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On the Dynamic Properties 
of Rigid-Link Flexible-Joint 
Parallel Manipulators in the 
Presence of Type 2 Singu-
larities 
 

In our previous work [1], the dynamic properties of rigid-link parallel manipulators, in 
the presence of Type 2 singularities, have been studied. It was shown that any parallel 
manipulator can pass through the singular positions without perturbation of motion if the 
wrench applied on the end-effector by the legs and external efforts of the manipulator are 
orthogonal to the twist along the direction of the uncontrollable motion. This condition 
was obtained using symbolic approach based on the inverse dynamics and the study of 
the Lagrangian of a general rigid-link parallel manipulator. It was validated by experi-
mental tests carried out on the prototype of a four-degrees-of-freedom parallel manipula-
tor. However, it is known that flexibility of the mechanism may not always been ne-
glected. Indeed, joint flexibility is the main source contributing to overall manipulator 
flexibility and it leads to the trajectory distortion. Therefore, in this paper, the condition 
for passing through a Type 2 singularity of parallel manipulators with flexible joints is 
studied. The suggested technique is illustrated by the example of a 5R parallel manipula-
tor with flexible joints. It is shown that passing through singularity is possible if the 
twelfth order polynomial trajectory planning is applied. The obtained results are vali-
dated by numerical simulations carried out using the ADAMS software. 
 

 
1. Introduction 

Over the past decades, with the large development of parallel 
manipulators, more attention has been paid to their kinematic, ki-
netostatic and dynamic properties, and in particular, to their sin-
gularities. Several papers deal with singularity analysis of parallel 
manipulators [2-14]. Most of them present the analysis of singu-
lar configurations from a kinematic point of view [2-8]. Algebrai-
cally, a singularity analysis is based on the degeneracy of Jaco-
bian matrices of the mechanical structure, or of the system of re-
ciprocal screws (wrenches) applied to the platform by the legs. 
However, it is also known that, when parallel manipulators have 
Type 2 singularities [2], they lose their stiffness and their quality 
of motion transmission, and as a result, their payload capability. 
Therefore, the singularity zones in the workspace of manipulators 
may be analyzed not only in terms of kinematic criterions, from 
the theoretically perfect model of manipulators, but also in terms 
of kinetostatic approaches [9-14].  

Moreover, while it is demonstrated using the kinetostatic ap-
proach that, when subjected to Type 2 singularities parallel ma-
nipulator lock up, it has been shown experimentally that, via op-
timal dynamic control of manipulators, it is possible to pass 
through these singular zones. Thus, it is evident that singular con-
figurations should also be examined in terms of dynamic aspects.  

 The further study of singularity in parallel manipulators has 
revealed an interesting problem that concerns the path planning 
of parallel manipulators under the presence of singular positions, 
i.e. the motion feasibility in the neighborhood of singularities. In 

this case the dynamic conditions can be considered in the design 
process. One of the most evident solutions for the stable motion 
generation in the neighborhood of singularities is to use redun-
dant sensors and actuators [15]-[18]. However, it is an expensive 
solution to the problem because of the additional actuators and 
the complicated control of the manipulator caused by actuation 
redundancy. Another approach concerns with motion planning to 
pass through singularity [19]-[25], i.e. a parallel manipulator may 
track a path through singular poses if its velocity and acceleration 
are properly constrained. This is a promising way for the solution 
of this problem. However, only a few research papers on this ap-
proach have addressed the path planning for obtaining a good 
tracking performance. But they have not adequately addressed the 
physical interpretation of dynamic aspects.  

In our recent work [1], optimal force generation in parallel ma-
nipulators for passing through the singular positions has been 
studied. It was shown that any parallel manipulator can pass 
through the singular positions without perturbation of motion if 
the wrench applied on the end-effector by the legs and external 
efforts of the manipulator are orthogonal to the twist along the di-
rection of the uncontrollable motion. This paper was concerned 
with the study of rigid-link parallel manipulators without any 
flexibility. However, it should be noted that several factors may 
bring a loss of rigidity in parallel manipulators (elasticity of links, 
clearance in joints, etc.). But their contribution can be considera-
bly reduced for a properly designed and constrained mechanical 
system. However, even for the most optimum design of manipu-
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lator one main source of flexibility remains and it cannot be eas-
ily reduced: it is the flexibility in actuated joints, due to the use of 
Harmonic Drive® systems.  

Therefore, in the present work the dynamic condition for pass-
ing through the singular positions is defined in general for paral-
lel manipulators taking into account the elasticity in the actuated 
joints.  

The paper is organized as follows. The next section presents 
theoretical aspects of the examined problem. As in our previous 
work, using the Lagrangian formulation, the condition of force 
distribution is defined, that allows the passing of any parallel ma-
nipulator through the Type 2 singular positions. In section 3, the 
suggested solution is illustrated via 5R planar parallel manipula-
tor. In section 4, the conclusions are given. 

 
2. Optimal dynamic conditions for passing 

through Type 2 singularity 

Let us consider a parallel manipulator of m links, n degrees of 
freedom and driven by n actuators.  

The general Lagrangian dynamic formulation for a manipulator 
with elasticity in actuated joints can be expressed as [26]: 
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where,  
- L is the Lagrangian of the manipulator; L = T−V, where T is 

the kinetic energy and V the potential energy due to gravitational 
forces, friction and elasticity; 

- Ta
n

aa
a qqq ],...,,[ 21q  and Ta

n
aa

a qqq ],...,,[ 21  q  represent the 

vectors of position and velocity of the actuators, respectively; 

- Td
n

dd
d qqq ],...,,[ 21q  and Td

n
dd

d qqq ],...,,[ 21  q  represent the 

vectors of position and velocity of controlled links, respectively, 
i.e. the position and velocity of the links that are controlled by the 
displacement of the actuators in which there are elasticity; 

-  is the vector of the actuators efforts. 
However, for a parallel mechanism, the position (velocity, 

resp.) of the end-effector is a non-trivial function of the position 
(velocity, resp.) of the controlled links, therefore it is preferable 
to rewrite Eq. (1) using the Lagrange multipliers, as follows: 
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where  is the Lagrange multipliers vector, which is related to the 
wrench applied on the platform by: 
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where,  
- A and B are two matrices relating the vectors v and q  ac-

cording to dqBAv  . They can be found by differentiating the 

closure equations with respect to time; 

- Tzyx ],,,,,[ x  and Tzyx ],,,,,[  v  are trajectory 
parameters and their derivatives, respectively; x, y, z represent the 
position of the controlled point and  and  the rotation of the 
platform about three axes a aand a; 

- Wp is the wrench applied on the platform by the legs and ex-
ternal forces [27] expressed along axes a aand a. 

Expressing Wp in the base frame, one can obtain: 
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where   BAJ R 1
0


  is the Jacobian matrix between twist t of the 

platform (expressed in the base frame) and dq , DAAR 0  is 

the expression of matrix A in the base frame, where D is a trans-
formation matrix, of which expression is given in [28]. 

For any prescribed trajectory x(t), the values of vectors dq , 

dq  and qd can be found using the inverse kinematics. Thus, tak-

ing into account that the manipulator is not in a Type 1 singular-

ity [2], the terms Wb and p
R W0  can be computed. However, for 

a trajectory passing through a Type 2 singularity, the determinant 
of matrix J is indefinite. Numerically, the values of the efforts 
applied by the actuators become infinite. In practice, the manipu-
lator either is locked in such a position of the end-effector or it 
can not follow the prescribed trajectory.  

It is known that a Type 2 singularity appears when the deter-

minant of matrix AR0  vanishes, in other words, when at least 
two of its columns are linearly dependant [28]. So, one may ob-
tain such a relationship: 

 



6

1j

jj 0A , (5) 

where Aj represents the j-th column of matrix AR0  and j are 

coefficients, which in general can be functions of d
pq  (p = 1, …, 

n). It should be noted that the vector ts = 2, …, 6]
T repre-

sents the direction of the uncontrollable motion of the platform in 
a Type 2 singularity. 

By substituting (5) into (3), we obtain 

 j
T
j WλA , j = 1, …, 6 (6) 

where Wj is the j-th row of vector p
R W0 . 

Then, from (5) and (6) the following conditions are derived: 
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The right term of Eq. (7) corresponds to the scalar product of 

vectors ts and p
R W0 .  

Thus, in the presence of a Type 2 singularity, it is possible to 
satisfy conditions (7) if the wrench applied on the platform by 

the legs and external efforts p
R W0  are orthogonal to the di-

rection of the uncontrollable motion ts. Otherwise, the dynamic 
model is not consistent. Obviously, in the presence of a Type 2 
singularity, the displacement of the end-effector of the manipula-
tor has to be planned to satisfy (7). Therefore, our task will be to 
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achieve a trajectory which will allow the manipulator to pass 
trough the Type 2 singularities, i.e. which will allow the manipu-
lator respecting condition (7). 

In the dynamic model of the rigid-link flexible-joint manipula-
tor [26], the efforts  applied on the actuators may be expressed 
as follows: 
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This equation only depends on the acceleration, velocity and 
position of the actuators of the manipulator. Therefore, in order to 
avoid some discontinuity on the efforts , the polynomial used for 
the trajectory planning should be at least of degree 5 (because ini-
tial and final positions are known, and the velocities and accelera-
tions at the beginning and the end of the trajectory should be 
equal to 0). In our previous work [1], it was shown that the condi-
tion for passing through the Type 2 singular configurations added 
3 supplementary conditions, and therefore the polynomial used 
for the trajectory planning should be at least of degree 8 (the posi-
tion, the velocity and the acceleration when passing through the 
singularity should be constrained). 

In the present study, it will be shown that the degree of the 
polynomial law should be different, when taking into account the 
flexibility on the actuating system. Indeed, it will be presented 
further that the efforts  applied on the actuators depend as previ-
ously on the position, the velocity and the acceleration of the ac-
tuators, but also on the jerk and its first derivative. So, due to the 
addition of elasticity in the actuated joints, the polynomial used 
for the trajectory planning should be at least of degree 12. 

In the next section, an example illustrates the obtained results 
discussed above. This example presents a planar 5R parallel ma-
nipulator, which allows obtaining relatively simple symbolic 
model for demonstrating the expected results by numerical simu-
lations. The results are validated using the ADAMS software. 

 
3. Illustrative example 

In the planar 5R parallel manipulator, as shown in Fig. 1, the 
output point is connected to the base by two legs, each of which 
consists of three revolute joints and two links. In each of the two 
legs, the revolute joint connected to the base is actuated. Thus, 
such a manipulator is able to position its output point in a plane. 

 

 
Fig. 1. Kinematic chain of the planar 5R parallel manipulator. 
 
As shown in Fig. 1, the input joints are denoted as A and E 

with input parameters dq1  and dq2 . The common joint of the two 

legs is denoted as C, which is also the output point with con-

trolled parameters x and y. A fixed global reference system xOy is 
located at the center of AE with the y-axis normal to AE and the 
x-axis directed along AE. The lengths of the links AB, BC, CD, 
DE are respectively denoted as L1, L2, L3 and L4. The positions of 
the centers of masses Si of links from joint centers A, B, D and E 
are respectively denoted by dimensionless lengths r1, r2, r3 and r4, 
i.e. 111 LrAS  , 222 LrBS  , 333 LrDS   and 444 LrES  . 

Actuators 1 and 2 are connected to links 1 and 4, respectively, 
via harmonic drive systems which are presented by a model simi-
lar to that given in [26]. The position of actuator i is denoted as 

a
iq . It is assumed that the actuator i is capable to deliver a cou-

ple i to the motor shaft, which is elastically coupled to the link j 
of the robot (i = 1 or 2, j = 1 or 4). The flexibility is modeled by a 
torsion spring with stiffness ki. The gear ratio is denoted ni. In the 

following of this paper, n1 = n2 = n and k1 = k2 = k. a
iI is the axial 

moment of inertia of the motor i plus the Harmonic drive system. 
The singularity analysis of this manipulator [29] shows that the 

Type 2 singularities appear when legs 2 and 3 are parallel (see 
also Fig. 2 in [1]).  

In both cases, the gained degree of freedom is an infinitesimal 
translation perpendicular to the legs 2 and 3. However, if L2 = L3, 
the gained degree of freedom may become a finite rotary motion. 

In order to simplify the analytic expressions, we consider that 
the gravity effects are along the z-axis and consequently the input 
torques are only due to inertia effects. We also admit that there is 
no friction in the system. To simplify the computation, it is also 
preferable to replace the masses of moving links by concentrated 
masses [30, 31]. For a link i with mass mi and its axial moment of 
inertia Ii, we have:  
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, (i = 1, 2, 3, 4) (9) 

where mij (j = 1, 2, 3) are the values of the three point masses 
placed at the centers of the revolute joints and at the center of 
masses of the link i.  

In this case, the potential energy V can be written as: 
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d qq 21 ,q ,  Taa
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where, 121 mmS  , 222 mmS  , 323 mmS  , 424 mmS  , 

2113 mmmB  , 2123 mmmC  , 4133 mmmD  . The terms mij 

(i = 1, 2, 3, 4) are deduced from the relation (9), VSi is the vector 
of the linear velocities of the center of masses Si; VB, VC and VD 
are the vectors of the linear velocities of the corresponding axes. 

Thus the dynamic model can be obtained from (2): 

 pb WJW0 T
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taking into account that for examined manipulator: 

  nk ad /* qqWW bb  , DDBBb FJFJW TT *  (13) 
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The term Wp is given by: 
 DCBpW  321 CCC mmm  , (19) 
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and the Jacobian matrix J5R by: 
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For a given trajectory qd, the vector of the positions of the ac-
tuators qa can be deduced from (12a), as well as the acceleration 
of the actuators aq : 
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Introduction Eq. (24) into Eq. (12b), one can deduce the vector 
of actuator torques : 
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Analyzing this expression, it could be observed that, as terms 
*
bW  and pW  depend on the position, velocity and acceleration of 

the input links, the input torques depend not only on these pa-
rameters, but also on the jerk and its first derivative. Therefore, 
on the contrary of rigid manipulators for which, in order to avoid 
discontinuities in the input torques, a fifth-degree polynomial is 
sufficient as a control law when the end-effector is not in singular 
configuration, for non rigid robots, the degree of the polynomial 
should be increased (indeed, it should be at least a ninth-degree 
polynomial). 

In order to avoid infinite values of the input torques when 
crossing a Type 2 singularity, Eq. (7) has to be satisfied. From 
matrix A5R, one can find that the twist of the infinitesimal dis-
placement in the singularity can be written under the form: 

 T]cos,sin[ 11 st  (26) 

Thus, the examined manipulator can pass through the given 
singular positions if the wrench Wp determined by (19) is or-
thogonal to the direction of the uncontrollable motion ts described 
by (26).  

Let us now consider the motion planning, which makes it pos-
sible to satisfy this condition. For this purpose the following pa-
rameters of manipulator’s links are specified: L1 = L2 = L3 = L4 = 
0.25 m; r1 = r2 = r3 = r4 = 0.5; a = 0.2 m; m1 = m4 = 2.81 kg; I1 = 
I4 = 0.02 kg.m2; m2 = m3 = 1.41 kg; I2 = I3 = 0.01 kg.m2; Ia = 
0.067 kg/m2; k = 250 Nm/rad; n = 50. 

With regard to the prescribed trajectory generation, the point C 
should reproduce a motion along a straight line between the ini-
tial position C0 (x0, y0) = C0 (0.1, 0.345) and the final point Cf (xf, 
yf) = Cf (-0.1, 0.145) in tf = 2 s (Fig. 2).  

 

 
 

Fig. 2. Initial, singular and final positions of the planar 5R paral-
lel manipulator. 

 
Thus, the given trajectory can be expressed as follows: 
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However, the manipulator will pass by a Type 2 singular posi-
tion at point Cs (xs, ys) = Cs (0, 0.245) (Fig. 2). 

Developing the condition for passing through the singular po-
sition (7) for the planar 5R parallel manipulator at point Cs, we 
obtain: 
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Then, taking into account that the velocity and the acceleration 
of the end-effector in initial and final positions are equal to zero, 
the following thirteen boundary conditions are found: 
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 s (ts = 1 s) = 0.5, (31) 

 0)( 0 ts , (32) 

 0)( fts ,  (33) 

 1)/()/()( 00  xxxyyyts fsfss  ,  (34) 

 0)( 00  sts  , (35) 

 0)(  ff sts  , (36) 

 )6)(3/()48248()( 20
22

11 CfssCss myyyxLmsts   , (37) 

 0)( 00  sts  ,  (38) 

 0)(  ff sts  , (39) 

 0)( )4(
00  sts

dt

d
 ,  (40) 

 0)( )4(  ff sts
dt

d
 . (41) 
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Table 1. Variation of the input torques as a function of the polynomial law used for the trajectory. 
 

 Actuator 1 Actuator 2 
Case (A1) 

  
Case (A2) 

  
Case (B) 

  
Case (C) 

  
Case (D) 
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From (28)-(41), the following twelfth order polynomial trajec-
tory planning is found:   

 
 

121110

98765

13.028.115.5

77.941.680.622.1428.7

ttt

tttttts




 (42) 

Thus the generation of the motion by the obtained twelfth or-
der polynomial makes it possible to pass through the singularity 
without perturbation and the input torques remain in the limits of 
finite values. 

In order to compare the different cases of trajectory planning, 
in table 1 are given the values of the input torques obtained using 
the software ADAMS for the following numerical simulations: 

A1: a trajectory between points C0 and C’f (x’f, y’f) = C’f (-
0.1, 0.345) (Fig. 2) without meeting any singularity. For 
such a case, the following fifth order polynomial law is 

used   543 1875.09375.025.1 tttts   for the trajec-

tory planning out of the singular zone of the rigid-link 
manipulator without taking into account the flexibility 
in the actuated joints. In this case the values of the input 
torques are finite. 

A2: the fifth order polynomial law 

  543 1875.09375.025.1 tttts  for the trajectory 

planning between C0 and Cf inside the singular zone for 
the rigid-link manipulator without taking into account 
the flexibility in the actuated joints. In this case the val-
ues of the input torques close to the singular positions 
tend to infinity. 

B: the eight order polynomial law s(t) = –0.25851 t3 + 
3.84228 t4 – 5.72792 t5 + 3.58909 t6 – 1.07101 t7 + 
0.12606 t8 for the trajectory planning of the rigid-link 
manipulator without flexibility in the actuated joints in-
side the singular zone. The obtained results show that 
the values of the input torques are finite. 

C: the ninth order polynomial law 

  98765 14.023.122.456.694.3 tttttts   for 

the trajectory planning of the rigid-link flexible-joint 
manipulator inside the singular zone. The numerical 
simulation shows that the values of the input torques 
close to the singular positions tend to infinity. 

D: the twelfth order polynomial law (42)  for the trajectory 
planning of the rigid-link flexible-joint manipulator in-
side of the singular zone. The values of the input 
torques are finite and there are no discontinuities. 

Thus, the numerical simulations show that the obtained optimal 
dynamic conditions assume the passing of the rigid-link flexible-
joint manipulator through the singular position. 

4. Conclusion 

At a singular configuration, in the case of an arbitrary genera-
tion of forces, a manipulator may not reproduce stable motion 
with prescribed trajectory. Nevertheless it is approved that there 
are several motion planning techniques, which allow passing 
through these singular zones. These approaches are simulated by 
numerical examples and illustrated on several parallel structures. 
However, in these studies much more attention was focused only 
on control aspects of this problem and little attention has been 
paid to the dynamic interpretation, which is a crucial factor for 

governing the behavior of parallel manipulators at the singular 
zones.  

In our previous work [1], the dynamic properties of parallel 
manipulators in the presence of Type 2 singularity have been 
studied. It was shown that any parallel manipulator can pass 
through the singular positions without perturbation of motion if 
the wrench applied on the end-effector by the legs and external 
efforts of the manipulator are orthogonal to the twist along the di-
rection of the uncontrollable motion. This condition was applied 
to the rigid-link manipulators without clearance or flexibility in 
the joints. The obtained results showed that the planning of mo-
tion for assuming the optimal force generation can be carried out 
by a eight order polynomial law. 

In the present paper the rigid-link flexible-joint manipulators 
have been studied. It was shown that the degree of the polynomial 
law should be different, when the flexibility of actuated joints is 
introduced into conditions of the optimal force generation in the 
presence of singularity. The obtained results disclosed that the 
planning of motion for assuming the optimal force generation in 
the rigid-link flexible-joint manipulators must be carried out by a 
twelfth order polynomial law. The suggested technique was illus-
trated by an example, which presents 5R planar parallel manipu-
lator with flexible joints. The numerical simulations carried out 
using the software ADAMS validated the obtained theoretical re-
sults. 
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