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Abstract

Let " be an amenable group aNdbe a finite dimensional vector space. Gro-
mov pointed out that the von Neumann dimension (with resfe) can be ob-
tained by looking at the semi-axes of certain ellipsoidsis Thetric point of view
does not requires a Hilbertian structure. It is used in thigla to associate to a
I-invariant linear subspacésof ¢P(I";V) a real positive number digY (which
is the von Neumann dimension wher= 2). By analogy with von Neumann di-
mension, we explore the properties of this number to corcthdt there can be
no injectivel -equivariant linear map of finite-type frol?(";V) — ¢P(I; V') if
dimV > dimV’. A generalization of the Ornstein-Weiss lemma is develagledg
the way.

1 Introduction

Let " be a discrete group, then it is possible to associate toiceartatary repre-
sentations a positive real number called von Neumann dimmeifsee[[11, 81] or [14,
81]). More precisely, lef : ' — X be a map. The natural (right) actionlofon spaces
of maps means is, in the present text, the action givepfpy = f(y~1-). Now, letH
be a Hilbert space and consider the sp&¢E) @ H wherel™ acts naturally on the first
factor and trivially on the second. Then, the von Neumannedision is defined for
I -invariant subspaces 6#(I") @ H.

LetV be afinite dimensional vector space afid| a norm (the choice of which will
not matter as the dimension is finite). The subject mattenigdrticle ard -invariant
linear subspaces of

PV) =PV ={f:T V| Z || f(y)||P is finite}
ye

for the natural action of. From now onl" will be assumed amenable. There are
reasons to exclude non-amenable groupindeed, D. Gaboriau pointed out that if a
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notion of dimension existed in the setting (that is, a quantity satisfying properties

P1-P10 listed below), then there would be a formula for thieEzharacteristic of as

the alternate sum of the dimensions¢8fcohomology spaces. On one hand, torsion-
free cocompact lattices i8Q(4,1) have positive Euler characteristic. On the other,

for p big enough, thei¥® cohomology vanishes in all degrees but the first (5eé [15,
Theorem 2.1]). This would lead to a contradiction.

We are looking for a notion of dimension for such subspacesg;iwwould increase
under injective equivariant linear maps. Inspired by awargnt of [6, §1.12] (and par-
tially answering a question found therein), we shall introgla quantity din» which,
when p = 2, coincides with definition of von Neumann dimension. Thisatity is
obtained by a process similar to that of metric entropy ormmienension, that is an
asymptotic growth factor. The definition reliaspriori on an exhaustion df, but a
generalization of the Ornstein-Weiss lemma in sedtion Jiesfthe result is indepen-
dent of this choice.

Though we prove many properties of dimimportant properties are still lacking.
Nevertheless, the results obtained in this paper sufficgtédiish a non existence result
for maps of finite type. We recall their construction.

LetD c I be afinite set and Igt: V® — V' be a continuous map. This data enables
the definition of a -equivariant continuous magp from Z C ¢P(T";V) to £P(I";V') as
follows

9o (2)(Y) = 9(z(¥d))sep-

Remark that what we denote here/8d™;V) is more frequently writtedi(IN) @ V.

Theorem 1.1. Letl" be an amenable discrete group. LetV aridb¥ finite dimensional
vector spaces. If f¢P(I";V) — ¢P(T,V’) is an injectivel -equivariant linear map of
finite type themimV < dimV’.

2 Definition and properties of dimgp

Given a positive numbeg, a notion of dimension up to scadefor (X, 1,0) a topo-
logical space equipped with a pseudo-distance will be reeddata compression prob-
lems turn out to be a good source of inspiration. When ondésested in compression
algorithms, it is not only important that the compressiomprhas “small” fibers (so that
not too much data is lost) but also has an image which is “Snimedlome sense (so that
the compression is effective).

A slight variant of the one used ihl[5].1[6], dr [18] shall be gloyed, namely one
that is defined for pseudo-distances only. As such, it wilubeful to use a topology
T that does not come from the pseudo-distance. Please natthéhterm diameter
(denoted Diam) will continue to be used even if it is definethgs pseudo-distance
(thus a set of diameter 0 may contain more than one point).

Definition2.1. Let (X, T,d) be a metric space. Calldim¢(X,1,) the smallest integer
k such that there exists a continuous (fpmap f: X — K where K is a k-dimensional
polyhedron such thatk € K, Diamf~1(k) <.

wdimg(X,T,0) = . >i(an{dimK|f is continuous forr andvk € K, Diamf (k) < €}.
K=



We will sometimes omit to mentionwhen it is the topology induced ky

Definition 2.2. Let (X,1,0) be a space endowed with a topologyand a pseudo-
distanced. Letl" be a countable group which acts on X and{&;} be an increasing
sequence of finite subsetdofThe/P(I") width growth coefficient of X for the sequence
{Qi} is

Lo wdime (X, T,0p(q,
WgCZp(XvTv{Qi}) = x!:m)“mSUp E( EP(QI)) S [O, "FOO].

i—00 |Qi|

/P when p< o anddpe(q) (x,X') = seugpé(yx, yX).

whered;p(q) (%, X) = ( 3 8(yx,yx')P)
yeQ

When?d is a distanced,-(q) is but the dynamical distance. If furthermarés the
topology this distance induces, then this is the (metrichmgimension (se€|[6, §1.5]
or [9, 84]). In the present text, this is an intermediate diédin and will only be used
in a particular context, namely whexis a subset of*(I";V).The pseudo-metric will
be given by evaluation at the neutral elemenif I': eMx,X) = ||x(er) — X (er)|ly-
Lastly, T will denote the product topology induced froic V' (which coincides
with the weakx topology, when defined).

Definition 2.3. Let V be a finite-dimensional normed vector space. Let¥°(I";V)
be a subset invariant by the natural actionlgfan amenable countable group. L@t
be a Faglner sequence fér. Then, theP von Neumann dimension of Y is defined by

dimyo (Y, {Qi}) = SUP WGy (BY?, ev {Q1})
>0

where BP =y nB/ ™V,

Note thatB)" is defined by an intersection rather than a projection, agotmeer
are not always easy to definedf. Also, the choice of* as a topology comes from
the fact that it is the weakest topology that is stronger thartopologies induced by
Op(q) foranypor Q.

In the rest of this articley will often be a linear subspace. In these cases, one does
not need to take the sup onIndeed, ngg(B?(’p, ev{Q;}) does not depend an(as
can be seen using dilation and a change of variablere).

Wheny is arl -invariant linear subspace 6F(I";V),

P1 (Independence) dim(Y,{Qi}) is actually independent of the choice of Faglner
sequencéQ;} (cf. corollary(5.2);

P2 (Normalization) dinp¢P(I";V) = dimV (cf. exampld3.b);

P3 (Invariance) Iff : Y1 — Y2 is an injectivel -equivariant linear map of finite type,
then dimpY; < dimeY, (cf. propositio-3.B and examgdle 3.9);

P4 (Completion) IfY is the completion ofy in ¢P(I";V) for the ¢P norm, then
dimypY = dimypY (cf. propositior 3.1D);



P5 (Reduction) If 1 C Iz is of finite index, and ifY C ¢P(I"2;V) is seen by restric-
tion as a subspace 6P(I1;VI'2T1l) then [, : Tq]dime (Y, T2) = dimge(Y,1)
(cf. propositior 3.111).

P6 IfY C ¢?(T;V), dim,2Y coincides with the von Neumann dimensiat (corol-

lary[A.2);

In light of P6, whenp = 2 the following further properties of dig are listed by
Cheeger and Gromov inl[1, 81].

P7 (Non-triviality)Y C ¢2 is trivial if and only if dim,2Y = 0.
P8 (Additivity) dim,2Y1 & Yz = dim,2Y1 + dimj2Yo;

P9 (Continuity) If{Y;} is a decreasing sequence of closed linear subspaces then
dimg2(NY;) = iM dim,2Y;

P10 (Reciprocity) Iff; € Tz and if Yo C £2(T5;V) is the subspace induced by C
2(T'1;V) then dimz (Y2, 2) = dimg2(Y1,T1);

Propositio 411 also establishes P7 for din©n the other hand, the continuity property
(P9) of the Von Neumann dimension does not hold # 1(see example4.2).

For linear subspacéscC ¢* non-triviality (P7) is false, though it might be true for
Y C co(I,V), the latter being the space of alE ¢*(I";V) tending to 0 at infinity i(e.
X[ ¢=(r~.) — O for all exhaustive increasing sequence of (finite) subidaty.

Finally, the existence of an element of finite suppor¥immplies P7. By using a
similar but less convenient definition of djmthe author is also aware of a proof of
P8 and P10 (when the index is finite) fpr= 2 without using P6 and the previously
known properties of von Neumann dimension.

Though these properties are stated[feinvariant linear subspaces, some remain
true for more general subsefs P1 and P5 hold for ank-invariant subset, and P4 is
also true wherY is notl -invariant.

These properties offer a partial answer to the questiorudssd at the beginning
of the present article.

Proof of theoreri I]11t is but a simple consequence of P2 and P3. O

Being crucial to the proof above and less technical, we diegdiin by proving
properties P2-P5. Secti@h 4 then discusses P7 and R8=dk or . The proof of P1
requires some technical lemmas on amenable groups andsisdlegated to sectign 5.
As for P6, it relies mostly on a result of Gromov and is disedlsis appendix A.

3 Proof of properties P2-P5

Before the properties of dim can be established, the basic properties of wdim
must be mentioned.



3.1 Properties ofwdimg

Most of the content of this subsection may be foundlin [2, B43583], |5, Proposition
2.1] and[[6, 81.1].

Proposition 3.1. Let X be space endowed with a topolaggnd a pseudo-distande
a. The functiore — wdim¢(X,1,9d) is non-increasing.

b. Suppos® is a distance and the topology it induces. LeimX be the covering
dimension of X, thewdim¢(X,T,0) < dimX.

c. wdimg(X,T,0) = 0< € > DiamX

Except for b, the proof of these properties are simple. Befooving on, let us
recall two (fundamental) examples.

Example3.2. Let X be a normed vector space with the distadpex’) = ||x— X/|| and
T the norm topology. Lef = B>1< be its unit ball. Then wdir(A,1,8) =dimXife <1
(seell6, 8§1.1B] or, for more details,|[5, Lemma 2.5]) and wglifgt,d) =0 if € > 2
(consider the map which sends all&to one point).

The second example comes from a question which arises Hatinréhe context
of compressed sensing, namely we look at a ball for some natrwé endow with a
metric coming from another norm.

Example3.3: Let ¢P(n) denoteR" with its ¢P norm. Then one can look Eﬁq(m C
£P(n), and try to compute its wdim. (In compression theory, it exfuent to consider
a ball for some metric endowed with a different metric; $€@ [Whenq > p then we
the behaviour is essentially as in the previous example. édew if g < p then one
finds that, for I< k < n,

=0 if 2 < g,

- P(n) <k if 2(k+1Yalr< g
wdimg (B, 7, ¢9) >k if T
=n if e <nt/a1/p

We briefly mention how to obtain these. The first line is a cons®ice of 3]1.c. The
second is found by using an explicit map described_in [5, psdjpn 1.3] and[[18].
This maps takes a vector, keeps only kl#ggest coordinates (in absolute value), then
from thesek coordinates take the smallest and substract (or add, so resltice in
absolute value) it to the others. Finally, the third line @mfrom the presence of &
ball of dimensiork and radiuk/9-/P in ¢P(n). The fourth line is also obtained using
this argument (fon) together with proposition 3.1.b.

This second set of properties are crucial to what follows.

Proposition 3.4. Fori = 1,2, let X be spaces endowed with topologieand pseudo-
metricd;.

a. Let f: Xy — Xo be a continuous map such thatx,x') < Cd ( f(x), f (X)) where
C €]0,[. Thenwdimg(Xq,T1,01) < wdimgc(Xz,T2,82).



b. A dilation has the expected effeice. let f : X; — X be a homeomorphism such
thatd; (x,X') = C62(f(x), f(x/)). ThenwdimeX; = wdimg cXo.

c. For g € [1,0], let X:= X1 xq X2 be the space Xx X, endowed with the prod-
uct topology and the pseudo-metdic= 81 x 43, given byd(x,x' ) = d;1(x,x )9+
32(x,X)9. Also for g= oo, letd(x,X ) = max(81(X'X'),82(x,X) ). Therwdim yq,X <
wdimeX; +wdimeXs.

The proofs can be found inl[2, §4.5]] [3, Lemma 3.2][dr [5, Rsition 2.1]. For
example, the third is obtained by looking at the size of therfilof the magd = f; @ 1o,
wheref; : X; — K satisfy the conditions of definitidn 2.1 and ditn= wdim¢ (X, Ti, 5;).

A useful way of stating3]4.a is that a continuous map thas ca¢ reduce distance
will not make wdim: smaller.

3.2 Properties ofdimyp

Let us begin by two basic examples.

Example3.5 If 1<g<p<o,andY= Biq(r;R) thendimgn (Y, {Q;}) = 0 (indepen-
dently of the choice of sequen{®;}). Indeed P qu(r;R), and WdimE(B?(’p, &p(ay) =

wdimg(Bf?(”‘),ép) wheren; = |Qj|. However using example_3.3 (and dilations to get

back to a unit ball, see propositibn B.1.b), wd(rﬁf?mi),ép) is, for fixede, bounded
above and below by two functions that do not dependjoithus,

limsupWdime(BP. T, &) _ iy sudeims(B[q(ni)afp)

=0.
i—ve0 |Qi T ibe Q]

Example3.6. By direct computation, we how show that
dimgp/4(r;V) = dimV.

Forge [1,0], letY’' =29(T; V). Then(BI/’p, evip(q)) Is “isometric” to(Bipm;V), evip(Q))-
Indeed, the restriction map @ has a kernel of “diameter” 0, so propelrty]3.4.a applies
with C = 1. On the other hand, inclusion é6f(Q,V) in ¢P(I",V) (by extending the
functions by 0) is also a linear map and propérty 3.4.a hajdsawithC = 1. Conse-
quently,(BIl’p, &Vp(q)) Will have the same wdimas(Bfip(Q;V), &p(q)), Ve. This later
being a ball with its proper metric, & < 1 its wdime will be the dimension of the
space|Q|dimV.

In what follows the total vector space will itec ¢P(I";V). Thus we will abbreviate
by (B?(’p, evp(q)) to mean the s P ¢P(I;V) with the pseudo-normey;p o) and the
topology induced from the product topology. We stress Byt is not the ball for
the pseudo-nornevp q); it is the intersection o¥ with the ball of radiug in ¢P(I")
(endowed with its actual norm). The next property is a cargllof a generalization
of the Ornstein-Weiss lemma described in sediion 5. Everoip@sition 5.2 is a very
important property, weaker version can be sufficient forsafrour needs. Indeed, the
following simple lemma is actually all that we need to showatttinye is preserved
underl -equivariant maps of finite type.



Lemma 3.7. LetY be as above, and 1€©;} and{Q]} be such that

| =0
-0 |Qi UQ” ’
thenWgcy (B P, ev {Qi}) = Wace(By P, ew {Qf})
Proof. It suffices to note that, whe@2 C Q’,
wdime (B, eve()) Q| < wdime(BY, Vo))
Q] Q- [4 )
wdime (B, eve)) Q| Q< Q|
+dimV .
- Q| 197 [o4
|Q] Q' \ Q] . .
Furthermorem,| =1- QT Thus, computing Wgc with respect to the sequences
{QinQ{}, {Qi} or {Q} will yield the same result as a computation made ugigu
Qf}. O

Proposition 3.8. Let Y C ¢*(I";V) and Y C ¢(I";V’) bel -invariant linear subspaces.
Let f:Y — Y’ be al-equivariant map continuous far* and such that there exists a
real ¢t € R-o and a finite subset DC I satisfying elx,y) < ct evpp,)(f(X), f(y))
then

dimge (Y, {Qi}) < dimp (Y, {Qi})

Proof. The case = « is simpler, we shall only describe the cgse . HereB\r{/’p =
Y'N pr(rV)' On one hand, sincé is continuous fort* (the product topology or

the weak* topology),3r¢ € R~ such thatf (BY) c B?(f/’p. Indeed, since the image is
weakly= compact (in particular, weakly-bounded) it is bounded. [16, theorem
3.18]). On the other hand, the assumption satisfied loy distances propagates by
equivariance to different evaluations:

ev(YX,Yy) < Ct &) (F(YX), F(Vy)) = crevp,) (YF(X), YT (Y))
= Cr&Vp(py) (T(X), T(y))-

This implies thatevyeq)(X,y) < ct|Dt|evpap,)(f(X), f(y)) and, incidentally, thaf
is injective. Lastly, since the image of the ball (of radigdslcontained in a ball (of
radiusry)

wdime(ByP, evp(q,)) < wdime/c, o, | (BY, P, &vim(p,0;))

. Y,
< wdimg ey r (By P, e"é"(Qin))'

The first inequality comes from 3.4.a. Dividing y; Q;| = ‘Q "‘ |Qi| and passing to

the limit yields that

waes(B1”. ex ()lim S < w67, ev (01D ),



Since{Q;} is a Falner sequence, the limit on the left-hand side is 1.thEamore,
the hypothesis of lemn{a_3.7 are satisfied; the right-harmd fernothing else than
dimpe (Y, {Qi}). O

From now on, we will drop the explicit reference to the Fglseguence.

Since the assumptions of the previous proposition are aiistract, it is good to
check that they hold in certain categories of maps. The nmistcaint is the existence
of ¢t andDy. Let f be a map to which propositién 3.8 applies. et : Y/ =Imf =Y
the inverse off on its image, then the condition

eqx.y) < cr &vp(py) (F(X), f(Y))

can be read as a condition on the modulus of continuitf df More preciselyf 1 :
(Y, evp(p,)) — (Y, &) must be continuous with a linear modulus of continuite.(

that f ~1 must be Lipschitz). If the functiofi~! is continuous for the product topology,
weakening the topology on its image is evidently not restec Things are not so
direct on the domain.

For Q c I, denote byRqg : VI — V€ the restriction of functions to the domain
Q. LetU c (Y, ev) be an open set; then Yf is seen as a subset f Rig1U is an
open set on the factd®q,Y, and all ofY on the other factorsRr (g 1U = Rre) Y.
It is then possible that on a finite number of factorsr6f- V" (the required seDy)
f(U) will not be all the image of: Ry f(U) # RpY’. For example, foF C I a finite
subset and = fg of finite type, the condition is thét: (Y, ev) — (Y, evp(r)) be open
(on its image) and of Lipschitz inverse. Remember that thlitmn on the distances
in propositior3.B andl-equivariance imply injectivity of the map. Here is the nrajo
application of proposition 38.

Corollary 3.9. LetY cC ¢*(I;V) and Y C ¢*(I";V’) berl -invariant linear subspaces.
Let f:Y — Y’ be al-equivariant injective linear map of finite type. Then

dimgpY < dimgpY’.

Proof. Let F C I be a finite subset which can be used to defirees a map of finite
type,i.e. f= fg. If f is a linear map, injectivity off implies that it is open on its
image (Banach-Schauder theorem or open mapping theoreitmegfmorm topologies.
This remains true for the topology @fon the domain and\fé’(F) on the image as the
first is weaker (its open sets are described above) and thgeiofeopen sets is of the
formR=1U’ forU’ c VF. Sof : (Y, ev) — (Y, eVp(F)) iS open (on its image).

Next, write thel"-equivariant linear map of finite typeas

x = f(x) such thatf (x)(y) = 5 ay (x(Yy)),

YeF

wherea, € Hom(V,V’). Since itis injective, it possesse§ aquivariant linear inverse
(onitsimage)f 1 =g:

x— g(x) such thag(x)(y) = VZ by (X(YY)),
eG



whereb, € Hom(V',V) andG c I' might not be finite.
Then propositiof 318 can be invoked with = F, andcs the Lipschitz constant of
9: (Y, e-1) = (Y, ev). Thusc < || Syep-1n6 byll- O

Proposition 3.10. Let Y C £*(I";V) be an open linear subspace and ¥be its com-
pletion in¢P(I";V), thendimgpY = dimpY .

Proof. The argument is identical to that of examplel3.5: when redi to a finite
Q C T, these two spaces cannot be distinguished (being of finiteion they are
closed). In other words, there exists a linear map, givenhleyrestrictionRg, and

whose kernel is in the “ball” of radius 0:

Ro : (BY, evp(q)) — (RaBY, evp(q)).

Thus, Ve € [0, 1], wdim¢ (B, V() < wdime(RaBY'®, ep(q)). On the other hand,
lets: RoB} P — By'P such thaRg o s= Id be determined by an inverse BHY — Y,
thensis a linear map which increases distances. Consequenilylé/(/BQBI’p, evp()) <
wdime (B['®, ev(q)). Finally, by inclusionY Y, we have wdim (B} P, evp(q)) <

wdime (B} P, evp(q))- O

If F2:T1] =|G| <, asety C (P(I';V) is also a set ofP(I'1;VC). Indeed, to
y € £P(I"2;V) one can associaiéy) wherei(y)(y) = (Y(yg))gec € VC. This operation
behaves nicely with dipa.

Proposition 3.11. Let '; C ', be amenable groups and € IM';/I'1 where |G| <
o, if Y C £P(T2;V) is seen by restriction as a linear subspace/Bfr1;V®) then
|G|dimgp(Y,T2) = dimge(Y,T1).

Proof. Let {Qi(l)} be a Foglner sequence fbi and Iet{sz)} = {Qi(l)G} be the cor-
responding Fglner sequencelip. It is then sufficient to see thaBIZ, erKZ)) is by

construction isometric t()BIl, er@). O
I

Let us mention a typical problem when one deals wWhispaces, fop # 2, that is
the existence of linear subspaces which are not the imageogfgtion ¢f. [12] and
[17]). A characterization of subspaces &% possessing a projection of norm 1 can
be found in[10, 1.82]. We shall briefly discuss the case where (P(I";R) is al-
invariant linear subspace on which there exidisequivariant projectiorf. Then let
y = Pyd- Wheredq is the Dirac mass & < I', and lety < p be such thay € (4(T"; R).
For ax € (P(I";R), write x = k/dy. By linearity andr-equivariance oPR,

Prx= PYy;kvév = yg‘kvR/(VE’er) = yg‘ka

-1

Thus(Ryx)(er) = Erkyy(Tl)- Takingky = Yy D[P y(y 1), itappears thatyx) (er) =
ye

3 |y(T1)|%+1. This forcesd + 1 < g, in other wordsy < p’ (wherep' is the conjugate
exponent tgp). Whenp > 2, the existence of such a projection means that there exists
inY an element of P (I";R), which is quite restrictive.



4 Further properties in special cases

We now discuss property P7, that isrifis non-trivial then dimeY is positive. This
question is difficult as an intuitive proof only works fgr= 1. Before we move to
this proof, let us argue why the three following assumptis@sm necessary for it to
hold: Y must be a linear subspadémust bel -invariant, andy must be contained in
£P(T;V) for finite por in co(I;V) if p= . Here are some cases of non-triwafor
which one of the assumptions does not hold and whereods1.

First, suppos¥ is not a linear subspace. In exampplel 3.5 théalls whereg < p
are shown to have their dimequal to 0. Alternatively, one could also takeo be the
subset of*(I"; V) given by function with support of cardinality less thlaffor a fixed
ke Z>o).

Second, ifY is a linear subspace @F(I";V) but is notl-invariant, it could be of
finite dimension, and consequently dimvill be trivial.

Last, whenp is finite, the existence of g € Y whose/P norm is finite is only
guaranteed iy C ¢P. Without this assumption, it could happen tian pr(r;w =
{0}, Vr. On the other hand, { = «, takeY C ¢*(I";V) the ("-invariant) line generated
by a constant function(i.e. such thaBv € V, Yy e ', y(y) = V). Y is 1-dimensional, and
consequently dipaY = 0. ButY is not trivial. However, the question forfainvariant
linear subspac¥ C co(I';V) remains interesting.

Fortunately, in thé! case things can be proved without difficulties. As noted teefo
this method does not extendpo> 1.

Proposition 4.1. Let Y  ¢%(T";V) be al-invariant linear subspace, theim,Y = 0
if and only if Y is trivial.

Proof. This proof requires some results on amenable groups; thesée found in
section[b. If one wants, it is possible to think bfasZ" and take finite sets to be
rectangles.

If Y is trivial then dimaY is obviously 0. Otherwise, let£ y € Y and renormalize
it so that|ly|,;ry = 1. For alle €]0,1/2[, 3F C T finite (which depends og andg)
such that]|y[| 1) > 1 — € (and consequently||,1 g < €). Then lety be identical
toyonF and O elsewhere.

Fori sufficiently big,Q; contains a non-empty-quasi-tiling byF (see definition
[£.4), sinceF C Q; anda(Q;; F) tends to 0. Applying lemmia3.5 to find translates of
F which arep-disjoint, wherep = 1/2|F|, we obtain a quasi-tiling whose elements
are actually disjoint sincg < |F|~%, and the number of such translates is at least
(1—a(QiF))lail/2F|.

Lety; for j € J C Z-o be the elements by which the séisare translated for a
p-quasi-tiling of Q; (since theQ; form an increasing sequence and that lenima 5.5
applies to all maximap-quasi-tiling, it can be assumed that there increasing). Let
Vi = <yjy|j € Ji> be the linear subspace generated by the correspondintptiesisfy.

Trivially B\l/i C BY, and we will construct a map from a ball IB¥' Let

. AR — T AR =V
(@)jes — ¥ ajyy and @)jes = T ayy
J€J i€J
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With these notations,

Ti(a =

@l = 3] 3,899,000 =230,
= 3 lal IVl =¥llar) ¥ laxl-

ke, keJ;
On the other hand,
@ - m@ ) = | 5 2%, = 3|z ame-)|
=23 [ajy; (Y(Y) — (V)| = 2 > 1ayl19(y) —y(y)|

yerjed; yerjed

= 3l (5 MW -y0I) = Wlrr) 3 2l

JEJ

The last two computations mean thia(a) | ;1) = [Vl 2 (g 12l 23 and|[T(@) — (@) 1) <
I¥lex(r <k 12l 2y~ Thus

(HYHzl(F) - HYHzl(r\F)) lallagy < Im@)ary) (HYHfl + HYHzl(r\F)) lallag)

This means thatBY, &1 (q;)) contains, with a controlled distortion, /& ball (with its
¢ metric) of radius 1 and of dimensioiﬁ_r‘(l— a(Q;i; F))|Qi|, whence

i Y
dim,y = lim Ilmsude'mS’(Bl*e"/lmi))
¢ i—00 ‘Q‘ L
>J|Ln Ilmsupz‘ ‘(1 a(Qi;F )):m.
As required dinpY > 0. .

This result can be extendedpo> 1 in the special case thétc ¢P(I";V) contains an
element in/? (in particular an element of finite support). By P6, posiiiP7) is also
true for p = 2. Positivity means that if one looks apasummable two-sided sequence
y € (P(Z;R), the dimension of the space generatedyland sequences obtained by
shiftingy up ton times left or right grows linearly witim. The above result is a simple
consequence that this is true for= 1, and one is then lead to ask if this can be true for
other values op # o« or in cp.

Even if we cannot show continuity, the following example @rtty of interest. The
sequence of vector subspaces discussed there will noystEscontinuity property
(P9). This is quite unfortunate, &% is among the few cases where positivity can be
shown.

Example4.2 We exhibit a decreasing sequence of closed linear subspeég Z, R),
{Yi}, such that _
1= M dim,Y; # dimsx N ¥ =0.
i—o0

Definevk € Z-o, Tk : £X(Z;R) — ¢*(Z/KZ;R) in the following way: forn € Z/KZ



Continuous linear maps between Banach spaces have a clesed Kort, the norm
) i . .
topology in /%), thusY; = kmlkernk is a decreasing sequence of closed setsTfor

To compute dimi, choose the Fglner sequen@e= [—i,i]NZ. For aN € N, let
YN € Y1 be such thayn(0) = 1/2, yn(N) = —1/2 and which is zero elsewhere. Let

Nj=lcm(1,2,...,]). Forallj,yn; € BI‘] These elements give a m@i;gZ;R), evgl(Q))

to (B\l(j, &V1(q)) Which possesses fibers of “diameter” 0. They are defined &g

ye B’il/(zzm is restricted tdQ then extended by 0 outside Then, letk € Z- ¢ be such

thatkN; is bigger than the diameter 61 C Z, theny(m) = 3 cq 2ykn, (M= n)y(n)

is an element oBIj. Thence dimYj > 1, and as the other inequality is automatic,
dimpY; =1.

We claim that,, = NY; = {0}. If this were false, then a non-trivial element Yo,
would have the property that

VieZneZ,—y(i)= y(i +kn).
okez
To get a contradiction, take the limit when— « and show that it is equal to 0. First
we normalizey so that it is of norm 1 and suppose thgfi)| > o for somei. As an
absolutely convergent sequengeshould be concentrated on some set: there emists
such that||y||[1(Qn6) >1-6/2. However whem > 2ns+ 1

ly(i)| = y(i +kn)

0#£keZ

<9/2,

which is a contradiction. Thus dia¥., = 0 whereagim dim;.Y, = 1.

Such an possibility is fortunately confined & more generally the above con-
struction can be described as follows. [[étc I' be a subgroup of finite index. Let
1: Y — W be al"’-invariant linear map fronv C ¢P("; V) to a finite dimensional vector
spacal. Then the existence of such a map implies the existence oldetements
of ép'(l';v*) which are invariant by’. This is impossible iff # «, as such elements
would not be decreasing at infinity. For such spaces to exiStaust bew.

5 P1 and Ornstein-Weiss' Lemma

The aim of this section is to show independence (P1) on thieelfr@Iner sequence.
This will be achieved by extending Ornstein-Weiss’ lemmaniet our needs.

Theorem 5.1. Letl" be a discrete amenable group, and letl-o X Psinite(IlN) — R>0
be a function such that/Q,Q’ c I are finite andve € R-q

(a) aisl-invariant,i.e. YWerl, a(e,yQ) = a(e,Q)

(b) ais decreasingime, i.e. ve' <k, a(e,Q) > ale,Q)

(c) aisK-sublinearinQ,i.e. 3IKeR.o, a(g,Q) <K|Q|

(d) ais c-subadditive if2,i.e. 3ce€]0,1], a(e,QUQ’) <a(ce,Q)+a(ce, Q')

12



then, for any Fglner sequen¢®;},

lim limsup @& 2) _ jim liminf &(& %)
=0 o |QI| £50 i—0 |Q||

Furthermore, these limits are independent of the choseneseg{Q; }.

Remark that thé&-sublinear hypothesis (c) is equivalent to another statenie-
deed, using-subadditivity (d),l-invariance (a) and monotonicity m(b), for all Q,
ale, Q) < a(c‘Q‘a,_er)|Q| whereer €T is the neutral element. Thus if (a), (b) and (d)
hold, then (c}= liM a(e, er) < w.

This understood, the previous theorem is a generalizatidtheoOrnstein-Weiss
lemma. Indeed, the assumptions of the latter, aredfgaf)) = a(Q) is is sub-additive:
then monotonicity (b) always hold, beikgsublinear (c) is automatic (see above), and
c-subadditivity (d) is equivalent to usual subadditivity=€ 1).

The proof of theorem 5l 1 being quite technical, let us firswstwhy P1 is a conse-
quence of this theorem.

Corollary 5.2. dimyp is independent of the choice of Fglner sequence.

Proof. It suffices to prove that for any C ¢*(I';V) al-invariant set, theore 3.1 can
be invoked, whera(e, Q) = wdimg(B?(’p, evp())- Here is why:

(a) Byl -invariance ofY.
(b) As wdim; is decreasing il (cf. propositio 3.4.a).

(c) Using proposition_3]1.b Wdigﬁpr(m, &Vr(q)) < |Q|dimV. Then proposition
[3.4.a allows to conclude @(E\r(’p, evp()) can be sent without reducing distance
by a continuous map t(pr<Q), eVip(q))

(d) Letm: ¢P(I',V) — (P(Q;,V), then
T X TR @ (BY'P, evim(q)) = (B"P, &vpa,)) xp (B, &vp(a,))

is a linear map that does not reduce distances. Applyinggsitpn[3.4.a and
B4.c, yields

Wdimzl/pg(B\r{’pa evir(q)) < Wdimg(B?(’p, eVir(q,)) + Wdimg(BrY’p7 eVip(Q,))-

Thence, we conclude thate, Q) is 2-1/P-subadditive. O

The following notations and definitions will be required iorcarguments. The
original proof of the Ornstein-Weiss lemma can be found 8] [IThe proof that can
be better adapted to our case is however that|of [6, §1.3s éxplained in[[B]).

13



Definition5.3. Letl" be a group, let R I be such thatee F then the F-boundaries
of Q C I are defined as

HFQ ={y¢QnNQ#zandyFNQ°#a} =F1QNQ° (outer F-boundary
FQ ={ycQyFNnQ#@andyFNQ°#a} =F1Q°NQ (inner F-boundary
FQ ={yelyFNQ#£gandyFNQ°#2} =§QUdQ (F-boundary
intrQ ={yel|yF CQ} =Q\0Q (F-interior)
ferrQ ={yelyFnQ+# o} =QUAQ (F-closure.

Moreover, let| - | denote a measure dn. The relative amenability function will be
defined am(Q;F) = % given that these numbers are finite.

Before we move on to technical results, observe that thedfalnditions implies
thata(Qi;F) — 0 for any finite seF and any Falner sequen¢®;}. Another useful
property is that ifF’ C F, thena(Q;F’) < a(Q;F) sinced=Q C Q. We start by
showing covering properties of big sets by smaller sets.

Definition5.4. Lete €]0,1[. Subsets;Fof finite measure of will be saide-disjoint if
there exists FC F which are disjoint and such th#/| > (1—¢)|F| andUF = UF,.

A subset of finite measufe will be said to admit are-quasi-tiling by the subsets
F if

(@ FRcQ,
(b) the F are e-disjoint,

Here is a first lemma which studies the proportion of &kebvered by ar-quasi-
tiling of translates of another sEt

Lemma 5.5. Letl be a discrete group endowed with the counting measure, ddiyt
|-|. LetQ C T and @ € F C T both finite sets and such thafQ; F) < 1. Let{V: }1<i<k
be a maximal sequence of element§ sfich that theiF form ane-quasi-tiling ofQ.

LetUL = _L'lejF, then
J:

|UE| :
|—QF| >e(1—a(Q;F)).

Proof. (This proof corresponds to the first part of the proof of thexsdein-Weiss
lemmain [6, §1.3.1].) We shall use this general fact:

J1e1vGaldit) = [ [ B v)dy )y
— [ 46 ) ey i)
[ 360 ( [3eatvy ety ) aay)

= [3e,(/)/Calduty)
= |G1l|G|.

14



Thus,

inte @1 [ UEAYFId(y) < finte @l | JUENYFIehly) < (1-a(QiF) | UK FI.
F

Clearly, |U,i;lﬁyiF| < g|F|, as theyiF aree-disjoint. On the other hand, maximality

of kimplies thatvy € inte Q, |UX NyF| > €|F|. We then observe that

inteQ|1 [ |UENYFlauy) > efF.
inteQ

Consequentlyg(1—a(Q;F)) < [UE|/|Q|. O

Note that the quasi-tiling can be emptyoifQ; F) = 1. More precisely, the proof

actually works fora™ (Q;F) = % instead ofa. It has the advantage that g2 #
@ implies thata~(Q;F) < 1 and the quasi-tiling is non-empty. In any case, in the
upcoming applicationd; will always be contained if. The three following lemmas
are technical ingredients which will be used in the prooftef generalisation of the

Ornstein-Weiss lemma.

Lemma5.6. LetQ’ c Q c I and FC I be finite. Suppose that there exis®uch that
|Q\ Q| >€]Q], then

A(Q-Q'F) < a(Q;F)+a(Q;F)
L] — E *

Proof. Since [0:(Q \ Q)| < |6:Q| 4 [0:Q'| = a(Q;F)|Q| + a(Q;F)|Q'|, and that
|Q\ Q| > €]Q| > €|Q], a substitution yields

_ 1@~ Q)] _ a(QF)|Q]  a(QF) ||

/.
AONF)=TETaT < Ea) £l H

Lemma5.7. Let F C I be finite, and le{ D; }1<i<n be ane-disjoint family of subsets.
Then

maxa(D;i;F))
1-¢
Proof. Sinced: (UD;) C UdeDj, we obtain that
|0F (UDi)| < 3 [0:Di| < ) a(Di; F) |Di| < max(a(Di; F)) y |Di
However(1—¢) S |Di| < |UDj| as they are-disjoint. Thus

Os (UDj) < max(a(Dj;F))
|UDi| — l1-¢ '

a(Ubj; F) <

a(UDj;F) = O

The last lemma is an adaptation of a useful propertZ.dab general amenable
group: for the typical Fglner sequence #of; = [—i, i], any sufficiently big interval in
this family is covered (except for small bits) by translatéthel;.
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Lemma 5.8. Let {F} be a Fglner sequence, 18t]0,1/2[. Then there exists a sub-
sequence (which depends dn{F }, an integer N3), and a sequence of integers
{ki}1<i<n such that for all seQ which contains F, and satisfiest(Q,Fp, ) < 252N
there exists a family of 6-disjoint sets such ththLGJg F| > (1-9)|Q| andg consists

in ki translates of the sets,F

Proof. (We write the argument of [6, §1.3.1], see also [8]; the ordjiresult can be
found in [13].) In order to better show how the constants retiite proof, we denote
g1 = 0N, g5 = 28°N andp = . First,Ve; €]0,1], it is possible to refine the sequence
{F} to have

a(F1,F) <e.

Now, let QM) = Q so thata(QY, F,) < &, wheren will be determined later on. We
will cover QU to a proportion of 1- & by almost disjoint translates of ti&, where
1<i<n,innsteps (or less). For any<]0, %[, lemma5.b gives @-quasi-tiling of
QW by kn translates ofy, such thajUf| > p(1-&2)|QY|. LetQ® = QW < Uf,
then|Q | <(1- p+£2p)|Q ).
If |Q@] < 5|QY| the goal is achieved and there is no need to continue. Otherwi
lemmd5.6 then lemmal.7 shows that

1 1 € €
“(er+a(UfFaop)) < (et —~1 y<st

2 <
G(Q aanl) — 6( 1 p 6

It is now p035|ble to recove (2 by ap-quasi-tiling ofk,_1 translates of,_1 in such
away thaijUF !> p(1-3%)|Q@|. We now have a s&® such that

0% < (1-p—3p2 )IQ | <(1-p+ep)(l- p+p—)IQ )|

We wiII now takesz = 2¢;. Proceeding by induction, as long @&~V | > g|Q)|, the
setQ() (for 1 <i < n)will have the foIIowmg properties:

2. Uﬁ: :11 is ap-quasi-tiling ofQ() by translates oF, ;1

3. 1 QM) = Q) LU I then|Q(+D)] < |Q0 | (1-p(1— (1 j)e/dl~1))
i=
Since it is not possible to hope that this process termirtaésrei = n, it remains to
be checked that ifi is big enough, we still get a quasi-tiling that covéts- 3)|Q(Y)|
elements. To achieve this, observe that the product in ihe phoperty above can be
bounded ifi = n by

n

|‘|1(1_ p(1—(1+j)er/8 1) < (1—p(1— (1+n)eg /3 H)".
-
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Fore; = &", the right-hand term tends to O whartends tow. Thus,3IN(8,p) such
thatife; = &\ translates oF; (where 1< j < N) form ap-quasi-tiling of any se@ ()
such thao(QW; Ry) < &N,

We substitute as promis@d= o to have: for any fixe®d, we choose a subsequence
whose members satisty(F, ., ;. Fn,) < 8" whereN is such that

(1-3(1— (1+N) )N < 8.
Then successive applications of lemimd 5.5 give the reqtriaedlates oF,. O

We are now ready to prove the main result of this section. Atsh feading, this
proof might be easier to understand witk= Z in mind (takingQn = [—n,n|NZ).

Proof of theoreri 5]1L et us first introduce some notations for the functions giwgn
pointwise convergence and their limits. {6 *} and {Q; *} be subsequences of
{Qi} such that

jim 8827 _jimsup@®2) 4 im A& ) _jiming aE Q)

STl e [l STl e

Using (c), these limits are respectively real numbeérg) andl~ (¢) belonging to the
interval [0,K]. Furthermore, let

+._ lim+ —_ lim-

IT:=lmi*E) and 1 :=lmi(e).
Trivially, 17 (g) > 1~ (), but nothing forces*(0) = I* (in general, equality is not
expected). If we try to use the usual argument directly, &lera arises due to the
subadditivity. Indeed, taking a sequence which converEs(g) and decomposing it
using another sequence which convergds ta) by subadditivity will fail. A factor of
c will appear in front of thee (sedd)), and this would force to pass from the sequence
Qi’*E to Qi”Cs at each step. Diagonal arguments settle this problem. Let

a s,Qf’l/i
bi (E) — (77]1/|)
Q™

This is a sequence of bounded decreasing functions defined=f(0, 1] with value in
[0,K]. Using (one of) Helly's theorenxf. [7, §36.5 theorem 5, p.372]), there exists
a subsequence which possesses a limit at each point. We briefly recall has th
subsequence is obtained. First, a sequgnghc1 of dense rational number i, 1]

is taken. Since thi;(g) are bounded, Iemf” be_ the subsequence which converges at
rg for 1 <k < j. The diagonal sequencg = nf') converges at eadh, and since the
functionsbj(¢) are decreasing, the functidfl(e) = i'm b, (¢) which isa priori only
defined for the is also decreasing. It remains to be checked it’ﬁea:) extended at

all the points of]0, 1] by approximating by a sequence of increasipgs the actual
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limit of the subsequenca; (see the above reference for details). Let us show that
lim|H (e) =1-. This follows from
—0
3 > 0,3Ny(8) such that\y (8) <i = [bn (1) 1M (3)[ < &;
3> 0,3Np(8) such thalz(8) <i = [by(7) — 17 (7)< &;
v3 > 0,3N3(d) such thaNz(3) <i = [I7(5) - 17| <d.
Hie) i T im H(ey — limH(1
IH(e) is decreasing i8 = lIm R (g) = lim " (1)
These four assertions are respectively consequences oétimition of |, the choice

of Qf’l/i, the definition ofl —, and the fact that a limit that exists (thanks to monotonic-
ity) is achieved by any sequence. We shall now show that

¥8>0,1%(e) < M Mg +5=17 +5.

The argument is in essence the same as for subadditive seguehreal numbers:
lemmd5.8 plays the role of the decompositioa ki’ +r andc-subadditivity (d) forces
€—0.

Letd €]0, %[. Denote byF = Qﬁi’l/ni. Itis possible to refine this sequence so that

a(e,F)/|R| <1"(e) + 8.

Applying lemmd5.B gives ag-quasi-tiling (which does not cover a set of proportion
0) of any sufficiently big set by translates of the Since{Qi*’s} is also a Fglner

sequence, farbig enough, lemmia 5.8 applies to each element. TakeQ:"¢, denote
Yr;mFj thek; translates ofj obtained = 1,...,k;), and letip be such thatQ(lo)| <
3|QW|. Thanks to repeated use @bubadditivity (d), we have that

kn
a(e, QW) < Y a(ce, yr;mFn) +a(cte, Q?)

m=1

IN

IN

: ) |
Z ( Z a(CKi+msayl3.;m|:|)) + a(cfiog, Qo))
L

i ip m=1

n
wherekj = 3 kn. Usingl-invariance (a), the fact that these functions are deargasi
j=n—i

in € (b), and theK-sublinear property (c), this inequality yields
n ki )
a(e, W) < Z ( z a(c"ios,F,)) +K|Qlo)|.
i=n—ip m=1

On one handQo)| < 3|QW)| and% <IH(c0) +8&. Thence,

ae, Q") a(coe, F) [yrmF| | |Q1]
At ) < ) iy K
Qb = 2 Rl W Tt

_ F
< (M(c0)+8)y 'TE;E% |'| +K3
i,m
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On the other hand, theyr.mF } ared-disjoint. Thus(1—9) 3 |Vr:mFi| < |UVr:mF| <
|QW|. This shows that

a(e, Q) .
A < ey
]

Vel e C90) 5

& Q) A

For all QJ*"E big enough, where;, depends oer+’8. Sincel" (¢) is decreasing and

limH (e) = 1-, taking the limit whenj andki, — e is not a problem:
I7(e) <1 +3(K+1~+1).
We have shown thdt" = | ~. To deduce the independence on the choice of sequence,

notice that given two Fglner sequend& } and{Q{}, the sequencéQ;} whose el-
ements alternate between those of the two former sequerit@dse possess a limit.
The limit obtained with{Q;} must be equal to the one taken ¥i@;} or {Q]}. O

Appendix A Von Neumann’s dimension anddimj:

We recall an argument of Gromov (sée [6, §1.12]) that refad@sNeumann to the
semi-axis of ellipsoids and thus showing that difs indeed von Neumann dimension.
We briefly review the definition of the latter.

LetY C £2(T;RS) C (RS)" be arl-invariant linear subspaceQ c I we define the
operatorR, 1 Y — (R%)7} by restriction toQ: y — y|q. Its adjointRy : (R%)3 —Y
is the orthogonal projection t8. To see this, writeRg(y) = yllg where %, is the
characteristic function a, then

(Ra(0.) = (xRay) = [0la = [ (3axy.

However this last expression is simply the scalar produet ektended as a function
on all of I by 0, withy. Thus,R;(X) is the projection orY of the extension ok to

I by 0. In what follows we will omit this inclusion (extensioty I9) from Vj} to VE%'
whenQ c Q'. Dependence of) of R will not be written. A crucial remark is that the
invariance ofY by I implies that, forQ,Q’ C I finite subsets,

TrRoR"  |Q)
TrRyR Q]

A possible definition of von Neumann dimension (see [11] &} B1]) is
dimez(Y :T) := |Q| I TrReR*

foraQ C I'. This quantity is actually independent of the chosen see &im of this
section is to retrieve this quantity as the wdim of a certdiject.
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Theorem A.1. (cf. [6] 1.12A]) LetQ; C T be a Fglner sequence, letja b] be the
number of eigenvalues of the operatas, R* (defined relative to Y)) contained in the
interval[a,b]. f0<a<b< 1, then

im @b _

e Qi
Proof. (The proof is with minor differences in notation that of j6BinceRy andR*
are both projections (i?), the eigenvalues dRqoR* will be contained inf0,1]. The
proof proceeds in three steps.
First, let x € ¢£2(Q;RS), it will be called ane-quasimode of eigenvaliefor RoR*
if
IRaRx—AX]|,z < &[] 2. (1)

If xis such an element, and if its restriction outsfelés small, more precisely
IR <all,2 = [RX—RaR'Xl|,2 < 8[| 2., 2

thenA(1—A) <2e+ 0. Indeed, usind (1) if {2) yields thAR x — Ax||,2 < (8+¢€) ||X|| 2.
SinceR* is a projectionR*R* = R* and||R*|| = 1, whence

(1=2) [RX|l;2 = [[RX = R 2 = |R*(R'x = AX) [ 2 < [[R'X = AX][ 2 < (3+8) [|X][ 2.,

since the eigenvalues &R* are all contained if0,1], |1 —A| = 1—A. Moreover
the restriction ta can only reduce the normjRoR*x|| 2 < ||R*X|,2. Using [1) anew
gives,

(L=MA[X]2 < (1=N) [ReRX[ 2 + (1= Mel[X] 2 < (34 (2= A)) [IX]| 2

Seconddenote byQ P C Q the p-interior of Q, i.e. the set of points with distance
at leastp from a point outside of2, where the distance oh is the word distance
for any fixed generating set. The next argument will consighiowing that most of
x € 2(Q7P;V) have a small projection 6 . Q. Precisely, let

S =RroR = (1-Ro)R : F2(Q P, R%) — F2(T \ Q),

then TIS;S, < sBo(p)|Q~P| wherefo(p) tends to O whep — «. The dependence on
p does not only come from the domain of definition: the opergl& is

$$ =Ror(1-R)(1-Ro)R’
= (Ro-» —Ro-»R")(R" —RaR")
= (Ro-oR* — Rqg-pR*'R"* — Rg-0RoR* + Ra-»R'RoRY)
= Rg-»R*(1— RoRY).
Any Dirac massx, with support at a poiny satisfiesHR*xyHéz <1 (R'is a pro-
jection). Thus, ifBy(y) is the ball of radiusp, ||(1— Rg, )Ryl < Bo(p), with
lim Bo(p) = 0. Consequently{Syxy|| > < Bo(p) sincel” \. Q is contained in the com-

p—roo

plement of the union of thB,(y) for y € Q~P. Since||S;|| < 1, [[S5Sxyll2 < Bo(p)-
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The Dirac masses being an orthonormal basig#®—°;RS), we get that 85S <
sBo(p)|QP|.

Last, we shall evaluaten[a,b] for a,b €]0,1] andb—a = € €]0,1]. Let X be
the space generated by eigenvectorfRefR* whose eigenvalue is ifa,b]. Then,
VA € [a,b],¥x € X, x is an e-quasimode of eigenvalug for Ro,R*. The evalua-
tion of dlmxl will be done by looking at spaces whose dimension is closé(f’h%

Xi ﬁEZ(QI ,V) is the subspace of elements which vanish on the thickeneddaoy,
dimX; —dimxP < s/Q; \. Q; |. The amenability used aR; shows that this difference
is negligible M (dimX; —dimX?)/|Qi| = 0; it will suffice to evaluate dirx’.
Unfortunately, neitheb(ip norX; is a priori invariant byS;S,. Let's nevertheless
look at the intersection oXip with the space generated by eigenvectorsS#, of

eigenvalue< B2; we will denote this new intersection bf*. On this spacd|S || < B

since
1Sx]72 = (Sx S5%) = (. §55%) < B2[IX|%

Yet again, this space is of dimension close to tha}l(i’?]f if V=P is the space of eigen-
vectors ofS;S, whose eigenvalue is greater théh then

dimX? — dimx?? < dimv>#* < B2Tr§;S, < 519, °|Bo(p) /B2
In other words,

dimxP —dimx® o
folf -

VB > 0,Va > 0,3p such thalimsup
|—>00

Thus, it remains to evaluate dhq‘i”ﬁ. To do so, we use the conclusion of the first part
for A = aande = b—a: this yieldsa(1—a) < 2(b—a) + B given that dirr)(ip’B > 0.
Consequently, the inequality— a < (a— a? — B)/2 implies that dirr)(i':"'[3 = 0. Which
means that whep > po(B,a) is sufficiently big,"riTLSwUpdimXip/|Qi| < a. It follows
that

lim supd'm)|(| < lim supw 4 lim supd'mx1

i—00 i j—00 | || |ﬁ>oo |

<0+I|msupd'mx1 — dimx?®? +I|msupd'mx1

i—o0 |Qi| i—00 | ||

=0

sincea — 0 whenp — . This proves the theorem for intervadsb| satisfyingb—a <
a(l1—a)/2, as the size dB in not constrained. The conclusion is obtained by noticing
that any interval strictly contained [0, 1] can be covered by intervals of this type.J

This property enables us interpret von Neumann dimensian\adim for a set
with a chosen pseudo-metric.

Corollary A.2. (cf. [6] corollary 1.12.2]) Let YC ¢?(T";V) be an invariant subspace,
2(r-
letBY =YN B’i ("™V) the intersection of the unit ball with Y . Then, for a givenriaal
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sequenc®; C T,

veelo,1[,  lim @Wdlms(RQi BY,(?) = dimeY
Proof. (We give the argument of [6] in detail.) To get this red&lﬁB\{ must be seen
as an ellipsoid whose semi-axes are related to the eigewaliRgR*. Remark that

BI =R Biz(r;v). Then, an ellipsoid can be defined as the image of a ball by l&n se
adjoint operator, say; the semi-axis of this ellipsoid are in correspondence With
eigenvalue ofA. It might be worth recalling how this relates to the usual mi&én

of an ellipsoidE (as the sefy| (y,Py) < 1} for a positive definite operatd?). The
semi-axes oE are of the formh;(P)~%/2 for \;(P) an eigenvalue oP. Indeed let
BV be a ball in a vector spadé, and letA:V — V be self-adjoint. Restricting to
V' = ImA = kerA‘ C V, it must be shown that fax € V’ such that(x,x) < 1, there
existsP : V/ — V'’ positive definite such thgAx, PAX < 1. TakingP = A~? yields the
conclusion:A~? is a positive definite operator ff whose eigenvalues adg(A) 2.
ThusABY is an ellipsoid with semi-axix;(P) =2 = \i(A).

In our present contexBqR* is self-adjoint, thufRgR* Bfiz(r;v) = RqoBY is an ellip-
soid whose semi-axis are the eigenvalud®giR*. This ellipsoid contains isometrically
the ball obtained by ignoring the semi-axis of lengtte and replacing the remaining
ones by semi-axis of length Thus wdim,(Rg,BY,#?) > ni[e,1]. On the other hand,
wdime(Rg, BY,/?) < ni[e/2,1], as the continuous map obtained by projecting on the
sub-ellipsoid formed by the semi-axis of lengthe/2 indicates. Whem — o, the
eigenvalues oRq,R* tend to 0 or 1. In particular, wheén— o the inequality

1 1 . 1
@ni [8,1] S @W(mmg(RQi B,ZZ) S @ni [8/2, 1]

shows thaliij[]o ﬁwdims(RQi BY,¢?) = dim,2Y, sinceni[a, 1] — TrRo R*. O

This corollary can be expressed in terms¢(Bfdimension. Indeed, I@I =YN

Bfiz(r;v) be endowed with the pseudo-metric of evaluatiomat : ev(x,y) = |[x(e) —y(e)|l\

Translation of this pseudo-metric by an elementyaé the evaluation ay. Thus,
&V2(q) (X,Y) = Hx_y”éZ(Q) = ||Ra(X—Y)||2. The mapRq : BY — RqB is continuous
for the topology oiB\l( as a subset off (with T or even with the norm topology). The
fibers are of “diameter” O given th&' C Q. Thus, corollary’/A.P can be expressed as
follows:

Wgc2(BY, T, ey {Q;}) = dim,2Y.

Indeed,Rq, BY injects isometrically in(BY, ew,) and (B, ew,) possesses a map to
Ro, B whose fiber are of “diameter” 0. Thus wdiiBY, evg, ) = wdime (R, BY , ¢2).
This shows that definitidn 2.3 is equivalent whes: 2 to the von Neumann dimension
and this for any Fglner sequenf®;} chosen.

It would have been surprising that this were not the case eig. An alteration
of the Ornstein-Weiss lemma (see secfibn 5) enables to dimwmdependence of the
limit on the sequence chosen.
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