N
N

N

HAL

open science

Near Kohn anomalies in the phonon dispersion relations
of lead chalcogenides
Ondrej Kilian, Guy Allan, Ludger Wirtz

» To cite this version:

Ondrej Kilian, Guy Allan, Ludger Wirtz. Near Kohn anomalies in the phonon dispersion relations of
lead chalcogenides. Physical Review B: Condensed Matter and Materials Physics (1998-2015), 2009,

80, pp.245208-1-7. 10.1103/PhysRevB.80.245208 . hal-00473345

HAL Id: hal-00473345
https://hal.science/hal-00473345
Submitted on 8 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00473345
https://hal.archives-ouvertes.fr

0909.4216v1 [cond-mat.mtrl-sci] 23 Sep 2009

arxXiv

Near Kohn anomalies in the phonon dispersion relations of lead chalcogenides

Ondrej Kilian,"'? Guy Allan,? and Ludger Wirtz?

! Department of Astronomy, Physics of the Earth, and Meteorology,
Comenius University, Mlynska dolina F1, 842 48 Bratislava 4, Slovakia
Institute for Electronics, Microelectronics, and Nanotechnology, Dept. ISEN,
CNRS-UMR 8520, B.P. 60069, 59652 Villeneuve d’Ascq Cedex, France
(Dated: September 16, 2018)

We present ab-initio phonon dispersion relations for the three lead chalcogenides PbS, PbSe, and
PbTe. The acoustic branches are in very good agreement with inelastic neutron-scattering data and
calculations of the specific heat give good agreement with experimental data. The pronounced min-
imum of the transverse optical branch at I" due to the near-ferroelectricity of the lead chalcogenides
is qualitatively reproduced. In addition, we find a pronounced dip in the longitudinal optical branch
at I'. This dip was previously explained as the effect of “free carriers” (due to the presence of impu-
rities). The calculations demonstrate that it persists also in the case of pure lead chalcogenides. We
explain the dip as a "near Kohn anomaly” which is associated with the small electronic band-gap

at the high-symmetry point L.

PACS numbers: 63.20.dk,65.40.Ba

I. INTRODUCTION

Lead chalcogenides (PbS, PbSe, PbTe) are IV-VI nar-
row gap semiconductor compounds with rock salt crystal
structure. In nanocrystalline form these materials mani-
fest superior optical and electrical properties which opens
a wide field of applications. Their small gap (280 - 410
meV at room temperaturel), a large exciton diameter
(e.g., 20nm in PbS and 46nm in PbSe?) and small effec-
tive electron and hole masses make them a good medium
for optoelectronics, photovoltaic devices and quantum
confinement studies?3. An infrared diode laser was con-
structed? based on PbSe/PbEuTe quantum dots. Recent
studies® indicate that PbSe nanocrystals might be good
candidates for high-efficient solar cells. Because of im-
pact ionization (an electron-hole pair with large energy
decays into several electron-hole pairs with lower energy),
efficient carrier multiplication occurs.

In order to fully understand the de-excitation of hot
carriers - in particular, the ratio of radiative versus non-
radiative decay channels and the mechanisms of line
broadening - it is necessary to learn more about the
electron-phonon coupling in lead chalcogenides. While
high-quality calculations of the electronic bands are avail-
able (Ref. |6 and references therein), the understanding of
the phonon dispersion of the lead chalcogenides is much
less complete. Experimentally, phonon dispersion rela-
tions of PbS, PbSe, and PbTe were obtained by inelas-
tic neutron scattering measurements”82. Simulations of
the phonon dispersions have been done so far mainly on
the level of the semi-empirical shell model?:8:2:12:.13 ~ A]]
three materials exhibit the same anomalies in the dis-
persion relation: A strong softening of the TO (trans-
verse optical) phonon branch around I' and an unex-
pected dip of the LO (longitudinal optical) branch at
I'. The TO softening is due to the near-ferroelectric
character of the lead chalcogenides!? (in a truly ferro-
electric material, this mode would acquire a complex fre-

quency, i.e., the fcc structure would no longer be the
most stable one). Different explanations were proposed
for the LO dip. Cowley and Dolling!! attributed the dip
to screening by free carriers in the crystal. A term for
free carrier doping was consequently introduced in the
recent semi-empirical phonon calculations by Upadhyaya
et al12. Maksimenko and Mishchenko!? explain the LO
dip by the dipolar pseudo-Jahn-Teller effect!*. Recent
ab-initio calculations of the phonon dispersions of PbS,
PbSe, and PbTe!® displayed a minimum of the LO mode
at I" which (for PbSe and PbTe) turned into a strongly
pronounced dip when spin-orbit coupling was taken into
account. The reason for the strong dip enhancement re-
mained open.

We present in this paper a systematic ab-initio study of
the three phonon dispersion relations of the lead chalco-
genides. The small gap and the near-ferroelectric be-
havior demand a careful choice of calculation parameters
such as sampling grid and pseudopotentials. Our calcula-
tions reproduce quantitatively the acoustic modes. The
anomalies of LO and TO modes are qualitatively repro-
duced in the calculations (since they are strongly temper-
ature dependent!?, anharmonic effects would have to be
taken into account in order to quantitatively reproduce
the measurements which were performed at room tem-
perature). Our calculations show that a pronounced LO
dip is present in the pure materials even without free car-
rier doping. We explain this dip in analogy to the Kohn
anomalies!® that occur in the semi-metal graphenel”.
Furthermore, we demonstrate that ab-initio calculations
can reproduce very well the specific heat of PbS and com-
pare with recent calculations'®!8 that include the effect
of spin-orbit effects.

In section [[Il we summarize the computation method
and give the details of the calculations. In section [1I] we
discuss the dispersion relations of the three lead chalco-
genides. Section [[V] presents data on the specific heat in
comparison with experimental data. In the appendix, we
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show that the electronic k-point sampling must be dense
enough around the high-symmetry point L in order to
reproduce the LO dip at I'.

II. COMPUTATIONAL DETAILS

In the harmonic approximation, the phonon frequen-
cies (as a function of the wave-vector q) are obtained
from the equation

det |ﬁ5;ﬂ<q> —W2(q)] =0. (1)

The dynamical matrix CN’SO;ﬁ (q) corresponds to the force
on atom ¢ in direction S linearly induced by a displace-
ment of atom s in direction . We calculate it with den-
sity functional perturbation theory (DFPT):20 as im-
plemented in the code ABINIT2!., We use the local den-
sity approximation (LDA) for the exchange-correlation
functional?2. The wave-functions are expanded in plane
waves. Core electrons are replaced by pseudopotentials.

We found that the phonon frequencies are very sensi-
tive to the choice of the lead pseudopotential. In par-
ticular, it is important to include the lead 5d semi-core
electrons as valence electrons in the calculation. (This is
different from the case of pure lead, where the 5d elec-
trons do not alter the phonon frequencies significantly23).
The reason lies in the strongly ionic character of the lead
chalcogenides: the lead atoms tend to transfer the 6p va-
lence electrons to the anions. It is then the overlap of the
remaining 6s and 5d electrons of lead with the 3p orbitals
of the anion that determines the covalent part of the PbX
bond (where X stands for the anion S, Se, or Te, respec-
tively). Since the 5d orbitals contribute to this bonding,
their density should be calculated explicitly and not be
substituted by a pseudopotential. We tested different
Troullier-Martins pseudopotentials created with the FHI
pseudopotential generation code?*. We verified that the
corresponding FHI potential for lead and the chalcogens
from the ABINIT web-page yielded converged results for
the phonon frequencies. The plane-wave energy cutoff is
40 Ha.

It has been observed for ferroelectric materials that ab-
initio phonon calculations give better agreement with ex-
perimental data if they are performed at the experimental
lattice constant, rather than the lattice constant obtained
by total energy minimization (see Ref. |28 and references
therein). The reason is that the LDA tends to under-
estimate the lattice constant and in (near) ferroelectric
materials even a small underestimation of 1% strongly
influences the ferroelectric instability. Our phonon cal-
culations are performed using the experimental lattice
constants at 300K. The experimental lattice constant are
given in Table[[ltogether with the values of the optimized
lattice constants. Since anharmonic effects are neglected
(and very difficult to include on an ab-initio level2), we
do not expect to fully reproduce the temperature depen-
dence of the phonon dispersions.

DFT-LDA |Exp. (30 K)|Exp. (300 K)
PbS | 5.810 A 5.909 A 5.936 A
PbSe| 6.012 A 6.098 A 6.124 A
PbTe| 6.318 A 6.428 A 6.462 A

TABLE I: Calculated lattice constants in comparison with
experimental lattice constants? at 30 K and at 300 K.

The influence of the electronic k-point sampling on the
phonon dispersion is discussed in the appendix. For con-
verged results, we used a (7,3) nested grid, i.e., a 7TX7x7
(shifted) Monkhorst-Pack shifted k-point sampling with
an additional 3x3x3 sampling of the volume element
around the high symmetry point L. In order to obtain
the phonons at arbitrary phonon wave vector q, the dy-
namical matrix C%’(q) is calculated on a 8x8x8 mesh
and then Fourier-interpolated for arbitrary q. In order to
properly reproduce the LO dip around I', we calculated
the dynamical matrix explicitly for a set of g-points along
the high-symmetry lines A, ¥, A close to the I" point.

III. PHONON DISPERSION RELATIONS
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FIG. 1: Left panel: Calculated phonon dispersion relation
of lead sulfide (lines) in comparison with experimental data®
(dots). Right panel: phonon density of states.

In Figs. M2 and Bl we present our calculated disper-
sion relations for PbS, PbSe, and PbTe, respectively, and
compare with experimental data from inelastic neutron
scattering. We also show the calculated phonon densi-
ties of states which will be needed for the calculation of
the specific heat. In all three cases, we obtain excellent
agreement between theory and experiment for the three
acoustic modes. Since the mass of Pb atoms is much
larger than the masses of S, Se, and Te, the acoustic
branches correspond almost exclusively to vibrations of
lead ions. Consequently, the acoustic mode dispersion
is quantitatively very similar in the three lead chalco-
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FIG. 2: Calculated phonon dispersion relation of lead selenite
(lines) in comparison with experimental data? (dots).
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FIG. 3: Calculated phonon dispersion relation of lead tel-
luride (lines) in comparison with experimental data’ (dots).

genides. The main difference is a small frequency low-
ering that corresponds to increasing lattice constant in
the series PbS, PbSe, PbTe. The three optical branches
correspond to vibrations of the anions. Their maximum
frequency scales as 1/y/Mx, where X denotes the anion
species. For PbS, the optical modes are so high in energy
that they do not intersect with the acoustic modes. For
PbSe and PbTe some crossings occur.

In all three cases, we observe a remarkably large
LO/TO splitting at I'. For cubic systems, the splitting
is described by the relation2?

wio - W%o X (Z*)Q/ﬁa (2)

where Z* is the effective charge and e is the dielectric
constant. Since the effective charges are very large (+4.5,
+4.9, and £6.1 for PbS, PbSe, and PbTe, respectively),
the LO/TO splitting is strongly pronounced and the TO
mode at I' has a very low frequency. This frequency de-
pends sensitively on the lattice constant. E.g., for PbSe,

3

an artificial increase of the lattice constant by 0.1 A leads
to a softening of the TO mode frequency below 0, i.e., to-
wards imaginary values which means that the fcc phase
would no longer be the stable one. This is a clear man-
ifestation of the near-ferroelectric character of the lead
chalcogenides.

All three phonon dispersions exhibit a significant fre-
quency drop of the LO mode at I'. Cowley and Dolling
proposed that this phenomenon is caused by the screen-
ing of the macroscopic electric field accompanying the
LO mode by free carriers (which may have their origin
by doping from impurities). We have done our calcula-
tions without the presence of additional free carriers, yet
we have reproduced the LO anomaly. Free carrier doping
can contribute to the LO dip but seems not to be its pri-
mary cause. Our calculations are in accordance with the
theory of Maksimenko and Mischenko!® who explained
the LO anomaly as due to a strong electron-phonon in-
teraction of pseudo-Jahn-Teller type (in absence of free
carrier doping).

We explain this dip as a "near Kohn anomaly”. The
notion of a Kohn anomalyi® is known from metallic
systems: the vibrations of the ionic cores are partially
screened by the surrounding electron gas. The screen-
ing can be strongly enhanced for vibrations with a wave-
vector q that connects two points on the Fermi surface.
The enhanced screening then leads to a dip in the phonon
dispersion at those values of q. Recently, two Kohn
anomalies were found in the semi-metal (or ”zero gap
semiconductor”) graphenel”. The band structure in the
first Brillouin zone of graphene displays two conical inter-
sections (linear crossings) of the = and 7* bands at the
Fermi level. The Fermi surface is thus reduced to two
points and Kohn anomalies can be found at I (q = 0)
and at K.

The lead chalcogenides are semiconductors. Thus
there are - a priori - no Kohn anomalies in their phonon
dispersions. However, the direct band-gap at the high-
symmetry point L is small and, by compressing the lat-
tice, it can be brought down to zero. The situation is
demonstrated for the case of PbS in Fig. @l We show
the band-structure along the high-symmetry lines I' —
L — W for three different values of the lattice constant.
The highest valence band around L is composed of S
3p orbitals. The lowest conduction band has a Pb 6p
character with an admixture of S 4s orbitals. When cal-
culated with the experimental lattice constant at 300 K,
the LDA-DFT band gap is 267 meV. It decreases to the
value of 216 meV for the 30 K experimental lattice con-
stant. Artificially decreasing the lattice constant further
reduces the band-gap at L. Eventually, for a value of the
lattice constant a = 5.801 A, the band gap becomes zero
with a linear crossing of the bands in the direction L —
I and a parabolic dispersion in the direction L — W (see
right panel of Fig. [l). This situation is now quite analog
to the situation in graphene: the system is semimetallic
and the Fermi surface is pointlike, located at the high
symmetry points L. For the corresponding phonon dis-
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FIG. 4: (Color online) Left panel: Electronic band-structure
(DFT-LDA without spin-orbit coupling) of PbS for three dif-
ferent values of the lattice constant a. Black solid lines: ex-
perimental lattice constant at 300 K; blue dotted lines: exper-
imental lattice constant at 30 K; red dashed lines: a = 5.801
A (squeezed lattice constant which reduces the gap to zero).
The Fermi level is at 0 eV. A zoom for the region around the
direct gap at L is presented in the right panel.

persion relation one can expect a Kohn anomaly at T’
and at X (the wave-vector difference between to differ-
ent points L corresponds to either T' or X). We note in
passing that a further reduction of the lattice constants
re-opens the gap at L. However, the character of valence
and conduction band is inverted and a real crossing of va-
lence and conduction bands along the line L — W shows

up.
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FIG. 5: (Color online) Calculated phonon dispersion of PbS
for three different values of the lattice constant a. Black solid
lines: experimental lattice constant at 300 K; blue dotted
lines: experimental lattice constant at 30 K; red dashed lines:
a=5801A (squeezed lattice constant which reduces the gap
to zero). Circles: experimental data®.

Fig. Bl presents the phonon dispersion relations of PbS
for the three different values of the lattice constant. As
expected, shrinking the lattice constant leads to a stiff-

E9°P (calc.)| E9%P (exp.)
PbS 267 meV 410 meV
PbSe| 244 meV 280 meV
PbTe| 644 meV 310 meV

TABLE II: Values of the band-gaps of the lead chalcogenides.
Calculations are performed on the DFT-LDA level with the
experimental lattice constant at 300K. Experimental data at
300K (Ref. 11).

ening of the bonds and thus to an increase of the phonon
frequencies. In particular, the TO mode is strongly af-
fected because shrinking the lattice constant makes the
system “less ferroelectric”. The only mode which soft-
ens is the highest optical branch at I' and at X where
we observe to very sharp dips which correspond to the
Kohn anomalies predicted above. Furthermore, LO and
TO mode at I' are degenerate for the squeezed lattice: €
tends to infinity in the limit of the semi-metallic squeezed
lattice and the LO/TO splitting tends to zero according
to Eq. [@). Opening the electronic gap by enlarging the
lattice constant to its original value reinstalls the LO/TO
splitting. However, a remnant of the Kohn anomaly re-
mains visible in the form of a strong dip of the LO mode
at I'. For this reason, we interpret the LO dip as a "near
Kohn anomaly”.

We note that the LO dip is considerably less pro-
nounced in our calculated phonon dispersion of PbTe.
This is due to the strong overestimation of the gap of
this material2? (see table[[lfor our values obtained on the
DFT-LDA level and a comparison with the experimental
values). At this point, we have to discuss if the inclusion
of spin-orbit coupling (SOC) leads to an improvement of
the phonon-calculations. It has been shown by Hummer
et al.8 that SOC strongly reduces the electronic gap for
the three lead chalcogenides. E.g., for PbTe, the gap is
reduced to 60 meV. The inclusion of electron-correlation
effects, e.g., on the level of the GW-approximation, is
needed in order to “re-open” the gap and to obtain val-
ues in good agreement with the experimental gaps®. For
the calculation of the LO-dip this means that inclusion
of SOC does not necessarily yield better results (unless
electron-correlation effects are properly taken care of at
the same time): the underestimation of the gap leads to
an overestimation of the LO dip. Such an effect can be
seen, e.g., in the PbTe phonon dispersion of Romero et
al. (Fig. 3 of Ref. [15).

We note that a recent ab-initio calculation of Cardona
et ald%18 yielded considerably higher phonon frequen-
cies for PbS than the experimental data. This is due
to two reasons: they use the optimized lattice constant
a = 5.8084 which underestimates the experimental lat-
tice constant at 30K by 1.7% and the room tempera-
ture lattice constant by 2.2%. Furthermore, their use
of a pseudo-potential with the lead 5d electrons in the
core may lead to different phonon frequencies. Includ-
ing SOC, leads to a general softening of the phonons and



improves the agreement with experimental datal® (ex-
cept for the LO dip at T'). Our calculations with the
experimental lattice constant at 300 K are in very good
agreement with the acoustic branches of the experimen-
tal dispersions. Inclusion of SOC would probably lead to
less agreement.

The optical phonons are in worse quantitative agree-
ment with the experimental data points than the acoustic
modes. In particular, for the TO mode around I'; strong
deviations occur. This is not surprising, since our calcula-
tions take into account temperature effects only through
the choice of the room temperature lattice constant while
phonon renormalization through phonon-phonon interac-
tion2® is neglected within the harmonic approximation.
Due to the near-ferroelectricity, the renormalization of
the TO mode as a function of temperature will be par-
ticularly strong. E.g., the model calculation by Maksi-
menko and Mischenko!2 predicts for PbTe that the TO
mode at room temperature stiffens by about 15 cm™!
with respect to its value at 4K.

IV. SPECIFIC HEAT

Another test of the quality of our ab-initio phonon
calculations is the comparison with available experimen-
tal data for the specific heat, c¢,, of PbS, PbSe, and
PbTel518:28:29 The specific heat depends on the phonon
densities of states, D(w), (right panels of Figs. TI2IB]). We
calculate it numerically through the formula

= ()"
Cy = NAk/ ’“TiZD(w)dw, (3)
)

where k is the Boltzmann constant and N4 is the Avo-
gadro constant. Note that D(w) is normalized to 6, i.e.,
the number of phonon branches.

The resulting specific heat as a function of temperature
is plotted in the left panels of Fig. All three curves
display the typical convergence towards the Petit and
Dulong value 6 N4k = 49.9J/molK for a material with
two atoms in the primitive cell. Following the discussion
of Cardona et al. in Refs. [15,18, we also display ¢, /T in
the low temperature regime (right panels of Fig. [6]). All
three curves display a maximum between 8 and 12 K.

The agreement between the experimental and theoret-
ical height of the maximum of ¢, /T® was used in Ref. 18
as a critical test for the quality of the ab-initio phonon
calculations. They obtained a maximum height of the
ab-initio curve at 1160 pJ/molK* while the experimen-
tal height is at 1520 pJ/molK*. The deviation was ten-
tatively assigned to the absence of SOC in the calcula-
tions. Recently, it was shown for elemental bismuth3°
and antimony3! that inclusion of SOC in the phonon cal-
culations leads to a lowering of the acoustic modes and
thus to an increase of the maximum c,/T%. Also for el-
emental lead, a lowering of the acoustic modes through
the inclusion of s-o coupling has been observed?3.

Since our dispersion relations have been calculated
with the room temperature lattice constants, we ex-
pect that we underestimate the frequencies of the acous-
tic phonons at very low temperature (where the lat-
tice constant shrinks and the inter-atomic force con-
stants stiffen). Consequently, our computed c,/T° for
PbS should overestimate the measured one. Fig. [l (blue
dashed line) shows that this is indeed the case: we obtain
the maximum ¢, /T2 at 1750 uJ/molK*. For a better as-
sessment of the specific heat at low temperature, we have
repeated the calculation of the phonon dispersion and the
DOS using the PbS lattice constant at 30K (see Tablel).
The resulting ¢, /T° (solid black line in Fig. []) is in ex-
cellent agreement with the measured data. For PbSe, the
agreement with experiment is also fairly good. However,
in the case of PbTe, the specific heat calculated with the
phonons at the low temperature lattice constant is some-
what lower than the experimental data. Consequently,
spin-orbit coupling (which has a stronger effect in PbTe
than in PbSe and PbS*2) might be needed to yield good
agreement with the experimental data. Further calcula-
tions of the phonon DOS including SOC effects (and the
5d electrons of Pb in the valence) are needed to resolve
this issue.
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FIG. 6: (Color online) Left panels: Specific heat of the three
lead chalcogenides as a function of temperature. Right panels:
Specific head divided by 7% in the low temperature regime.
Results from ab-initio phonon calculations using the respec-
tive lattice constants at 30K (solid line) and at 300K (dashed
lines). Symbols: Experimental data from Refs. [L§ (Cardona
et al.), 15 (Romero et al.) and 29 (Bevolo et al.).

V. CONCLUSION

We have calculated the phonon dispersion relations for
lead chalcogenides. Strict convergence parameters (con-



cerning the lead pseudopotential and the k-point sam-
pling) enabled us to obtain good agreement with experi-
mental dispersion relations and measurements of the spe-
cific heat. The acoustic phonon modes are reproduced al-
most exactly. The pronounced dip of the LO mode at T’
is related to the narrow band gap and can be understood
as a near Kohn anomaly. This work provides the starting
point for the investigation of electron-phonon coupling in
nanocrystals of lead-chalcogenides.
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APPENDIX A: INFLUENCE OF THE K-POINT
SAMPLING ON THE LO-MODE FREQUENCY
AT T

For most semiconductors, a 4x4x4 or 6x6x6 (shifted)
Monkhorst-Pack k-point sampling®? of the electronic
structure is sufficient to reproduce the phonon disper-
sion, including the LO/TO splitting at T' for polar ma-
terials. In this appendix, we show that for lead chalco-
genides a much higher sampling is needed to properly re-
produce the LO mode dispersion around I'. Fig. [{l shows

260
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FIG. 7: (Color online) LO-mode dispersion in PbS for differ-
ent Monkhorst-Pack (MP) samplings and a nested-sampling
(see text). The dispersion is plotted along the line A (' — X)
with 0 corresponding to I' and 0.5 corresponding to X.

the LO mode dispersion close to I' for different nxnxn
Monkhorst-Pack samplings. We used here a Troullier-
Martins pseudopotential with the 5d electrons in the core
(from the ABINIT web-page). This allowed us to go to
very high k-point samplings. The phonon frequencies
marked by the symbols have been obtained by directly
calculating the dynamical matrix for the corresponding
phonon wave-vector (avoiding interpolation of the dy-
namical matrix). Obviously, it makes a big difference if n
is even or odd. For n even, we obtain higher frequencies
and for n odd, we obtain lower frequencies than in the
limit n — oco. The difference between the 7x7x7 and the
8x8x8 sampling amounts to more than 40 cm ™' for the
LO mode at I'!l' (For the TO mode - not shown here - the
corresponding difference is less than 3 cm™!.) Even be-
tween the 19x19x19 sampling and the 20x20x20 sam-
pling, there remains a difference of 2 cm™! for the LO
mode (while the TO mode is converged to within 0.03
em™1).

The origin of the even-odd discrepancy for the different
k-point samplings lies in the electronic structure of the
lead chalcogenides which all have a very small direct gap
at the high-symmetry point L. The small gap is (among
other factors) responsible for the very high dielectric con-
stants (e > 20) of the lead chalcogenides. The point L is
included in the samplings when n is odd, but not when n
is even. We noticed that response-function calculations
with odd samplings tend to strongly overestimate e while
the even samplings underestimate it. The link between
the dielectric screening and the LO/TO splitting is given
by Eq. A variation of € due to insufficient k-point
sampling will strongly influence the LO mode frequency
while the TO mode frequency may already be converged.
Since € occurs in the denominator, overestimation of €
in an odd sampling leads to underestimation of the LO
mode frequency.

Since a calculation of the full dispersion relation with
a very dense Monkhorst-Pack grid (and with the 5d elec-
trons in the valence) was not feasible, we used a nested
(7,3) grid. This is a 7x7x7 MP grid where, in addition,
the cubic volume element around the point L is sam-
pled by a simple 3x3x3 grid. The high k-point density
around L corresponds thus to the density in a uniform
21x21x21 grid and the solid line in Fig. [[ demonstrates
that we obtain the LO frequency in very good agreement
with the 20x20x20 and 19x19x19 samplings.

Due to the pronounced dip, the calculation of the dis-
persion relation from a Fourier-interpolated dynamical
matrix is therefore not feasible for the LO mode around
I". This is the reason, why in our dispersion relations
(Figs. [2IB), we used interpolation for most of the Bril-
louin zone but added point-by-point calculations for the
LO mode close to T

b Semiconductors: Group IV Elements, IV-1IV and III-IV

Compounds, Landolt-Bornstein, New Series, Group III,
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