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Based on a three-level rate equations model, we analyze through numerical simulations the
population and photon number dynamics present within the cavity of a midinfrared quantum
cascade laser. We find in particular that the injection current influences significantly the electron
number dynamics trajectory. In addition, the equations that allow for the determination of the
turn-on delay �tth� and buildup ��t� times are derived within the premises of our model in the most
general case. The effects of the spontaneous emission factor � on �t are also explored.
© 2009 American Institute of Physics. �DOI: 10.1063/1.3124379�

I. INTRODUCTION

Quantum cascade �QC� lasers1 are unipolar devices
where the lasing process is assured by transitions between
quantized energy levels within the conduction band. As op-
posed to conventional ones, QC lasers present a fundamental
advantage residing in their characteristic property consisting
in the control of the wavelength of the emitted light via the
layer thickness rather than the band gap. This allows for the
emission wavelength of such a laser to be changed at will
without resorting to a different semiconductor. Up until now,
various operating schemes for the QC laser have been put
forward by different authors. Among the notable designs, the
following can be mentioned: the three quantum wells active
region scheme,2,3 the superlattice active region design,4,5 the
two phonons active region one,6 and the bound to continuum
design.7,8 Macroscopic theoretical modeling of the dynamics
of a QC laser is complete once one knows the equations that
govern the photon number in the cavity and the electron
distribution among the different states involved.9 On the
other hand, one can also adopt a microscopic approach in
modeling the carrier dynamics in these systems,10–13 in such
a case the need for phenomenological parameters is by-
passed.

In a QC laser the delay time plays an important role that
partly determines the device performance, in particular, it
causes spontaneous emission induced intensity noise in the
optical output power.14 Equally as important for the QC laser
operation is the turn-on delay time, that is the time needed
for the laser to reach threshold. This time depends on the QC
laser phonon scattering times and the injection current.

Our theoretical treatment laid below focuses only on the
electrically injected three-level QC laser design proposed by
Page et al.2 where lasing takes place through transitions from
the upper state �level 3� to the lower state �level 2�, and the
latter being subsequently depopulated by polar optical pho-
non emission into the ground state �level 1�. Intersubband

phonon scattering also occurs between levels 3 and 2, and 3
and 1, and is the main competing nonradiative process in
midinfrared QC lasers. For details of the structure, we kindly
refer the reader to the published literature.2,15

Our paper is organized as follows. Section I is a general
introduction to the subject. Section II describes the model
used to derive our results. Section III summarizes the salient
features of our numerical results on the time evolution of the
electron distribution among levels, the population inversion,
as well as the photon number within the cavity. In addition,
this section contains an analytical derivation of the turn-on
delay and buildup times. Finally, Sec. IV concludes our pa-
per and wraps up our main findings.

II. RATE EQUATIONS OF A MIDINFRARED QC LASER

Our investigation will focus on a three-level QC laser
such as encountered in the literature2,3 where the upper and
lower states will be taken as levels 3 and 2, respectively,
while the ground state used to empty the lower state through
LO phonon emission will be called level 1. We will denote
by N1, N2, and N3 the respective instantaneous numbers of
electrons in each of the three levels just alluded to and by Nph

the photon number of the cavity’s one and only mode, the
following rate equations then hold:

dN3

dt
= WL

J

e
−

N3

�3
− �

c��32

V
�N3 − N2�Nph, �1a�

dN2

dt
= � 1

�32
+

1

�sp
�N3 −

N2

�21
+ �

c��32

V
�N3 − N2�Nph, �1b�

dN1

dt
=

N3

�31
+

N2

�21
−

N1

�out
, �1c�

dNph

dt
= N�

c��32

V
�N3 − N2�Nph + N�

N3

�sp
−

Nph

�p
. �1d�

In the above system of equations, J denotes the electron cur-
rent density that tunnels into the upper level and e is the
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electronic charge, while W and L are the lateral widths of the
cavity. Denoting by N and Lp the number of stages and
length of each one of these, the whole volume V of the active
area is then given by NWLLp. In addition, in the above equa-
tions we introduced the mode confinement factor16 � and the
average velocity of light in the system c� given by c�
=c /neff, where neff and c are the effective refractive index of
the cavity and the speed of light in vacuum, respectively. The
important parameter17 � in Eq. �1d� defines the proportion of
spontaneous emission events that emit a photon into the cav-
ity mode whereas �32 stands for the stimulated emission
cross section between the upper and lower levels. The system
dynamics is mainly determined by the three nonradiative
scattering times denoted by �32, �31, and �21 that are due to
LO-phonon emission between the corresponding levels as
well as the radiative spontaneous relaxation time �sp between
levels 3 and 2. Furthermore, between two adjacent stages we
model the escape of electrons by a rate 1 /�out, where �out

stands for the electron escape time. To complete the picture,
we take into consideration the finite lifetime of the photon
denoted by �p and given by �p

−1=c���w+�m�, where �w is the
waveguide loss of the cavity while �m is the mirrors loss
expressed as �m=−ln�R1R2� / �2L�, where R1 and R2 are the
reflecting powers of facets 1 and 2, respectively.16 For the
sake of convenience, let us also introduce the lifetime �3 of
the upper level which we write as

1

�3
=

1

�32
+

1

�31
+

1

�sp
. �2�

The radiative spontaneous emission relaxation time can be
cast as follows:18

1

�sp
=

8�2e2neffz32
2

�0	
3 , �3�

where ez32 is the dipole matrix element between states 3 and
2, �0 is the permittivity of vacuum, 
 is the emission wave-
length, and 	 is the reduced Planck constant. The stimulated
emission cross section �32 is given by19

�32 =
4�e2z32

2

�0neff
�2�32�
, �4�

where 2�32 stands for the full width at half maximum of the
electroluminescence spectrum.

In the steady state all the time derivatives in the rate
equations given above vanish, an analytical solution of the
system becomes then feasible and the following expressions
for N3 and N2 ensue:

N3 =

WL
J

e
��21�

c��32

V
Nph + 1�

1

�3
+ �1 +

�21

�31
��

c��32

V
Nph

, �5�
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WL
J

e
� �21

�32
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�21

�sp
+ �21�

c��32

V
Nph�

1

�3
+ �1 +

�21

�31
��

c��32

V
Nph

. �6�

The population inversion �N between the upper and lower
levels as a function of the photon number Nph can be then
written as

�N =

WL
J

e
�3�1 −

�21

�32
−

�21

�sp
�

1 +
Nph

Nph,sat

, �7�

here we introduced the photon saturation number Nph,sat

given by

Nph,sat =
1

�3�1 +
�21

�31
��

c��32

V

. �8�

Making use of Eqs. �5�, �7�, and �8� in Eq. �1d�, the follow-
ing quadratic equation is then obtained for Nph:

Nph
2 − �� J

Jth
− 1� +

1

�1 +
�21

�31
�

�21

�r

�

�sp

J

Jth�Nph,satNph

−
�3

�r

�

�sp

J

Jth
Nph,sat

2 = 0, �9�

where Jth denotes the threshold current density, which we
define by equating the modal gain and the total losses that
include those due to the mirrors and waveguide while the
parameter �r is the radiative efficiency given by

�r =

1 −
�21

�32
−

�21

�sp

1 +
�21

�31

. �10�

At threshold, we have

N�
c��32

V
�Nth =

1

�p
, �11�

where �Nth is obtained from Eq. �7� by setting Nph to zero
and making Jth replace J. After easy algebra, we get for Jth

the following expression:

Jth =
1

�3�1 −
�21

�32
−

�21

�sp
�

Lp�0neff
�2�32�
4�ez32

2

��w + �m�
�

. �12�

In Eq. �9�, the last term can safely be dropped out and the
photon number can then be obtained as

�i� below threshold �JJth�,

Nph,1 	
�3

�r

�

�sp

1

� Jth

J
− 1�Nph,sat, �13�
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�ii� above threshold �J�Jth�,

Nph,2 	 �� J

Jth
− 1� +

1

�1 +
�21

�31
�

�

�sp

�21

�r

J

Jth�Nph,sat. �14�

The solution exhibited in case �i� is the trivial one and cor-
responds to a state where no laser oscillation takes place
since Nph	0. Clearly the most interesting situation is that of
case �ii� which shows that the photon number scales linearly
with the current density J. Setting Nph=0 and substituting Jth

in Eq. �7� by its expression displayed in Eq. �12� we obtain
the population inversion at threshold �Nth as

�Nth =
V

N�c��32�p
. �15�

Next using the theory developed above, we estimate numeri-
cally �p, �32, �sp, �m, Jth, �Nth, Nph,sat, and compute �N and
Nph for J=2.5Jth using the following experimental QC
laser parameters as reported in Refs. 2 and 15: W=34 �m,
L=1 mm, Lp=45 nm, R1=R2=0.29, �m=20 cm−1, N=48,
neff=3.27, z32=1.7 nm, �32=2.1 ps, �3=1.4 ps, �21=0.3 ps,

=9 �m, 2�32=12 meV, and �=0.32. Our results are as
follows: �p=3.36 ps, �sp=38 ns, �32=1.8�10−14 cm2, �m

=12.4 cm−1, Jth=3.33 kA /cm2, �Nth=8.5�106, Nph,sat

=9.16�108, �N=8.5�106, and Nph=1.37�109. We note in
passing the excellent agreement of our estimation for Jth

compared to the reported15 experimental value Jth
�exp�

=2.9 kA /cm2.

III. DYNAMICAL STUDY

A. Numerical analysis

In this section we explore the temporal evolution of the
photon number Nph and the population of levels N1, N2, and
N3. We carry this out by solving the system of nonlinear
differential equations given in Eqs. �1a�–�1d� using a fourth
order Runge–Kutta method with an integration step h
=0.1 ps and the following initial conditions N1=N2=N3

=Nph=0, the injection current J being finite and above
threshold. The main features of our results are exhibited in
Figs. 1–3.

In Fig. 1 we show the evolution of the electron number
in the various levels as a function of time for different injec-
tion current strengths, the parameters used being those used
in the previous section and are thus appropriate for cryogenic
temperatures.2,15 The different panels show first a very brief
initial overshoot lasting roughly less than 1 ps followed by a
regime where the distribution of electrons among the levels
remains roughly constant, the system stays in this state for a
period known as the buildup time �t that is of the order of
30–146 ps depending on the value of the injected current: the
higher the current the shorter the period. This stage corre-
sponds to a very small number of photons, as time passes
regardless of the current strength, the number of electrons in
the upper level decreases before reaching its stationary value
while populations of the lower levels follow a slightly differ-
ent route, reaching their equilibrium values much earlier. It is
noteworthy to mention that at low injection currents, the sys-

tem displays population inversions not only between levels 3
and 2 but levels 3 and 1 as well. This may give rise to a new
mode in the cavity although the likeliness of such an even-
tuality may not be very strong since in practice the two states
involved are spatially well separated which reduces their ra-
diative transition probability.

Figure 2 represents the time evolution of the population
inversion between levels 3 and 2 normalized by the popula-
tion inversion between the same levels at threshold �Nth.
Also shown on the same figure is the photon number normal-
ized by the saturation photon number Nph,sat, the results are
all obtained for an injection current J=2.5Jth. We can see that
population inversion goes through different stages before
reaching the stationary regime. First the injection of elec-
trons generates an increase in the population inversion �N
which after a time tth, known as the turn-on delay time,
reaches its threshold value �Nth, the cavity photon number
then starts to build up from the onset of spontaneous emis-
sion processes. In the second stage, the increase of the pho-
ton number in the cavity suffers a certain delay compared to
the buildup of the population inversion that follows the cur-
rent injection process. During this time, the population inver-
sion continues to increase, subsequently spurred by stimu-
lated emission that sets in, the photon number starts to
increase dramatically thus resulting in the decrease of the
population inversion.

The photon number still continues to increase slightly
while the population inversion decreases accordingly before
the laser reaches its stable stationary regime 60 ps after the
start of current injection. This behavior is similar to that
observed in conventional lasers.20 Moreover, the dynamic
trajectory followed by the system to reach its state of oscil-
lation depends crucially on the phonon scattering times and
the injection current density, it also depends strongly on the
spontaneous emission factor, as shown on Fig. 3, where we
plot the temporal evolution of the number of photons for
different values of the spontaneous emission factor �.

N
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Time (ps)Time (ps)

Time (ps)Time (ps)

1.25 thJ J�
1.5 thJ J�

2 thJ J�
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FIG. 1. Time evolution of the number of electrons in the various levels of
the QC laser under different bias currents. Solid line �level 3�, dashed line
�level 2�, and dotted line �level 1� for �=2�10−3 �Ref. 17� and �out=1 ps
�Ref. 13�.
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B. Derivation of the turn-on delay and buildup times

To compute the delay time td that elapses between the
moment the bias is applied and the time the photon number
reaches 10% of its stationary value we write td	 tth+�t,
where tth is the turn-on delay time needed for the population
inversion �N to reach its threshold value �Nth while �t, the
buildup time, is the interval of time where the number of
photons is still very small.

Note that in the interval �t the population inversion is
perfectly constant. In order to get the explicit turn-on delay
time equation for the QC laser, it is convenient to determine
the population inversion in terms of the QC laser parameters
in absence of photons.

With the initial condition N3�t=0�=0, Eq. �1a� can di-
rectly be solved yielding

N3�t� = WL
J

e
�3�1 − e−t/�3� . �16�

For N2�t� we use Eq. �1b� and write the solution as

N2�t� = u�t�v�t� . �17�

Substituting Eq. �17� back into Eq. �1b� in the absence of any
light fields and differentiating we get

u�t��dv�t�
dt

+
v

�21
� + v�t�

du�t�
dt

= � 1

�32
+

1

�sp
�N3. �18�

The solution being unique, we first get rid of the first term in
Eq. �18� by choosing v�t� as

v�t� = e−t/�21, �19�

then the remaining terms are easily handled and give for u�t�
the following expression:

u�t� = WL
J

e
�3� 1

�32
+

1

�sp
�
�21e

t/�21 +
1

1

�3
−

1

�21

�e−��1/�3�−�1/�21��t� + WL
J

e
�3� 1

�32
+

1

�sp
�c1, �20�

where c1 is a constant to be determined below by the initial
conditions.

Combining Eqs. �17�, �19�, and �20� we get the follow-
ing expression for

N2�t� = WL
J

e
�3�� 1

�32
+

1

�sp
���21 +

1

1

�3
−

1

�21

e−t/�3
+ � 1

�32
+

1

�sp
�c1e−t/�21� . �21�

The initial condition N2�t=0�=0 is fulfilled if we set c1=
−��21+1 / ��1 /�3�− �1 /�21��� and the solution then becomes
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FIG. 2. Time evolution of the normalized population
inversion �N /�Nth �dashed line� and normalized pho-
ton number Nph /Nph,sat �solid line� for �=2�10−3 �Ref.
17� and �out=1 ps �Ref. 13�.
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FIG. 3. Time evolution of the number of photons for different spontaneous
emission factors: solid line: �=6�10−2, dashed line: �=4�10−2, dotted
line: �=2�10−2, and dot-dashed line: �=2�10−3, �out=1 ps �Ref. 13� and
J=2.5Jth.
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N2�t� = WL
J

e
�3�21� 1

�32
+

1

�sp
�

��
�21

�3
�1 − e−t/�21� − 1 + e−t/�3

�21

�3
− 1 � . �22�

From Eqs. �16� and �22� we deduce the population inversion
between levels 3 and 2 as

�N�t� = WL
J

e
�3�1 − e−t/�3��1 − WL

J

e
�3�1 − e−t/�21��2,

�23�

where the coefficients �1 and �2 are defined as

�1 = 1 + �21� 1

�32
+

1

�sp
� 1

�21

�3
− 1

�24a�

�2 = �21� 1

�32
+

1

�sp
� �21

�3

1

�21

�3
− 1

. �24b�

It is quite easy to see from Eq. �23� that the population in-
version asymptotically approaches the value �N�= �1
−�21 /�32−�21 /�sp��3J /e. The threshold condition �N=�Nth

is reached after a time tth solution of the equation that results
by combining Eqs. �15� and �23�, i.e.,

�1 exp�−
tth

�3
� − �2 exp�−

tth

�21
�

�1 − �2
= 1 − Jth/J . �25�

In the limiting case of a bipolar laser Eq. �25� still applies,
indeed in that situation16 �21��32 and �1 and �2 then ap-
proach 1 and 0, respectively. One then obtains the same
turn-on delay time as for a conventional laser, i.e., the al-
ready known result16 tth=�3 ln�J / �J−Jth��.

Now, in order to determine the evolution of the photon
number in the interval where the oscillation develops lin-
early, one can replace the dynamic variables �N and N3 by
their respective values �N�0� and N3

�0� when the number of
photons in the cavity is still small, and retains the equation
which results from it for the Nph variable only. From Eqs. �5�
and �7� we obtain for N3

�0� and �N�0�,

N3
�0� = WL

J

e
�3, �26�

�N�0� = WL
J

e
�3�1 −

�21

�32
−

�21

�sp
� , �27�

substituting these into Eq. �1d� and taking into account Eq.
�11�, we obtain the following linear first order differential
equation for the photon number:

dNph

dt
=

1

�p
� J

Jth
− 1�Nph + WL

J

e
�3

N�

�sp
. �28�

We use the following initial conditions for the intra-cavity
photon number Nph�t=0�=0. Then Eq. �28� can be directly
solved, thus

Nph�t� =
�p

J

Jth
− 1

WL�3
N�

�sp

J

e
�e�J/Jth−1�t/�p − 1� . �29�

Now, to compute the buildup time �t10%, i.e., the time nec-
essary for the laser to reach 10% of its stationary photon
number, we invert Eq. �29� to get

�t10% =
�p

J

Jth
− 1

ln�1 +
1

10
� J

Jth
− 1�2 1

WL
J

e
�3�p

�sp

N�
Nph,sat� .

�30�

From Eqs. �25� and �30� we find the connection between the
delay time and such fundamental QC laser parameters as the
current injection strength, the spontaneous emission factor,
and the phonon scattering time, the relationship reads

td 	 tth +
�p

J

Jth
− 1

ln�1 +
1

10
� J

Jth
− 1�2 1

WL
J

e
�3�p

�sp

N�
Nph,sat� .

�31�

We show in Fig. 4 the variation of the turn-on delay time as
a function of the normalized current density J /Jth which we
vary from 1 to 7, the parameters used to solve Eq. �25� being
those of the previous section. It is worthwhile to stress the
strong decrease of tth as the injected current J increases from
its minimal value Jth upward. In Fig. 5, the buildup time is
plotted versus normalized electron current injection for three
values of �, the spontaneous emission factor, and we can
easily see that the buildup time is a decreasing function of
both J and �.
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FIG. 4. Turn-on delay time variation vs normalized current density.
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IV. CONCLUSION

Using a simple rate equations model, we studied the dy-
namics of a three-level midinfrared QC laser using realistic
experimental parameters taken from the literature. The injec-
tion current is found to play a central role, dictating among
other things both the values of the turn-on and delay times.
We also developed an analytical scheme to derive the turn-on
and delay times as functions of J and the different scattering
times of the system. Our numerical results also show that the
spontaneous emission factor affects the delay time quite
strongly.

ACKNOWLEDGMENTS

The authors are much indebted to Dr. F. Dessenne from
IEMN, Université Lille 1, France, for his generous help.

1J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y.
Cho, Science 264, 553 �1994�.

2H. Page, C. Becker, A. Robertson, G. Glastre, V. Ortiz, and C. Sirtori,
Appl. Phys. Lett. 78, 3529 �2001�.

3W. H. Ng, E. A. Zibik, M. R. Soulby, L. R. Wilson, J. W. Cockburn, H. Y.
Liu, M. J. Steer, and M. Hopkinson, J. Appl. Phys. 101, 046103 �2007�.

4G. Scamarcio, F. Capasso, C. Sirtori, J. Faist, A. L. Hutchinson, D. L.
Sivco, and A. Y. Cho, Science 276, 773 �1997�.

5S. Anders, W. Schrenk, E. Gornik, and G. Strasser, Appl. Phys. Lett. 80,
1864 �2002�.

6D. Hofstetter, M. Beck, T. Aellen, and J. Faist, Appl. Phys. Lett. 78, 396
�2001�.

7J. Faist, M. Beck, T. Aellen, and E. Gini, Appl. Phys. Lett. 78, 147 �2001�.
8C. Walther, G. Scalari, J. Faist, H. Beere, and D. Ritchie, Appl. Phys. Lett.
89, 231121 �2006�.

9A. Hamadou, J.-L. Thobel, and S. Lamari, Opt. Commun. 281, 5385
�2008�.

10R. C. Iotti and F. Rossi, Phys. Rev. Lett. 87, 146603 �2001�.
11R. C. Iotti and F. Rossi, Physica E �Amsterdam� 13, 715 �2002�.
12R. C. Iotti and F. Rossi, Semicond. Sci. Technol. 19, S323 �2004�.
13R. C. Iotti and F. Rossi, Rep. Prog. Phys. 68, 2533 �2005�.
14C. Liu, R. Roy, H. D. I. Abarbanel, Z. Gills, and K. Nunes, Phys. Rev. E

55, 6483 �1997�.
15S. Hofling, R. Kallweit, J. Seufert, J. Koeth, J. P. Reithmaier, and A.

Forchel, J. Cryst. Growth 278, 775 �2005�.
16K. Iizuka, Elements of Photonics �Wiley, New York, 2002�, Vol. 2.
17M. Yamanishi, T. Edamura, K. Fujita, N. Akikusa, and H. Kan, IEEE J.

Quantum Electron. 44, 12 �2008�.
18M. Troccoli, G. Scamarcio, V. Spagnolo, A. Tredicucci, C. Gmachl, F.

Capasso, D. L. Sivco, A. Y. Cho, and M. Striccoli, Appl. Phys. Lett. 77,
1088 �2000�.

19J. T. Verdeyen, Laser Electronics �Prentice-Hall, Englewood Cliffs, 1995�.
20S. E. Hodges, M. Munroe, D. Adkison, W. Gadomski, and M. G. Rayer,

Opt. Lett. 17, 931 �1992�.

/
th

J J

B
ui

lt-
up

tim
e

(s
)

26 10� �� �
24 10� �� �

32 10� �� �

FIG. 5. Buildup time variation vs normalized current density for different
values of the spontaneous emission factor: solid line: �=6�10−2, dashed
line: �=4�10−2, and dotted line: �=2�10−3, �out=1 ps �Ref. 13�.

093116-6 Hamadou, Lamari, and Thobel J. Appl. Phys. 105, 093116 �2009�

http://dx.doi.org/10.1126/science.264.5158.553
http://dx.doi.org/10.1063/1.1374520
http://dx.doi.org/10.1063/1.2472196
http://dx.doi.org/10.1126/science.276.5313.773
http://dx.doi.org/10.1063/1.1461055
http://dx.doi.org/10.1063/1.1340865
http://dx.doi.org/10.1063/1.1339843
http://dx.doi.org/10.1063/1.2404598
http://dx.doi.org/10.1016/j.optcom.2008.07.036
http://dx.doi.org/10.1103/PhysRevLett.87.146603
http://dx.doi.org/10.1016/S1386-9477(02)00266-7
http://dx.doi.org/10.1088/0268-1242/19/4/107
http://dx.doi.org/10.1088/0034-4885/68/11/R02
http://dx.doi.org/10.1103/PhysRevE.55.6483
http://dx.doi.org/10.1016/j.jcrysgro.2004.12.096
http://dx.doi.org/10.1109/JQE.2007.907563
http://dx.doi.org/10.1109/JQE.2007.907563
http://dx.doi.org/10.1063/1.1289798
http://dx.doi.org/10.1364/OL.17.000931

