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Abstract

Let Γ be an amenable group andV be a finite dimensional vector space. Gro-
mov pointed out that the von Neumann dimension (with respectto Γ) can be ob-
tained by looking at the semi-axes of certain ellipsoids. This metric point of view
does not requires a Hilbertian structure. It is used in this article to associate to a
Γ-invariant linear subspacesY of ℓp(Γ;V) a real positive number dimℓpY (which
is the von Neumann dimension whenp= 2). By analogy with von Neumann di-
mension, we explore the properties of this number to conclude that there can be
no injectiveΓ-equivariant linear map of finite-type fromℓp(Γ;V) → ℓp(Γ;V ′) if
dimV > dimV ′. A generalization of the Ornstein-Weiss lemma is developedalong
the way.

1 Introduction

Let Γ be a discrete group, then it is possible to associate to certain unitary repre-
sentations a positive real number called von Neumann dimension (see [11, §1] or [14,
§1]). More precisely, letf : Γ → X be a map. The natural (right) action ofΓ on spaces
of maps means is, in the present text, the action given byγ f (·) = f (γ−1·). Now, letH
be a Hilbert space and consider the spaceℓ2(Γ)⊗H whereΓ acts naturally on the first
factor and trivially on the second. Then, the von Neumann dimension is defined for
Γ-invariant subspaces ofℓ2(Γ)⊗H.

LetV be afinitedimensional vector space and‖·‖ a norm (the choice of which will
not matter as the dimension is finite). The subject matter in this article areΓ-invariant
linear subspaces of

ℓp(Γ;V) = ℓp(Γ)⊗V = { f : Γ →V|∑
γ∈Γ

‖ f (γ)‖p is finite}

for the natural action ofΓ. From now onΓ will be assumed amenable. There are
reasons to exclude non-amenable groupsΓ. Indeed, D. Gaboriau pointed out that if a
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notion of dimension existed in theℓp setting (that is, a quantity satisfying properties
P1-P10 listed below), then there would be a formula for the Euler characteristic ofΓ as
the alternate sum of the dimensions ofℓp cohomology spaces. On one hand, torsion-
free cocompact lattices inSO(4,1) have positive Euler characteristic. On the other,
for p big enough, theirℓp cohomology vanishes in all degrees but the first (see [15,
Theorem 2.1]). This would lead to a contradiction.

We are looking for a notion of dimension for such subspaces, which would increase
under injective equivariant linear maps. Inspired by an argument of [6, §1.12] (and par-
tially answering a question found therein), we shall introduce a quantity dimℓp which,
when p = 2, coincides with definition of von Neumann dimension. This quantity is
obtained by a process similar to that of metric entropy or mean dimension, that is an
asymptotic growth factor. The definition reliesa priori on an exhaustion ofΓ, but a
generalization of the Ornstein-Weiss lemma in section 5 implies the result is indepen-
dent of this choice.

Though we prove many properties of dimℓp, important properties are still lacking.
Nevertheless, the results obtained in this paper suffice to establish a non existence result
for maps of finite type. We recall their construction.

Let D⊂ Γ be a finite set and letg : VD →V ′ be a continuous map. This data enables
the definition of aΓ-equivariant continuous mapgD from Z ⊂ ℓp(Γ;V) to ℓp(Γ;V ′) as
follows

gD(z)(γ) = g(z(γδ))δ∈D.

Remark that what we denote here asℓp(Γ;V) is more frequently writtenℓp(Γ)⊗V.

Theorem 1.1. LetΓ be an amenable discrete group. Let V and V′ be finite dimensional
vector spaces. If f: ℓp(Γ;V) → ℓp(Γ,V ′) is an injectiveΓ-equivariant linear map of
finite type thendimV ≤ dimV ′.

2 Definition and properties ofdimℓp

Given a positive numberε, a notion of dimension up to scaleε for (X,τ,δ) a topo-
logical space equipped with a pseudo-distance will be needed. Data compression prob-
lems turn out to be a good source of inspiration. When one is interested in compression
algorithms, it is not only important that the compression map has “small” fibers (so that
not too much data is lost) but also has an image which is “small” in some sense (so that
the compression is effective).

A slight variant of the one used in [5], [6], or [18] shall be employed, namely one
that is defined for pseudo-distances only. As such, it will beuseful to use a topology
τ that does not come from the pseudo-distance. Please note that the term diameter
(denoted Diam) will continue to be used even if it is defined using a pseudo-distance
(thus a set of diameter 0 may contain more than one point).

Definition2.1. Let(X,τ,δ) be a metric space. Callwdimε(X,τ,δ) the smallest integer
k such that there exists a continuous (forτ) map f : X → K where K is a k-dimensional
polyhedron such that∀k∈ K,Diam f−1(k)≤ ε.

wdimε(X,τ,δ) = inf
f :X→֒K

{dimK| f is continuous forτ and∀k∈ K,Diam f−1(k)< ε}.
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We will sometimes omit to mentionτ when it is the topology induced byδ.

Definition 2.2. Let (X,τ,δ) be a space endowed with a topologyτ and a pseudo-
distanceδ. LetΓ be a countable group which acts on X and let{Ωi} be an increasing
sequence of finite subsets ofΓ. Theℓp(Γ) width growth coefficient of X for the sequence
{Ωi} is

Wgcℓp(X,τ,{Ωi}) = lim
ε→0

limsup
i→∞

wdimε(X,τ,δℓp(Ωi))

|Ωi |
∈ [0,+∞].

whereδℓp(Ω)(x,x
′) =

(
∑

γ∈Ω
δ(γx,γx′)p

)1/p
when p< ∞ andδℓ∞(Ω)(x,x

′) = sup
γ∈Ω

δ(γx,γx′).

Whenδ is a distance,δℓ∞(Ω) is but the dynamical distance. If furthermoreτ is the
topology this distance induces, then this is the (metric) mean dimension (see [6, §1.5]
or [9, §4]). In the present text, this is an intermediate definition and will only be used
in a particular context, namely whenX is a subset ofℓ∞(Γ;V).The pseudo-metric will
be given by evaluation at the neutral elementeΓ of Γ: ev(x,x′) = ‖x(eΓ)− x′(eΓ)‖V .
Lastly, τ∗ will denote the product topology induced fromX ⊂ VΓ (which coincides
with the weak-∗ topology, when defined).

Definition 2.3. Let V be a finite-dimensional normed vector space. Let Y⊂ ℓ∞(Γ;V)
be a subset invariant by the natural action ofΓ, an amenable countable group. LetΩi

be a Følner sequence forΓ. Then, theℓp von Neumann dimension of Y is defined by

dimℓp(Y,{Ωi}) = sup
r∈R≥0

Wgcℓp(BY,p
r , ev,{Ωi})

where BY,pr =Y∩Bℓp(Γ;V)
r .

Note thatBY,p
r is defined by an intersection rather than a projection, as theformer

are not always easy to define inℓp. Also, the choice ofτ∗ as a topology comes from
the fact that it is the weakest topology that is stronger thanthe topologies induced by
δℓp(Ω) for any p or Ω.

In the rest of this article,Y will often be a linear subspace. In these cases, one does
not need to take the sup onr. Indeed, Wgcℓp(BY,p

r , ev,{Ωi}) does not depend onr (as
can be seen using dilation and a change of variableε 7→ rε).

WhenY is aΓ-invariant linear subspace ofℓ∞(Γ;V),

P1 (Independence) dimℓp(Y,{Ωi}) is actually independent of the choice of Følner
sequence{Ωi} (cf. corollary 5.2);

P2 (Normalization) dimℓpℓp(Γ;V) = dimV (cf. example 3.5);

P3 (Invariance) Iff : Y1 →Y2 is an injectiveΓ-equivariant linear map of finite type,
then dimℓpY1 ≤ dimℓpY2 (cf. proposition 3.8 and example 3.9);

P4 (Completion) IfY is the completion ofY in ℓp(Γ;V) for the ℓp norm, then
dimℓpY = dimℓpY (cf. proposition 3.10);
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P5 (Reduction) IfΓ1 ⊂ Γ2 is of finite index, and ifY ⊂ ℓp(Γ2;V) is seen by restric-
tion as a subspace ofℓp(Γ1;V [Γ2:Γ1]) then[Γ2 : Γ1]dimℓp(Y,Γ2) = dimℓp(Y,Γ1)
(cf. proposition 3.11).

P6 If Y ⊂ ℓ2(Γ;V), dimℓ2Y coincides with the von Neumann dimension (cf. corol-
lary A.2);

In light of P6, whenp = 2 the following further properties of dimℓ2 are listed by
Cheeger and Gromov in [1, §1].

P7 (Non-triviality)Y ⊂ ℓ2 is trivial if and only if dimℓ2Y = 0.

P8 (Additivity) dimℓ2Y1⊕Y2 = dimℓ2Y1+dimℓ2Y2;

P9 (Continuity) If {Yi} is a decreasing sequence of closed linear subspaces then
dimℓ2(∩Yi) = lim

i→∞ dimℓ2Yi

P10 (Reciprocity) IfΓ1 ⊂ Γ2 and ifY2 ⊂ ℓ2(Γ2;V) is the subspace induced byY1 ⊂
ℓ2(Γ1;V) then dimℓ2(Y2,Γ2) = dimℓ2(Y1,Γ1);

Proposition 4.1 also establishes P7 for dimℓ1. On the other hand, the continuity property
(P9) of the Von Neumann dimension does not hold ifp= 1(see example 4.2).

For linear subspacesY ⊂ ℓ∞ non-triviality (P7) is false, though it might be true for
Y ⊂ c0(Γ,V), the latter being the space of allx∈ ℓ∞(Γ;V) tending to 0 at infinity (i.e.
‖x‖ℓ∞(ΓrFi)

→ 0 for all exhaustive increasing sequence of (finite) subsets{Fi}).
Finally, the existence of an element of finite support inY implies P7. By using a

similar but less convenient definition of dimℓ2, the author is also aware of a proof of
P8 and P10 (when the index is finite) forp = 2 without using P6 and the previously
known properties of von Neumann dimension.

Though these properties are stated forΓ-invariant linear subspaces, some remain
true for more general subsetsY: P1 and P5 hold for anyΓ-invariant subset, and P4 is
also true whenY is notΓ-invariant.

These properties offer a partial answer to the question discussed at the beginning
of the present article.

Proof of theorem 1.1.It is but a simple consequence of P2 and P3.

Being crucial to the proof above and less technical, we shallbegin by proving
properties P2-P5. Section 4 then discusses P7 and P9 forp= 1 or ∞. The proof of P1
requires some technical lemmas on amenable groups and is thus relegated to section 5.
As for P6, it relies mostly on a result of Gromov and is discussed in appendix A.

3 Proof of properties P2-P5

Before the properties of dimℓp can be established, the basic properties of wdimε
must be mentioned.

4



3.1 Properties ofwdimε

Most of the content of this subsection may be found in [2, §4.5], [3, §3], [5, Proposition
2.1] and [6, §1.1].

Proposition 3.1. Let X be space endowed with a topologyτ and a pseudo-distanceδ.

a. The functionε 7→ wdimε(X,τ,δ) is non-increasing.

b. Supposeδ is a distance andτ the topology it induces. LetdimX be the covering
dimension of X, thenwdimε(X,τ,δ)≤ dimX.

c. wdimε(X,τ,δ) = 0⇔ ε ≥ DiamX

Except for b, the proof of these properties are simple. Before moving on, let us
recall two (fundamental) examples.

Example3.2: Let X be a normed vector space with the distanceδ(x,x′) = ‖x− x′‖ and
τ the norm topology. LetA= BX

1 be its unit ball. Then wdimε(A,τ,δ) = dimX if ε < 1
(see [6, §1.1B] or, for more details, [5, Lemma 2.5]) and wdimε(A,τ,δ) = 0 if ε ≥ 2
(consider the map which sends all ofA to one point).

The second example comes from a question which arises naturally in the context
of compressed sensing, namely we look at a ball for some norm but we endow with a
metric coming from another norm.

Example3.3: Let ℓp(n) denoteRn with its ℓp norm. Then one can look atBℓq(n)
1 ⊂

ℓp(n), and try to compute its wdim. (In compression theory, it is frequent to consider
a ball for some metric endowed with a different metric; see [4].) Whenq≥ p then we
the behaviour is essentially as in the previous example. However, if q < p then one
finds that, for 1≤ k< n,

wdimε(B
ℓp(n)
1 , ℓq)






= 0 if 2 ≤ ε,
≤ k if 2(k+1)1/q−1/p ≤ ε,
≥ k if ε < k1/q−1/p,

= n if ε < n1/q−1/p.

We briefly mention how to obtain these. The first line is a consequence of 3.1.c. The
second is found by using an explicit map described in [5, proposition 1.3] and [18].
This maps takes a vector, keeps only thek biggest coordinates (in absolute value), then
from thesek coordinates take the smallest and substract (or add, so as toreduce in
absolute value) it to the others. Finally, the third line comes from the presence of anℓq

ball of dimensionk and radiusk1/q−1/p in ℓp(n). The fourth line is also obtained using
this argument (forn) together with proposition 3.1.b.

This second set of properties are crucial to what follows.

Proposition 3.4. For i = 1,2, let Xi be spaces endowed with topologiesτi and pseudo-
metricδi .

a. Let f : X1 →X2 be a continuous map such thatδ1(x,x′)≤Cδ2
(

f (x), f (x′)
)

where
C∈]0,∞[. Thenwdimε(X1,τ1,δ1)≤ wdimε/C(X2,τ2,δ2).
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b. A dilation has the expected effect,i.e. let f : X1 → X2 be a homeomorphism such
thatδ1(x,x′) =Cδ2

(
f (x), f (x′)

)
. ThenwdimεX1 = wdimε/CX2.

c. For q ∈ [1,∞[, let X := X1×q X2 be the space X1×X2 endowed with the prod-
uct topology and the pseudo-metricδ := δ1×qδ2 given byδ(x,x′)q = δ1(x,x′)q+
δ2(x,x′)q. Also for q=∞, letδ(x,x′)=max

(
δ1(x′x′),δ2(x,x′)

)
. Thenwdim21/qεX ≤

wdimεX1+wdimεX2.

The proofs can be found in [2, §4.5], [3, Lemma 3.2] or [5, Proposition 2.1]. For
example, the third is obtained by looking at the size of the fibers of the mapf = f1⊕ f2,
wherefi : Xi →Ki satisfy the conditions of definition 2.1 and dimKi =wdimε(Xi ,τi ,δi).

A useful way of stating 3.4.a is that a continuous map that does not reduce distance
will not make wdimε smaller.

3.2 Properties ofdimℓp

Let us begin by two basic examples.

Example3.5: If 1≤ q< p≤ ∞, and Y= Bℓq(Γ;R)
1 thendimℓp(Y,{Ωi}) = 0 (indepen-

dently of the choice of sequence{Ωi}). Indeed,BY,p
r ⊂Bℓq(Γ;R)

r , and wdimε(B
Y,p
r , evℓp(Ωi ))=

wdimε(B
ℓq(ni)
r ′ , ℓp) whereni = |Ωi |. However using example 3.3 (and dilations to get

back to a unit ball, see proposition 3.1.b), wdimε(B
ℓq(ni)
r ′ , ℓp) is, for fixedε, bounded

above and below by two functions that do not depend onni. Thus,

limsup
i→∞

wdimε(B
Y,p
r ,τ∗, evΩi )

|Ωi |
≤ limsup

i→∞

wdimε(B
ℓq(ni), ℓp)

|Ωi |
= 0.

Example3.6: By direct computation, we now show that

dimℓpℓq(Γ;V) = dimV.

Forq∈ [1,∞], letY′ = ℓq(Γ;V). Then(BY′,p
1 , evℓp(Ω)) is “isometric” to(Bℓp(Ω;V)

1 , evℓp(Ω)).
Indeed, the restriction map toΩ has a kernel of “diameter” 0, so property 3.4.a applies
with C = 1. On the other hand, inclusion ofℓp(Ω,V) in ℓp(Γ,V) (by extending the
functions by 0) is also a linear map and property 3.4.a holds again withC= 1. Conse-

quently,(BY′,p
1 , evℓp(Ω)) will have the same wdimε as(Bℓp(Ω;V)

1 , evℓp(Ω)), ∀ε. This later
being a ball with its proper metric, ifε < 1 its wdimε will be the dimension of the
space,|Ω|dimV.

In what follows the total vector space will beY ⊂ ℓp(Γ;V). Thus we will abbreviate
by (BY,p

r , evℓp(Ω)) to mean the setBY,p
r ⊂ ℓp(Γ;V) with the pseudo-normevℓp(Ω) and the

topology induced from the product topology. We stress thatBY,p
r is not the ball for

the pseudo-normevℓp(Ω); it is the intersection ofY with the ball of radiusr in ℓp(Γ)
(endowed with its actual norm). The next property is a corollary of a generalization
of the Ornstein-Weiss lemma described in section 5. Even if proposition 5.2 is a very
important property, weaker version can be sufficient for some of our needs. Indeed, the
following simple lemma is actually all that we need to show that dimℓp is preserved
underΓ-equivariant maps of finite type.
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Lemma 3.7. Let Y be as above, and let{Ωi} and{Ω′
i} be such that

lim
i→∞

|Ωi ∪Ω′
i rΩi ∩Ω′

i |

|Ωi ∪Ω′
i |

= 0,

thenWgcℓp(BY,p
1 , ev,{Ωi}) = Wgcℓp(BY,p

1 , ev,{Ω′
i})

Proof. It suffices to note that, whenΩ ⊂ Ω′,

wdimε(B
Y
1 , evℓp(Ω))

|Ω|
|Ω|
|Ω′|

≤
wdimε(B

Y
1 , evℓp(Ω′))

|Ω′|

≤
wdimε(B

Y
1 , evℓp(Ω))

|Ω|
|Ω|
|Ω′|

+dimV
|Ω′

rΩ|
|Ω′|

.

Furthermore,|Ω|
|Ω′|

= 1− |Ω′
rΩ|

|Ω′|
. Thus, computing Wgc with respect to the sequences

{Ωi ∩Ω′
i}, {Ωi} or {Ω′

i} will yield the same result as a computation made using{Ωi ∪
Ω′

i}.

Proposition 3.8. Let Y⊂ ℓ∞(Γ;V) and Y′ ⊂ ℓ∞(Γ;V ′) beΓ-invariant linear subspaces.
Let f : Y → Y′ be aΓ-equivariant map continuous forτ∗ and such that there exists a
real cf ∈ R>0 and a finite subset Df ⊂ Γ satisfying ev(x,y) ≤ cf evℓp(D f )( f (x), f (y))
then

dimℓp(Y,{Ωi})≤ dimℓp(Y′,{Ωi})

Proof. The casep= ∞ is simpler, we shall only describe the casep< ∞. HereBY′,p
r =

Y′ ∩Bℓp(Γ;V ′)
r . On one hand, sincef is continuous forτ∗ (the product topology or

the weak-∗ topology),∃r f ∈ R>0 such thatf (BY
1) ⊂ BY′,p

r f . Indeed, since the image is
weakly-∗ compact (in particular, weakly-∗ bounded) it is bounded (cf. [16, theorem
3.18]). On the other hand, the assumption satisfied byf on distances propagates by
equivariance to different evaluations:

ev(γx,γy)≤ cf evℓp(D f )( f (γx), f (γy)) = cf evℓp(D f )(γ f (x),γ f (y))
= cf evℓp(D f γ)( f (x), f (y)).

This implies thatevℓp(Ω)(x,y) ≤ cf |D f |evℓp(ΩD f )( f (x), f (y)) and, incidentally, thatf
is injective. Lastly, since the image of the ball (of radius 1) is contained in a ball (of
radiusr f )

wdimε(B
Y,p
1 , evℓp(Ωi))≤ wdimε/cf |D f |(B

Y′,p
r f , evℓp(D f Ωi))

≤ wdimε/cf |D f |r f
(BY′,p

1 , evℓp(ΩiD f )).

The first inequality comes from 3.4.a. Dividing by|D f Ωi |=
|D f Ωi |

|Ωi |
|Ωi | and passing to

the limit yields that

Wgcℓp(BY,p
1 , ev,{Ωi}) limi→∞

|D f Ωi |

|Ωi |
≤ Wgcℓp(BY′,p

1 , ev,{ΩiD f }).
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Since{Ωi} is a Følner sequence, the limit on the left-hand side is 1. Furthermore,
the hypothesis of lemma 3.7 are satisfied; the right-hand term is nothing else than
dimℓp(Y′,{Ωi}).

From now on, we will drop the explicit reference to the Følnersequence.
Since the assumptions of the previous proposition are quiteabstract, it is good to

check that they hold in certain categories of maps. The main constraint is the existence
of cf andD f . Let f be a map to which proposition 3.8 applies. Letf−1 :Y′ = Im f →Y
the inverse off on its image, then the condition

ev(x,y)≤ cf evℓp(D f )( f (x), f (y))

can be read as a condition on the modulus of continuity off−1. More precisely,f−1 :
(Y′, evℓp(D f )) → (Y, ev) must be continuous with a linear modulus of continuity (i.e.

that f−1 must be Lipschitz). If the functionf−1 is continuous for the product topology,
weakening the topology on its image is evidently not restrictive. Things are not so
direct on the domain.

For Ω ⊂ Γ, denote byRΩ : VΓ → VΩ the restriction of functions to the domain
Ω. Let U ⊂ (Y, ev) be an open set; then ifY is seen as a subset ofVΓ, R{eΓ}U is an
open set on the factorR{eΓ}Y, and all ofY on the other factors:RΓ{eΓ}U = RΓ{eΓ}Y.
It is then possible that on a finite number of factors ofY′ ⊂ V ′Γ (the required setD f )
f (U) will not be all the image off : RD f (U) 6= RDY′. For example, forF ⊂ Γ a finite
subset andf = fF of finite type, the condition is thatf : (Y, ev)→ (Y, evℓp(F)) be open
(on its image) and of Lipschitz inverse. Remember that the condition on the distances
in proposition 3.8 andΓ-equivariance imply injectivity of the map. Here is the major
application of proposition 3.8.

Corollary 3.9. Let Y⊂ ℓ∞(Γ;V) and Y′ ⊂ ℓ∞(Γ;V ′) beΓ-invariant linear subspaces.
Let f : Y →Y′ be aΓ-equivariant injective linear map of finite type. Then

dimℓpY ≤ dimℓpY′.

Proof. Let F ⊂ Γ be a finite subset which can be used to definef as a map of finite
type, i.e. f = fF . If f is a linear map, injectivity off implies that it is open on its
image (Banach-Schauder theorem or open mapping theorem) for the norm topologies.
This remains true for the topology ofevon the domain andevp

ℓ (F) on the image as the
first is weaker (its open sets are described above) and the image of open sets is of the
form R−1

F U ′ for U ′ ⊂VF . So f : (Y, ev)→ (Y, evℓp(F)) is open (on its image).
Next, write theΓ-equivariant linear map of finite typef as

x 7→ f (x) such thatf (x)(γ) = ∑
γ′∈F

aγ′
(
x(γ′γ)

)
,

whereaγ′ ∈ Hom(V,V ′). Since it is injective, it possesses aΓ-equivariant linear inverse
(on its image)f−1 = g:

x 7→ g(x) such thatg(x)(γ) = ∑
γ′∈G

bγ′
(
x(γ′γ)

)
,

8



wherebγ′ ∈ Hom(V ′,V) andG⊂ Γ might not be finite.
Then proposition 3.8 can be invoked withD f = F , andcf the Lipschitz constant of

g : (Y′, evF−1)→ (Y, ev). Thuscf ≤ ‖⊕γ∈F−1∩G bγ‖.

Proposition 3.10. Let Y⊂ ℓ∞(Γ;V) be an open linear subspace and letY be its com-
pletion inℓp(Γ;V), thendimℓpY = dimℓpY.

Proof. The argument is identical to that of example 3.5: when restricted to a finite
Ω ⊂ Γ, these two spaces cannot be distinguished (being of finite dimension they are
closed). In other words, there exists a linear map, given by the restrictionRΩ, and
whose kernel is in the “ball” of radius 0:

RΩ : (BY
1 , evℓp(Ω))→ (RΩBY

1 , evℓp(Ω)).

Thus,∀ε ∈ [0,1], wdimε(B
Y,p
1 , evℓp(Ω)) ≤ wdimε(RΩBY,p

1 , evℓp(Ω)). On the other hand,

let s : RΩBY,p
1 → BY,p

1 such thatRΩ ◦ s= Id be determined by an inverse ofRΩY →Y,
thens is a linear map which increases distances. Consequently, wdim ε(RΩBY,p

1 , evℓp(Ω))≤

wdimε(B
Y,p
1 , evℓp(Ω)). Finally, by inclusionY ⊂ Y, we have wdimε(B

Y,p
1 , evℓp(Ω)) ≤

wdimε(B
Y,p
1 , evℓp(Ω)).

If [Γ2 : Γ1] = |G| < ∞, a setY ⊂ ℓp(Γ2;V) is also a set ofℓp(Γ1;VG). Indeed, to
y∈ ℓp(Γ2;V) one can associatei(y) wherei(y)(γ) = (y(γg))g∈G ∈VG. This operation
behaves nicely with dimℓp.

Proposition 3.11. Let Γ1 ⊂ Γ2 be amenable groups and G= Γ2/Γ1 where |G| <
∞, if Y ⊂ ℓp(Γ2;V) is seen by restriction as a linear subspace ofℓp(Γ1;VG) then
|G|dimℓp(Y,Γ2) = dimℓp(Y,Γ1).

Proof. Let {Ω(1)
i } be a Følner sequence forΓ1 and let{Ω(2)

i } = {Ω(1)
i G} be the cor-

responding Følner sequence inΓ2. It is then sufficient to see that(BY2
1 , ev

Ω(2)
i
) is by

construction isometric to(BY1
1 , ev

Ω(1)
i
).

Let us mention a typical problem when one deals withℓp spaces, forp 6= 2, that is
the existence of linear subspaces which are not the image of projection (cf. [12] and
[17]). A characterization of subspaces ofℓp possessing a projection of norm 1 can
be found in [10, I.§2]. We shall briefly discuss the case whereY ⊂ ℓp(Γ;R) is a Γ-
invariant linear subspace on which there exists aΓ-equivariant projection,PY. Then let
y=PYδeΓ whereδeΓ is the Dirac mass ateΓ ∈ Γ, and letq≤ p be such thaty∈ ℓq(Γ;R).
For ax∈ ℓp(Γ;R), write x= ∑kγδγ. By linearity andΓ-equivariance ofPY,

PYx= PY ∑
γ∈Γ

kγδγ = ∑
γ∈Γ

kγPY(γδeΓ) = ∑
γ∈Γ

kγγy

Thus(PYx)(eΓ)= ∑
γ∈Γ

kγy(γ−1). Takingkγ = |y(γ−1)|
q
p−1y(γ−1), it appears that(PYx)(eΓ)=

∑ |y(γ−1)|
q
p+1. This forcesq

p +1≤ q, in other wordsq≤ p′ (wherep′ is the conjugate
exponent top). Whenp> 2, the existence of such a projection means that there exists
in Y an element ofℓp′(Γ;R), which is quite restrictive.
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4 Further properties in special cases

We now discuss property P7, that is ifY is non-trivial then dimℓpY is positive. This
question is difficult as an intuitive proof only works forp = 1. Before we move to
this proof, let us argue why the three following assumptionsseem necessary for it to
hold: Y must be a linear subspace,Y must beΓ-invariant, andY must be contained in
ℓp(Γ;V) for finite p or in c0(Γ;V) if p= ∞. Here are some cases of non-trivialY for
which one of the assumptions does not hold and where dimℓp is 0.

First, supposeY is not a linear subspace. In example 3.5 theℓq balls whereq< p
are shown to have their dimℓp equal to 0. Alternatively, one could also takeY to be the
subset ofℓ∞(Γ;V) given by function with support of cardinality less thank (for a fixed
k∈ Z>0).

Second, ifY is a linear subspace ofℓ∞(Γ;V) but is notΓ-invariant, it could be of
finite dimension, and consequently dimℓp will be trivial.

Last, whenp is finite, the existence of ay ∈ Y whoseℓp norm is finite is only

guaranteed ifY ⊂ ℓp. Without this assumption, it could happen thatY∩Bℓp(Γ;V)
r =

{0},∀r. On the other hand, ifp= ∞, takeY ⊂ ℓ∞(Γ;V) the (Γ-invariant) line generated
by a constant functiony (i.e. such that∃v∈V,∀γ∈Γ,y(γ) = v). Y is 1-dimensional, and
consequently dimℓ∞Y = 0. ButY is not trivial. However, the question for aΓ-invariant
linear subspaceY ⊂ c0(Γ;V) remains interesting.

Fortunately, in theℓ1 case things can be proved without difficulties. As noted before
this method does not extend top> 1.

Proposition 4.1. Let Y⊂ ℓ1(Γ;V) be aΓ-invariant linear subspace, thendimℓ1Y = 0
if and only if Y is trivial.

Proof. This proof requires some results on amenable groups; these can be found in
section 5. If one wants, it is possible to think ofΓ asZn and take finite sets to be
rectangles.

If Y is trivial then dimℓ1Y is obviously 0. Otherwise, let 06= y∈Y and renormalize
it so that‖y‖ℓ1(Γ) = 1. For allε ∈]0,1/2[, ∃F ⊂ Γ finite (which depends ony andε)
such that‖y‖ℓ1(F) > 1− ε (and consequently‖y‖ℓ1(ΓrF) ≤ ε). Then letỹ be identical
to y onF and 0 elsewhere.

For i sufficiently big,Ωi contains a non-emptyρ-quasi-tiling byF (see definition
5.4), sinceF ⊂ Ωi andα(Ωi ;F) tends to 0. Applying lemma 5.5 to find translates of
F which areρ-disjoint, whereρ = 1/2|F|, we obtain a quasi-tiling whose elements
are actually disjoint sinceρ < |F |−1, and the number of such translates is at least
(1−α(Ωi;F))|Ωi |/2|F|.

Let γ j for j ∈ Ji ⊂ Z>0 be the elements by which the setsF are translated for a
ρ-quasi-tiling of Ωi (since theΩi form an increasing sequence and that lemma 5.5
applies to all maximalρ-quasi-tiling, it can be assumed that theJi are increasing). Let
Vi =

〈
γ j y| j ∈ Ji

〉
be the linear subspace generated by the corresponding translates ofy.

Trivially BVi
1 ⊂ BY

1 , and we will construct a map from a ball toBVi
1 . Let

π : ℓ1(Ji ;R) → Vi

(a j) j∈Ji 7→ ∑
j∈Ji

a jγ jy and
π̃ : ℓ1(Ji ;R) → Vi

(a j) j∈Ji 7→ ∑
j∈Ji

a jγ j ỹ

10



With these notations,

‖π̃(a)‖ℓ1(Γ) = ∑
k∈Ji

∥∥∥ ∑
j∈Ji

a jγ j ỹ
∥∥∥
ℓ1(γkF)

= ∑
k∈Ji

∥∥∥akγkỹ
∥∥∥
ℓ1(γkF)

= ∑
k∈Ji

|ak|‖ỹ‖ℓ1(F) = ‖y‖ℓ1(F) ∑
k∈Ji

|ak|.

On the other hand,

‖π̃(a)−π(a)‖ℓ1(Γ) =
∥∥∥ ∑

j∈Ji

a jγ j(ỹ− y)
∥∥∥
ℓ1(Γ)

= ∑
γ∈Γ

∣∣∣ ∑
j∈Ji

a jγ j(ỹ− y)
∣∣∣

≤ ∑
γ∈Γ

∑
j∈Ji

|a jγ j(ỹ(γ)− y(γ))| = ∑
γ∈Γ

∑
j∈Ji

|a j ||ỹ(γ)− y(γ)|

= ∑
j∈Ji

|a j |
(

∑
γ∈Γ

|γ j(ỹ(γ)− y(γ))|
)

= ‖y‖ℓ1(ΓrF) ∑
j∈Ji

|a j |.

The last two computations mean that‖π̃(a)‖ℓ1(Γ) = ‖y‖ℓ1(F) ‖a‖ℓ1(Ji)
and‖π̃(a)−π(a)‖ℓ1(Γ) ≤

‖y‖ℓ1(ΓrF) ‖a‖ℓ1(Ji )
. Thus

(
‖y‖ℓ1(F)−‖y‖ℓ1(ΓrF)

)
‖a‖ℓ1(Ji )

≤ ‖π(a)‖ℓ1(Γ;V) ≤
(
‖y‖ℓ1(F)+ ‖y‖ℓ1(ΓrF)

)
‖a‖ℓ1(Ji )

This means that(BY
1 , evℓ1(Ωi)

) contains, with a controlled distortion, aℓ1 ball (with its

ℓ1 metric) of radius 1 and of dimension12|F | (1−α(Ωi;F))|Ωi |, whence

dimℓ1Y = lim
ε′→0

limsup
i→∞

wdimε′ (B
Y
1 ,ev

ℓ1(Ωi )
)

|Ωi |

≥ lim
ε′→0

limsup
i→∞

1
2|F| (1−α(Ωi;F)) = 1

2|F| .

As required dimℓ1Y > 0.

This result can be extended top> 1 in the special case thatY⊂ ℓp(Γ;V) contains an
element inℓ1 (in particular an element of finite support). By P6, positivity (P7) is also
true for p= 2. Positivity means that if one looks at ap-summable two-sided sequence
y ∈ ℓp(Z;R), the dimension of the space generated byy and sequences obtained by
shiftingy up ton times left or right grows linearly withn. The above result is a simple
consequence that this is true forp= 1, and one is then lead to ask if this can be true for
other values ofp 6= ∞ or in c0.

Even if we cannot show continuity, the following example is worthy of interest. The
sequence of vector subspaces discussed there will not satisfy the continuity property
(P9). This is quite unfortunate, asℓ1 is among the few cases where positivity can be
shown.

Example4.2: We exhibit a decreasing sequence of closed linear subspaces ofℓ1(Z,R),
{Yi}, such that

1= lim
i→∞ dimℓ1Yi 6= dimℓ1 ∩

i→∞
Yi = 0.

Define∀k∈ Z>0,πk : ℓ1(Z;R)→ ℓ∞(Z/kZ;R) in the following way: forn∈ Z/kZ

πk(x)(n) = ∑
i≡n modk

x(i).

11



Continuous linear maps between Banach spaces have a closed kernel (forτ, the norm

topology in ℓ1), thusYj =
j
∩

k=1
kerπk is a decreasing sequence of closed sets (forτ).

To compute dimℓ1, choose the Følner sequenceΩi = [−i, i]∩Z. For a N ∈ N, let
yN ∈ Y1 be such thatyN(0) = 1/2, yN(N) = −1/2 and which is zero elsewhere. Let

Nj = lcm(1,2, . . . , j). For all j, yNj ∈B
Yj
1 . These elements give a map(Bℓ1(Z;R)

1/2 , evℓ1(Ω))

to (B
Yj
1 , evℓ1(Ω)) which possesses fibers of “diameter” 0. They are defined as follows,

y∈ Bℓ1(Z;R)
1/2 is restricted toΩ then extended by 0 outsideΩ. Then, letk∈ Z>0 be such

that kNj is bigger than the diameter ofΩ ⊂ Z, then ỹ(m) = ∑n∈Ω 2ykNj (m− n)y(n)

is an element ofB
Yj
1 . Thence dimℓ1Yj ≥ 1, and as the other inequality is automatic,

dimℓ1Yj = 1.
We claim thatY∞ = ∩Yj = {0}. If this were false, then a non-trivial elementy∈Y∞

would have the property that

∀i ∈ Z,∀n∈ Z,−y(i) = ∑
06=k∈Z

y(i + kn).

To get a contradiction, take the limit whenn→ ∞ and show that it is equal to 0. First
we normalizey so that it is of norm 1 and suppose that|y(i)| > δ for somei. As an
absolutely convergent sequence,y should be concentrated on some set: there existsnδ
such that‖y‖ℓ1(Ωnδ )

≥ 1− δ/2. However whenn> 2nδ +1

|y(i)|=

∣∣∣∣∣ ∑
06=k∈Z

y(i + kn)

∣∣∣∣∣≤ δ/2,

which is a contradiction.Thus dimℓ1Y∞ = 0 whereaslimn→∞ dimℓ1Yn = 1.

Such an possibility is fortunately confined toℓ1; more generally the above con-
struction can be described as follows. LetΓ′ ⊂ Γ be a subgroup of finite index. Let
π : Y →W be aΓ′-invariant linear map fromY ⊂ ℓp(Γ;V) to a finite dimensional vector
spaceW. Then the existence of such a map implies the existence of dimW elements
of ℓp′(Γ;V∗) which are invariant byΓ′. This is impossible ifp′ 6= ∞, as such elements
would not be decreasing at infinity. For such spaces to exists, p′ must be∞.

5 P1 and Ornstein-Weiss’ Lemma

The aim of this section is to show independence (P1) on the choice Følner sequence.
This will be achieved by extending Ornstein-Weiss’ lemma tomeet our needs.

Theorem 5.1. LetΓ be a discrete amenable group, and let a: R≥0×P f inite(Γ)→R≥0

be a function such that,∀Ω,Ω′ ⊂ Γ are finite and∀ε ∈ R>0

(a) a is Γ-invariant, i.e. ∀γ ∈ Γ, a(ε,γΩ) = a(ε,Ω)
(b) a is decreasing inε, i.e. ∀ε′ ≤ ε, a(ε′,Ω)≥ a(ε,Ω)
(c) a is K-sublinear inΩ, i.e. ∃K ∈ R>0, a(ε,Ω)≤ K|Ω|
(d) a is c-subadditive inΩ, i.e. ∃c∈]0,1], a(ε,Ω∪Ω′)≤ a(cε,Ω)+a(cε,Ω′)
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then, for any Følner sequence{Ωi},

lim
ε→0

limsup
i→∞

a(ε,Ωi)

|Ωi |
= lim

ε→0
lim inf

i→∞
a(ε,Ωi)

|Ωi |
.

Furthermore, these limits are independent of the chosen sequence{Ωi}.

Remark that theK-sublinear hypothesis (c) is equivalent to another statement. In-
deed, usingc-subadditivity (d),Γ-invariance (a) and monotonicity inε (b), for all Ω,
a(ε,Ω) ≤ a(c|Ω|ε,eΓ)|Ω| whereeΓ ∈ Γ is the neutral element. Thus if (a), (b) and (d)
hold, then (c)⇔ lim

ε→0
a(ε,eΓ)< ∞.

This understood, the previous theorem is a generalization of the Ornstein-Weiss
lemma. Indeed, the assumptions of the latter, are thata(ε,Ω) = a(Ω) is is sub-additive:
then monotonicity (b) always hold, beingK-sublinear (c) is automatic (see above), and
c-subadditivity (d) is equivalent to usual subadditivity (c= 1).

The proof of theorem 5.1 being quite technical, let us first show why P1 is a conse-
quence of this theorem.

Corollary 5.2. dimℓp is independent of the choice of Følner sequence.

Proof. It suffices to prove that for anyY ⊂ ℓ∞(Γ;V) a Γ-invariant set, theorem 5.1 can
be invoked, wherea(ε,Ω) = wdimε(B

Y,p
r , evℓp(Ω)). Here is why:

(a) By Γ-invariance ofY.

(b) As wdimε is decreasing inε (cf. proposition 3.4.a).

(c) Using proposition 3.1.b wdimε(B
ℓp(Ω)
r , evℓp(Ω)) ≤ |Ω|dimV. Then proposition

3.4.a allows to conclude as(BY,p
r , evℓp(Ω)) can be sent without reducing distance

by a continuous map to(Bℓp(Ω)
r , evℓp(Ω))

(d) Let πi : ℓp(Γ,V)→ ℓp(Ωi ,V), then

π1×π2 : (BY,p
r , evℓp(Ω))→ (BY,p

r , evℓp(Ω1))×p (B
Y,p
r , evℓp(Ω2))

is a linear map that does not reduce distances. Applying proposition 3.4.a and
3.4.c, yields

wdim21/pε(B
Y,p
r , evℓp(Ω))≤ wdimε(B

Y,p
r , evℓp(Ω1))+wdimε(B

Y,p
r , evℓp(Ω2)).

Thence, we conclude thata(ε,Ω) is 2−1/p-subadditive.

The following notations and definitions will be required in our arguments. The
original proof of the Ornstein-Weiss lemma can be found in [13]. The proof that can
be better adapted to our case is however that of [6, §1.3.1] (also explained in [8]).
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Definition5.3. Let Γ be a group, let F⊂ Γ be such that eΓ ∈ F then the F-boundaries
of Ω ⊂ Γ are defined as

∂+F Ω = {γ /∈ Ω|γF ∩Ω 6=∅ andγF ∩Ωc 6=∅} = F−1Ω∩Ωc (outer F-boundary)
∂−F Ω = {γ ∈ Ω|γF ∩Ω 6=∅ andγF ∩Ωc 6=∅} = F−1Ωc∩Ω (inner F-boundary)
∂F Ω = {γ ∈ Γ|γF ∩Ω 6=∅andγF ∩Ωc 6=∅} = ∂+F Ω∪∂−F Ω (F-boundary)
intF Ω = {γ ∈ Γ|γF ⊂ Ω} = Ωr ∂−F Ω (F-interior)
ferF Ω = {γ ∈ Γ|γF ∩Ω 6=∅} = Ω∪∂+F Ω (F-closure).

Moreover, let| · | denote a measure onΓ. The relative amenability function will be

defined asα(Ω;F) = |∂F Ω|
|Ω| , given that these numbers are finite.

Before we move on to technical results, observe that the Følner conditions implies
thatα(Ωi ;F)→ 0 for any finite setF and any Følner sequence{Ωi}. Another useful
property is that ifF ′ ⊂ F , thenα(Ω;F ′) ≤ α(Ω;F) since∂F ′Ω ⊂ ∂FΩ. We start by
showing covering properties of big sets by smaller sets.

Definition 5.4. Let ε ∈]0,1[. Subsets Fi of finite measure ofΓ will be saidε-disjoint if
there exists F′i ⊂ Fi which are disjoint and such that|F ′

i | ≥ (1− ε)|Fi| and∪F ′
i = ∪Fi .

A subset of finite measureΩ will be said to admit anε-quasi-tiling by the subsets
Fi if

(a) Fi ⊂ Ω,

(b) the Fi areε-disjoint,

Here is a first lemma which studies the proportion of a setΩ covered by anε-quasi-
tiling of translates of another setF.

Lemma 5.5. LetΓ be a discrete group endowed with the counting measure, denoted by
| · |. LetΩ ⊂ Γ and eΓ ∈ F ⊂ Γ both finite sets and such thatα(Ω;F)< 1. Let{γi}1≤i≤k

be a maximal sequence of elements ofΓ such that theγiF form anε-quasi-tiling ofΩ.

Let Ui
F =

i
∪
j=1

γ jF, then

|Uk
F |

|Ω|
≥ ε(1−α(Ω;F)).

Proof. (This proof corresponds to the first part of the proof of the Ornstein-Weiss
lemma in [6, §1.3.1].) We shall use this general fact:

∫
Γ
|G1∩ γG2|dµ(γ) =

∫
Γ

∫
Γ
1lG1∩γG2(γ′)dµ(γ′)dµ(γ)

=
∫

Γ

∫
Γ
1lG1(γ′)1lG2(γ′γ−1)dµ(γ)dµ(γ′)

=

∫
Γ
1lG1(γ′)

(∫
Γ
1lG2(γ′γ−1)dµ(γ)

)
dµ(γ′)

=

∫
Γ
1lG1(γ

′)|G2|dµ(γ′)
= |G1||G2|.
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Thus,

|intF Ω|−1
∫

intF Ω
|Uk

F ∩γF |dµ(γ)≤ |intF Ω|−1
∫

Γ
|Uk

F ∩γF |dµ(γ)≤ (1−α(Ω;F))−1|Ω|−1|Uk
F ||F |.

Clearly, |U i−1
F ∩ γiF | ≤ ε|F |, as theγiF areε-disjoint. On the other hand, maximality

of k implies that∀γ ∈ intF Ω, |Uk
F ∩ γF | ≥ ε|F |. We then observe that

|intFΩ|−1
∫

intF Ω
|Uk

F ∩ γF |dµ(γ)≥ ε|F |.

Consequently,ε(1−α(Ω;F))≤ |Uk
F |/|Ω|.

Note that the quasi-tiling can be empty ifα(Ω;F) = 1. More precisely, the proof

actually works forα−(Ω;F) =
|∂−F Ω|
|Ω| instead ofα. It has the advantage that intF Ω 6=

∅ implies thatα−(Ω;F) < 1 and the quasi-tiling is non-empty. In any case, in the
upcoming applications,F will always be contained inΩ. The three following lemmas
are technical ingredients which will be used in the proof of the generalisation of the
Ornstein-Weiss lemma.

Lemma 5.6. LetΩ′ ⊂ Ω ⊂ Γ and F⊂ Γ be finite. Suppose that there existsε such that
|ΩrΩ′| ≥ ε|Ω|, then

α(ΩrΩ′;F)≤
α(Ω′;F)+α(Ω;F)

ε
.

Proof. Since |∂F(Ω r Ω′)| ≤ |∂FΩ|+ |∂F Ω′| = α(Ω;F)|Ω|+ α(Ω′;F)|Ω′|, and that
|ΩrΩ′| ≥ ε|Ω| ≥ ε|Ω′|, a substitution yields

α(ΩrΩ′;F) =
|∂F(ΩrΩ′)|

|ΩrΩ′|
≤

α(Ω;F)|Ω|

ε|Ω|
+

α(Ω′;F)|Ω′|

ε|Ω′|
.

Lemma 5.7. Let F ⊂ Γ be finite, and let{Di}1≤i≤n be anε-disjoint family of subsets.
Then

α(∪Di ;F)≤
max(α(Di ;F))

1− ε

Proof. Since∂F(∪Di)⊂ ∪∂FDi , we obtain that

|∂F(∪Di)| ≤ ∑ |∂FDi | ≤ ∑α(Di ;F) |Di | ≤ max(α(Di ;F))∑ |Di |

However(1− ε)∑ |Di | ≤ |∪Di | as they areε-disjoint. Thus

α(∪Di ;F) =
∂F(∪Di)

|∪Di |
≤

max(α(Di ;F))

1− ε
.

The last lemma is an adaptation of a useful property ofZ to general amenable
group: for the typical Følner sequence forZ Ii = [−i, i], any sufficiently big interval in
this family is covered (except for small bits) by translatesof theIi .
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Lemma 5.8. Let {Fi} be a Følner sequence, letδ ∈]0,1/2[. Then there exists a sub-
sequence (which depends onδ) {Fni}, an integer N(δ), and a sequence of integers
{ki}1≤i≤N such that for all setΩ which contains FnN and satisfiesα(Ω,FnN) ≤ 2δ2N

there exists a familyG of δ-disjoint sets such that| ∪
F∈G

F | ≥ (1−δ)|Ω| andG consists

in ki translates of the sets Fni

Proof. (We write the argument of [6, §1.3.1], see also [8]; the original result can be
found in [13].) In order to better show how the constants enter the proof, we denote
ε1 = δ2N, ε2 = 2δ2N andρ = δ. First,∀ε1 ∈]0,1[, it is possible to refine the sequence
{Fi} to have

α(Fi+1,Fi)≤ ε1.

Now, let Ω(1) = Ω so thatα(Ω(1),Fn) ≤ ε2, wheren will be determined later on. We
will cover Ω(1) to a proportion of 1− δ by almost disjoint translates of theFi, where
1≤ i ≤ n, in n steps (or less). For anyρ ∈]0, 1

2[, lemma 5.5 gives aρ-quasi-tiling of

Ω(1) by kn translates ofFn such that|Ukn
Fn
| ≥ ρ(1− ε2)|Ω(1)|. Let Ω(2) = Ω(1)

rUkn
Fn

,

then|Ω(2)| ≤ (1−ρ+ ε2ρ)|Ω(1)|.
If |Ω(2)| ≤ δ|Ω(1)| the goal is achieved and there is no need to continue. Otherwise,

lemma 5.6 then lemma 5.7 shows that

α(Ω(2),Fn−1)≤
1
δ
(ε1+α(Ukn

Fn
;Fn−1))≤

1
δ
(ε1+

ε1

1−ρ
)≤ 3

ε1

δ
.

It is now possible to recoverΩ(2) by aρ-quasi-tiling ofkn−1 translates ofFn−1 in such
a way that|Ukn−1

Fn−1
| ≥ ρ(1−3ε1

δ )|Ω
(2)|. We now have a setΩ(3) such that

|Ω(3)| ≤ (1−ρ−3ρ
ε1

δ
)|Ω(2)| ≤ (1−ρ+ ε2ρ)(1−ρ+ρ

3ε1

δ
)|Ω(1)|

We will now takeε2 = 2ε1. Proceeding by induction, as long as|Ω(i−1)| ≥ ε|Ω(1)|, the
setΩ(i) (for 1≤ i ≤ n) will have the following properties:

1. α(Ω(i),Fn−i+1)≤ (1+ i)ε1/δi−1

2. Ukn−i+1
Fn−i+1

is aρ-quasi-tiling ofΩ(i) by translates ofFn−i+1

3. If Ω(i+1) = Ω(i)
rUkn−i+1

Fn−i+1
then|Ω(i+1)| ≤ |Ω(1)|

i
∏
j=1

(1−ρ(1− (1+ j)ε1/δ j−1))

Since it is not possible to hope that this process terminatesbeforei = n, it remains to
be checked that ifn is big enough, we still get a quasi-tiling that covers(1− δ)|Ω(1)|
elements. To achieve this, observe that the product in the third property above can be
bounded ifi = n by

n

∏
j=1

(1−ρ(1− (1+ j)ε1/δ j−1))≤ (1−ρ(1− (1+n)ε1/δn−1))n.
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For ε1 = δ2n, the right-hand term tends to 0 whenn tends to∞. Thus,∃N(δ,ρ) such
that if ε1 = δ2N translates ofFj (where 1≤ j ≤ N) form aρ-quasi-tiling of any setΩ(1)

such thatα(Ω(1);FN)≤ δ2N.
We substitute as promisedρ = δ to have: for any fixedδ, we choose a subsequence

whose members satisfyα(Fni+1,Fni )≤ δ2N whereN is such that

(1− δ(1− (1+N)δN+1))N < δ.

Then successive applications of lemma 5.5 give the requiredtranslates ofFni .

We are now ready to prove the main result of this section. At a first reading, this
proof might be easier to understand withΓ = Z in mind (takingΩn = [−n,n]∩Z).

Proof of theorem 5.1.Let us first introduce some notations for the functions givenby
pointwise convergence and their limits. Let{Ω+,ε

i } and{Ω−,ε
i } be subsequences of

{Ωi} such that

lim
i→∞

a(ε,Ω+,ε
i )

|Ω+,ε
i |

= limsup
i→∞

a(ε,Ωi)

|Ωi |
and lim

i→∞
a(ε,Ω−,ε

i )

|Ω−,ε
i |

= lim inf
i→∞

a(ε,Ωi)

|Ωi |
.

Using (c), these limits are respectively real numbersl+(ε) andl−(ε) belonging to the
interval[0,K]. Furthermore, let

l+ := lim
ε→0

l+(ε) and l− := lim
ε→0

l−(ε).

Trivially, l+(ε) ≥ l−(ε), but nothing forcesl±(0) = l± (in general, equality is not
expected). If we try to use the usual argument directly, a problem arises due to thec-
subadditivity. Indeed, taking a sequence which converges to l+(ε) and decomposing it
using another sequence which converges tol−(ε) by subadditivity will fail. A factor of
c will appear in front of theε (see(d)), and this would force to pass from the sequence
Ω−,ε

i to Ω−,cε
i at each step. Diagonal arguments settle this problem. Let

bi(ε) =
a(ε,Ω−,1/i

i )

|Ω−,1/i
i |

.

This is a sequence of bounded decreasing functions defined for ε ∈ [0,1] with value in
[0,K]. Using (one of) Helly’s theorem (cf. [7, §36.5 theorem 5, p.372]), there exists
a subsequenceni which possesses a limit at each point. We briefly recall how this
subsequence is obtained. First, a sequence{rk}k≥1 of dense rational number in[0,1]

is taken. Since thebi(ε) are bounded, letn( j)
i be the subsequence which converges at

rk for 1≤ k ≤ j. The diagonal sequenceni = n(i)i converges at eachrk, and since the
functionsbi(ε) are decreasing, the functionlH(ε) = lim

i→∞ bni (ε) which is a priori only

defined for therk is also decreasing. It remains to be checked thatlH(ε) extended at
all the points of[0,1] by approximating by a sequence of increasingrk is the actual
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limit of the subsequenceni (see the above reference for details). Let us show that
lim
ε→0

lH(ε) = l−. This follows from

∀δ > 0,∃N1(δ) such thatN1(δ)< i ⇒ |bni (
1
ni
)− lH( 1

ni
)|< δ;

∀δ > 0,∃N2(δ) such thatN2(δ)< i ⇒ |bni (
1
ni
)− l−( 1

ni
)|< δ;

∀δ > 0,∃N3(δ) such thatN3(δ)< i ⇒ |l−( 1
ni
)− l−|< δ.

lH(ε) is decreasing inε ⇒ lim
ε→0

lH(ε) = lim
i→∞ lH( 1

ni
)

These four assertions are respectively consequences of thedefinition of lH , the choice

of Ω−,1/i
i , the definition ofl−, and the fact that a limit that exists (thanks to monotonic-

ity) is achieved by any sequence. We shall now show that

∀δ > 0, l+(ε)≤ lim
ε′→0

lH(ε′)+ δ = l−+ δ.

The argument is in essence the same as for subadditive sequences of real numbers:
lemma 5.8 plays the role of the decompositionn= kn′+ r andc-subadditivity (d) forces
ε → 0.

Let δ ∈]0, 1
2[. Denote byFi = Ω−,1/ni

ni . It is possible to refine this sequence so that

a(ε,Fi)/|Fi | ≤ lH(ε)+ δ.

Applying lemma 5.8 gives anε-quasi-tiling (which does not cover a set of proportion
δ) of any sufficiently big set by translates of theFi . Since{Ω+,ε

i } is also a Følner
sequence, fori big enough, lemma 5.8 applies to each element. TakeΩ = Ω+,ε

i , denote
γFj ;mFj thek j translates ofFj obtained (m= 1, . . . ,k j ), and leti0 be such that|Ω(i0)| ≤

δ|Ω(1)|. Thanks to repeated use ofc-subadditivity (d), we have that

a(ε,Ω(1)) ≤
kn

∑
m=1

a(cmε,γFn;mFn)+a(cknε,Ω(2))

≤ . . .

≤
n

∑
i=n−i0

( ki

∑
m=1

a(cκi+mε,γFi ;mFi)
)
+a(cκi0ε,Ω(i0)),

whereκi =
n
∑

j=n−i
kn. UsingΓ-invariance (a), the fact that these functions are decreasing

in ε (b), and theK-sublinear property (c), this inequality yields

a(ε,Ω(1))≤
n

∑
i=n−i0

( ki

∑
m=1

a(cκi0 ε,Fi)
)
+K|Ω(i0)|.

On one hand,|Ω(i0)| ≤ δ|Ω(1)| and a(c
κi0 ε,Fi)
|Fi |

≤ lH(cκi0)+ δ. Thence,

a(ε,Ω(1))

|Ω(1)|
≤ ∑

i,m

a(cκi0 ε,Fi)
|Fi |

|γFi ;mFi |

|Ω(1)|
+K

|Ω(i0)|

|Ω(1)|

≤ (lH(cκi0)+ δ)∑
i,m

|γFi ;mFi|

|Ω(1)|
+Kδ
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On the other hand, the{γFi ;mFi} areδ-disjoint. Thus(1− δ)∑ |γFi ;mFi | ≤ |∪ γFi ;mFi| ≤

|Ω(1)|. This shows that

a(ε,Ω+,ε
j )

|Ω+,ε
j |

≤ (lH(cκi0)+ δ)∑
i,l

|γFi ;l Fi |

|Ω(1)|
+Kδ ≤

lH(cκi0)+ δ
1− δ

+Kδ,

For all Ω+,ε
j big enough, whereκi0 depends onΩ+,ε

j . SincelH(ε) is decreasing and
lim
ε→0

lH(ε) = l−, taking the limit whenj andκi0 → ∞ is not a problem:

l+(ε)≤ l−+ δ(K+ l−+1).

We have shown thatl+ = l−. To deduce the independence on the choice of sequence,
notice that given two Følner sequences{Ωi} and{Ω′

i}, the sequence{Ω̃i} whose el-
ements alternate between those of the two former sequences will also possess a limit.
The limit obtained with{Ωi} must be equal to the one taken via{Ωi} or {Ω′

i}.

Appendix A Von Neumann’s dimension anddimℓ2

We recall an argument of Gromov (see [6, §1.12]) that relatesvon Neumann to the
semi-axis of ellipsoids and thus showing that dimℓ2 is indeed von Neumann dimension.
We briefly review the definition of the latter.

Let Y ⊂ ℓ2(Γ;Rs)⊂ (Rs)Γ be aΓ-invariant linear subspace,∀Ω ⊂ Γ we define the
operatorRΩ : Y → (Rs)Ω

ℓ2 by restriction toΩ: y 7→ y|Ω. Its adjointR∗
Ω : (Rs)Ω

ℓ2 → Y
is the orthogonal projection toY. To see this, writeRΩ(y) = y1lΩ where 1lΩ is the
characteristic function ofΩ, then

〈R∗
Ω(x),y〉 := 〈x,RΩy〉=

∫
Γ
xy1lΩ =

∫
Γ
(1lΩx)y.

However this last expression is simply the scalar product ofx, extended as a function
on all of Γ by 0, with y. Thus,R∗

Ω(x) is the projection onY of the extension ofx to
Γ by 0. In what follows we will omit this inclusion (extension by 0) fromVΩ

ℓ2 to VΩ′

ℓ2

whenΩ ⊂ Ω′. Dependence onΩ of R∗
Ω will not be written. A crucial remark is that the

invariance ofY by Γ implies that, forΩ,Ω′ ⊂ Γ finite subsets,

TrRΩR∗

TrRΩ′R∗ =
|Ω|

|Ω′|
.

A possible definition of von Neumann dimension (see [11] or [14, §1]) is

dimℓ2(Y : Γ) := |Ω|−1TrRΩR∗

for a Ω ⊂ Γ. This quantity is actually independent of the chosen set. The aim of this
section is to retrieve this quantity as the wdim of a certain object.
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Theorem A.1. (cf. [6, 1.12A]) LetΩi ⊂ Γ be a Følner sequence, let ni[a,b] be the
number of eigenvalues of the operator RΩi R

∗ (defined relative to Y) contained in the
interval [a,b]. If 0< a≤ b< 1, then

lim
i→∞

ni [a,b]
|Ωi |

= 0

Proof. (The proof is with minor differences in notation that of [6].) SinceRΩ andR∗

are both projections (inℓ2), the eigenvalues ofRΩR∗ will be contained in[0,1]. The
proof proceeds in three steps.

First, let x∈ ℓ2(Ω;Rs), it will be called anε-quasimode of eigenvalueλ for RΩR∗

if
‖RΩR∗x−λx‖ℓ2 ≤ ε‖x‖ℓ2 . (1)

If x is such an element, and if its restriction outsideΩ is small, more precisely
∥∥R∗x|ΓrΩ

∥∥
ℓ2 = ‖R∗x−RΩR∗x‖ℓ2 ≤ δ‖x‖ℓ2 , (2)

thenλ(1−λ)≤ 2ε+δ. Indeed, using (1) in (2) yields that‖R∗x−λx‖ℓ2 ≤ (δ+ε)‖x‖ℓ2.
SinceR∗ is a projection,R∗R∗ = R∗ and‖R∗‖= 1, whence

(1−λ)‖R∗x‖ℓ2 = ‖R∗x−R∗λx‖ℓ2 = ‖R∗(R∗x−λx)‖ℓ2 ≤‖R∗x−λx‖ℓ2 ≤ (δ+ε)‖x‖ℓ2 ,

since the eigenvalues ofRΩR∗ are all contained in[0,1], |1−λ| = 1−λ. Moreover
the restriction toΩ can only reduce the norm,‖RΩR∗x‖ℓ2 ≤ ‖R∗x‖ℓ2. Using (1) anew
gives,

(1−λ)λ‖x‖ℓ2 ≤ (1−λ)‖RΩR∗x‖ℓ2 +(1−λ)ε‖x‖ℓ2 ≤ (δ+(2−λ)ε)‖x‖ℓ2

Second,denote byΩ−ρ ⊂ Ω the ρ-interior of Ω, i.e. the set of points with distance
at leastρ from a point outside ofΩ, where the distance onΓ is the word distance
for any fixed generating set. The next argument will consist in showing that most of
x∈ ℓ2(Ω−ρ;V) have a small projection toΓrΩ. Precisely, let

Sρ = RΓrΩR∗ = (1−RΩ)R
∗ : ℓ2(Ω−ρ;Rs)→ ℓ2(ΓrΩ),

then TrS∗ρSρ ≤ sβ0(ρ)|Ω−ρ| whereβ0(ρ) tends to 0 whenρ → ∞. The dependence on
ρ does not only come from the domain of definition: the operatorS∗ρSρ is

S∗ρSρ = RΩ−ρ(1−R∗)(1−RΩ)R∗

= (RΩ−ρ −RΩ−ρR∗)(R∗−RΩR∗)
= (RΩ−ρR∗−RΩ−ρR∗R∗−RΩ−ρRΩR∗+RΩ−ρR∗RΩR∗)
= RΩ−ρR∗(1−RΩR∗).

Any Dirac massxγ with support at a pointγ satisfies
∥∥R∗xγ

∥∥
ℓ2 ≤ 1 (R∗ is a pro-

jection). Thus, ifBρ(γ) is the ball of radiusρ, ‖(1−RBρ(γ))R
∗xγ‖ℓ2 ≤ β0(ρ), with

lim
ρ→∞ β0(ρ) = 0. Consequently

∥∥Sρxγ
∥∥
ℓ2 ≤ β0(ρ) sinceΓrΩ is contained in the com-

plement of the union of theBρ(γ) for γ ∈ Ω−ρ. Since‖S∗ρ‖ ≤ 1, ‖S∗ρSρxγ‖ℓ2 ≤ β0(ρ).
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The Dirac masses being an orthonormal basis forℓ2(Ω−ρ;Rs), we get that TrS∗ρSρ ≤

sβ0(ρ)|Ω−ρ|.
Last, we shall evaluateni [a,b] for a,b ∈]0,1[ and b− a = ε ∈]0,1[. Let Xi be

the space generated by eigenvectors ofRΩi R
∗ whose eigenvalue is in[a,b]. Then,

∀λ ∈ [a,b],∀x ∈ Xi , x is an ε-quasimode of eigenvalueλ for RΩi R
∗. The evalua-

tion of dimXi will be done by looking at spaces whose dimension is close. IfXρ
i =

Xi ∩ ℓ2(Ω−ρ
i ,V) is the subspace of elements which vanish on the thickened boundary,

dimXi −dimXρ
i ≤ s|Ωi rΩ−ρ

i |. The amenability used onΩi shows that this difference
is negligible,lim

i→∞ (dimXi −dimXρ
i )/|Ωi |= 0; it will suffice to evaluate dimXρ

i .

Unfortunately, neitherXρ
i nor Xi is a priori invariant byS∗ρSρ. Let’s nevertheless

look at the intersection ofXρ
i with the space generated by eigenvectors ofS∗ρSρ of

eigenvalue≤ β2; we will denote this new intersection byXρ,β
i . On this space,

∥∥Sρ
∥∥≤ β

since ∥∥Sρx
∥∥2
ℓ2 = 〈Sρx,Sρx〉= 〈x,S∗ρSρx〉 ≤ β2‖x‖2

ℓ2

Yet again, this space is of dimension close to that ofXρ
i : if V>β2

is the space of eigen-
vectors ofS∗ρSρ whose eigenvalue is greater thanβ2, then

dimXρ
i −dimXρ,β

i ≤ dimV>β2
≤ β−2TrS∗ρSρ ≤ s|Ω−ρ

i |β0(ρ)/β2.

In other words,

∀β > 0,∀α > 0,∃ρ such thatlimsup
i→∞

dimXρ
i −dimXρ,β

i

|Ωi |
≤ α,

Thus, it remains to evaluate dimXρ,β
i . To do so, we use the conclusion of the first part

for λ = a andε = b−a: this yieldsa(1−a) ≤ 2(b−a)+β given that dimXρ,β
i > 0.

Consequently, the inequalityb−a< (a−a2−β)/2 implies that dimXρ,β
i = 0. Which

means that whenρ ≥ ρ0(β,α) is sufficiently big,limsup
i→∞

dimXρ
i /|Ωi| ≤ α. It follows

that

limsup
i→∞

dimXi
|Ωi |

≤ limsup
i→∞

dimXi −dimXρ
i

|Ωi |
+ limsup

i→∞

dimXρ
i

|Ωi |

≤ 0+ limsup
i→∞

dimXρ
i −dimXρ,β

i
|Ωi |

+ limsup
i→∞

dimXρ
i

|Ωi |
= 0

sinceα → 0 whenρ→∞. This proves the theorem for intervals[a,b] satisfyingb−a<
a(1−a)/2, as the size ofβ in not constrained. The conclusion is obtained by noticing
that any interval strictly contained in[0,1] can be covered by intervals of this type.

This property enables us interpret von Neumann dimension asa wdim for a set
with a chosen pseudo-metric.

Corollary A.2. (cf. [6, corollary 1.12.2]) Let Y⊂ ℓ2(Γ;V) be an invariant subspace,

let BY
1 = Y∩Bℓ2(Γ;V)

1 the intersection of the unit ball with Y . Then, for a given Følner
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sequenceΩi ⊂ Γ,

∀ε ∈]0,1[, lim
i→∞

1
|Ωi |

wdimε(RΩi B
Y
1 , ℓ

2) = dimℓ2Y

Proof. (We give the argument of [6] in detail.) To get this resultRΩBY
1 must be seen

as an ellipsoid whose semi-axes are related to the eigenvalues ofRΩR∗. Remark that

BY
1 = R∗Bℓ2(Γ;V)

1 . Then, an ellipsoid can be defined as the image of a ball by an self-
adjoint operator, sayA; the semi-axis of this ellipsoid are in correspondence withthe
eigenvalue ofA. It might be worth recalling how this relates to the usual definition
of an ellipsoidE (as the set{y| 〈y,Py〉 ≤ 1} for a positive definite operatorP). The
semi-axes ofE are of the formλi(P)−1/2 for λi(P) an eigenvalue ofP. Indeed let
BV be a ball in a vector spaceV, and letA : V → V be self-adjoint. Restricting to
V ′ = ImA = kerA⊥ ⊂ V, it must be shown that forx ∈ V ′ such that〈x,x〉 ≤ 1, there
existsP : V ′ →V ′ positive definite such that〈Ax,PAx〉 ≤ 1. TakingP= A−2 yields the
conclusion:A−2 is a positive definite operator onV ′ whose eigenvalues areλi(A)−2.
ThusABV is an ellipsoid with semi-axisλi(P)−1/2 = λi(A).

In our present context,RΩR∗ is self-adjoint, thusRΩR∗Bℓ2(Γ;V)
1 = RΩBY

1 is an ellip-
soid whose semi-axis are the eigenvalues ofRΩR∗. This ellipsoid contains isometrically
the ball obtained by ignoring the semi-axis of length< ε and replacing the remaining
ones by semi-axis of lengthε. Thus wdimε(RΩi B

Y
1 , ℓ

2) ≥ ni [ε,1]. On the other hand,
wdimε(RΩi B

Y
1 , ℓ

2) ≤ ni[ε/2,1], as the continuous map obtained by projecting on the
sub-ellipsoid formed by the semi-axis of length> ε/2 indicates. Wheni → ∞, the
eigenvalues ofRΩi R

∗ tend to 0 or 1. In particular, wheni → ∞ the inequality

1
|Ωi |

ni [ε,1]≤
1

|Ωi |
wdimε(RΩi B, ℓ

2)≤
1

|Ωi |
ni [ε/2,1]

shows thatlim
i→∞

1
|Ωi |

wdimε(RΩi B
Y
1 , ℓ

2) = dimℓ2Y, sinceni [a,1]→ TrRΩi R
∗.

This corollary can be expressed in terms ofℓp dimension. Indeed, letBY
1 = Y∩

Bℓ2(Γ;V)
1 be endowed with the pseudo-metric of evaluation ate∈Γ: ev(x,y)= ‖x(e)− y(e)‖V .

Translation of this pseudo-metric by an element ofγ is the evaluation atγ. Thus,
evℓ2(Ω)(x,y) = ‖x− y‖ℓ2(Ω) = ‖RΩ(x− y)‖ℓ2. The mapRΩ : BY

1 → RΩB is continuous

for the topology ofBY
1 as a subset ofℓp (with τ∗ or even with the norm topology). The

fibers are of “diameter” 0 given thatΩ′ ⊂ Ω. Thus, corollary A.2 can be expressed as
follows:

Wgcℓ2(BY
1 ,τ

∗, ev,{Ωi}) = dimℓ2Y.

Indeed,RΩi B
Y
1 injects isometrically in(BY

1 , evΩi ) and (BY
1 , evΩi ) possesses a map to

RΩi B
Y
1 whose fiber are of “diameter” 0. Thus wdimε(BY

1 , evΩi ) = wdimε(RΩi B
Y
1 , ℓ

2).
This shows that definition 2.3 is equivalent whenp= 2 to the von Neumann dimension
and this for any Følner sequence{Ωi} chosen.

It would have been surprising that this were not the case in general. An alteration
of the Ornstein-Weiss lemma (see section 5) enables to show the independence of the
limit on the sequence chosen.
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