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Abstract

Gromov has shown how to construct holomorphic maps of theepla a complex manifold with prescribed
values on a lattice. We prove a similar interpolation theofer pseudo-holomorphic maps from a cylinder to an
almost-complex manifold. An infinite number of surgeries srquired. On the way, we need a refinement of the
gluing process for two pseudo-holomorphic curves.

1 Introduction

Let (M,J) be an almost-complex manifold. Though pseudo-holomorptaips behave locally like holomorphic
ones, many properties do not to go through even with stringesumptions. Our aim here is to adapt an interpo-
lation result described by Gromov to the pseudo-holomarphse. Namely, irﬂ3, §3.3] an interpolation theorem
for holomorphic map€ to a complex manifoldM is obtained. That s, it is possible to find a map with presatib
values on a certain lattice i@.

We shall show a similar result for maps from the cylindet C/Z to an almost-complex manifold, J) given
that there are pseudo-holomorphic cur@® — M which intersect in a cyclical fashion, thais regular (in the
sense of definitioB.G), and that there is a broader famifysefido-holomorphic curves covering a neighborhood
of one of the curves in the cycle (see sect@ 4.1). The methede will be quite different and will rely on
a proper gluing of these curves. Some consequences of thit vell then be explored, namely that the maps
obtained actually form a very rich family of (unparametd}eylinders.

The interpolation theorem requiring some technical prilaries for a precise statement, we will only give the
following rough result; se 4.1 for all the details.

Theorem 1.1. Suppose&M,J) is an almost complex manifold of dimension greater tdanSuppose there is
a sequence of J-holomorphic curve’s :uWCP* — M where k= 1,2,...N that intersect each other cyclically
and that their intersections are not tangent. Let J be reg(ia the sense of definitioB.G). Suppose fur-
ther that U belongs to a family of pseudo-holomorphic curves coveringeihborhood of t(z,) for some

z, € (CPl(seesectic@).Then there is a family of pseudo-holomorphic mapsv— M such that v is close to
this cyclic sequence of curves and the values of v on sonieelat+ iNZ C s = C/Z can be prescribed to be
any point in U. Furthermore, if theXudo not possess other intersections thed(v(z)) is contained in some
neighborhood of # INZ.

In particular, the assumptions of this theorem hold§®? with its usual complex structure.
This resultis achieved by gluing the cyclic sequence ofesitagether while satisfying the additional constraint
given by the values we want to be prescribed. The proof willsists in constructing an approximate solution (that



is a map that is almost pseudo-holomorphic and passes byédkerfped points) and then deforming it (using an
implicit function theorem) to a truly pseudo-holomorphiap Note that the last point of the theorem is not trivial
as the implicit function theorem will blur things. Thus ongshmake sure close to the points where gluing occurs
some injectivity is retained.

SectionDZ will describe how to alter the construction désaatiin ﬁ]. Given two pseudo-holomorphic curves,
it is known (under proper assumptions dnthat there exists a family of pseudo-holomorphic curves dan be
obtained by gluing them. However the behavior of these aiivaot precisely known. Here is the improvement
we make.

Theorem 1.2. Let (M,J) be an almost-complex manifold of (real) dimension at ldastet U': = — M, where
h € {0,1}, be two J-holomorphic curves such thd{@) = my, ||du"|| . <C, J is regular in the sense of[5,

Definition 10.1.1] and [ are surjective. If in a local chart?(z) = a"z+ O(|z]%), and that the A are linearly
independent ovet, then3drg such thatvr < rg, 3u a J-holomorphic curve such that in a local chart,

2
r
u(z) = a%z+ al; +0(rt+e)

forall ze Az 23 = {Zr*/3 < |2 < r?/3} and wheree €]0, 3 ; ro and @ depend on Cg, &, the second derivatives
of U, J (up to its second derivatives) and on the norm of the ieveErd)n.

Theore says that if the vect@gsanda; represent the tangent plane of the curves at the intersectio
some local chart of the point where the gluing occurs, thengthed curve (of parametey has the roughly the
behavion' (z) = a;z+ apr?/zin close to a ring of radius. This is achieved by using a more precise approximate
solution to the glued curve. The technical difficulties e@yibut they can be avoided by modifying the almost-
complex structure.

Section[B will then explain how to pass from the gluing of twoves to the gluing of an infinite number of
curves. To do so one only requires to consider an hyti{l?) norm which will preserve the qualities we need of
standard_P norms while reducing the problem of an infinite number of gdyio a finite one. _

Finally, sectior[|4 will show how to simultaneously solve geeudo-holomorphic equati@ju = O in addition
to the constraints given by prescribing value at pointsrmlation enables to show that the family of maps from
the cylinder toM is very large. This is not so surprising as the existence afeaigo-holomorphic mappP! — M
will give rise to many maps — CP — M. It is important to mention that the maps are not obtainedighsa
trivial fashion. First, they are of bounded differentialec®nd, the different maps obtained by the interpolation
theorem can be shown to have distinct images (see sdctia}).4 Blso, if the mapaX do not have additional
intersections an appropriate choice of parameters is mirffito ensure that the map does not factor through an
holomorphic map — Z (see sectio.2). Lastly, as E1 [3, 83.3], one can shotwtitleefamily of maps given by
the interpolation theorem is of positive mean dimensioe (gtior] 4.3]3).

2 SummingJ-holomorphic curves

The first aspect of the theorem we shall prove is the good abwitthe behavior of the resulting cylinders around
the gluing points. But before we move to an infinite numberlafrg, we shall at first do so with only two. This
is a refinement of the theorem described by McDuff-SaIamc[E]ion the possibility of gluing two curvegge. to
find a family of curves whose images are close to the unioneiittages of two curves meetingrag. In short, it
allows us to show that, given twzholomorphic curves® andu?® that intersect but are not tangent at a paoigt
there exists a family of curves whose image are close to tlewai the images ofi® andu?, and whose strangling
close tomy are different.

This section describes how to modify this gluing so as toialteat (in local charts neany and 0c CP?) in
a ring of radiug (around Oc CP') a local expansion would be of the forra®%+ alg +O(r**¢), wherea® and
al are the tangents to the curvesnag, ande €]0,1/3[. This information will be used later in sectifh 4 to insure
that the intersection of a ball of radi@r'*¢) with the image of the map gives only discs when non-empty. The
method is very close to that [5, §10], which itself parksll@, 87.2].



Throughout this sectioB will denote a Riemann surface (our interest is restricte@mb) and (M, J) will be
an almost complex manifold of real dimension at least 4. Thmsat complex structuré will be assumed regular
in the sense oi[[5, Definition 10.1.1] for the two curves cdasid and of class at leadt. In particular, elliptic
regularity insures that-holomorphic maps will be at lea€F.

2.1 Definitions and description of the gluing map

As we are concerned with local expansions, let us look atdbal behavior of @-holomorphic map. Lea € R?"
andze C, the producazmeansza= (x+iy)a = xa+ yJha, whereJy := (‘j *Oj‘). Note that the local charts will be
chosen so that at @ R?" the almost-complex structure inducedbgwhich will still be denoted byl) will be the
usual complex structurée. J(0) = Jo. Another convention is that the evaluationJoét a pointm will be written
Jm; note that the confusion that could arise between the usugitsre and the evaluation dfat zero in a map is
not to be worried about as, by choice of local charts, thel/beilequal. We start by this known lemma (elﬂ;. [6]).

Lemma 2.1. Let J be an almost complex structure B such that J0) = Jp := ($ !). Letu:C - R* be a
J-holomorphic curve such that@) = 0. Then3a € R2" such that iiz) = az+ O(|Z?), for |z| small enough.

Proof. The notatior(ci_]l f)(2) = df (2) + Jy(z o df (2) o j will be used to insist on the point at whidhis looked at.
The first step is to remark that _ _ _
019 = 0yg+ (Jg — Jg)Jy(0y — )9, (1)

for any two complex structure andJ”, and wher@; = d_;. On the other hand, writg(z) = 5| 2 ay| + o(|z%),
wherek, | € {0,1,2}2\ {0}, & € R?" and(s+it)a= as+ (Ja)t. It appears, by choosin = J” = Jo in (fl) or
by looking directly at the expression in local coordinateatd;u = 0 if and only if

gakJ 1222+ 0(|2%) + (Ju— Jo)Jo (gam k22 —a 21+ O(|z|2)> =0. )

Furthermore, the coefficients;, ;) of the matrix ofJ can be expanded:

(Ker.cz = (Jo)er.c, + Zbcl,cZ,R(X)k +0(%%),
K

wherek € {0,1,2}2"\ {0}2". consequently, there is only one term of order oJn @)i. If uis J-holomorphic,
it's local expansion must be of the fora(z) = a; oz+ o(|Z?). O

Before we proceed to the proof of theor@ 1.2, let us notetllegadssumptions are more restrictive than in the
gluing procedure oﬂ:[5, §10] where curves whose differératiang is O can be glued. For the remainder of this
section, we shall assume traftanda’ are linearly independent (ov€r, whence the condition diggM > 4). This
assumption is actually not crucial to realize the gluing(th it makes things slightly simpler, see lemima}2.13),
but is required in order to show that the strangling of théed#nt curves is different (see rem.15) and that the
resulting curve does not actually passriy

The behavior of the “summed” curve is however more precisgeéd in ﬂS §10] the curve obtained by gluing
is a perturbation of a curve which is constant in a ring; teids to a curve whose behavior in the given ring
is u(z) = O(r). The price to pay to obtain a more precise behavior is thaafipgoximate solution is no longer
constant in a ring. When the approximate solution is constea ring A, the almost-complex structuteis also
constant foz € A. Sectior{ 24 describes how to modify the structlis as to make it constant near the point of
intersection, thus allowing to avoid the difficulty thatsss.

The main ingredient in the proof remains the implicit funattheorem ofmS, §3.5]; recall that

s oup =
p-= p
oxfecm(z) || Fllwp

®3)

is the constant of the Sobolev embeddigP(Z,R) — L*(Z,R), which is finite forp > dimX = 2 in our case

(cf. [, §6.7)).



Proposition 2.2. (see @ Theorem 3.5.2]) L&t be a complex manifold of dimensidnlet p> 2. Vcp, 36 > 0
such that for all volume formavols onZ, all u € WHP(Z, M), all & € WP(Z,u*TM), and all Q, : LP(Z,A%1 @,
u*TM) — WLP(Z u*TM) satisfying

sp(dvols) < co, ldiflp <o, [IZollwe < §,
O (expu(€0)[p < 20 DuQu=1,  [|Qull <co,

there exists an uniguesuch that

s(exp(80+8) =0, [E+Eolwre <8, [Elwee < 200]|0s(exn,(20)) |

The proof of this theorem is a consequence of the implicitfiom theorem ¢f. [E, Proposition A.3.4]), and
we refer to [lS §3.5] for the proof. A bound on the second dsiwe of 7, (cf. [E, 8A.3]) is required for it to hold.

We start by constructing a family of curve'swhose local expansion is as required, which satisfy theitiond
of the above theoreng g will be = 0) and whos@; is of the order oD(r”s). Then, the& obtained (the perturbation
of u" needed to obtain a true solution) will be boundedifn(since it is bounded iW*P) by O(r'+¢).

Before we describe these maps we have to define cutoff functions which will be very useftihey will be
denoted byB. The definition will not vary much, and, much like the followg lemmas, is well-established; sEe [1]

or [B].

Definition 2.3. Let 35, : R? — R be the function defined by:

1 if l7 <o
_ ) Ine—=In|7 .
Boe@ =3 Tne—ms ff 0< |4 <e
if e< |7

This cutoff function has many useful properties, as can ba gethe following two lemmas:

21
Lemma 2.4. / \DBM] (e/3):
In particular, this first lemma shows that this family contaa limit case of the Sobolev embedding. Indeed,
for fixed € and if & — 0, the function obtained is W2, but not inL®. The second lemma is also true wher 2
without even needing to assume tRéd) =0

Lemma 2.5. Let be as in definitiofi 2]3, I € W1-P(B;) where p> 2 be such thaZ(0) = 0, thenJsy such that:

1/p
1(0B) - Eluoga, _l((z%wﬁﬂwlpsg

To find aJ-holomorphic curve with the desired local behavior, anitivte idea would be to add up the local
expansions of two curves, namely(z) andu'(r?/z), when|z| is close tor and to get back to either map outside
and inside the ring. Addition does not exist in manifoldsjgfit is necessary to choose local charts in order to
achieve this. In the resulting formula, maps should be seduarections from (an open set df)to (an open set of)
R?". The family of mapss” will be defined as follows:

ut(Z) if lZ <r2Y
B +uN(Z) if r2V< |7 <r2d
U(2=19 W@)+ui(2) it r2%< |7 <r® 4)
W@ +BRUNLZ) i i< |7 <rY
w(2) if < |7

where 0< y < a < 1, and the cutoff function i = Bra v (see definitior] 23).



2.2 Metrics and estimates

Before we can estimate the norms af end ofd;u’ (in LP), we need to specify the metric on the domzainVhen

|zl > r the curve defined by’ will be close tou®, and wherjz| < r, u'(r?/z) resemblesi'(z). These two subsets
of the domain will play a similar role; it is natural to givesim equal weights (at the domain). Intuitively, this also
avoids the norm of the differential becoming large by givingegions whose energy is of the same magnitude
equal weights in the domain. This metric will be the usuahRi+Study) metric wherz > r, and the one induced

by z+— ; when|z] < r (see figure in the version available on the author's webpadeye precisely, the metric
will be ¢ := (8")~?(d* 4 d?), where

2 2,2 i
o (2) = r +|z|2 /r si |zl <r
1+ Si|Z>r

It might seem necessary to work with norms that take into aetthe two distinct regions, but since the
situation is symmetric, estimates valid on a region willchoh the other. A more precise discussion can be found
in [E, §10.3]. We will only note that the volume remains boadiol(X) < 2r. The next lemma, taken frorﬂ [5,
810.3] says that Sobolev constant behaves similarly.

Lemma 2.6. The constants(cf. @)) for the metric § remains bounded independently of r.

It is now possible to evaluate the norms of df andgjur in order to satisfy the assumptions of proposition
@. Our starting point is to bound the norm of powerg:of
Lemma2.7.Letr>0,1,I’>1,0<d<e<1, and||-[|_p(a, ,) denote the B norm restricted to the ring A s =
rer ’
{7r¢ < |z < r®}. Then

_(e-8)(2+ipy\ 1/P
HZ| HLP(AFEJB) = (211(1r2+7|pp)) rd(+2/p) ~ Ks,é,p,lr6(|+z/p)

’
rl

) (Ip-2y\ /P, ,
o :(211(14'(;72)(;3 >)) pl/+e(=142/p) NKé,as,erl +&(—1+2/p)

va(Ar£'r5)
where K 5, and K 5p) are the limits as r— 0 of the terms before the powers of r.

Proof. Itis a direct calculation, valid for£ —2/p:

12050, 5 =), 0"icbcd

(€ 10
2+1p ro
2+1p| .
_ 2Tr(lfr(5*5)(2+|r3)) r5(|p+2)
=\—7 =

=27

A simple manipulation of this equality gives the secondnaation. O

-1
Lemma 2.8. Let r; be such tharlnrf*y’ < 1, then

v <[ A e < [ p + [l p + car®P,

where g = (4K&,yjp’2r2<1*“> +2K{ 4 p2)C and C> max( ||| , ||| w)-

Proof. In the regiorr < |z] < r® this is a simple assertion:

r
1o eoa,a) < 1% Loga 0y F || 2

rrd

) HdJlHCO < ||dJOH|_p(A,‘,g) +CKi,u,p,2r2/p-
' rrd ’

5



Whereas whenY < |2, it is trivial since d = . On A« vy, a choice of a local chart and a local expansion

for ul is needed: if i r2-Y. Indeed,
18 s < 1990+ (B ,
aLy LP(Aacv) 7 Lo (A )
and sincgu’(z)| < C|z], the second term can be written as
2 ul
Jascacsl,, < weh],  fascll,
< ekl e flat oo 2,

As the terms appearing are of the fogén and using Iemm@.?,

2
LP '

The contribution of the regior® < |z < rY to |||, » tends to zero 0 as— 0 faster than®P. The final result
follows from the symmetry which yields the same conclusiorilte region whergz| < r. (]

Our goal being to give a local expansion at order 1, we havadwghat thel. P norm ongur (which bounds
the WP norm and consequently thé® norm of the perturbation necessary to obtain a true soluto@(r*)
whenzis of norm close ta.

Lemma 2.9. Take2 < p < 4. Leta €] 2 512 Zp >+ then there exists positive numbers: min(a(1+2/p) —1,1—

a(2—2/p)), r. and ¢ (both depend on the second derivativesbénd U, and on the product of the derivatives
of J with C) such thatyr < r,, ||gu" ||Lp < Cor*e.

Proof. Since the situation is symmetric, we will only be concernéththe part where < |z|. We split this region
again, as the definitiod varies.

10U 1o zzry) = 10U NIE(a, o) IO [oag -

The region wheréz| > r¥ does not contribute in the equality above sinte= u® is J-holomorphic. For the other
domains,}, will be seen as a matrix valued map using a local chart. Agaenotation(ds, f)(z) = df (2) + Jyz ©
df (z) o j will be used to emphasize the point at whitts evaluated. With this understood,

[ gy =30~ 300in
- HaJu, U — W) + (O, — O)UOHLP(A,g )
¥ (B(z)ul(%)) + (Jyr — Jyo)dfo J" LP(Aa )
< Hd(B(Z)Ul 2 HLP(AT + 13 flc || eo (| _2) ’Lp )

The bounds obtained in lemrhal2.8 and the norms computed imég2n} yield the following upper bound:

100U o ) < Claypa(Lo+ Inr®Yr2 204 13 ca CoG e o020

In order to factorize&'*€ whenl = 1 or 2, one must have that2a(l —2/p) > 1< a < Ip 5. This condition
is only restrictive foll = 2.



To evaluate the other part, we proceed as in Ier@a 2.1. Upticingpthat the local expansion 5ju implies
]aJu] < ‘ Faru(t ‘ and that the" can be written as

ul(z) =a"z+ ;zkf af, +0(2%  wherek | €{0,1,2}2k+1>2
whenr < |z < r%, the following bound (it can also be seen usifjg (1)) appears

au| <

al,z+2ad,2—a? 1222 _2302;? +0(|Z )‘f'o(‘r?)

+(Jur *JO)JO(aloJra‘forz +O(|Z|)+O(‘r?))

Thus, the factoréz], T gl 2 and ‘r‘s could endanger our goal, as an expansiofJpf— Jp) shows. It also means that

our bounds depend on the second derivatives ofither on a product of the first derivatives dandu”. ThelP
norm will be made of terms in "
HziHLP(A”a) ~ Ky g pro(+2/p)

|/

/ 1"—142
~ K gpr! P

7z Lp(ArrU)

with I’ > 1 > 1, as computed in lemma .7. This raises a new condition:on(l +2/p) > 1 & a > .
ConsequentljdaJu'HLp < Kr'*€ under the condition that €] P 5127 2 >+, which is only possible ip < 4. O

Remark2.10 For any pe]2,4], there is an optimal choice af. Indeed, ifa = £ thene < 1 ( 1). Taking p

close t02, enables to be close td/3. Theorenj 1]2 is obtained with this chmceoofHowever it is not possible

to take p— 2 as some constants,g. sp, depend on p. The choice pfs quite secondary.g. one could choose

y=2.

2.3 Construction of the inverseQyr

In this section, we will make the somehow strong assumptiain is constant in a neighborhood ofy € M;
the reason why such a simplification is possible is explain@. The whole gluing process is presented in its
proper order in sectioh 3.5.

Before we apply the implicit function theorem, it is requite have a bounded inverse to the Imeanzaﬂoﬁ;of
atu’, Dy. The existence of inverses B, combined with the observation that two maps which are closeigh
will have close linearization, will enable the construatiaf this inverse. First let us show thatifis close tou in
the sense ofV1P, then the operato®, andDy, are close. In order to identify their images, parallel t@orsis
necessary. However, it does not affect significantly thiofcihg computation:

[Du€ —Dyéllp < ||(JU*Ju’)DE||Lp+%H‘]UmEJU(dJ*dJ/)
+3 | (uDedu — Ju’DEJU’)dJ/HLp
<9l lu=ullco 1O Lp + 5 || 9u0 Ju | co [t — ||
+3[[30ed [l g llu— U flo [l || o
<sp[dfleellu— U||Wlp||EHWlp+2||JUDEJUHCO||U U llwee (5)
Jr25p||JDEJHcl||U U lwap [l p
SSpHJ.llclHU U|wap 1€ llwee
+35p 1 3u0%ulco 1€ lwap U= Ullwee
+3 303 Jlct € llwap U= U llyyap ||| p
< c3(0%3,d, Sp) [|Elwp [[U— Ul -

o

For the curves we are concerned with, proximityfifi,.p Will be insured as follows: @" — ) is zero when
|zl > rY, and it is of the order ofzé whenr < |z <rY, consequently|u" — is of the order of%/P.
Thus,Dy will be close to one of th®, inside or outsidez =r.

Pllweezsry)



To be more precise, it is necessary to introduce intermediatves, denoted hy?" andu®'. The first will be
defined as follows

w(2) if IZ <r?V
w(z)+B(Z “)u N %) if 2 V< |7 <r2@

W0 (2) = u°(z)+u1(§) if r29< |7 <r%
W) +B(lZhul(s) i rd< 7 <rY
uw(2) it V< |7

and the second in an analogous manner. Sjueé — ||, , — 0 asr — 0, the operatoD,o, will be as close as
required toD o and identical tdy when|z| >r.

The two inverse®, o andQ,: will be used to construct an inverseldar whose bound is independentroffFirst
we introduce some notations. For = — M, let WP = WLP(Z, uTM), L] = LP(Z, A% T*S @, u*TM). Given
w,ul : = — M, such that®(0) = u'(0), denote by

Wit = { (€%.8Y) e WP x WEPIEY(0) = 0) |

The assumption thap > 2 is of importance, sinc&/>P sections need not be continuouspif< 2, and their
evaluation at a point would not make sense.
Thanks to the regularity assumption madelpthe operator

Doi: Wb — Lpopr
(€.8) (D&, DpuEY)

is surjective ¢f. [E, §10.5]). ThusPg 1 possesses an inverse which depends continuously on theupait) and
satisfies an uniform bound 4&°, u') varies inas *(C). This suffices for our use, but if one would like to stay
in a case where “surjectivity” of the gluing magpf( [é, Theorem 10.1.2.iii]) is possible, one needs to show that
amongst all the inverses @fo 1, the one which is orthogonal to the kernel also has boundeat.n&ecall that
surjectivity is the property that anjtholomorphic curve which is close to union of the cure@sandu? is in the
image of the gluing map.

More precisely, ifw 01 C W P is the (?) orthogonal to the kernel do 1, then the restriction of this operator
to W o1 is bijective and bounded. Its inverse will be deno@g.. It varies continuously with the paju®, ut) and
the bound is uniform ags *(C) is compact. To make this explicit, an identification must kedm betweelwuloj’lJ

andW5? for pairs(u°,ut) and(v°,v*) sufficiently close (we will not do it here).
Since the maps®" andul’ are smallw'P deformations ofl® and u?, the spacewol’lp may be seen as a

limit whenr — 0 of spaces\g ’1pr corresponding to these slightly altered maps. The opeBajgr being a small
perturbation ofDg 1 it will possess a right inverse. To prove surjectivity of thieing map (as |n|]]5 Theorem
10.1.2.jii or Corollary 10.1.3], it is the inversgy 1 r whose image i42- -orthogonal to the kernel dg 1, which
must be chosen. A verification must be made to show that thedon the norm of this operator is independent
of r. This argument (|5, Lemma 10.6.1]) works without need ofrgjeain the situation in which we are (the kernel
of Dy is finite-dimensional).

Thanks to the operat® o1r, an approximate inversky : LEr %Wulr’p for Dy will be obtained. Let) € LEr.
This 1-form will be cut along the circlig| = r in two piecesn®,n?):

o [ n@ iflzg>r 1o [ rPnr?z) it |7 <1)r
”(Z>{o ifld<r  T@=910 if 2> 1/r
Since then" are only inLP, the discontinuity is not problematic. Now I8°,&%) = Qo.1(n%n?). It is worth

stressing thak®(0) = £1(0) =: &m, € TmyM. Letd €]0,1[. This choice is not of importance; it would suffice to
taked = 3. Let

1 if r< |4
In|z — In(r*+9)

—In(r%)

0 if Iz <rit®

B(2) =1-Bs,(2) = if < |7 <r



The approximate inverse i3iyyn = &', where

£(2) it ri %< |7
2 +B(2)(ENS) ~&m) i 1< |7 <riP
E(2)={ &2 +E(3)—Em, it r= |g (6)
E(Z)+BD(E(D) —Em) If rO< |7 <r
E(3) if 7 <ri+d

It remains to show that this is an approximate inverse ameldji.e. ||Dy&" —n|| p» < €]|n||_ p for somee € [0, 1].

By construction the left-hand term is zero outsidé® < |z| < r1=%. The assumption that the almost-complex
structure is constant on that region will now be importane k¥strict our attention, thanks to symmetry, to the
piece|z| < r. By definitionDy&X(-/r?) = n(-). Hence,

Du& —n =Dyor(BE’—&my)) _
= BDyor (8% —&my) + (8% — &my) OB (7)
= (EO - En‘o)aﬁa

sinceD 0, &% = 0 when|z] < r. It remains to bound this norm with respect to the metrict(teends om). There
will be a factor of6" (z)P~? in the norm of the 1-forms, b@ < 6! < 2).

IDw& —NlloE,) < 21-2/P Dy &’ — NlLe(z<r)

1-2 0
<2 /pHTEO En'b)aBHLp(z«)
1/p. & —&mg ||wip
< 210/Psy |5inr|1=/P (8)
(|[n°]] p+lIn>llLp)
[SInr|*-%/P

< 41/ Ps,s0C Il e )
- SHSp 4\6Inr\1’1/p

< 21/ Pgyspcs

Lemma[2.b is used to go from th@%o the 3% line. The 4" line is obtained from the third using th&, is
bounded by th€® norm (and thus by th&/*P norm) of &%, and on the other hand that tié"P norm of £ is
bounded by a constant (coming from the nornQgfy ) multiplied by theL.? norm ofn°.

Lemma 2.11. Let U be as defined ifd) thenVe < [0,1],3cs, 3r3 (which depend ong Sp, and ), such that
Vr <rz, 3Ty such that|Dy Ty — 1| < % and || Ty || < ca.

Proof. The only part of the statement which was not proved in the ald@scussion is the one concerning the norm
of Ty. It requires a bound off€' ||\y1.» @s a function of|n|| . Only the cutoff function requires care, the bound
being otherwise found thanks to the bound@y ;. However,||J&' || remains controlled exactly as iff (8) thanks

to lemmd2.b. O

Thus the true invers®,r will have the same image dg and will be defined by:

Qu =Ty (DurTur )71 = Tur Z (]] — Dur-l—ur)k (9)
k=0

It satisfies the relatiorDy Qy = 1 and||Qy || < 2c4 , wherecs comes from lemmp 2.111.

2.4 Onthe assumption thatJ is constant nearmy

This section consists in noting that whéis close toJ’, the operatob}) is close toDﬂ' for certainu (e.g. @, ut
andu”). In order to speak of a difference between these two opesat@ will see their images not as the space



of (0,1)-forms taking value in W (since the definition of &0, 1)-form depends on the almost-complex structure)
but as the space ofM-valued 1-forms.

| L

D¢ -DJ¢

13— IO o + 3 1| (JuDdu — J D I
IO&]I, 19— Jllco + 3 lldulloo 1€ lco [19uB3 = HOI I,
5(A) (1€ flwp (19u = Jillco + 1900 = JsOFIL,)

O NI NI

<
<
<

Thus, it is important to note that the dependence on therdifteal ofu will not be a problem for the maps we
consider.

Lemma 2.12. 3ra(a,y) such thatvr < rg, ||du||co < 2C.

Proof. This proof works in an analogous fashion as the bound of theorm of di. Whenr < |z] < r® thisis a
simple thing to check:

|wf||co<Hou°Hco] [l oo < 2

leo

If r¥ < |z], then df = du® so the conclusion is direct. Flnally o v, the computation requires a local chart

. . . 2 .
and a local expansion far': if r is small, thenZ is also small orAa rv: r2=Y. Thus, ||dif||co <

g0+ ||aBUZ) ()|

, and sincdut(w)| < C|w| +O(/w|?), the second term can be written as

ul

w—v *Hd(ul
< HCFZ/ZZ-FO r4/2%) Hco“ma y|71+HdJch0

<C|rz 2| (|Inre-Y 4 1)

|dB@uw5))

co

TCO

TheCP norm is bounded by the maximum of the bounds on each regjhjj o < max2C,C,C+0(1)) < 2C
for all r such thafr?—2%| (|Inre=Y| ™" + 1) < 1. O

This lemma, together with Iemn-13 allows us to chaaamditrarily small without changing the proximity
of DY andDJr It is important to show that this proximity is valid for thehale family of curves considered. The
property requwed of’ is to be constant in a neighborhoodmf. Consequently let us define fBr€]0,1[ and for

KeR >0,
Jo if w <R(1-RY)
J/(W) = ‘]B(‘WDW if R(l* RK) < |W| <R (10)
Jw if R< |w
where
0 if x< R(1-RY
) Inx—InR(1-R9) . K
B(x) = “In(1- R if RI-R) <x< R
1 if R <x

Then|[J —J'lco < 2[]3— Jollcofjw<ry) < O(R). Furthermore, since

W
|0Bww)| < ‘(D )B(wW)w ( (Jwf) — m)‘
< | (Bp(w| (L4 In(L—RO),
it is possible to obtain a rough bound fpd1J — J'0J'|| p, if we suppose thafdu|| > d in By(0), so that the
preimage byu of a small ball remains a small ball up to multiplication by @nded factor. LeR be such that

Br (o) NImu € u"(B,(0)). In order to avoid cases where the map sends many subse® db B (mp) (for
instance, is non injective), it is possible to introduce @incomplex structures that depend on a point of the
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domain; we shall not go into such details. Thus, the preindige| < R(1— R¥) by u is dilated by at mosk [0 2,
whence
9EIIp(u-1ui<riz-roy) < [903lLs (KRE(L—RO))YP,

and similarly for the rindR(1— R¢) < |w| < R, the bound is

1 1
903 = YOI || o 1(ri—re)<wi<ry < WOl <2+ m) (KR (2 — R)) VP,

If RZ<(1-P) 5 0 (e.g.if k = 1 andR — 0), the operators associated}tandJ’ will be as close as needed.
There remains to check that the assumption on the lower bouarttie differential holds for®,u! andu'.
For u® andu? it follows from the fact thag® anda’ are not trivial. As foru', it is a consequence of their linear
independence oveE: let u= min,(|a®+ za!|,|a%z+al|), then, onA; e, di” = du® — ;—idjl has norm bounded
from below byp. The cutoff functior is not of importance since it is always multiplied by one aégh linearly
independent factors (ia"0B or in ). Thus if the first order terms in local expansions are domtirthe same

bounds hold o\a ;v. In short, we have proved the following lemma.

Lemma 2.13.3r5(a’,at, 02u"),d(a% at) such thatze {z]|7] <rs},|du"(2)| > d, andvr, z satisfyingnax(|Z|,
rs, |du(z)] > d.

)<

2
z

Recall that this lemma and remdrk 2.15 are the only placeswiherfact that the curves are not tangent at their
intersection point is used. However, the use of this lemmta et a bound on the size of the preimage of the
region where the almost-complex structdrie modified. This bound can be obtained without this assumpbut
remark[2.1J5 would no longer hold. This section is summarizetie next proposition.

Proposition 2.14. Let I’ and U be as in the assumptions of theo 1.2. LdieJthe almost complex structure
on M which is constant on a neighborhoog(By) of my defined in([LQ). Yu such that = B, = |du(z)| > d,
3c7(|| ]| e , || 03|, [|90J]| = ,d) which makes the following trug{D} — D || < c;R2*(1-P)l/p,

In particular, the curves Y ul, and all the i (as defined ir@)) for r < rg satisfy this condition, for the same
constant ¢ since their differential is uniformly bounded wher:min(rg,r7).

In order to justify the assumption thatwas constant in a neighborhood w§ made in §213, it suffices to
construct this). In the end, the inverse (EIJr obtained will be an approximate inversel¢ . The independence
of J' with respect ta is crucial for this new structure to be usable.

2.5 Realizing the sum

This section presents the proof of theo@ 1.2; it is a mafteetting up the situation so that proposn@ 2.2 can
be applied. First, by assumption we are given two cunfeandu! whose tangents at 0 are linearly independent
(overC) and the linearized operatddg are surjective of bounded right inverses. pet]2,4], letu” be the family
of maps introduced if[4), with parameters= 2 andy = 2 (as specified in remarfk 2]10). Thanks to lenfmé 2.8, if
r<rp=e?®

o p < [l p + e[ +car?/P.

On the other hand, whank rp(02u",C0J), lemmd 2.p states that
Ha]ur” < Czrl+£

Before we can invoke propositi@.z, we must show that tleeaebounded (independently Oftight inverse to
Dy . Two uniform bounds (for sufficiently small) are obtained by lemmjas 2.12 pnd]|2.13.fifsegives an upper
bound to|du’ | whenr < rg. The second gives a lower bound for the differentials wherr7 andr?/r7 < |z < r.
Next, whenR is small enough so thd@r(mo) N au"(By(0)) = &, the operator®?’,, D), andD}; are arbitrarily
close (by choosing arbitrarily small) from the one defined by the structdfef @) The difference between
these operators is uniform for all choices of parametnaller tharrg,r7 andp.

11



Thus,Dfjo and Djl have bounded right inverses and so[hﬂé and Dj’l From these inverses we construct in

section[2]3 and under the assumption thatrs(sp, S+, Ca), an inverse t®d}. The dependence af onJ’ will not
be fatal since a choice of a smalledoes not increase the difference betwBgnandDY;. The bounded inverse
of the second gives a bounded inverse for the first.
Implicit function theorem can now be used by choosigg= 0 andu = u'. The result is thel-holomorphic
curve expé, where
[[€llwap < crtte.

In particular, thanks to Sobolev embedding, the sup nor&i®bounded, and consequently the difference between
the holomorphic map obtained by perturbationibindu’ itself will be of the order of 1*%.

Remark2.15 Lete €]0,1/3], let0 < p1 < p2 < ro(€), let Pt and P2 be curves obtained by theorém|1i.2, by
applying propositiof 2]2 to the map8uand 2. Then, for a Ke R, if p1 < p2(1— Kp$) these two curves are at a
positive Hausdorff distance. This is seen by looking at ttemgling the approximated solutions have close to the
gluing point. On one hand, the0r1.2 states that the Hartfsdistance from R to uPi is bounded by @i”s).
On the other hand, the distance fro®t o uP2 is at least K(pz — p1).

Furthermore, the implicit function theorem (as ﬂ [5, Theor A.3.3]) indicates that the dependence pbh
uP is continuous. Thus, there existp@such that the Bifor p < pg realize all possible strangling.

3 Chains of curves

This section is concerned with gluing (under certain asgiomg) an infinite number of-holomorphic curves
in order to obtain a-holomorphic cylinder. Although the method applies to gahsituations, we could content
ourselves with the following setting. Assume thdekolomorphic curves intersect at three points, then thead-
holomorphic cylinder that curls up around those curves. mb@ point of this section is to introduce a new norm,
£*(LP), on the base space. This will enable to treat the infinite rermobgluing as if only two were happening.
As such, it is a preparatory step for the interpolation cartsion.

3.1 Cylinder and ¢*(LP) norms

The way the infinite number of gluing will be made is of counsgortant. LetZ; = CP' be compact Riemann
surfaces, let;:o andz:.» € % be two marked points on each surface, andleE; — M beJ-holomorphic maps (for
i € Z) such that/i € Z,U' (z:0) = U~(z_1.). Finally, lets = R x St = C/Z be theJ-holomorphic cylinder. This
section will construct d-holomorphic mapi(") : s — M which is arbitrarily close to the', that isu(") restricted
to [i,i + 1] x Stis close tau' when sugri} — 0.

The space = R x St = C/Z will be given a peculiar metric so that each segnjent- 1] resembles a sphere
with two discs removed (see figure in the version availabléherauthor's webpage). Lét;) € ¢*(Z;R-0). Let
d(r;) be a family of metrics defined as follows. Liet Z, thengy,) is the metric induced by the magpy, r,,, which
embedsdi,i + 1] x S into the compact Riemann surfagewith the two discsBy, (z;0) andBy, , (z+1) removed.

The volume of such a surface is infinite. Thu8,norms are not expected to behave nicely. However a slight
alteration will do. Let us consider the sup of thenorms on annuli around each cirdlig x S'. LetV be a vector
bundle overs (with a connection and a norm) and kets — V be a section, define

[€ll=wry = SUZP||E|||_9([n7%,n+%]xsl)v
A (11)
||E||z°°(wl‘p) T heZ ||E||W1-p([n—%,n+%]xsl)'

These norms will retain all the properties we need and withato look at the problem only one gluing at a time.
It has been pointed to the author that similar norms are Wled\[proof identical to that of lemmf 3.6, allows us
to deduce that Sobolev embedding holds with a constant wiaels not depend on the parametergiven they
are sufficiently small).
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Lemma 3.1. Suppose f}(Z:0,Z:) > Cp. Given that_SUZDri < 2, there exists a constan & R such that
le

. Il

sup .
0£feC™(s) HfHéw(Wl‘p)

Proof. Each function can be decomposed as a sequence of functids-08P* with By, (zq.0) andBy,,, (z41:)
removed. The estimates follow from the fact that a ball wite Fubini-Study metric and one (or a fixed finite
number of discs) removed has a Sobolev constant that refbairgled as the radius of the discs tends to 0. See
[B] for details. O

The main result that will allow us to conclude is an adaptadbpropositioz to these norms.

Proposition 3.2. Lets be one of the 1-dimensional non-compact complex manif@ssribed above. Let p 2.
VCp,38 > 0 such that for all volume formevol; on s induced as above by the mapg;j4.,, all continuous
map u such thati € £°(LP)(Ts,u*TM), all &o € £2(WLP)(s,u*TM), and all Q, : £°(LP)(s,A% @3 u*TM) —
£°(WLP)(s,u*TM) satisfying

_ sp(avoly) < co, [l oy < €0, €0l o wapy < o
||6J(eXRJ(EO))H€m(Lp) S %7 DUQU = :“7 ||QU|| S CO)

there exists a uniqu&such that

0(exp,(E0+8) =0, [I&+Eollmwrey <8, 1€l murey < 200103 (€XR,(E0)) | (1o)-

The proof will require the implicit function theorem in Bastaspaces, as does the proof of propositioh 2.2; it
will be invoked again in sectiof] 4.

The techniques are essentially the same as before, it suffidasure that the curves and the pointsn =
U (z:0) = U*Y(z11.0) belong to a compact family, in other words that the paramsdgeg. the radiusro below
which the constructions can be performed, the kernel of gegaiorD;, ...) remain controlled. For example, if
theu' are just a finite number of curves infinitely repeated, theilfaim compact. Surjectivity in the sense (ﬂ [5,
Theorem 10.1.2.iii] is however much harder to get. Indeld Kernel of the operators are (probably) no longer
finite dimensional.

Two types of constructions are possible at the points ofseiionm;, one can glue either as iﬂ [5] or asin
sectiorﬂz of the present text. They are quite similar, exttegitthe second uses stronger assumptions (yielding a
more precise result). Indeed, in order to get the secondremtion, a condition on the tangent plane of the curves
at the point of intersection is required.

Definition 3.3. Let | C Z, then the curves'are I-uniformly not tangent (at their points of intersectim) if Vi € 1,
there exist local chartg; : M — C™ such thatp(my) =0 C" and (g J)(0) = Jo,

WioU[l:7 =awz+0(|z2%) and Wou*tz:1]=ai1.0z+0(|2%

anddd such that
0<d< ;Q(fc mMin(|A&j;0 + i 1;00] » |;0 + A8i 1 130 ).
i=igp mod k
If this condition holds at every intersectioing( | = Z), we will simply say that they are uniformly not tangent.

The following results is in two parts, depending on the tva@nsality assumption made. The weaker, more
standard transversality assumption is defined in the nexbse

Theorem 3.4. Let J be an almost complex structure, and suppose it is regulhe sense of definitioE:l;.G. Let
Zio=[0:1and Ze = [1:0 € % =CP". Letd:% — M be a compact family of J holomorphic maps such
that u([0 : 1)) = u*+1([1: 0)). Then there existxcand r, € R~ such that for all sequences;)icz satisfying
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Fsup = SUPr; < r, there exists a J-holomorphic magitisuch that the distance of'u(s) to Uu'(Z;) is less than
le

Cor2. More precisely, .
VZe Wty (2, du(u™ (@)U (Wi, (2) < Corsup.

If the curves are I-uniformly transverse, then there exigts R~ such that for all sequendg; )icz satisfying
Fsup = SUZDri < r3 there exists a J-holomorphic mafivsuch thatvi € I,
le

2
23(0)}, Wi ovi)o QLo Wi ri,1(2) = @iz + ai+l;0r'—§1 + O(r%drps)

Mt

- , 2
and vze lli+ll;ri+1ari+2{Ari+1,ri2+/i(0)}’ Pi oV o Mit1iri 1,12 (2) = aiy1,02+ ai:m%l + O(r%lfps)

VZE (@robirri,y) HA

where A, r,(20) = Br,(20) \ Br,(20), rsup= .S”pri andy; : M — C™Mis alocal chart that maps nto 0 and such that
le
(W I)(0) = Jo.

Let us begin by the proof of propositidn B.2. It relies ¢h [hiebrem A.3.3]. It must be checked that the
linearization ofd; does not vary too much depending on the point at which it isrtak/iewing this as Newton’s
method, it is the same as requiring the second derivative tioinded. The methods used here are thus essentially
the same as ir[|[5, §3.5]. Amongst other things, this part@fifyument works even ¥, # CPL.

We introduce notations again:

Xy =LWEP) (s, TM)  and 9y = *(LP)(s, A% @ u" TM).

We are interested in the map, : xy — 94 which is given by pulling back by parallel transportudghe 1-form
0;(expu).
Lemma 3.5. (cf. [f, Proposition 3.5.3]) Lets be a manifold describe above, and let-[2. Then for all constants
Co > Othere is a real numberic> 0 such thatvu € £°(WLP)(s5,M),VE € £°(WLP)(s,u*TM) and for all metrics
satisfying

Ul <co, &= <co and  g(dvols) <co,
then

[[d7u(€) — Dul| < €1 [|€][wrp) -

where the norm on the left-hand side is the norm of linear afwes £ (xy, 7).
The proof of this lemma is identical to that ¢f [5], up to theaalge ofLP norms for/®(LP) norms.

Proof of propositioZ:(cf. [E, p.69]) By assumptionD, has a bounded right inversg;, (]|Qul| < cp). Let
c1 be the constant from lemnfa 3.5, and &¢€]0,1[ be such thatid < 1/2co. Then lemmd 3]5 insures that
[[d#u(E) — Dy|| < 1/2co if ||E]| < 8. The assumptions of the implicit function theorelh [5, Prsifion A.3.4] are
consequently satisfied (with = xy, Y = 94, f = 7u, X0 =0, ¢ = c and the samé). O

3.2 Transversality and right inverse

Before the theorem can be put to good use, it is better to ctetkhe surjectivity of linearized operators holds
in a reasonable class of spaces. Recall di(A',Z;;J) is the space o8-holomorphic map&; — M that are
somewhere injective and represent the homology @agsH?2(M).

Definition 3.6. LetVi € Z,N e HZ(M,_Z), let Z; be Riemann surfaces. The structure J will be said regular for
(A)iez and(Zj)iez if I € Niezdreg(Zi,A') and if the evaluation map:

ev: ((Z;mM*(As;d) — - 2(Z;M x M)
(Wiez = (U (Z), U (Z110))iez

is transverse t@\” = (*(Z;5) whereA = {(m,m) C M x M}. The set of structures satisfying these conditions will
be writtengreg((Zi)icz, (A)icz) or more simplyjreg(Zi, A').
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Although from our point of view the almost complex structigeiven, it is wise to show that structures that
are regular are abundant. As the intersection of a countaioiber of dense open subsets is still a set of the second
category, to show thateg(Z; ,Al) is of the second category only requires the studyess d

This would require an adaptation of theore[r]n [5, Theoremlp(Brhich insures transversality for curves glued
according to a finite tree)Z can be seen as an infinite tree, and so the question can beiadgyederal for an
infinite treeT of bounded degree. It might be tempting to proceed as folltake an increasing sequence of finite
subtrees ofl, say{Ti}. Thanks to theorenﬂ[S, Theorem 6.3.1] the set of structwews/hich the evaluation on
the treeT; is transversal is of the second category. The intersecfitimese sets should yield a set of the second
category.

In what follows we shall suppose that the structdren M is regular in the sense of definiti.6. This
assumption is not so strong, especially since, in the cddaeoest, theu' will be a periodic sequence of curves
(i.e. 3n € Z-o such thati = ul if i = jmod(n)). Thus thea priori infinite condition of definitiof 3]6 are actually
finite. Let us assume that each cumlec ar *(A, %;;J) is such that e (its evaluation at G 3j = CPY) is
surjective. In other words, for each curve it is possiblelioase an infinitesimal perturbation (which is allso
holomorphic) in such a way that this perturbation displadé8) in any chosen direction (note that we do not
make any assumption on the effect of this perturbation atCP"). Then the evaluation is surjective. Indeed, if
we are given a infinitesimal displacement at each point ofthimg, making it equal to the difference between the
displacement ofi («) and ofu'*1(0) amounts to solve equations knowing that in each equation we can fix the
value of a term (the one coming from the displacement (#)). Since it is a finite system (by periodicity) it is
solvable. Whence the surjectivity of evaluation.

Finally, note that inCP" endowed with its usual structure, these assumptions holddst for some\') since
between any two distinct points @fP" there is a line (or a conic).

Let’s define the moduli space

(A, Z350) = {(U)iez € °(Zi ¥ (A,S5;) Vi € Z,U (20) = U (Z141:0) }-

It is not excluded that the dimension of this space might hgefif-or example, if almost al\ have a trivial first
Chern class, it might happen that the dimension of the modpkece is B+ 23 c1(A'). In the present context, we
will be interested in a subset of the moduli space whes CPL:

a7 (C) = *(A;J;C) == {(u") € ¢ *(A,5; = CPLJ)|||dul || .= < C,Vi € Z}.

What matters is that transversality of definitjon] 3.6 implgirjectivity of the linearized operator even if it is
restricted to vector fields who do not alter the intersectimperty. Recall that fou' : Zj — M,

WP =WLP(5, u*TM)
LY =LP(Z, APITE @ U TM).

Givenu' : 5; — M, such that(z...) = u*%(z1.0), denote by
WL = {(E%Z € X WP (30) = zi“(aﬂ;o)} .

(The evaluation ofV1P sections makes sense sinze 2.)

Lemma 3.7. Suppose J is regular in the sense of definifioh Bes the operators ) :Wuli’p — LY are surjective
and ey, is transverse, then the operator

. 1p p
Dy W’ - xL

(Ei)ieZ = (DuiEi)ieZ

is surjective.
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Proof. Letn' € L (wherei € Z). Each of theD,; being surjective, there exigt € Wuli’p such thaD ;& =n'.
Since the evaluation is transverse to the diagonal, chtiasd ; o *(A';J) so that

v (@) = (@ o) 8@ 0 € x ()6 120) + Timm )

whereev;, is the map defined ih 3.65 = U(z.0) = U*1(z,1,0) andA C M x M is the diagonal. The(E' — ')icz
is an element qulZ’p whose image b,z is also(n')icz. O

In order to use propositi.2 we have to describe an apmiate solution and show that it has bounded right
inverse. To do so, two choices are possible: either the rdelhﬁE, 810] or the one from secticﬂ1 2 (if the curves
u' are transversal at their point of intersection, so in pakicdimgM > 4). The second is of interest since by
remark it could allow to prescribe different charaistars of curves (strangling), an idea that will be used
again in secti0|ﬁ|4. These two situations are dealt with irdantical fashion. The main point is to notice that in
the constructions the approximate solutions differ fromittitial curves only in a neighborhood of the points of
intersection. Similarly, the approximate inverses onffedifrom a true inverse in those neighborhoods.

Suppose that we are trying to use the construction of setisnme problem might arise from the fact that a
subsequence dim } may be arbitrarily close. Modifying the almost complex streJ would then be a problem.
To avoid this, it is again necessary to introduce structurieish depend on a point of the domain. We will not
detail this argument. Furthermore, the construction usegarametrization of one of the curves; we present what
this means in the present context.

Suppose we are in the case whare=[0: 1] = 0 andz.. = [1: 0] = © € 3j = CP%. Letq : CP* — CP* be
defined byg (2) = r2/z Then, the condition of intersectionio @ (0) = u**(0) = m, and the local expansion
in a charty; : M — C™ which sendsn; to 0 and such thgu;J)(0) =i is

Wioutz: 1 =a41.02+0(|Z%) and WioU[l:Z =Yiouo[z: 1] = a.0z+ O(|Z?).

The ringA 4z 2/3 corresponds o8 to thez € [i,i + 1] x St such thatp o Wiy, 1, ,(2) < r,zﬁ andtothee[i+1)i+
i+l
2] x Stsuch that1r,, 111, (2) < 123,

The arguments used for theé norm will be adapted without pain to tH&(LP) context: in this norm there
is at most one gluing to consider at a time. It suffices to chibakthe curves' and the pointsn = U'(Zw) =
u+1(z.1.0) belong to a compact familye(g. a finite family).

We now transpose the methods 2.3 to conclude.

Proof of theore4:With a small deformation thé&-holomorphic curves' can be modified into maps”ifi+1;
this deformation is identical to the one which chang®imto u®" except it takes places at two points@®'. Thus,
the operator®,;, and their inverses, are closelqir;r;,, . The opertoD  also is also close (in the norm of linear
maps/®(WLP) — ¢*(LP)) to an operatoD ) where theD ., take place of th®,;. Itis also surjective and
their inverses are close.

We describe the map(") : s — M (we will write u = u(") for short in this paragraph) which will be an
approximate solution, in the sense thaju|| . r) is small, and thab, will have a bounded right inverse. It will
be defined by composing the maps ., : [i,i+ 1] x S' — Z; with the mapsiifit1 : ¥ — M. Then a0, 1)-form,
sayn, alongu can be cut in pieces to give risefjbalong eachu'"fi+1 (by extending by 0, that is in an analogous
way as K|7) where® andn?! were obtained frorm). From these', the inverse oD ;) will give vector fields
along theu'ii+1, say&'. These vector fields can be glued by a surgery (which copeedeéfinition ofé" in (g))
to get a vector field") alongu. The computation made i|E|(8) still works out in an identi@aHion at each point
of intersection. By definition of thé”(LP) norm, this construction produces an approximate inverfg t@y the
technique used ir[k9), a true bounded inverse is then foulid.allows the use of propositi.Z and finishes the
proof. O
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4 Interpolation and its consequences

In this section, we give an example of a space of pseudo-tarioinic maps which is of positive mean dimension.
As before the cylinder will be notesl = R x St = C/Z. We will assume that the of curvebis of finite type
(periodic), in the sense that only a finite number of distimeips are described asuns overZ. The theorel
could also be proven using the gluing introduce(ﬂn [5]. Heerein order to prove propositi.4 and to apply
Iemm, it is necessary to have approximate solutionshwduie injective (with a discrete set of exceptions).
This is incompatible with an approximate solution whichastant on a whole ring.

4.1 The interpolation theorem

Apart from the interpolation itself, the results of theor@ have now been covered. As we cannot unfortunately
gain information from the parametarswe shall throughout this section take them to be all equal r. We will
also use the notatiom:r := Wi, r;. ;-

Let us recall all the assumptions we shall need.

H1- Fori € Z, there existdN € Z-, andJ-holomorphic curves! : CP* — M with p; := u' (e0) = u+1(0) and
Ny

H2 - The curves ap; are not tangent.

H3 - Jis supposed regular in the sense of definifioh 3.6.

H4 - One of the maps, say, will be assumed to live in a family that cover the neighbarthof some pointil (z,)
for z. € CPL.

This last assumption is more precisely stated as follows: aFfixed j € {1,2,...N}, there exists a point
z. € CP! and a family ofW™-P vector fields alongil which belong to the kernel d,; and such that the map
defined by¢ — exp,j(,,)&(z.) is surjective on a neighborhood wf. = ul(z.). Thus, tox € Ty, M we will associate
the vector fieldX € kerD,; ¢ WLP(CPY, (ul)*TM) such thatXs(z.) = x. In other words, we need to make the
assumption that the differential of the map given by evaduedtz, is surjective on the kernel @,

Remark that this assumption is close to the transversdlitiyeoevaluation map in definitioi:]&.& Letvj Nz
be the evaluation gu') in z, wheni = jmodN. To ask that

1

Dy & de oz i?ZW”i'p - (izzl_si )@ (i?ZTUHNi<Z*)M)
is surjective is, given that is regular in the sense of definiti.6, equivalent to askflte restriction of e\j+ni
to the subspace kBx j+ni be surjective. This condition is naturally expressed inuheabulary of transversality.
Indeed, if in the construction of sectiph 3, it is requiredatdition to the gluing between the curves in the chain,
to glue another curve at a point (e.g. a constant curve), then regularity for this gluing schemiei¢tv obtained
from Z as a tree, by adding a leaf to the integgrsNZ) implies the surjectivity of e\ ’kerDuHNi' This way

of presenting our assumption indicates that it is not sigaiftly stronger the one made in the preceding section,
particularly for a finite family of curves. For example, itlde for a finite number of curves with appropriate
intersection inCP" with its usual complex structure.

Finally, in order to remain in the setting of a compact fanaifymaps{u'}, it will be necessary to restrict to a
sufficiently small balBy,, C Tm,M such that for alk € By, the curves expXx form a compact family.

Theorem 4.1. Let(M, J) be an almost-complex manifold. Lét u . ,uN be a finite family of J-holomorphic curves
u': CP' — M such that i) = ul (0) when j=i+1modN. Suppose that J is regular in the sense of defin[tioh 3.6
and that U is deformable. Let.ze CP'\ {0,} be a marked point and let,;m= ul(z.) € M be its image. Suppose
that the curves are uniformly transverse. There exists cR#adR- 0 such that for any sequende;} satisfying
rsup=supri < R, the exists a neighborhoog,Vof m, such that for all sequence of poinfay}kez in Vi, there
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exists a J-holomorphic cylinder:is — M satisfying the following properties:
R1 - u passes by the prescribed points,

u(zk,*) = rn(v

where z. = Hjnir (Z),
R2 - the behavior of u near the gluing points is as follows:

2
vze (Qropy) HA ()}, WioUuo@ropy(2) = ezt aip10-2: +O(r&se)

/3
lig1,liig

2
and Vvze “i:tll;r{ArH 0}, WioUoWt1y(2) = &11;02+ ai;oor'%1 + O(r%ffpf)

i
where A, r,(20) = Br,(20) \ Br, (%), andyj : M — C™is alocal chart that maps nto 0 and such thaty;J)(0) = Jo.
R3 - u is close to the curves {or exp, X if it is the deformable curve):

vze w(Zi),  dw(u0(2),U (i (2))) < clrals +3)
whered; = dy (mg,m,) ifi = j+kN andd; = 0 else.
(The mapsy;; are the same as the one introduced[in]§3.1.)

4.2 Implicit function theorem again

As before we are trying to find a solution to an equation cointgi a non linear term by an implicit function
theorem. However, in addition ®yu = 0, we have to satisfy a sequence of punctual constraints. eAshall see
these will not have a significative impact on the argumemtgréler to describe the situation, nate the marked
points on the cylindes (they will be chosen to be equal (g nkr(z.) later on), and leev, : a5 — (*(Z;M) be
the evaluation map at these poiggs. Even if ey, takes value irM, we are in a situation where only the cunve
and its perturbation by a vector field will intervene.

Since we need the vector fields to be f norm smaller than the injectivity radius so that the evatmt
of exp,§ makes sense, it is better to see the target spa@®,ads a product of balls in the tangent plane. Let
Tz..M = éZTU(a;QM’ the elementsr € T7..M will sometime be written a&/ = (Wi)icz.

This understoodev, defined in a neighborhood oftakes values in 7..M. This is actually a linear map if we
look at the neighborhood af as given by vector fields along The equations to solve adgu = 0 andev,u=w
for somew € Tz..M. This said, it remains to use the implicit function theorﬁnF[roposition A.3.4].

Proposition 4.2. Let s be the cylinder and let p- 2. Vcp, 30 > 0 such that for any volume formvol; on
induced by thei, any continuous map u and such tiite ¢ (LP)(Ts,u*TM), all &g € £2(WLP)(s,u*TM), and
all Ty : £2(LP) (s, A% @30 TM) @ T7..M — £°(WLP)(5,u*TM) & T7..M satisfying

sp(dvols) <co,  [|duflmp) < oo [[€0llmwrp) < s
_ D=1, [Tull < co,
195 (xR, (80) l=(Lp) < s 180 (k) — Wil < g

there exists a uniquésuch that

A(exp,(Eo+8) =0,  &o(Zc)+E(Z) =W, [[E+ Eollmwrp <3,
€]l w0y < 2c0( 103 (xR, (€0)) lle=(Lp) + [1€0(Zi) — Wil s ) -

Proof. We proceed in the same fashion as in the proof of thefrem @124 lbe the constant of lemnja B.5, and let
3 €]0,1[ be such that;3 < 1/2co. Then lemmd 3|5 insures thidry (&) — Dy|| < 1/2co when||€|| < 8. The map
ev. :U — (Tm,M)Z is defined folU C x, the open set of vector fields who&2 norm is less than the injectivity
radius. With these notationsgw (&) = dev,(0), and no estimate on the second derivative is required.
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The implicit function theorem of[[5, Proposition A.3.4] Wite used with the following notationsy is an
element of( T, M)Z contained in the image @,

X = Xy, Y:[}fu@(TmM)Z, f=(Fu, &% —W), X=0, c=c

and withd the minimum of thed above and of the real numb&rsuch that|¢|, - is less than the injectivity radius
of deM. Note that dy — dfy, is bounded by lemmfa 3.5 and aa/d€) = dev,(0). O

In order to prove theore@.l, the approximate solutioh 60 must be made and the operabyrd ev, must
be shown to have a bounded right inverse. Let us go ba€kiap evj nz. In secti0n|]3, it was important that,
under the assumption of the regularityBhfthe mapD z possesses a bounded right inverse (for&h@.P) and
¢°(WLP) norms). Call this invers®,z. Let us show that this allows us to construct an inverde to® devj nz.

Lemma 4.3. If Dz has a bounded right inverse and H4 holds, then a boundedsaver)z @ devj .z exists.

Proof. The assumption was designed so that, for the strudtgieen, dey,; \kerD ,- is surjective on ., \M. Thus

there exists a magj : T,j,,,M — kerD,; such that @y, oqj = Id. This map is bounded since its domain is finite

dimensional. Let us introdud@m,M)* = x Tjsni(,,)M. Recall thau ™! = ul andul(z.) = m.. Thus, the map
i€Z

q: (TmM)Z — kerDjni

which reproduce;j on each factor is bounded froffi(| - |) — ¢=(W%P) where| - | denotes a norm on,J,. )M and
£%(]-|) is the supremum of these norm on the product.rj_et\lvulz’p andw € (Tm,M)Z, defineT : LEZ O (TmM)Z =
WulZ’p by

T(n,w) = Quzn +a(w — dey,isnzQyzn).
SinceD;zq=0,D;zT(n,w) =n and &y,+nz T (n,w) = w. T is the required right inverse © z & dey,j:nz. O

The following proof is a small modification of the proof of them.

Proof of theorel:We start by describing the approximate solutiéi¥) : s — M. The pointsz, x will be
chosena posteriorias they will depend on the parameter This dependence could certainly be avoided by
perturbing again the approximate solution, but this woelgluire unnecessary estimates. As described at the end
of sectior{ Bu" (<) will be defined by composing the mags : [i,i+ 1] x St — &; with U™ : 5; — M if i &j modN.
Wheni = j + Nk, we will first deformul by the vector fieldXy, in @ map exg Xy,, before it is deformed into the
amapul’'' : 3j — M (those are the small/*P deformations defined similarly " from u®in sectior[2.B).

The(0,1)-formn alongu will be splitinton' along theu'"" by extending with 0 where it is not defined. From
thesen', we obtain the vector field8 along theu'"" thanks to the inverse @ ) @ devinz. The&' will have
the property thaD-&' = n' and that ifi = j + Nk then&'(z.) = 0. To obtain a vector field" (") alongu, it
remains to glue these fields as in sec 2.3 and in the prfdbfaorem. Indeed, if is sufficiently small so
that the pointz, will not be contained in the region where the gluing of thetoedields take place, this method
gives a&" (") which is 0 at certain points, which means that the curve digl by this vector field will take the
prescribed value.

The pointsz.. are determined only at this step. First, thie chosen so as to satisfy the constraints mentioned
so far but also so that theor¢m|3.4 applies. Then, we fix

Z = W ke (Z2)-

Thus,&"(") (7., ) = 0. Furthermore, the computation of (8) remains identichis Tonstruction is an exact inverse
for ev,. It also an approximate inversely, (for the £*(LP) norm) since has been so chosen. Consequently, this
is an approximate inverse f@, ® ev,. The proper inverse is then obtained and propositich 4.%espw yield
theoren] 4]1. O
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4.3 Non-triviality

Theorel shows the existence of a family of pseudo-holphiomaps which can be parametrized as follows.
Note by® :R-q X B%l* — M the map obtained by theor.l. In a neighborhggaf a pointm, = ul(z,) the
map®; ((Wk)) : s — M is characterized by the value it takeszat. Note that since we took all the parameters
to be equalz, is the pointzy., translated byNk. This understood, for fixed, the maps obtained by theor¢m|4.1
are characterized yy = expy, Wk € Vm, .

4.3.1 Distinctimages.

Another interesting property of this family dfholomorphic applications resides in the fact that, unghprapriate
assumptions, two curves obtained fr&rhave the same image only if they differ by an automorphism.

Proposition 4.4. Let U where i=1,...,N such that there existgrand B, C T M such thatvr < rg and
Yw € £° (B, ) the number of points wheré\fis not injective is finite. Then there exisis< ro and Ce R~ such
that for all r < r1 and all wi,w» € £(Bp,) such that]|u™™t —u""2||o < Crq, if ug = %, (w1) and w = Ry (W)
possess the same image then they differ by the precompadittm automorphism.

Proof. Introduce
N={(z1,2) C S x S|ur(z1) = uz2(z2) }.

This is an analytic setf. [[, Proposition 5 and its remark]), which is moreover compénd, since the two curves
have same image, of (complex) dimension 1. Nxfte = O(r'*¢) the maximum of th€® distances betweeaut %
andug = %, (wx). Choose1 so thatBsp 1) (u’?""k(z)) NuY(s) be isomorphic to discs for atl < r1. Next, takeC
so thatCry < 4p(r1) —2p(r) (for exampleC = 2p(r1)/r1). Then,|jui(z) — u2(2)||co < 2p(r) +Cry < 4p(r1).

LetA C s x s be the diagonal and l&t,A a p-neighborhood of the latter. Thdnis close toA’ = Uzez(A +
z+ iNZ) whereZ is the set of points where th& are not injective and + c is a short notation for the diagonal
translated along one of its factors in the produet the set of pair§z+ c,z)). These choices made,s contained
in a neighborhood of these translated diagonals,)A'.

The maps: (z1,2) — (21,22 — z1) is an isomorphism of x s on itself which sends the neighborhddghh on
S x Dp (whereD, is the disc of radiug). Lett : ' — s be the projections on each factors. Given that the curves
have the same image, these maps are surjective. Tinus(l") C s andmpos(I") C Dy. Let g be a connected
componentof; this is a closed analytic complex set of dimension 1. Slig) which is contained i x D4gr,)-
This analytic set lifts to a subset 6fx Dygy(r,). Describing this set by equations with holomorphic coegfits,
one sees that the coefficient must be constant. Consequileistig a line. Thusl o is contained in a translate of
the diagonal; in other words fai € (o), U1(z1) = Uz(z1 +¢). AsT(lp) is s (note that by the uniqueness of
the extension od-holomorphic maps, it would suffice to have it non empty)s thieans that; (z) = up(z+c¢). O

There is a natural action @ on the maps — M which is given by translation at the source. For a fik€lss
than ther; above), identifying all the curves given by theorkn] 4.1 \atiave the same image will not reduce the
dimension significantly.

Indeed, letr : 21, — 2 (M) be defined by taking the image of curvéu) = u(s). C acts by reparametrization
on %, (w); this leads us to look at the quotiert (¢*(Z;B,))/C. Propositior] 4}4 insures us thatis locally
injective on the quotient.

In order to construct a family of curve with different imagésmight also be possible to proceed differently.
For example, in the case a single gluing, renfark]2.15 inelictitat letting the parameter vary gives curves of
different images. It would then be tempting to use all theapeaaters; not to be equal to the same valueand
use this characteristic in order to deduce the maps hawreliffimages. However, it is not possible to obtain this
result directly from the implicit function theorem. Indedftht a point the parameterisg the true solution obtained
by propositior] 3]2 is a perturbation in ti&(W*P) norm of the order oiiSEUZpri. It is also difficult to introduce a

measure of the strangling which can be defined on a auwkich is of clasdV-P. For these reasons, evaluation
at a point have been used.
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4.3.2 Simple maps.

Before we look at curves obtained Rywhich possess the same image, we make a digression to shiactioaful
choice of parameters allows us to show that the mdpes not factorize by a quotient of the cylinder. Recall that
u"" is the approximate solution constructed in order to obfgitw). The mapu™C is periodic, in the sense that it
factorizes as™?: s — 5 /INZ — M.

Lemma4.5. Letmt: s — s /iZ be the quotient to the torus. Let y — M be a pseudo-holomorphic map sufficiently
CO close to a mapgi: s — M such that g = upoTtand 4, is injective. Letp: s — 5" and U : s’ — M be such that
u=Uoq Thengis periodic: 9= @, o ¢; Whereq, is the quotient of the cylinder by a discrete subgroup (witho
fixed points) of the automorphismssf

Proof. Letw e s’ theng~1(w) C Ry :=u~1(U/(w)). Sinceu is injective,Ry is contained in a ball and its translates.
LetByw C 5 /iZ such thaBy := ﬂRNT[(Bp(z)) wherep = ||u— up||co @andrt: s — 5 /iZ is the projection on the torus.
VS

In particular,g(w) C T 1(By).
We wish to show thapis periodic. In order to avoid an accumulation, the numbezlefents ofp~(w) in a
component 0By, has to be bounded. Let

lek = i]x—k— 3, x+k+ 2[xR/Z,

wherex € R andk € Z-, a piece of the cylinder containing2- 1 connected components af*(B,,). We wish
to construct a-holomorphic map which associatesvice s’ the mean of its preimages.

In order to do so, let us first describe this for a proper andemrstant holomorphic functioh: U — s’ where
U Cs. Aproblem might occur at critical points df. However, locally isf(z) = ag2 + O(2*1), there exists a
functiong such thatf = g% andg'(0) # 0. In part|cularg|s invertible. Furthermorei,(z) = w < g(2) € {xxd =w}.
Thus, ifh(z) = z anJ is a polynomial angy1(x)! = Sy=obj, XX the local expansion aj, the sum of the values

iz
of hon the pre|mages of will be written as

Z h(z = h(z2)
zef—1(w) zeg—1(wl/d)

g
iz
and is a holomorphic function of.
In the case of interest to us than's restricted tdy, the function which takes the sum of the preimages is

az
PIRPA

W zcg )
: by XK ajdby gk
Jkgoxe%l/d I %g K

well-defined. Lef.k(w (ql . Let Wy : ' — 5/iZ be the sequence of function given by
balW =5 5 T
;K = ra—— .
2k+ 1zeFX;k(w)

In a neighborhood ofv these function are holomorphic. However they present sdasweudtinuities when moving
w makes point of the preimagg *(w) leave or entety. In particular,yy, is holomorphic in a neighborhood of
w whose size is bounded from below (by the distance fByto the boundary off.k). Furthermore, Since thi.k
are holomorphic outside these jumps, it is possible to ektranvergent subsequences for eachiNote that the
size of these discontinuities is boundedKyy'k for someK; € R~. This bound enables to get that, for kall

X=X

|l~|JX:k7l~|Jx/;k| <Kz K

We start by choosing a sequence of poifus} of s’ which is dense (but as thp,x do not present jumps near
w, it would suffice to take a sufficiently small net). Next che(aassubsequenc{emkl } for which g, ;x converges.
Then this subsequenc{ek } is refined again in another subseque(‘n%* } which makesu ) converge. The
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sequence{nl((k)} will make all theyy,:n converge to holomorphic functions. Furthermore, the diffiee between
the jumps tends to 0, thus the limit of these sequence wiltlepend on the point; chosen. Denote this limit by
W; this is the desired averaging function.
The mappo@: s — $/iZ has the property that) o ¢(z) — 1(z)| < p since the two points belong &,. If p is
less than the injectivity radius of, this enables to define a functidiiz) = Yo @(z) — 1(z) € C which extends to
X and is bounded. Consequentlg € C such thatpo ¢(z) = z+cin s /iZ. In particular,@is a covering map.
Hence the mapp factors through a quotient d@f by a discrete subgroup without fixed points of the automor-
phism group ofC. This subgroup necessarily contains translations, arg] tantains only translations. Since the
fundamental group af is abelian, this is the quotient by some group action. O

The most restrictive assumption is the fact tifais injective. This means that the pseudo-holomorphic airve
uk must not have any other intersection (or self-intersedtmart from the ones required to make the gluing.

Indeed, by takind,, smaller if necessary, Iemn@ﬁl.S can then be applied to coivaéned byr . Suppose
thatu = %, (w) can be writteru = U’ o @, where@: s — s’ is a quotient map by a discrete subgroup without fixed
points.

These subgroups of the automorphisms ef C/Z possess at most a finite generator (of the foymhere
n € Z) and an infinite generator (if it possesses an imaginary.p@his is seen by looking at the corresponding
discrete subgroup without fixed point of automorphism&gpife. which is a lattice of rank 1 or 2.

Thus, if @ is the guotient by an infinite subgroup, then there existsC \ R such thatu(z+c) = u(z). Let
m: C — C/(Z®INZ), for all there exists an integeg(3) such thatt(nc(3)c) < 3. In other words, ifi is periodic,
thewj must be almost periodiat — Wic.n, < p+ O(3) (wherep = O(r!*#) is the distance from = %, ((wy)) to
the approximate solution:(W)). Forr is sufficiently small and one of the is apart from the others will not
be periodic.

Suppose now thap is a finite quotient map. Consider a segmint i[k,k+ 1] x R/Z whereu is close to
the mapuX. u is again periodic, but this time in the sense that there £gistR such thati(z+ c) = u(z). Note
that e (2) — Mer (4 €) will correspond to an automorphisgh of CP* which fixes 0 ando. HenceuXo ¢f(z) —
uk(z2) < pfor z € . (Ix). Consequently if one of the curvesis simple and its image is not contained in a small
neighborhood, that is of siZ@(p) = O(r'*¢). Thus if a curve is of positive energy, this situation cartmappen.

Recall that a mapi: < — M is said simple if whemi = U ocowhere@: ~ — ¥ andu : &' — M thengis a
degree 1 covering map of Riemann surfaces (an automorphilne) previous discussion can be summarized as
follows.

Corollary 4.6. Ifforak e {1,...,N}, U‘is a simple curve of positive energy, there exists a ball&d a i such
that for all r < rg and for all we ¢*(Z; By, ) of which a coordinate is at distance at Ieai%DiamB,m from the
others, u= %;(w) is a simple map frors to M.

4.3.3 Mean dimension

The mapg. given by theorenh 4.1 will have a infinite dimensional spacmaps as its image and mean dimension
(as introduced ir[[3] is a natural way to measure the sizeisfitiage. Mean dimension is a topological dynamical
invariant, and here the group of automorphisms @fvhich can be identified witls itself) acts naturally on I )

by reparametrization at the source.

Let o/ be the space of pseudo-holomorphic maps M, ands/ s  be the subspace of those whose differential
is bounded (irC® norm) byc. To speak of mean dimension we need to ensure that the metricruakes the space
compact. Thus we will use the topology of uniform convergeos compacts. Far,u' : s — M, we will use the
distance .

Y= sup 2=k su /
d(u,u’) kezg)z ZeH(’kl]oxsldM(u(z), u'(2)) (12)
which induces an equivalent topology.

To a sequencéw} of vectors in a small balBy, around T,,M we can associate a pseudo-holomorphic
cylinder. The distance&llZ) between curves associat¢ditp and{w, } is bounded from below by

' (ww/) = SUP 27K [t — wi |
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Ifon Bﬁ the metricd’ above is usedg; : B%k — M does not reduces the distances. Furthernibegts orBﬁ by
shifting and this action is (up to some identification) equiant ifiNZ is seen as a subgroup of the automorphisms
of the cylinder (by translation). More precisely, sinceatefations only happen on the curvbamongst theN
curves which form the chain, the shift of an integeBﬁ will correspond to the translation b on the cylinder
(heres = C/Z).

The mean dimension dffm, M) for the topology induced by’ (this is the product topology) and the action
of Z is dim Ty, M = dimM (see [B]). Taking into account the covolumeiNfZ yields the following corollary.

Corollary 4.7. If there exists an almost complex structure J and a familyuofes Uf satisfying the assumptions
of theoren] 4]1 anﬂdJkHCO < ¢, then the mean dimension @f; ». for the action of the automorphism group of
the cylinder is at leasdtimM /N > 0.

There are at least two other ways to obtain a large family gbsnaFirst, suppose there exists a pseudo-
holomorphicu: CP* — M or ' : s — M. Then one can precomposer U’ by holomorphic maps — CP* or
S — S. This would suffice to generate a family of pseudo-holomarphich is sufficiently big. However, they
would all have their image contained in the imageia@fr U'. Note however that this quantity is finite if we restrict
to maps of bounded derivative, and that the image of these faapsubsets &fl) is actually rather small.

Furthermore, we could be tempted to use directly the ‘Boddo so, suppose there arholomorphic
mapsu' : CP! — M wherei = 1,...,N such thau' has a point of intersection with/ if j =i+ 1modN. Being
finite, this family gives rise tdu'}icz which satisfies the assumption of theor@ 3.4 by definihg: u' when
k=imodN (theore4 will again be used on such a finite family of cajvéefore gluing those curvesi'}
in a cylinder, it is however possible to precompose them bguomorphism fixing the two points which links
to its neighbor in the chain/~* andu'*1. Let®; be these automorphisms fixigy andz.«, the maps{u' 0 6;}
are another family of maps satisfying the assumption ofrﬂﬂe@. By taking all possibl@; this will give rise
to a family of positive mean dimension (and with boundededéhtial). It is unfortunately hard to show that the
members of this family have distinct images.

Thus what theorer 4.1 achieves by corollpry} 4.7 is to progifaeily of cylinders (independently of their
parametrization) inside the manifold whose mean dimernisipositive.
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