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The Normalized Graph Cut and Cheeger Constant:
from Discrete to Continuous

Ery Arias-CastroBruno Pelleticland Pierre Pudfo
June 9, 2011

Abstract. Let M be a bounded domain & with smooth boundary. We relate the Cheeger con-
stant ofM and the conductance of a neighborhood graph defined on amesalople froniVl. By
restricting the minimization defining the latter over a paufar class of subsets, we obtain consis-
tency (after normalization) as the sample size increasgbshow that any minimizing sequence
of subsets has a subsequence converging to a Cheegemdet of

Index TermsCheeger isoperimetric constant of a manifold, condudara graph, neighborhood
graph, spectral clustering, U-processes, empirical [sses

AMS 2000 Classificatiar62G05, 62G20.

1 Introduction and main results

The Cheeger isoperimetric constant may be defined for ad&astidomain as well as for a graph.
In either case it quantifies how well the set can be bisectémligrinto two pieces that are as little
connected as possible. Motivated by recent developmesiseictral clustering and computational
geometry, we relate the Cheeger constant of a neighborhi@gh glefined on a sample from a
domain and the Cheeger constant of the domain itself.

Given a graplG with weights{d;;}, thenormalized cut o& subsef c G is defined as

o(S)
min{6(S), 6(S°)}’

h(S: G) = (1.1)

whereS°¢ denotes the complement §fin G, and
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are the discrete volume and perimeteSofThe Cheeger constardr conductancef the graphG
is defined as the value of the optimal normalized cut overaitempty subsets @, i.e.

H(G) = min{h(S;G) : Sc G, S # 0}. (1.3)

A corresponding quantity can be defined for a domain of a BHaah space. Lé¥l be a bounded
domain (i.e. open, connected subsetR8fwith smooth boundargM. For an integer kK k < d,
let Vol, denote thé-dimensional volume (Hausd®measure) irRY. For an open subsét c RY,
define its normalized cut with respectltb by

B Volg_1(0A N M)

— min{Molg(A N M), Volg(Ac N M)}’

whereA° denotes the complement Afin RY and with the convention that/0 = c. The Cheeger
(isoperimetric) constant d¥l is defined as

H(M) = inf{h(A; M) : Ac M}.

h(A; M)

Equivalently, the infimum may be restricted to all open std&®f M such thabANM is a smooth
submanifold of co-dimension 1. This quantity was introdibg Cheeger [15] in order to bound
the eigengap of the spectrum of the Laplacian on a manifol€ChAeger set is a subsétc M
such thah(A; M) = H(M); there is always a Cheeger set and it is unique under sonticors
on the domairM [12]. ForA c M, we calloA n M its relative boundary.

1.1 Consistency of the normalized cut

Suppose that we observe an i.i.d. random samXple (X,..., X,) from the uniform distribution
uonM. Forr > 0, letG,, be the graph with nodes the sample points and edge weights
HIIX — Xjll < r}, which is an instance of a random geometric graph [33]. d.gdenote the
d-volume of the unid-dimensional ball, and define

Yd =f max((u, 2),0) 1{llZl < 1} dz, (1.4)
Rd

whereu is any unit-norm vector ak?. Actually y4 is the average volume of a spherical cap when
the height is chosen uniformly at random. We establish tiy@se consistency of the normalized
cut, which yields an asymptotic upper bound on the Cheegestaat of the neighborhood graph
based on the Cheeger constant of the manifold. This is thedsalt we know of that relates these
two quantities.

Theorem 1. Let A be a fixed subset of M with smooth relative boundary. Fgquencey— 0O
with nr¢*/logn — +c0, and let §, = AN G,,,. Then with probability one
Wy
Ydln

h(Sn; Gn,rn) - h(A; M),

and, consequently,
Wy

lim sup

H(Gn,,) < H(M).
n—oo ')’drn



We do not know whether the Cheeger constant of the neighbdrgcaph, for an appropriate
choice of the connectivity radius and properly normalizeahverges to the Cheeger constant of
the domain.

1.2 Consistent estimation of the Cheeger constant and Che&gsets

We obtain a consistent estimator of the Cheeger constélit) by restricting the minimization
defining the conductance of the neighborhood graph (1.3)lieets associated with subsetR6f
with controlled reach. The reach of a subSet RY [20], denoted reacls), is the supremum over
n > 0 such that, for eack within distancen of S, there is a unique point i8 that is closest to

x. We assume here tht c (0,1)". When this is not known ariar not the case, we may always
infer a hypercube that contaids—Dby taking a hypercube containing all the data points, witing
lee-way so that the hypercube contaMswith high probability when the sample gets large—and
then rescale and translate the points so as$ within the unit hypercube. So this assumption is
really without loss of generality.

Theorem 2. Assume that Mc (0, 1) and that , — 0 such that nf**! — co. Letp, — 0 slowly
so that , = o(p?) and n%*p? — oo for all @ > 0. LetR, be a class of open subsetsR0, 1)°
such thateachfR) > p,. Define the functionalthoverR, by

Wy

hi(R) = h(RN Xy Gny,)

Ydln
if both R and Rcontain a ball of radiug, centered at a sample point, anf(R) = c otherwise.

(i) With probability one,
Eanvienh?‘(R) — H(M), n-— co.

(i) Let{R,} be a sequence satisfying
Rn € Rn, h*(R,) = min{h}(R) : Re R,}. (1.5)

Then with probability one{R, N M} admits a subsequence converging in tHemetric.
Moreover, any subsequence{Bf, n M} converging in the E-metric converges to a Cheeger
set of M.

Note that the infimum defining, in (1.5) is attained irR, since the functior, takes only a
finite number of values.

Part(ii) of Theorem 2 hints at a consistent estimate of a Cheeger $&tloditR, " M depends
on M, which is unknown. On the other hand reconstructing an uwkneet from a random sam-
ple of it is an independent problem for which there existstipld techniques and an important
literature—see e.g., [6] and the references therein. Iiath@ving result we construct a random
discrete measure which does not require the knowleddé,and prove that, seen as a sequence
of random measures indexed by the sample sizey accumulation point is the uniform measure
on a Cheeger set &f.



Theorem 3. Let{R,} be a sequence as in Theorentii); {R, } a subsequence ¢R,} with R, N
M — A, in L. Define the random discrete measurg © 1Y, 1 (X)ox, and the measure
Q = 1,_(.)u- Then, that Q converges weakly to Q is an event which holds with probglmlite.

As an example of an estimate of a Cheeger s&d pbne can consider a union of balls of radius
kn centered at the observations fallingRq. Under appropriate conditions, it is known that this
estimate converges in'; see [6].

Let us mention that with our result, only the “regular” paftaoCheeger set can be recon-
structed. Indeed, in dimensi@h> 8, the boundary of a Cheeger set is not necessarily regular an
may contain parts of codimension greater than 1.

1.3 Connections to the literature

Our results relating the respective Cheeger constants ofreath and of a neighborhood graph
defined from a sample from the domain are the first of their kawlfar as we know. The con-
nections to the literature stem from the concept of norredlieut taking a central place in graph
partitioning and related methods in clustering; from anétend in computational geometry (and
topology) aiming at estimating geometrical (and topoladiattributes of a set based on a sample;
and from the fact that we can use the conductance to boundiitiegtime of a random walk on
the neighborhood graph.

Clustering. In spectral graph partitioning, the goal is to partition agrG into subgraphs
based on the eigenvalues and eigenvectors of the Lapl&8ath]. It arises as a convex relaxation
of the combinatorial search of finding an optimal bisectioterms of the normalized cut. Given
a set of pointsXy, ..., X, and a dissimilarity measure (or kerngl) spectral clustering applies
spectral graph partitioning to the graph with nodes the gatats and edge weiglat; = ¢(X;, X;)
betweenX; andX; [37]. For instance, if the points are embedded in a Euclicgate, the kernel
¢ is often of the formp(x,y) = ¥(||x — yll/o), whereo is a tuning parameter, andis, e.g., the
Gaussian kernel(t) = exp(t?) or the simple kernel(t) = 1j04(t) [30, 3]. The consistency of
spectral methods has been analyzed in this context [38,,24,,85]. In particular, [28] proves a
result similar to our Theorem 1 in that context.

About cuts, [27] also proves a result similar to our Theoremvhn the separating surface
0Ais an dfine hyperplane. Closer to our Theorem 2, [29] establishes fat learning a cut for
classification purposes—so the setting there is that ofrsigssl learning, with each sample point
X; associated with a class labgl

Computational geometry (and topology). The Cheeger constait(M), and Cheeger sets,
arebona fidegeometric characteristics of the dom&that we might want to estimate, follow-
ing a fast developing line of research around the estimaifasome geometric and topological
characteristics of sets from a sample, e.g., the numberrofemied components [5], the intrinsic
dimensionality [26] and, more generally, the homology [B1,11, 41, 14, 34, 13]; the Minkowski
content [17], as well as the perimeter and area (volume) [8].

Random walks. Random geometric graphs are gaining popularity as modele&t-life net-
works. Some protocols for passing information between s@eounts to performing a random
walk and it is important to bound the time it takes for infotioa to spread to the whole network;
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see [2] and references therein. It is well-known that, gizgmaphG, a lower bound o (G) may

be used to bound the mixing time the random walk@nThis is the path taken in [7, 2] when
M is the unit hypercube and the graphGs, .. However, in both papers the authors reduce the
setting to that of a regular grid without rigorous justifioat leaving the problem unresolved (in
our opinion) even in this particular case.

1.4 Discussion

As we saw, there are only a handful of other papers relating icuneighborhood graphs and
cuts in the corresponding domain from which the points mgitire neighborhood graph where
sampled from. Our paper is the first one we know of that esthéd a relationship between the
Cheeger constant (optimal normalized cut) on the neighdmmttgraph and the Cheeger constant
of the domain, and the first one to propose a method that isstens for the estimation of the
latter based on a restricted normalized cut, and also densifor the estimation of Cheeger sets.
Our results generalize with varying amount @fogt to other related settings. However, we leave
important questions behind.

Generalizations. With some additional work, our results and methodology matt® settings
where the kernel (here the simple kernel) is fast decayimvarere the data points are sampled
from a probability distribution oM that has a non-vanishing density with respect to the uniform
distribution. It would also be interesting to consider tegiag whereM is ad-dimensional smooth
submanifold embedded in some Euclidean ambient space. rQumants seem to carry through
using a set of charts for the manifold, as is done in [9, Lem. 3.4].

Refinements.Though we focused on fiicient conditions for,, to enable a consistent estima-
tion of the Cheeger constant of the domain, it may also betefést to find necessary conditions.
Partial work suggests that? — o is necessary, and may beflcient the divergence to infinity
is faster than a dticiently large power of log. The arguments in support of this, however, are
substantially dferent than those we use in the paper, which hinge orfiHiog’s inequality for
U-statistics.

An open problem. Whether the normalized Cheeger constants of some sequéneggb-
borhood graphs converges to the Cheeger constant of theiml@snan intriguing question. To
paraphrase the question we leave open, is there a sequghsech that, with probability one,

lim ¢
n—co yqlp

H(Gn,) = H(M)?

A positive answer would establish the consistency of thenadized cut criterion for graph parti-
tioning. Also, a lower bound oHl(Gy,,) would provide a lower bound on the eigengap between
the first and second eigenvalue of the Laplacian, which in toay be used to bound the mixing
time of the random walk o6,,,,, as done in [7, 2] wheM is the unit hypercube.

Consistent estimation in polynomial time. Our estimation procedures, though theoretically
valid and consistent, are not practical. It would be inténggo know whether there is a consistent
estimator for the Cheeger constant that can be implementpdlynomial-time. Note that com-
puting the Cheeger constant of a graph is NP-hard (whichvatet the use of spectral methods),



and even the best polynomial-time approximations we areeafeare not precise enough to allow
for consistency [1].

1.5 Content

The rest of the paper is devoted to the proofs of the three¢hen In Section 2, we establish
the convergence of the discrete volume and perimeter to ¢betinuous counterparts of a fixed
subset ofM with smooth relative boundary, using Htging’s inequality forU-statistics [24].
Then, by the lower semi-continuity of the m#p— h(A; M), we deduce the supremum-limit
bound of Theorem 1. In Section 3, we prove Theorems 2 and 3ilging results on empirical
U-processes [18] on the one hand, and compactness propertiesL-metric [23] on the other
hand.

1.6 Notation and background

The uniform measure oM is denoted, so thaju(A) = Volg(An M)/ Voly4(M); and the normalized
perimeter is denotedA) = Voly_1(0A N M)/ Volyg(M). Letty = Volg(M), and define the discrete
volume and perimeters as

T
pn(A) = ——*

wgn(n — L)rd

™

AN Xp; A = = et
5( Xn’ Gn,rn)’ Vn( ) 7dn(n — 1)rﬂ+l

o(AN Xp; Gny,)s (1.6)

wheres, o are given in (1.2)X,, is the sample, anG@,, the neighborhood graph. Also, define the
discrete ratio

Vn(A)
hh(A) = — ,
B = i (A). (A
and note that w4
hn(A) = h(A ﬂ Xn, Gn’rn),
Ydln

whereh is given in (1.1). For further reference, we define the volury(@) of a spherical cap at
heightn by
ma(n) = Volg {x : [IX|| < 1 and{u, x) > n},

whereu is any unit-norm vector dk?. Note that the constant defined in (1.4) may be expressed
as

1
Yd = fo mg(m)dy.

The reach coincides with the condition number introducefBij for submanifolds without
boundary, and the property rea8Aj > r is equivalent toA and A° being bothr-convex [39], in
the sense that a ball of radiusolls freely insideA and A°. (We say that a ball of radiusrolls
freely in A if, for all p € dA, there isx € A such thatp € dB(x,r) andB(x,r) c A Itis well-
known that the reach bounds the radius of curvature fromwog0, Thm. 4.18]. In particular, if
reachfA) > 0, thendA is a smooth submanifold (possibly with boundary).

In the rest of the paper, the generic constamhay vary from line to line, except when stated
explicitly otherwise.



2 Proof of Theorem 1: Consistency of the normalized cut

For a subsef of M and a real numbar> 0, define the symmetric kernel

Par(x.y) = {1A(x)+1A(y)} fIx—yil <, (2.1)

so thatun(A) may be expressed as the following U-statistic:

WZ¢Arn(X.,X)

N izj

Hn(A) =

Similarly, v,(A) may be written as

vn(A) Z ¢A rn(Xl, X )

i#]

with the symmetric kernel

ar(xy) = {1A(x)1Ac(y)+1A(y)1Ac(x)} Ix=yi <r). (2.2)

We shall need the following Hdkeling's Inequality forU-statistics [24], which is a special case
of [18, Thm. 4.1.8].

Theorem 4. Let¢ be a measurable, bounded kernelRfxRY and let{X, : k € N} be i.i.d. random
vectors inRY. Assume thak [¢(Xy, X2)] = 0 and that b:= ||¢||., < oo, and leto? = Var(¢(X1, X2)).
Then, for all t> 0,

nt?
£ n(n 1) Z¢(X"X) = t] = exp( 502 + 3bt)'

i#]

To prove Theorem 1, we establish the almost-sure conveegefing(A) to u(A) and ofv,(A) to
v(A) for a subseA c M with smooth relative boundary. To this aim, we combine uggmemds on
bias terms together with exponential inequalities for &kistics. The bias terms involve volume
bounds which we present next, and integrations over songhierhoods of the boundary of a
regular set, namely tubular neighborhoods or simply tulvbg;h comes after that.

2.1 Volume bounds

For anyr > 0, define
M; = {x e M : dist(x,0M) > r}. (2.3)

The following two lemmas provide bounds on the volume of titersection of balls with some
subsets oM.



Lemma 5. Let R be a bounded open subseR8fwvith reachfR) = p > 0. Set A= Rn M. For any
r < min{freach@M); p}, any0 < n < 1, and all pindAn M,, we have

‘Vold (B(p+nrep.r) N AC) — ma(mp)r¢
where g denotes the unit normal vector at p pointing inward A.

Proof. For ease of notation, s&t= B(p + nre,, r). Let (&, ..., &) be an orthonormal frame @t
with & = e,. Denote byxj, ..., Xy the local coordinates in this frame, such tpdtas coordinates
0. ThendA N M can be expressed locally as the set of pokgsich thatx® = F(&, ..., &%) for
some functiorF, and, if we sek® = (%, ..., X% 1), then

< 2wy 1r**/p,

Volg(B N A°) = fl{)”(d < F(X))dx
B

_ f[l{f(d < FROYLZ < 0} + U < F(RDY 1 > 0)] ok

B
Since

ma(m)rd = fl{)?d < 0}dx
B
it follows that

[volg (B N A%) — ra(p)rg| < f[l{)”(d > FEOUK! < 0} + UK < F(RD))LK > 0}] dX
B

sf 1{|>~<d|s|F(>~<(d>)|}d>zszf |F (XD dKD.
Bn Il

%9)|<r)

ExpandingF at 0, we have, for alk with ||X|| < r,
d-1
F(%9) = ) Gy(e)%%,
i,j=1
for some¢ = £(X9). Since the reach bounds the principal curvatures hy[20], we have
SURhesa~m, IG(P)II < 1/p. Then, using the change of variahle= rX, we deduce that

d+1

< 2wg-1 sup (IG(p)IIr

pedANM
< de_lrd+l/p.

Lemma 6. There exists some constant 0 such that, for all ra satisfying0 < 2r < a <
reachfgM), and all x in M,

'vold (B(p +7rep, 1) N AC) — ma(m)ry

Voly(B(x, @) N M,) > Cal.

Proof. The main argument is to include a ball of radiug} into B(x, @) N M,. We can proceed
the following way. First, because := reachM) > 0, for anyx € M there isy € M such that
x € B(y,p) c M. Second, since digt(0M) > p andp > 2r, we havey € M, andB(y,p —r) Cc M.
Hence

B(x, @) N B(y,p —r) € B(X, @) N M.
If y = X, the result is trival. Otherwise, let.= x+ (r + a/4)(y — X)/|ly — X|| and note thaB(z, a//4)
is a ball of radiusy/4 included inB(x, @) N B(y,p —r). O

8



2.2 Integration over tubes

We introduce the notion of tubes and some of their properies [22] for an extensive treatment.
Let S be a submanifold dk®. Thetubular neighborhooaf radiusr > 0 aboutS, denotedV(S, r),

is the set of pointx in RY for which there exists € S with ||x — | < r and such that the line
joining x andsis orthogonal t& ats. WhensS is without boundary;V(S, r) coincides with the set
of pointsx in RY at a distance no more tharfrom S. If S has boundary, then the tube coincides
with the set of points at distance no more thrarwith the ends removed, corresponding to the
points projecting ontdS. AssumeS is of codimension 1, and oriented, and defgas the (unit)
normal vector ofS at p € S. Whenr < reachg), V(S, r) admits the following parameterization

VIS r)={Xx=p+te:peS,—r<t<r

Denote byil, the second fundamental form §fat p € S. The infinitesimal change of volume
function is defined o1 x (-r;r) by 9(p,t) = det( — tll,); the dependence @fon S is omitted.
Given an integrable functiogonV(S, r), we have:

L(Sﬂ g(x)dx = fs f r a(p, )d(p, t)dt v, (dp),

wherev, is the Riemannian volume measure®n

Lemma 7. Assume S is a submanifold®f of codimension 1, witp := reach8) > 0. Then, for
allr <p,
sup sup H(p,t) < (L+r/p)%

peS —r<t<r
and g 1
sup sup [/ (p.t) < &= DA+ /)

peS -r<t<r p—Tr

where’ is the derivative of} with respect to t.

Proof. By [20, Thm. 4.18], the reach bounds the radius of curvattom foelow so that the prin-
cipal curvatures®, . .., @D (the eigenvalues of the second fundamental form) are evessav
bounded (in absolute value) from above by 1Therefore, for < p and-r <t<r,

o

-1

0<9(p.1) = det( — tily) = | (1-0t) < @+r/p)* .

For the derivative off, we have

Hence
lp_ A=D1 +r/p)

r'p p=T

19(p, ) < 9(p. (@ - 1)1



The celebrated Weyl's tube formula [40] provides fine estesdor the volume of a tubular
region around a smooth submanifold®f. We only require a rough upper bound of the right
order of magnitude, which we state and prove here.

Lemma 8. For any bounded open subsetRRY with reach¢R) = p > 0Oand any0 < r < p,
Volg(V(9R, 1)) < 29 Volg_1(dR) .
In particular, Lemma 8 implies
u[V(@OM,r)] <Cr, Vr <reachgM), (2.4)
whereC is a constant depending only dh.

Proof. Using the uniform bound of the infinitesimal change of volugnen in Lemma 7, we have

Vol [VER 1] = [ [ (p.uduv.(ep)
OR J—r
<Volg_1(0R) 2r(1 +r/p)* ! < 29Volg_1(OR) 1. O

2.3 Bounds on bhias terms
Recall the definition oM, in (2.3).

Lemma 9. Let¢a, be defined as i(2.1). There exists a constant C, depending only on M, such
that, for any Ac M and r < reachfM)),

oraBloa 0, )] = u(A)| < (AN M),
Proof. Assume without loss of generality thay = 1. We first note that
E [par(X1, X2)] = E [La(X0) L{|IX1 = Xol < r}] .
We partitionA into An M, andAn M¢. By conditioning onX;, we have
E [Laam, (X)X = Xoll < 1}] = waru(An M) = war u(A) — warfu(An M?);
E|Tamg(X) LUlIXa = Xell < 1}] < war (AN M),
Hence the result. O

Lemma 10. Let A= RN M, where R is a bounded domain with smooth boundaryreadh§R) =
p > 0. Letga, be defined as i(2.2).

(i) There exists a constant C, depending only on M, such thatafigrA c M and r <
min{p/2, reachfM)},

™

WE [(EA,r(Xl, Xz)] - V(A)’ <C (VOld_l(aR N (V(HM, r)) + VOId_l(BR N M)%) .

10



(i) There exists a constant C, depending only on M, such thatafigrA ¢ M and r <
min{p/2, reachfM)},

Volg_1(8A N M;)
Vol (M)

E [dar(Xe. X2)] - > _cV(A)/g. (2.5)

W
Proof. Assume without loss of generality tha = 1. LetS denotedRN M. Then
B [ (%0, Xa)] = B (a0 0L 16 ~ Xel < 1] = [ Vola[B(x.1) 1 AT ().
where

D={xeA: dist(x,dR) <r}.

Sincer < p, the projection o@Ris well-defined orD, and anyxin D can be written ag = p+te,,
for p € R, and withe, the unit normal vector ofR at p pointing inwards.
We partitionD into D N M, andD N M{. Denote byS; the projection oD N M, onS. We have

0
fD " Volg [B(x, 1) N A% dx f | f r Volg [B(p + tep, 1) N A°| #(p, t)dlt v,,(dp)

1
[ [ Vola[B(p-nreary 1 A7 o(p. ey v, (.
Sy JO

Therefore

1
me y VOId[B(X,r)ﬂAC]dX—ydv(A)‘ (2.6)
M

1 1
<5 [ [ Vola[Btp = arenr) 1 A7] = matar] p. iy vi )

+

f fo nd(n)ﬂ(p,rn)dnv(r(dp)—ydv(A)‘.

Lemma 5 provides the inequalidyold [B(p— nrep,r) N AC] —ﬂd(ﬂ)rd' < 2w41r*1/p, and the

first inequality of Lemma 7 states that supsup . J(p,t) < (1 + r/p)®*. Sincer < p,
SURhes SUR<y<1 PP, 1r) < 29-1. Hence, the first term on the right-hand side is bounded by

1
204 1(1/p) fs fo 8P, 1) Vo (dp) < X 1(r/p) Vol 1(S1).

To bound the second term, a Taylor expansion leads to thigoreti(p,rn) = 1+ ' (p,ré,)rn
for some 0< &, < 1. The second inequality of Lemma 7 states that,stgup ., [9'(p, 1)l <
(d—-1)(A+r/p)**/(p —r) so that sup.s SUR,,; [#(p. r&,)l is bounded byd - 1)2/p sincer < p.

11



Recall that the constant is expressed ag; = fol n4(n)dn. Then the second term in the right-hand
side of (2.6) is bounded by

‘ [0 [ matarcnvote) -y + [ [ amsomis orepianvo (o
S, JO S, JO

< ¥4IVolg-1(Sr) = Volg_1(S)| + (d — 1)2Py4(r /p) Vol g_1(S)
< ¥4 Volg_1(S N M?) + (d — 1)2Zy4(r /p) Volg_1(Sr).

where we have used the fact tIf&S, ¢ M? sinceSnN M, c S;. Collecting terms, the term in (2.6)
is bounded by

r
vqa Volg_1(S N Mf) + C—\Wolg_1(S)),
Jo

for some constar@ independent oM.
For the integral oveb N M?, sinceD is included in the intersection of tubes of radiugbout
JRandoM, i.e.,D c V(OR,r) N V(OM,r), we have

IA

0
f Volg [B(x, r) N A% dx f f Vol g [B(p +te,r)n AC] Hp, t)dt v, (dp)
DNMf IRNV(OM,r) J—r

1
r [ [ vola[B(p - repr) n A% o(p.rapdn v, (0p)
ORAV(OM,r) JO

29-20gr% Vol g_1 (AR N V(OM, 1)),

IA

where we have used Lemma 7 again to bogitg, r;)| by (1+r/p)%* < 291 in the last inequality.
Combining the two inequalities on the integrals ofzean M, andD N MF, we obtain that

1 _
’WB [par(Xe, X2)] = v(A)

< V0l 1(S N M) + CLVoly 1(S,) + 2 2wg Voly_1 (AR N V(OM, 1))
o)
<C (Vold_l(BR N VOM, 1)) + vO|d_1(S)/%) ,
which proves the first bound stated in Lemma 10.

To prove (i), using the bound on (2.6), we deduce that

1 1

WE [dar (X1, X2)] ar® L

\%

f Volg [B(x, 1) N A°]dx
DNM,
Cr
> \Wolg_1(S) - [Vold_l(S N M;) + ——Volg_1(Sy)
Yd P
r
> V0|d_1(S N Mr) -C- V0|d_1(sr),
P
and sinces, c S, the result follows. O
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2.4 Exponential inequalities

Proposition 11. Fix a sequence,r— 0. Let Ac M be an arbitrary open subset of M. There exists
a constant C depending only on M such that, for any0, and all n large enough, we have

nrdg?
Cl+e))

B [Jan(A) — ()] > 6] < 2 exp(—

In particular, if nrd/ logn — o, thenu,(A) converges almost surely tgA) when n— co.

Proof. By the triangle inequality, we have

n(A) = 1A < |un(A) = E [n(A)]] + [B [1n(A)] — u(A)] .-

For alln large enough such that < reachfM), the second term on the right-hand side (the bias
term) is bounded b¥r, with C depending only oM. Indeed, Lemma 9 states that the bias is
lower thanu(A N M¢)). And the tubular neighborhood 6M of radiusr,, which containsA N Mg,
has a volume bounded &, by (2.4).

Assume than is large enough such thaC2, < ¢. We then apply Theorem 4, which is
Hoeffding’s Inequality forU-statistics, to the first term (the deviation term) on thétigand side
with the kernel

¢ 1= Par, — E[Par, (X1, X2)]
andt = wgr%s/2. The kernel satisfig||.. < 1, and simple calculations yields
Var(@(Xa, X)) < E [$ac, (X1, Xo)?| < u(A)ward/mm < warf/Tm.

From this we obtain the large deviation bound. The almost sonvergence is then a simple
consequence of the Borel-Cantelli Lemma. O

Proposition 12. Fix a sequence,r — 0. Let A be an open subset of M with smooth relative
boundary and positive reach. There exists a constant C da#pgronly on M such that, for any
e > 0, and for all n large enough, we have

d+1, 2
P [Iva(A) — v(A)] > €] < 2exp(_%).

In particular, if nrd*'/ logn — o, then
vn(A) = v(A), n— oo, almostsurely
Proof. By the triangle inequality, we have
Va(A) = v(A)] < va(A) — E va(A)]1 + [E [va(A)] = v(A)].

Using the control on the bias in Lemma 1iQ-¢he second term on the right-hand side goes to 0 as
n — oo. Then forn large enough, we apply Hfding’s inequality of Theorem 4 to the first term
on the right-hand side with the kernel

¢ = dar, — B [parn, (X, Xo)]

13



andt := ygr%*1v(A)e/2. The kernel satisfigi||.. < 1, hence
Var(@(Xs, X)) < E|gar, (X1, X%o)?| = B [@ar, (X0, Xo)] < 2yav(A)r§™/w,

where the last inequality follows from upper bound on thes lolemma 104( for nlarge enough.
From this we obtain the large deviation bound, and the almas convergence is a consequence
of the Borel-Cantelli Lemma. |

2.5 Proof of Theorem 1

The first statement of Theorem 1 is an immediate consequdribe exponential inequalities of
Propositions 11 and 12.

To prove the second statement, under the conditions of €hedr, for any subseA with
smooth relative boundary, with probability one }im,(A) = h(A; M) while h,(A) > ﬁH(Gmn),
so that lim sup%H(Gmn) < h(A; M). Then we obtain the upper bound of Theorem 1 by taking
the infimum over all such subsets

3 Proof of Theorems 2 and 3: consistent estimation

Consistent estimation in the context of Theorem 2 is posdiBcause the cla$, is suficiently

rich as to include sets that approach Cheeger seli$ ahd its complexity is controlled, so as to
allow for a uniform convergence both in terms of discretemod and discrete perimeter. This con-
trol on the complexity ofR, we exploit in building a covering foR,,, which is done in Section 3.1,
later used to obtain uniform versions of Propositions 11HhdTlhen Par(i) of Theorem 2, which
states the convergence of a penalized graph Cheeger cotwstands the Cheeger constant\df

is proved in Section 3.7. Finally, Pd(it), which characterizes the accumulation points of a se-
guence of minimizing sets, is proved in Section 3.8. The eayence of the discrete measures
associated with a sequence of minimizing sets (Theorem@@piged in Section 3.9.

3.1 Covering numbers

Forp > 0, letR, be the class of open subs&s (0, 1)? with reachfR) > p. Letdn(R, R) be the
Hausdoft distance between two sé&andR, i.e.,

di(RR)=inf{r >0 : RcR&B(r) and R c ReB(r)}.

Denote byN (s, R, dH) be the covering number &, for the Hausddf distance, i.e., the minimal
number of balls of radius for the Hausddf distance, centered at elementsinthat are needed
to coverg,.

Lemma 13. (i) There exists a constant C depending only on d such thagrfge > 0 and any
p>0:

1 d
log N(e, R,, dy) < C(g) :

14



(i) If 0<e<p,thenforany RandRn R, if d4(R R) < g, then R\R ¢ V(OR, &) N V(OR, &).

Proof. Let xq,..., X, be ane-packing of (Q1)%, sou,B(x;, &) covers (01)* andn < Ce™ for
some constar@ depending only ondl. For any seRin R,, define

(R ={i=1,....,n: B(x,e) NR=+0}.
Then clearly, by definition of the coverinB,c Ui, B(x, €), and
Uie|£(R)B(Xi,8) CcRe B(ZS)

Therefore
dy (Vie,r B(X, €), R) < 2e.

Since wherRranges iR, the cardinality of sets of the form, (g B(Xi, €) is bounded by 2 then
the collection of Hausddi balls of radius 2 and centered set of the foroy, B(x;, €), wherel is
any subset of1, ..., n}, coversR,. By doubling the radius of the balls, we can take centef8,in
which proves the first part of the lemma.

The second part follows from the fact that if rea@R[ > p, thendR & B(p) = V(OR p),
assuming, without loss of generality, tli#® has no boundary. O

We mention that the bound on tlaeentropy ofR, is rather weak. Standard results by Kol-
mogorov and Tikhomirov [25] suggest a bound of the fa@ps)~ @12, Such a result would
change the exponent fog in Theorem 2 to (8 + 1)/2.

3.2 Perimeter bounds of a regular set

The classical isoperimetric inequality provides a bounthefvolume of a Borel sd® in terms of
its perimeter (see e.g., Evans and Gariepy, 1992):

dw/* Volg(R*% < Volg_1(dR). (3.1)

But, in the case wher@R has positive reach, the perimeter may in turn be boundedéydlume,
as stated in Lemma 14 below. The proof uses the followinguabty: for every Borel set®, S

Volg_1 (A(RU S)) + Volg_1 (A(RN S)) < Volg_1(0R) + Volg_1(9S). (3.2)
Lemma 14. Let R be a bounded open subseR&fwith reachfR) = p > 0. Then,
Voly-1(0R) < dVoly(R)/p.

Proof. Since reachiR) = p > 0, a ball of radiug rolls freely inR. Consequentlyr can be written
as a countable union of balls of radjusi.e.,

R= 0 B(X, ).

15



SetR, = U, B whereB; = B(x;, p).
Using the decompositioR,,; = R, U By,1, on the one hand we have

VOl g(Rys1) = VOIg(Ry U Byat) = Volg(R,) + wgp® = Volg(Ry N Byya),

and on the other hand, using inequality (3.2), we have

VOlg-1(0Rn41) = VOIg_1((Ry U Bny1)) < VOlg_1(9Rn) + dwgo®™* = Volg_1(A(Ry N Bnya)).

Consequently
d d
Volg-1(0Rn:1) — /_)VOId(le) < Volg_1(0R) - ; Voly(R,)

d
+ - Volgy(Ry N Byy1) = Volg-1(0(Ra N Bnia)) | -

But, using the isoperimetric inequality (3.1), we may write
d
; VOld(Rn N Bn+l) - VOld—l (6(Rn N Bn+l))
d 1d 1-1/d
< - VOId(Rn N Bn+l) - dwd/ (VOld(Rn N Bn+l))
P
1-1/dr (g
< (Vold(Rn n Bn+1)) [— Voly(R, N Byap) Y — dwﬁ/d] <0
P
since, in the last bracket, \@R, N Bp,1) < Volg(Bn.1) = wgp®. Therefore, for alh > 1, we have
d d
Volg_1(0Rn.1) — [—) Volg(Rai1) < Volg_1(0R,) - [—) Vol4(Ry).
But sinceR; is a ball of radiugp, we have Vaol_1(0R;) — d Volg(Ry)/p = 0 and so
d

\Volg_1(0R,) — /—)Vold(Rn) <0 foralln>1

SinceR, converges tdR in LY, it follows from the lower semi-continuity of the perimetesee
e.g. [23, Prop. 2.3.6], that lim ipMol4_1(0R,) > Vol4_1(dR). This concludes the proof. O

3.3 Exponential inequalities
We prove the uniform versions of Propositions 11 and 12 ferdlassk,.

Proposition 15. There exists a constant C depending only on M such that, fpean> 0 and all
n satisfying nfpYs®2 > C ands > Cr, we have

nre” ) . (3.3)

P | suplun(R) — u(R)| = 8] <2 eX'O(_c(l + &)

ReR,
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Proof. The bias term is dealt exactly as in Proposition 11, obtginin

[E [un(R)] = u(R)| < Car,
valid for allR € R,,, so assuming > 2Cor, we may focus on bounding the variance term

un(R) — E [/ln(R)] .

Define the kernel class

F ={¢rr : RER,), (3.4)
wheregg;, is defined in (2.1). Let,(¢) be the U-process ovér defined by
1

Unl) = 2 ; DX, X,).
Observe that -
sup|un(R) — E [un(R)]| = ot j’UTpIUn(Cb) — 1*%(9)|-

ReR,
Consider a minimal covering &®, of cardinalK by balls centered at elemers, ..., R« of R,,
and of radiug; < p for the Hausddf distance. By Lemma 13,
log(K) < Ca(1/n)".

For anyR in R, there exists 1< k < K such thatdy(R, R < »n, which implies thatRAR, c
V(0R«, 7). Also, by Lemma 8, there exists a const@tdepending only on the dimensidrsuch
that Vol (V(0R«, 17)) < Con/p, for all 1 < k < K, which implies that

1 (V(OR, n)) < Csn/p, foralll<k<K,

sincen < p, and whereC; now depends oM.
We have

[rr(x ) = ¢ror (0 Y) % [1:09 + 1r(Y) = 1a(X) = 1l ()| LllX =Yl <)

IA

1
> (Irar(X¥) + 1rar(Y)) LLIX =Yl < 1}
Next, consider the inequality

Un(¢rs) = £%4(¢rr)| < |Un(@re) = Un(@ror)| + [Un(@rer) = £5%(Bror)] + |54 (Rer) — 15%(8R1)) -
For the double expectations, we have,

1 (Prer) — 15%(PrA)| < 12 |dRer — PRr]
= E[lrar (X0)1{lIXy = Xall < 1}]

S ICEIICE
RARy

IA

f 1 (B(x 1) u(d)
V(OR.1)

d
Q. V(@R 1)
Twm

Carn/p,

IA

IA
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with C, still depending only orM. The last inequality is a consequence of Lemmas 8 and 14, and
the fact that VaJ(R.) < 1 sinceR, c (0, 1)°.
For the empirical averages, we have

1 1

|Un(¢R,r) = Un(¢Rk,r)| < 5 n(n—1) ; (1RARk(xi) + 1RARk(Xj)) l{”Xi — Xj” < r}
= %n(nl_ 1) ; (1“V(0Rk,n)(xi) + 14/(0Rk,n)(xj)) 1{||Xi - Xl < r}
= Un(¢viran) -

Therefore,

rin
92 < _a _ @2
Sél;flunwm) It (¢R,r)|—1Tk2-)K(Un(¢”V(BRk,n))+C4p + max|Un(dr.r) = 1**(drer)] -

Consequently, for any > 0, we may write

P(SUpLUn(R) -E [/Jn(R)]I 2 8)
ReR,

d
- P[sup|un(¢) —p#2(g)| 2 22 )
PeF ™

2T|V| P 1<k<K - 2T|V|
wdrds)

wqre rd wqre
<o) = 51 - O] 2 melton s

—C,—!

ZT M P 2TM

1<k<K

wdrde rdT]
1<k<K

<K maxP(Un(qbrV(aRk,n)) > +K maxP(|Un(¢Rk,r) — 1% (Prer)| 2

by the union bound. To bound the first term, note first that

Var (¢fv(aRk,n)(X1, Xz)) <E [qb(v(aRk,,,)(Xl, X2)2] <E [‘P(V(aRk,n)(Xl, Xz)] ,
with | d
wyl r
E | vioran(Xa. Xo)| < :—M,U (V(0R. 7)) < 647'7,

for the same reasons as above. Now takep min(wqe/(8C47m), 1). Then, for any X k < K, by
Hoedtding’s inequality for U-statistics (Theorem 4), we have,

IA

wqr%e riy
P(Un(qﬁfvak,n))Z 2t —C4—)

d
1) < 2 (ohfosna) =[] = 2

- 4TM
< expl- n(wdrds/4TM)2
= P75 Carin/p) + B(warie/dr)

IA
D
X
o
|
‘3
=
o
O]
~——



for a constanCs > 0 depending only oM. To bound the second term, since

Var (¢r.r (Xu, X2)) < E [¢r.r (X1, Xo)] < war®/7m,

we may apply Lemma 4 again to obtain the bound

d de/21m)?
P{|Un r) — =2 ) = Wil £ < - n(wdr o2t
[Un(@rer) = 1(0ma)] 2 5] < expl g g o
. nrdg2
= P+ )

for a constanCg > 0 depending only oM.
With the choice ofy as above, the cardin#l of the covering is such that log] < Cs(gp)™¢,
for some constar; depending only oMM, and we obtain the bound

P [suplyn(R) — E [un(R)]| 2 s)

ReR,

< Kex nrle + Kex nre?
= RePI= \"Coi+o)
nrdg?
<2 C a___—~
< 2ex ﬁ
R WrowTpnY &
if nrdg?+2pd > C,, for a constan€, depending only oM. u

For the perimeter, we only control the variance, as the biag not be controlled uniformly
overR,. Indeed, consider the case whéleis a hypercube with rounded corners so as to satisfy
the condition on its reach, and IBtbe another hypercube with rounded corners includellin
sharing one of its faces withl. Then given a sampl¥, ..., X,, it is possible to translate inside
M just enough that the translate does not share a boundarnpMyitthile its discrete volume and
perimeter are left equal to thoseRf

Proposition 16. There exists a constant C depending only on M such that, fpean0, p < 1,
r < min(reach), p/2) and all n satisfying mM#p91c®2 > C, we have
nrd+1p32 )

P suplva(R) = E[va(R)]| > 8] <2 exp(—m

ReR,

Proof. The proof follows that of Proposition 15, with the symmekarnel ¢, defined in (2.2)
and the clasg defined in (3.4) withpr, replaced bypg,. Observe that

va(R) — B (Rl = —2— sup|Un(¢) — 4%2(g)
Ydf deF
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As in the proof of Proposition 15, we start with a minimal corg of R, of cardinalK by balls
of radiusy for the Hausddft distance. For anfRin R, at a Hausddt distance no more thapof
an elemenky of the covering, we have

[1r()1re(Y) — Ir (1) < |1r(9) = 1r(X)| Lre(y) + 1r(X) |1re(Y) — 1re(Y)|
1rar (X)1re(Y) + 1rar (Y) 1R (X)
1rar(X) + Lrar (Y)-

IA

Hence, _ _
|6Rr (X ¥) = SR (X V)| < 20RaRc (X, Y) < 2000Rn) (X V),
and therefore, following the same arguments,
[1%(trr) — 15 (Pror)| < 254 (Pavioren) < Carn/p,
for a constanC,; depending only oiM; and also,
|Un (‘;R,r) - U, (‘;er)l < 2U, (¢(V((')Rk,r])) .
Hence

P(Sup|vn(R) -E[va(R]l > 8)

ReR,

-c,
4ty 1210

)/drd+18
2TM '

rd+18 rd
<K maXP(Un (¢V(3Rk,n)) > Yd 77)

1>k>K

+K {Pkg)K(POUn((;Rk’r) - ﬂ®2($Rk,r)| 2

Taken = p min(yqre/(4Cyty), 1). For the first term, for any ¥ k < K, we have,
rd+1 rd
yar™e _n)

Aty ! 210

IA

d+1
: (Un (d)v(aR“’”)) -E [Un (¢(v(aRk,n))] > 2 8)

P (Un (¢(V(0Rk,n)) > 8o
( n(yar***e/8rw) )

IA

P\ "B CarIn/p) + B0rartie/Bry)
nrd+132
C2(1 + 8)) ’

for some constart, > 0 depending only oM. For the second term, since by Lemma 10, when
r<p/2,

= exp(—

Var (¢g.r) < Car®/p,
for a constanC; depending only oM, we have

B _ d+1 dlg/21\)?
P||u _ 2 > Y8 o expl-n (ar ™ e/ 27w
(| n(Brer) — K (Bror)| 2 2 = €xp 5(Csrd+/p) + 3(yqrd+le/2rym)
< o nrd+1p52
- P Ca(1+pe))’
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for a constanC, > 0 depending only oM. Finally, with the choice of; as above, the cardinl
of the covering is such that logj < Cs(rpe)~¢, for Cs depending only oM.
Then

’}/drd+18 rd]7 nrd+182
K maxP(U ; - Ci—)| < exp|l ———1,
1zk=K ( n(¢v(ij")) Aty ! o ) P Cs(1+¢)

if nr2d+lpded+2 5 Cq and

d+1 d+
N @201 Ydal e r—pe
K lrpk§>K<P(|Un(¢Rk,r) 1P| 2 o )seXp( —07(1+pg))’

if nrad+lpdled2 5 C, whereCg andC; depend onM only. Combining these inequalities, we
conclude. O

3.4 A uniform control on h,(A)

As we argued earlier, the boundaryMfmakes a uniform convergence of the perimeters of sets in
Rn impossible. Our way around that is to compare the discreimpéer of a seRwith its perime-

ter insideM;,,, thus avoiding the boundary &, i.e., Vol_1(0R N M,,), leading to a comparison
betweerh,(R) andh(R; M, ). We relate the latter tb(R; M) in Section 3.5.

Lemma 17. Under the conditions of Theorem 2, with probability one, \&aeeh

liminf inf ((R) — h(R My,)) > 0. (3.5)

nN—oo

Proof. TakeR € R, and define

An(R) = Min@un(R), tn(R%), (R = Ti min(Volg(RN M;,), Volg(RE N M, ),
M

as well as 1
vi(R) = — \Volg_1(0RN M;,).
Then
MR ~NRMy) =~ (R~ 74(R) + 2 (12(R) — 1,(R))
o n(R) " L(RLER "
=. gn(R) + ‘fn(R)-
Define the event (R
= {Z‘AQ(R)—E Re R}

We will see that? [Q,] — 1.
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Bounding £,(R). By definition of R, the setR andR® contain each a ball of radiys, and by

Lemma 6, the volume of the intersection of this ball witl is bounded from below bg,p¢, for

a constanC; depending only oM. Hence,
X (R) > Cypl. (3.6)

Also, onQ,, 2,(R) > 1:(R)/2. These last two inequalities being valid for BIE R, for ¢ > 0 we
have

IA

1=t &R < - B|int 4R~ (R < ~Casr

IA

P [Fgg; (R~ ELa(R) + Inf (B[ (R)] - vy(R) < ~Caspl.

for a constanC, = C;/2 > 0. Using the bias bounds of Lemma 10 together with the peemet
bound in Lemma 14(ii), we have

I'n

inf (EDn(R)] = va(R) 2 —Cs—%-

Hence, since, = o(p?) for anya > 0, for ¢ fixed andn large enough, we have by assumption, for
all nlarge enough,

I, <P Fi{gg (vn(R) = E[vn(R)]) < —Czspg/Z] <P [ sup va(R) — E[va(R)]| > Caep?/2|,

ReR,p,

where the second inequality comes from the fact ®yat R, . By the fact thanr2+p® — oo for
anya > 0, the conditions of Proposition 16 are satisfied, so that
nrﬁ*lpﬁd”sz )

I, <Cy exp(— C4(1 n {5)

for some constar€, > 0 and alln large enough. At last, we have

d+1 .2d+1 2d+1,—-d
nry ot _ ods1Pn Th
——— =Nr; — 400,
log(n) log(n)

sincer, = o(p¢) for anya > 0 andr, — 0 polynomially inn, we deduce that, for all > 0,

ZHZPHQQM”(R) < —&|NQu| < . (3.7)

Bounding &,(R). (We reset the constants, except@r) By the perimeter bound of Lemma 14,
we have

Volg1(9R) _ ,Volu(R)

vi(R) <
™ TMPn

= CZ/pn,
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for a constanC, > 0 depending only oM. So, together with (3.6) and the fact that, 9y,
W(R) = 44(R)/2,

va(R) < Cyp-2-1
AWRAGER) ~ "
for all Rin R,. It follows that
p2d+18
I, = PH inf £&,(R) < —g| N Q| < P(sup|/ln(R) - R[> = . (3.8)
ReRn ReRn C
Define VOlg(RA M, )
. Olg n
(R = ———=
Then

[46(R) = LR < |un(R) = k(R + [un(RE) — 1 (FO)|

lun(R) = (R + |un(RE) = u(RO) + 2u(My),

with (ME) < Cyrp by (2.4). Fore > 0 fixed andn large enough, @ur, < p2®*1¢/Cs, again by the
fact thato, — 0 sub-polynomially irr,. We therefore obtain that

IAIA

2d+1

PnE
I, < ZP(SUpLUn(R) - (Rl > 4C, )

ReRon
where we used the fact th& < R, whenR € R,, together withR, c R,,. We then apply
Proposition 15, whose conditions are satisfiedsfor O fixed andn large enough, again because
on — 0 very slowly, arriving at
nrhon%e?

C4(1 + 8) ’
for some constant, > 0 and alln large enough. As before, whenis fixed, the exponent is a
positive power oh, so that

l, <C4 exp(—

ZPH inf £,(R) < —¢ < oo (3.9)

n

Bounding P[Q¢]. Sinced:(R) > Cpd for someC uniformly overR € R, (see (3.6) above), we
have

S s

< P(SI;Lp|/ln(R) - (R > cp‘n’).
ReRn
We then proceed as in bounding (3.8), obtaining
D PO < . (3.10)
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Conclusion. We have

Pl inf (h(R) - (R M,,)) < —28] <P N Qy|+P N O, |+P[QS],

éggn h(R) < -¢

éggn &n(R) < —¢

so that the left-hand side is summable. Therefore, we cdechy applying the Borel-Cantelli
lemma. O

3.5 Some continuity of the Cheeger constant

Our proof of Theorem 2 relies on continuity properties of tieemalized cut and of the Cheeger
constant. Lemma 18 below compares the conductance furmidhand on a bi-Lipschitz defor-
mation of M. For a Lipschitz mag, let||f||_j, denote its Lipschitz constant. ffis bi-Lipschitz,
we define its condition number by corfd(:= || fllLip I ~YlLip. Lemma 19 below states thit, is a
bi-Lipschitz deformation oM, hence Lemma 18 yields the continuity property of Proposif0.

Lemma 18. Let f be a bi-Lipschitz on M. Then for any@M measurable,

h(f(A); (M) h(A; M)
“{ n(A M) h(T(A); T(M))

Proof. For anyA c M, af(A) = f(9A) and f(A)°n f(M) = f(A°n M), and ifAis measurable, for
k=1,...,d,

} < cond(f)“.

1715 Volk(A) < Voli(f(A) < I, Volk(A).

Therefore,
_ Volg_1(f(0A N M))
(A T(M)) min{\Voly(f(A)), Voly(f(A° N M))}
1115, Volg-1(0A N M)
145 min{Vola(A), Volg(A° N M)}
< cond(f)?h(A; M).
And vice-versa. O

Lemma 19. Fix r < s < reachfM). Then there is a bi-Lipschitz map betweep &hd M that
leaves M unchanged, and with condition number at mdst 2r/(s - r))>.

Proof. Forxin M such that(x) := dist(x, M) < s, let£é(x) € M be its metric projection ontéM
anduy be the unit normal vector a¥l at£(x) pointing outwards. We define the map

rs—6()- ,

ff MM, f(X)=x+ —

X

wherea, denotes the positive part afe R. By constructionf is one-to-one, with inverse

_H(s=6().

fl:Me M, f1(x)=x S

X .
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By [20, Thm. 4.8(1)]¢ is Lipschitz with constant at most 1, therefore sxis> (s - §(x)).; and
since the reach bounds the radius of curvature from belowT@f. 4.18],x — uy is Lipschitz
with constant at most/IreachfM). Therefore, using the fact that € 6(x)), < sand|juyl| = 1, f;
andf ! are Lipschitz with constants at most#2r /(s—r) and 1+ 2r/srespectively. O

Proposition 20. We have
H(M,) =1+ 0O(r))H(M), r —O0.

Proof. From Lemmas 18 and 19, we deduce that

H(M,) H(M)
ax{ A(M)* A(M,)

} < (1+2r/(om = 1))*,

for anyr < py := reachfM), which immediately yields the desired result. O

3.6 Ll-metric on Borel sets

We will use thel'-metric on Borel subsets @Y, defined by Vol(AAB) = f|1A(x) — 1g(X)| dx.
This metric comes from the bijection between Borel ge@nd their indicator function$a, en-
dowed with thel.*-topology. Strictly speaking, this is a semi-metric on Bangbsets oR® since
Vol4(AAB) = 0 if and only if AAB is a null set.

The following propositions are adapted from [23, Thm. 234nd [23, Prop. 2.3.6] respec-
tively. Proposition 21 is a compactness criterion, and Bsapn 22 results from lower semi-
continuity of the perimeter measure with respedt temetric.

Proposition 21. Let (E,) be a sequence of measurable subsets of M. Suppose that

lim supVolg_1(0E, N M) < co.

Nn—oo

Then(E,) admits a subsequence converging for theretric.

Proposition 22. Let E, and E be bounded measurable subsets of M such thas EE in L, and
h(E; M) < co. Then
liminf h(En; M) > h(E; M).

3.7 Proof of(i) in Theorem 2

Lower bound. For each, letR, € R, be such that
; — minhi
ho(Re) = minhy(R).
Then

hi(Ry) = H(M)

[hE(Ra) = h(Ro; M) + [A(Ry; Mr,) = H(M,,)] + [H(M;,) = H(M)]
inf ((R) — h(R: M) + [H(My,) ~ H(M)],

\%
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since[h(R,; M;,) — H(M,,)] = 0 by definition ofH(M,,). On the last line, by Lemma 17, the first
term has a non-negative inferior limit, and by PropositiOntBe second term tends to zero. Hence,

liminf minh(R) > H(M) a.s. (3.11)

n—oo ReR,

Upper bound. To obtain the matching upper bound, fix a sub&et M with smooth relative
boundary and such that © Vol4(A) < Volg(M\A) < Volg(M). Then, forn large enough, there
existsR, in R, such thaR, " M = A, implying that

in hE
min hy(R) < ha(A).

By Theorem 1h,(A) — h(A; M) almost surely, so that

lim supan;en h*(R) < h(A; M) a.s.

Nn—oo

By minimizing overA, we obtain

lim supgngi{n h'(R) < H(M) a.s. (3.12)

Nn—oo

Combining the lower and upper bounds, (3.11) and (3.12),amelade that

lim minhi(R) = H(M) a.s. (3.13)

n—oo ReR,

3.8 Proof of(ii) in Theorem 2

Let R, be a sequence iR, satisfying
i — minht
hn(Re) = minhy(R),

and setd, = R,n M. Fix a subsef’ c M with smooth relative boundary and such thga®) < co.
Then forn large enough, there exisiin R, such thatA? = Rn M. Henceh,(A,) < h,(A°%) and
sinceh,(A%) — h(A®) by Theorem 1, we have

lim supVolg_1(A,) < lim suph(A,) min{Volg(A,), Volg(AS N M)} < h(A%) Volg(M)/2.

n—oo n—oo

Therefore by compactness of the class of sets with boundedegters (Proposition 21), with prob-
ability one,{A,} admits a subsequence converging inlthenetric.

On the one hand,

h(An; Mr,) = H(M) = [h(Aq; M) = H(M,, )] + [H(M;,) - H(M)],
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where the first dterence term on the right-hand side is non-negative by diefmivhile the second
difference term tends to zero by Proposition 20. So that withgtitity one:

Ii[1n inf h(A,; M;.) > H(M).

On the other hand,

h(Au My,) = H(M) = [h(An; M) — hi(An)| + [M(A) - H(M)|

(M:(R) = h(R: My,)) + [hi(An) = H(M)]

A

— inf
ReRn
so that

lim suph(Aq; My,) — H(M) < —lim inf inf (MR = h(R M,,)) + [i(Ay) - H(M) |

n—oo

which goes to 0 as — oo from (3.5) and (3.13). Hence
lim h(A,; M) - H(M) a.s.

Now let f, denote the bi-Lipschitz function mappifg, to M defined in Lemma 19 withand
sreplaced by, ands,, wheres,/r, — co. DefineB, = f,(A, N M, ). By Lemmas 18 and 19, we
have
2r,

2d
- ) h(An; M;,),

h(Bn; M) < (1 +
n
so thath(B,; M) — H(M) almost surely ag — co. Moreover, by Proposition 21, with probability
one, there exists a subsBt, of M and a subsequend®,,} such thatB, converges tdB, in
the L1-metric. Sinceh(-; M) is lower-semi-continuous by Proposition 22, with prottipione,
liminf,_. h(By; M) > h(B.; M). Since we also have limipf,., h(B,; M) = H(M) a.s., it follows
thath(B..; M) = H(M) a.s. and s®., is a Cheeger set d¥l.
Moreover, sincd, leavesMg, unchanged,

Volg(AAB) < VoIg(M\Mg) - 0 asn — oo.

Hence with probability onel,, — 1g. — 0 in L. Consequently, the sequendés} and{B,} have
the same accumulation points, and so any convergent sudrsee|of{A,} converges to a Cheeger
set of M.

3.9 Proof of Theorem 3

Let A, = R,n M and assume, without loss of generality, tAat— A, in L. For alln > 1, and all
f in the class of bounded and continuous functiond/grsayC,(M), we have

Quf - f ()L, ()| < SUPIPH (FLe) — e (FR)I,

ReRn
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whereP,, is the empirical measure of the samp{g ..., X,. Using the bound on the covering
numbers in Lemma 13, it is a classical exercise to prove tmatcollection of functions< —
f(X)1r(X) whereRranges oveR, is a Glivenko-Cantelli class, whence

Qnf —f f(x)an(x),u(dx)‘ — 0 a.s.asn — .
Next,
\ f £ (X Lr, (u(dx) — Qf\ - \ f (L, (u(dX) — Qf| < [1fllopt (AnAAL).

which tends to 0 by definition d&.. Thus, we have shown that, for dlin Cp(M), P (Q,f — Qf) =
1. Using the separability ai,(M) [19, p. 131], we deduce that

P[Vf € Co(M), Quf — Qf] =1,
so that the eventQ, converge weakly t®” is of probability 1.
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