thus, It be the pattern

Pri= A PriYi,W)APRY;.2) A (PL(YL,---,Yg,W) [Len(X) < len(2) + 1]).
1<i<q,i#]

If there existsP” € 2 (% U{z}) with the same number of data words variables as
P’ and the same number of position variables on each data wohdtksatP” = P’
then we modify the output universal formula corresponding’t by

Ubs = U 1 (Up [y o ¥+ 1) — 2041 )

Finally, if the termlen(x) appears in universal formula then this term should be substi
tuted withlen(z) + 1.

The next results prove the correctness of the abstractieranersplit?* and iden-
tify conditions under which it is a best abstract transfarme



Theorem 9. Let 4y be an abstract domain as above parametrized by a set of patter
2 and by a numerical abstract doma#y, which contains a sound projection operator
and an exact meet operator. For awy in 4y, the following holds

a’ ({(split (L,x,2),D) | (L,D) € y* (W)}) CU split#(W,x, 2).

Theorem 10. Let 4y be an abstract domain as above parametrized by a set of patter
¢ and by a nhumerical abstract domairy, which contains a sound projection operator
and an exact meet operator. If (#) contains only simple patterns (2) the projection
operator,C%, and the abstract transformer in; corresponding to assignments=x
z— 1, where xz are integer variables, are exact then,

o’ ({(sp1it(L,x2),D) | (L,D) € Y'(W)}) = spLit*(W,x.2),
for anyW a closed abstract value.

The abstract transformer concat®: LetVi,...V; be vectors of data word variables.
Then,concat#(W, Vi, ..., \4) transformsV such that the first variable i will rep-
resent a word which is the concatenation of the words denmtetie variables inv,
for every 1<i <t. There are three main steps in the definition of this opematib)
using the constraints from the quantifier-free part, we tifiethe maximal sub-vectors
of Vi containing only variables which represent singletons @saf length 1), (2) we
replace the constraints from the quantifier-free part atar&zing these singletons with
universally quantified formulas that describe abstrastmiithe concatenations of these
sequences, and (3) we apply transformations on the cuwemufa which correspond
to concatenations of words of length strictly greater thamlthe third step, we re-
place constraints in the form of universally quantified fatas with new universally
quantified formulas that describe abstractions of conedi@ms. In order to be precise
during the third step, we have to consider closed sets ofpestt\We start be a couple
of examples and then, we give the formal definition of thigralts transformer.

Example 4 (Concatenating sequences of singletd®gjppose that we continue the
analysis from Example 3. After several iterations of theplowe obtain the ab-
stract heap in Figure 8(d) which is obtained by applyiigmalizec” on the ab-
stract heap in Figure 8(c). The formula in Figure 8(d) is oimd by applying
concat?(W’, (n2,n1,n)), whereW’ is the formula in Figure 8(c). Since the length of
the words denoted by2, n1, andn is 1, we have to apply the second stegimcat?”.
We search for a formulgy. y € t1(n2) = U which holds whem?2 is interpreted to
the concatenation of the singletons representedyyl, andn. Since the length of
the concatenation is 3, there are only two values/fsuch thaty € t1(n2), y =1 and

y = 2. To these values we associate two abstract vdluendU, obtained from the
quantifier-free part ofV’ (1) by substitutinghd(nl1) andhd(n2), respectively, byi2]y],
(2) by updatindLen(n2) to 3, and (3) by projecting out terms containing data word var
ables in{n1,n2} (using a projection operator defined4n. In this case, we obtain two
identical formuladJy, andUy, of the form 3< n2y] <7A3 < n2[0] <7Al[n2] =3,
and we defind) = Uy, LZU,,.



Example 5 (Concatenating words of length greater thanSi)ppose that we ana-
lyze the procedur€&i bonacci from Section 1 using the abstract domain of 3-abstract
heap sets parametrized byy over 2 = Closure(P,3), whereP := (y1,y2,y3) €
t1(N) Ay1 <1Y2 <1Ys, the Polyhedra numerical domain, ane: 3. The analysis starts
from an initial state in whicthead points to a non-empty list. After executing some
iterations of the loop, we obtain an abstract heap havingdés a rown;, 1 <i <6,
and # such tham; andng are pointed by the program variable=ad andx, resp. We
apply Normalizec” which callsconcat®(W, (ng,nz,nz,ng,ns)), whereW is the for-
mula in LY associated to this abstract heap. The fornwilé a conjunction between
the quantifier-free part

E .= 1en(n1) = 5/\hd(n1) = 1/\hd(n2) = 8/\hd(n3) =13A hd(n4) =21

Ahd(ns) =34Aml=13Am2=21

and some universally-quantified formulas, including

VY1,Y2,Y3. ((Y1,¥2,Y3) € t1(N1) Ayr <1Y2 <1Y3) = (Mm[ys] = ni[y1] + nify2)).

We identify the sub-vector of variablésy, n3,ns,ns) representing singletons and
we apply the second step ioncat”. Consequently, the data words variabfgsng,
andns are removed and new universally quantified formulas are&ddeesponding
to the patterns ire and the data word variabl®. Now, the word represented lny
satisfies the same constraints a¥Mrand the word represented hy is an abstraction
of the concatenation of the singletons denotedhiyns, n4, andns. One of formulas
generated during the final stepafncat” has the fornvyz, y»,ys. P= U. The valudJ
is the join of several numerical abstract values represgmioperties of three consec-
utive positions on the concatenation of the words denotem landn,. These abstract
values are obtained using the quantifier-free part and thtraadh values from the for-
mulas associated to the pattern§imsure(P,ninz) from Example 2. For example, the
abstract value representing the property of the last syimbml and the first two sym-
bols inny is the meet between the abstract value associatedne), the quantifier-free
partin whichhd(n;) is substituted by[y,], and the right part associatedRg(ny).

LetW be an abstract element of the form

EA A Wyi...Wyg. P(y1.-...Yq) = Up.
Pee(v)

The three steps of the procedW@cat#(W,Vl, ...,\t) are defined as follows:

Step 1: we begin by identifying maximal sub-vectors=v; ...v;, r > 1, of variables
fromV4, for any 1<i <t, such that each component of these sub-vectors represents
a data word of length one, i.E.CZ | [vj] = 1, forall 1< j <r. We denote bpgVars
the subset oDWVarsthat contains, for every such sub-vector, all the elements
without the first one.

Step 2: For each sub-vectar=v; ...Vv; identified in the previous step, we applyEo
and allUp, P € 2 (%), the abstract transformer corresponding to the assignment
I[w] = r (since each word represented by somés of length 1, then the word
representing the concatenation has the length



We continue by searching for universally quantified prapsrivhich hold over
these sub-vectors. We begin by considering universal ptiegehat describe only
these sub-vectors and then, we will consider propertigsétete these sub-vectors
to other words iw.
For everyg-tuple (vy,...,Vq) of sub-vectors as above, where= (\2, ... ,vfi), for
any 1<i < g, and for every patterR(y1,\}, ...,yq,V3, W) € 2 with |y;| < |vi| -1,
forany 1<i < g, we want to discover a universal property of the form
Vy1...¥yg. P(yL, Vg, ... yq, V9, W) = Up,
which is true when for any K i < q, vlO will be interpreted to the word
hd(\W0).. .hd(v}i ). Eachv? will represent the concatenation of the wordsin
To this, letMp be the set of all possible mappingsy1U...Uyq — N between
position variables if? and positions in the tail of the words representedﬁby .,vg
defined above. Thus, the variablesj/jrare mapped by ang € INp to values from
the interval[1,t;], for all 1 <i < g, such thaE implies

P(y1.\),....Yq, VW) [y — T(Y) | Y € y1U...Uyq].

For eachmt e Mp we denote byE;; the abstract element obtained frdinin two
steps:
— we introduce terms denoting symbols in the new words repteddyn?, .. .,vg
at positions represented by the position variablésagcording to the mapping
T Thus, ifr(y)) = s, for some 1< i < g and 1< j < |yil, then we substitute
the term denoting the only symbol ¥, hd(V), by the termZy!];
— we project out all terms containing variables3gVars
Formally,Ey is

(E[pa0i™) w1151 <a 1< <] ) 12entvhnat | ve sqvars.

Then, we define the abstract eleméiite a2, mentioned above by

UP= | |“En

nellp

Now, we continue by searching for universal properties thkdte words obtained
by concatenation as above to other words describe?byV.l.0.g. we suppose
thatP € »(v) is a pattern that speaks about a set of worgs. .,wq not in the
sub-vectors above and a set of workds...,\? obtained by concatenation, of the
following form:

/\ Pli?(yiawi)/\ /\ Qk(Xi,ViO)/\PL(y%,...,yé,X%,...,Xrl,W),

1<i<q 1<i<r

wherew C DWVars\ SgVars



If P is a conjunction between a formulg'(yf,...,y5,w) and a formula
P2(x},...,xt,w) and if () contains a pattern

P/(y1, Wi, ..., Yq,Wq,W) =\ PR(Yi, W) ARL(YE, ..., Y5, W),

1<i<q

then letMNp- be the set of mappings: x,U...Ux; — N* defined as above for the
pattern

P (X0, V0, o X P wW) = A\ QR(xi, V) AR (4, -, w).

1<i<r
We define the abstract elemésy corresponding t® by:

UP= | | “EUp,

men P/

whereEUry is similar toE;; except the fact that all the substitutions and projections
are applied t& M* Up instead ofE.

After deducing all the new universally quantified propertiee modifyE by pro-
jecting out all variables ilrsgVars

Step 3: Suppose that, for any< i <t,V/ is the vector of data word variables obtained
fromV; by replacing each sub-vecter= v; ...V, considered in the first step with
the data word variable;.

For any 1<i <t, we apply toE andUp, P € 2 (%), the abstract transformer corre-
sponding to the assignmelfi| = 3, 1en(w) (the length of the word represent-
ing the concatenation of the words represented by variabMSis the sum of the
lengths of all these words).

W.l.o.g. suppose th&t is a pattern ine (DWVarg that speaks about a set of words
Wi,...,Wg in DWVars\ {V?,...,\°} and a set of word¥?,.. .,V representing the
concatenations of;,...,V/, of the following form:

1<i<q 1<i<r

wherew C (DWVars\ (Vi U...UW))U{VY,... ) P}.
We search for an abstract eleméltsuch that the universal property

VY1 VYq, ¥X1. .. VXp. P(Y1, W1, ..., Yq, W, X1, VP, .., Xg, Ve, W) = Up,

is true when forany Xi <r, \/iO is interpreted to the word representing the con-
catenation o¥//.

To this, we use the patterns frafosure(P,w,...,wq,V;,...,V/). Thus, let”’ be

a pattern irclosure(Pwi,...,wq,Vy,...,V/) of the form:

1<i<q 1<i<r



whereT € Tuples(Qk,V/). As we have seen in the definition Diples(Qk, V),
some variables irx; may be omitted fromT,iq. It is supposed that they will be
mapped to first symbols of words W. Thus, we identify a set of partial map-
pingslp between terms of the formd(v) with ve V] U... UV, and variables in
X1U...UX; depending on each; as follows.

Suppose tha¥ = vi...vm andx; = xt...x). By definition, Th = Wi A ... A Wy,
where

Y !
Y1 = ()(1: o 7xiql)qe t1(Vs ) AX? “;‘to%t" ~o-1 Xiql q
W2 = 06" %7) € TL (V) AXTTE ~vagty <o Va1 X

O atty g j Oy~ 1ty -1 . j
LIJFI"(_(X1 ,,XI)Etl(Vsm,)/\X' Nqn171+tn{71"'NJ71)(i7

such that:
—l1<m<mand1<s < <... <Sy <m,
—1<to<qp<P<... <Ow-1< ],
—to<s+landt <si1—s+1,forany 1<r <m,
— O+t < qry1, forany 1<r <m' — 1, andguy_1 +tyw_1 < j,
— if M > 1 andt; ;1 = 1 then~q #<4, forany 1<r <m' —1.
Foreach KX r <m —1, we add td p all the possible mappings between the terms
hd(Vg +1),- - -hd(Vs ,,) and the term& 0¥ 1], VO 1),
Then, we define the abstract elembptby

Up = L (U M= E)V (VI VD UL U (W)

where(Up 1% E) y is obtained from the abstract eleméh 1 E by applying the
substitutiony.

After deducing all the new universally quantified propeytiee modifyE by pro-
jecting out all variables irf (V; \ {V2}) U...U (W \ {V°})).

Concerning this abstract transformer we can prove theuiatig results.

Theorem 11. Letay be an abstract domain as above parametrized by a set of patter
2 and by a numerical abstract doma#y, which contains a sound projection operator
and an exact meet operator. For any abstract valien 4y, we have that

al ({(concat(L,Vl, ..-M),D)| (L,D) € VU(W)}) CY concat*(W,Vs,..., ).

Theorem 12. Letay be an abstract domain as above parametrized by a set of patter
2? and by a numerical abstract doma#y, which contains a sound projection operator
and an exact meet operator. If (3 is closed and it contains only simple patterns
(2) the projection operatoiZ%, and the abstract transformer inz corresponding to
assignments x z1 + ...+ z, where xz, ..., % are integer variables, are exact then,

av ({concat((L,D),Vl,...,Vt) |(L,D) e yU(vT/)}) = concat(W, V4, ..., \t),

for anyW a closed abstract value



The precision results hold only if they are applied on cloabdtract values. For-
tunately, when considering simple patterns, all the aledtteansformers preserve the
closure property, that is, they output closed values wherieg on closed values.

5 Experimental results

We have implemented the general method presented in thisr,pig., the abstract
reachability analysis using thaps(4w) abstract domain. Our implementation is
generic in three dimensions. First, thes(4aw) abstract domain is interfaced with the
APRON platform [15], so we are able to use the fix-point computatingines provided
by this platform; currently, we are usingTERPROC Second, the implementations of
the DW-domains can be plugged in the;s(4w) domain. We have implemented the
DW-domainas as well as thezy domain for a significant class of patterns allowing
to handle a large class of programs. Currently, we are wgrkimthe implementation
of the 4, domain. Third, the implementd@iWw-domains are generic on the numerical
domainay used to represent data and length constraints. For this,seegain the
APRON interface to access domains like octagons or polyhedra.

We have carried out experiments on a wide spectrum of progiactuding pro-
grams performing list traversal to search or to update gatagrams with destructive
updates and changes in the shape (e.g., list dispatch osa¢\vsorting algorithms such
as insertion sort), and programs computing complex arittvaaelations. We present
hereafter someof the specifications that can be synthesized using our appro

Ordering and data preservation constraintsor sorting algorithms or the algorithms
testing data ordering, our tool was able to synthesize caing with respect to order
preservationvyy, y». head ——y; ——y, = dat a(y1) < dat a(y2) andvy. head -~y =

dat a(head) < dat a(y). Although, the multiseDW-domainay, is not yetimplemented
we were able to manually check the preservation of the datienist. On the other
hand, the tool has synthesized usimgs(45) a weaker property namely the preserva-
tion of the sum of the elements of the list and the presematidhe length of the list.
Another example for which the analysis synthesizes thetcains of sum and length
preservation is the program doing a copy with reversal ofthkad into a listrev:

- -+, = -,
zheadi}ydata(y) = Erevi)ydat a(y)Alen(head ——null)=1len(rev—nul | ).

Relating data and lengths of list€onsider the program spat ch3 in Figure 1(b). Us-

ing the domaimys(45), respectivelyays(4y), the tool synthesized the post-condition
(C), respectively (A), given in the introduction. Moreoyete are able to obtain con-
straints relating data and lengths inside the universaktraimts, e.g., in the pro-
gram initializing the data in a lishead with the first even numbers. When analyz-
ing this program withays(4y), the generated post-condition contains the constraint
dat a(head) = OAVy. head />y = dat a(y) = 2 x | en(head ——y) meaning that the
data stored in thigh cell of the list is equal toi2

Relations over different listsOur tool is able to generate constraints relating data
in different lists. Consider the program which copies in tiet new each da-

3 A detailed presentation is availablehat p: / / ww. | i af a. j usi eu. fr/cinv/.



tum of the list head incremented by 2 (the two lists have equal length). Us-
ing the domainags(4y), the tool generates the post-conditiaiat a(head) +
2 = dat a(new) Al en(head == nul | ) = | en(new—=nul | ) A Vy1,y>. (head == y; A
new——y, Al en(head —>y;) =1 en(new—-y,)) = dat a(y;) + 2 = dat a(y»). Using
more complex patterns, not yet implemented in our domainsyvghesize manually
the post-condition of the program copying in sequence tata landB into a third list
C,i.e.,Vy1,Y2. (B-=y1 AC—ya Ay, =l en(A—=nul | ) +y;1) = dat a(y;) = dat a(ys).

The analysis withays(45) of the program that creates a copy of a list, generates
the post-condition X 1len(head ——nul | )+ 2 oad data(y) =3 « ydat a(y).

—y new—
Complex arithmetical relationdVe have applied our tool on tHé bonacci example
using 4ys(4y) over different sets of patterns. The constraint (D) giverthi intro-
duction is generated using the pattern with three universatcessively ordered (and
the patterns in its closure). Using a pattern with two urdes, we obtain that the list
head is sorted, and using a pattern with one universal, we obkitify. head ——y =
(data(y)+1>len(head —t.y)). Furthermore, the constraint (E) (in the introduction)
is generated usingps(4s).

Performances:Each of the examples has been carried out in less than 1 sesorgl
between 4KB to 63MB. The most expensive example is the ilosesort (with destruc-
tive updates) which takes 0.99s and 62.2MB. Traversal glgos such as search and
local update algorithms, require only few hundredths of @gd, e.g., 0.02s for the
maximum calculation. Properties of programs suchid®nacci are generated in few
tenths of seconds, e.g., 0.42s for (E).

6 Conclusion and related work

We have defined powerful invariant synthesis techniquea &ignificant class of pro-
grams manipulating dynamic lists with unbounded data. feutvork includes (1) ex-
tending the framework to handle a wider class of data straste.g. doubly-linked lists,
composed data structures, (2) developing heuristic teciesi for automatic synthesis

of the patterns used iay, and (3) defining other abstract domains for data sequences,
in particular, domains based on different classes of usalrquantified formulas.

Related Workinvariant synthesis for programs with dynamic data stnestunas been
addressed using different approaches including conssaliving [2, 13], abstract inter-
pretation [14,9-12, 18, 19], Craig interpolants [16], antbanata-theoretic techniques
[3,4]. The contributions of our paper are (1) a generic fraori for combining an
abstraction for the heap with various abstraction for datguences, (2) new abstract
domains on data sequences to reason about aspects beyaedctheof the existing
methods such as the sum or the multiset of all elements in aeseeg, as well as a
new domain for generating an expressive class of first ondigetsal formulas, and (3)
precision results of the abstract transformers for a sianiti class of programs. Sev-
eral works [14, 9, 18] consider invariant synthesis for pamgs with uni-dimensional
arrays of integers. These programs can be straightforwanmitoded in our frame-
work. In [12], a synthesis technique for universally qufiedi formulas is presented.
Our technique differs from this one by the type of user gugdimformation. Indeed,
the quantified formulas considered in [12] are of the fafynF; = F,, whereF, must



be given by the user. In contrast, our approach fixes the flagrin left hand side of
the implication and synthesizes the right hand side. Theeethe two approaches are
in principle incomparable. The techniques in [14, 9] areliapple to programs with
arrays. The class of invariants they can generate is indludthe one handled by our

approach usingigs(4y). These techniques are based on an automatically generated

finite partitioning of the array indices. We consider a largjass of programs for which
these techniques can not be applied. The analysis intrddng¢#&8] for programs with
arrays can synthesize invariants on multisets of the el&svierarray fragments. This
technique differs from ours based on the domain (2y) by the fact that it can not be
applied directly to programs with dynamic lists. Finallyetanalysis in [11] combines
a numerical abstract domain with a shape analysis. It isesiticted by the class of
data structures but it considers only properties relatéidgd@hape and to the size of the
memory, assuming that data have been abstracted away. Puraap is less general
concerning shape properties but it is more expressive comgeproperties on data.
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