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The Cheeger Constant: from Discrete to Continuous

Ery Arias-Castro∗, Bruno Pelletier†and Pierre Pudlo‡

April 30, 2010

Abstract. Let M be a bounded domain of Rd with smooth boundary. We relate the Cheeger
constant of M and the conductance of a neighborhood graph defined on a random sample from M .
By restricting the minimization defining the latter over a particular class of subsets, we obtain con-
sistency (after normalization) as the sample size increases, and show that any minimizing sequence
of subsets has a subsequence converging to a Cheeger set of M .

Index Terms: Cheeger isoperimetric constant of a manifold, conductance of a graph, neighborhood
graph, spectral clustering, U-processes, empirical processes.

AMS 2000 Classification: 62G05, 62G20.

1 Introduction and main results

The Cheeger isoperimetric constant may be defined for a Euclidean domain as well as for a graph.
In either case it quantifies how well the set can be bisected or ‘cut’ into two pieces that are as little
connected as possible. Motivated by recent developments in spectral clustering and computational
geometry, we relate the Cheeger constant of a neighborhood graph defined on a sample from a
domain and the Cheeger constant of the domain itself.

Given a graph G with weights {δij}, the normalized cut of a subset S ⊂ G is defined as

h(S;G) =
σ(S)

min{δ(S), δ(Sc)} , (1.1)

where Sc denotes the complement of S in G, and

δ(S) =
∑

i∈S

∑

j 6=i

δij , σ(S) =
∑

i∈S

∑

j∈Sc

δij , (1.2)

are the discrete volume and perimeter of S. The Cheeger constant or conductance of the graph G
is defined as the value of the optimal normalized cut over all non-empty subsets of G, i.e.

H(G) = min{h(S;G) : S ⊂ G,S 6= ∅}. (1.3)

A corresponding quantity can be defined for a domain of a Euclidean space. Let M be a bounded
domain (i.e. open, connected subset) of Rd with smooth boundary ∂M . For an integer 1 ≤ k ≤ d,
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let Volk denote the k-dimensional volume (Hausdorff measure) in R
d. For an open subset A ⊂ R

d,
define its normalized cut with respect to M by

h(A;M) =
Vold−1(∂A ∩M)

min{Vold(A ∩M),Vold(Ac ∩M)} ,

where Ac denotes the complement of A in R
d and with the convention that 0/0 = ∞. The Cheeger

(isoperimetric) constant of M is defined as

H(M) = inf{h(A;M) : ∂A ∩M is a smooth submanifold of co-dimension 1}.

Equivalently, the infimum may be restricted to all open subsets ofM . This quantity was introduced
by Cheeger [15] in order to bound the eigengap of the spectrum of the Laplacian on a manifold. A
Cheeger set is a subset A ⊂ M such that h(A;M) = H(M); there is always a Cheeger set and it
is unique under some conditions on the domain M [12]. For A ⊂ M , we call ∂A ∩M its relative
boundary.

1.1 Consistency of the normalized cut

Suppose that we observe an i.i.d. random sample Xn = (X1, . . . ,Xn) from the uniform distribution
µ on M . For r > 0, let Gn,r be the graph with nodes the sample points and edge weights δij =
1{‖Xi − Xj‖ ≤ r}, which is an instance of a random geometric graph [29]. Let ωd denote the
d-volume of the unit d-dimensional ball, and define

γ =

∫

Rd

(

〈u, z〉
)

+
1{‖z‖ ≤ 1}dz, (1.4)

where u is any unit-norm vector of Rd. Actually γ is the average volume of a spherical cap when
the height is chosen uniformly at random. We establish the pointwise consistency of the normalized
cut, which yields an asymptotic upper bound on the Cheeger constant of the neighborhood graph
based on the Cheeger constant of the manifold. This is the first result we know of that relates these
two quantities.

Theorem 1. Let A be a fixed subset of M with smooth relative boundary. Fix a sequence rn → 0
with nrd+1

n / log n→ 0, and let Sn = A ∩Gn,rn. Then with probability one

ωd

γrn
h(Sn;Gn,rn) → h(A;M),

and, consequently,

lim sup
n→∞

ωd

γrn
H(Gn,rn) ≤ H(M).

We do not know whether the Cheeger constant of the neighborhood graph, for an appropriate
choice of the connectivity radius and properly normalized, converges to the Cheeger constant of
the domain.
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1.2 Consistent estimation of the Cheeger constant and Cheeger sets

We obtain a consistent estimator of the Cheeger constant H(M) by restricting the minimization
defining the conductance of the neighborhood graph (1.3) to subsets associated with subsets of Rd

with controlled reach. The reach of a subset S ⊂ R
d [20], denoted reach(S), is the supremum over

η > 0 such that, for each x within distance η of S, there is a unique point in S that is closest to x.

Theorem 2. Let {rn}, {ρn} and {αn} be sequences going to 0 as n→ ∞ such that ρn > αn > 2rn.
Let {βn} be a sequence such that βn → ∞ as n→ ∞ and suppose that

ρnα
2d
n

βnrn
→ ∞ and

nrd+2
n

log(n)
→ ∞.

Let Rn be a class of (bounded) open subsets R ⊂ R
d such that Vold(R) ≤ βn and reach(∂R) ≥ ρn.

Define the functional h‡n over Rn by

h‡n(R) =
ωd

γrn
h (R ∩ Xn;Gn,rn)

if both R and Rc contain a ball of radius αn centered at a sample point and h‡n(R) = ∞ otherwise.

(i) With probability one,
min
R∈Rn

h‡n(R) → H(M), n→ ∞.

(ii) Let {Rn} be a sequence satisfying

Rn ∈ Rn, h‡n(Rn) = min{h‡n(R) : R ∈ Rn}. (1.5)

Then with probability one, {Rn ∩ M} admits a subsequence converging in the L1-metric.
Moreover, any subsequence of {Rn ∩M} converging in the L1-metric converges to a Cheeger
set.

Note that the infimum defining Rn in (1.5) is attained in Rn since the function h‡n takes only
a finite number of values. Under our conditions, if we choose rn as a power of n then, up to log(n)
factors, the smallest choice for rn is on the order of n−1/(d+2). Similarly, the smallest orders for
ρn and αn are n−1/((d+2)(1+2d)) , up to log(n) factors. The sequence βn is used to uniformly bound
the perimeters over the class Rn by βn/ρn, up to a multiple constant. It is only necessary that βn
becomes larger than Vold(M) for all n large enough, so that βn can be allowed to grow slowly with
n.

Part (ii) of Theorem 2 would provide a consistent estimate of a Cheeger set ofM , if it where for
the fact that only Rn ∩M converges, which depends on M . On the other hand reconstructing an
unknown set from a random sample of it is an independent problem for which there exists multiple
techniques and an important literature (see e.g., [6] and the references therein). In the following
Theorem, we construct a random discrete measure which does not require the knowledge of M , and
we prove that its accumulation points are the uniform measures supported by a Cheeger set of M .

Theorem 3. Let {Rn} be a sequence as in Theorem 2-(ii), {Rnk
} a subsequence of {Rn} with

Rnk
∩ M → A∞ in L1. Define the random discrete measure Qn = 1

n

∑n
i=1 1Rn(Xi)δXi

and the
measure Q = 1A∞(.)µ. Then, that Qn converges weakly to Q is an event which holds with probability
one.
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As an example of an estimate of a Cheeger set of M , one can consider a union of balls of radius
κn centered at the observations falling in Rn. Under appropriate conditions, it is known that this
estimate converges in L1; see [6].

Let us mention that with our result, only the “regular” part of a Cheeger set can be recon-
structed. Indeed, in dimension d ≥ 8, the boundary of a Cheeger set is not necessarily regular and
may contain parts of codimension greater than 1.

1.3 Connections to the literature

Our results relating the respective Cheeger constants of a domain and of a neighborhood graph
defined from a sample from the domain are the first of their kind, as far as we know. The connections
to the literature stem from the concept of normalized cut taking a central place in graph partitioning
and related methods in clustering; from a recent trend in computational geometry (and topology)
aiming at estimating geometrical (and topological) attributes of a set based on a sample; and from
the fact that we can use the conductance to bound the mixing time of a random walk on the
neighborhood graph.

Clustering. In spectral graph partitioning, the goal is to partition a graph G into subgraphs
based on the eigenvalues and eigenvectors of the Laplacian [32, 16]. It arises as a convex relaxation of
the combinatorial search of finding an optimal bisection in terms of the normalized cut. Given a set
of points X1, . . . ,Xn and a dissimilarity measure (or kernel) φ, spectral clustering applies spectral
graph partitioning to the graph with nodes the data points and edge weight δij = φ(Xi,Xj) between
Xi and Xj [34]. For instance, if the points are embedded in a Euclidean space, the kernel φ is often
of the form φ(x, y) = ψ(‖x − y‖/σ), where σ is a tuning parameter, and ψ is, e.g., the Gaussian
kernel ψ(t) = exp(−t2) or the simple kernel ψ(t) = 1[0,1](t) [26, 3]. The consistency of spectral
methods has been analyzed in this context [35, 28, 4, 21, 31]. However, there is nothing in the
literature about the consistency of the normalized cut. We partially fill that gap by relating the
Cheeger constant of the graph to the Cheeger constant of the underlying domain from which the
points are sampled.

Computational geometry (and topology). The Cheeger constant H(M), and Cheeger sets, are
bona fide geometric characteristics of the domainM that we might want to estimate, following a fast
developing line of research around the estimation of some geometric and topological characteristics
of sets from a sample, e.g., the number of connected components [5], the intrinsic dimensionality [25]
and, more generally, the homology [27, 10, 11, 37, 14, 30, 13]; the Minkowski content [17], as well
as the perimeter and area (volume) [8].

Random walks. Random geometric graphs are gaining popularity as models for real-life net-
works. Some protocols for passing information between nodes amounts to performing a random
walk and it is important to bound the time it takes for information to spread to the whole network;
see [2] and references therein. It is well-known that, given a graph G, a lower bound on H(G) may
be used to bound the mixing time the random walk on G. This is the path taken in [7, 2] when
M is the unit hypercube and the graph is Grn,n. However, in both papers the authors reduce the
setting to that of a regular grid without rigorous justification, leaving the problem unresolved (in
our opinion) even in this particular case.
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1.4 Discussion

Generalizations. With some additional work, our results and methodology extend to settings
where the kernel (here the simple kernel) is fast decaying and where the data points are sampled
from a probability distribution on M that has a non-vanishing density with respect to the uniform
distribution. It would also be interesting to consider the setting where M is a d-dimensional
smooth submanifold embedded in some Euclidean ambient space, using the maps as is done e.g.,
in [9, Lem. 3.4].

An open problem. Whether the normalized Cheeger constants of some sequence of neighbor-
hood graphs converges to the Cheeger constant of the domain is an intriguing question. To para-
phrase the question we leave open, is there a sequence {rn} such that, with probability one,

lim
n→∞

ωd

γrn
H(Gn,rn) = H(M)?

A positive answer would establish the consistency of the normalized cut criterion for graph parti-
tioning. Also, a lower bound on H(Gn,rn) would provide a lower bound on the eigengap between
the first and second eigenvalue of the Laplacian, which in turn may be used to bound the mixing
time of the random walk on Gn,rn , as done in [7, 2] when M is the unit hypercube.

Consistent estimation in polynomial time. Our estimation procedures, though theoretically
valid and consistent, are not practical. It would be interesting to know whether there is a consistent
estimator for the Cheeger constant that can be implemented in polynomial-time. Note that com-
puting the Cheeger constant of a graph is NP-hard (which motivates the use of spectral methods),
and even the best polynomial-time approximations we are aware of are not precise enough to allow
consistency [1].

1.5 Content

The rest of the paper is organized as follows. In Section 3, we establish the convergence of discrete
volume and perimeter to continuous volume and perimeter for a subset of M with smooth relative
boundary based on Hoeffding’s inequality for U -statistics [24] and deduce the lim sup bound given
in Theorem 1 via the lower semi-continuity of h(·;M). In Section 4, we prove Theorem 2 and
Theorem 3 using results on empirical U -processes [18], and examine convergence of the Cheeger set
of the random graph to a Cheeger set of M using some compacity properties of the L1-metric [23].
Some auxiliary results are gathered in Section 5, and some geometrical results of independent inter-
est are collected in Section 6. In the Appendix we state some results on concentration inequalities
for U -statistics and some compacity properties of the L1-metric.

2 Notation and background

The reach coincides with the condition number introduced in [27] for submanifolds without bound-
ary, and the property reach(∂A) > r is equivalent to A and Ac being both r-convex [36], in the
sense that a ball of radius r rolls freely inside A and Ac. (We say that a ball of radius r rolls freely
in A if, for all p ∈ ∂A, there is x ∈ A such that p ∈ ∂B(x, r) and B(x, r) ⊂ A.) It is well-known
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that the reach bounds the radius of curvature from below [20, Thm. 4.18]. For r < reach(∂M), let
Mr denote the subset of M made of points at a distance r or more from ∂M .

The uniform measure on M is denoted µ, so that µ(A) = Vold(A ∩ M)/Vold(M); and the
normalized perimeter is denoted ν(A) = Vold−1(∂A ∩M)/Vold(M). Define

µn(A) =
δ(A ∩ Xn;Gn,rn)

ωdn(n− 1)rdn
, νn(A) =

σ(A ∩ Xn;Gn,rn)

γn(n− 1)rd+1
n

, hn(A) =
νn(A)

µn(A)

where δ, σ are given in (1.2), Xn is the sample, and Gn,rn the neighborhood graph. Hence, we have

hn(A) =
ωd

γrn
h(A ∩ Xn;Gn,rn)

where h is given in (1.1). The volume of a spherical cap at height η is defined as

πd(η) = Vold
{

x : ‖x‖ ≤ 1 and 〈u, x〉 ≥ η
}

,

where u is any unit-norm vector of Rd.
For a real-valued, measurable function φ and any measure λ, let λφ denote the integral of φ with

respect to λ, i.e.,
∫

φ(x)λ(dx). For p, ε > 0 and a class H of measurable functions, let Np(ε,H, λ)
denote the ε-covering number in the Lp(λ) metric, i.e.

Np(ε,H, λ) = min

{

N : ∃φ1, . . . , φN such that sup
φ∈H

min
j
λ(|φ− φj |p) ≤ εp

}

.

It is classical to bound those covering numbers independently of λ, see Section 5 and then to take
λ = Pn, where Pn is the empirical measure of the sample, given by

Pn =
1

n

n
∑

i=1

δXi
.

We will use the L1-metric on subsets of Rd, given by Vold(A∆B) =
∫

|1A(x)− 1B(x)| dx. The
arrow

L1

→ denotes the convergence in this metric. And, finally, if a is a real number, a+ and a−
denote its positive and negative parts, so that a = a+ − a− and |a| = a+ + a−.

In the rest of the paper, the generic constant C may vary from line to line, except when stated
explicitly otherwise.

3 Proof of Theorem 1: Consistency of the normalized cut

To prove Theorem 1, we establish the almost-sure convergence of µn(A) to µ(A) and νn(A) to ν(A)
for a subset A ⊂ M with smooth relative boundary. This follows from the following exponential
inequalities.

3.1 Exponential inequalities

Proposition 4. Fix a sequence rn → 0. Let A ⊂ M be an arbitrary open subset of M . There
exists a constant C depending only on M such that, for any ε > 0, and all n large enough, we have

P (|µn(A)− µ(A)| ≥ ε) ≤ 2 exp

(

− nrdnε
2

C(1 + ε)

)

.

In particular, if nrdn/ log n→ ∞, then µn(A) converges almost surely to µ(A) when n→ ∞.
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Proof. Define the symmetric kernel

φA,r(x, y) =
1

2
{1A(x) + 1A(y)} 1{‖x− y‖ ≤ r}, (3.1)

so that

µn(A) =
1

ωdn(n− 1)rdn

∑

i 6=j

φA,rn(Xi,Xj).

By the triangle inequality, we have

|µn(A)− µ(A)| ≤ |µn(A)− E [µn(A)]|+ |E [µn(A)] − µ(A)| .

For all n large enough such that rn ≤ reach(∂M), the second term on the right-hand side (the bias
term) is bounded by Crn with C depending only on M by Lemmas 12 and 15. Assume that n is
large enough such that 2Crn ≤ ε. We then apply Lemma 22, which is Hoeffding’s Inequality for
U -statistics [24], to the first term (the deviation term) on the right-hand side with the kernel

φ := φA,rn − E [φA,rn(X1,X2)]

and t = ωdr
dε/2. The kernel satisfies ‖φ‖∞ ≤ 1, and simple calculations yields

Var(φ(X1,X2)) ≤ E
[

φA,rn(X1,X2)
2
]

≤ µ(A)ωdr
d
n ≤ ωdr

d
n.

From this we obtain the large deviation bound. The almost sure convergence is then a simple
consequence of the Borel-Cantelli Lemma.

Proposition 5. Fix a sequence rn → 0. Let A be an open subset of M with smooth relative
boundary and positive reach. There exists a constant C depending only on M such that, for any
ε > 0, and for all n large enough, we have

P (|νn(A)− ν(A)| ≥ ǫ) ≤ 2 exp

(

− nrd+1
n ǫ2

C(ν(A) + ǫ)

)

.

In particular, if nrd+1
n / log n→ ∞, then

νn(A) → ν(A), n→ ∞, almost surely.

Proof. Define the symmetric kernel

φ̄A,r(x, y) =
1

2
{1A(x)1Ac(y) + 1A(y)1Ac(x)}1{‖x − y‖ ≤ r}, (3.2)

so that

νn(A) =
1

γn(n− 1)rd+1
n

∑

i 6=j

φ̄A,rn(Xi,Xj).

By the triangle inequality, we have

|νn(A)− ν(A)| ≤ |νn(A)− E [νn(A)]|+ |E [νn(A)]− ν(A)| .
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By Lemma 13-(i), the second term on the right-hand side goes to 0 as n→ ∞. We then apply, for
n large enough, Lemma 22 to the first term on the right-hand side with the kernel

φ := φ̄A,rn − E
[

φ̄A,rn(X1,X2)
]

and t := γrd+1ν(A)ǫ/2. The kernel satisfies ‖φ‖∞ ≤ 1, and using Lemma 13-(i), we have

Var(φ(X1,X2)) ≤ E
[

φ̄A,rn(X1,X2)
2
]

= E
[

φ̄A,rn(X1,X2)
]

≤ 2γν(A)rd+1
n ,

where the last inequality follows from Lemma 13-(i) for n large enough. From this we obtain
the large deviation bound, and the almost sure convergence is a consequence of the Borel-Cantelli
Lemma.

3.2 Proof of Theorem 1

The first statement of Theorem 1 is an immediate consequence of Propositions 4 and 5. To prove
the second statement, under the conditions of Theorem 1, for any subset A with smooth rela-
tive boundary, with probability one limn hn(A) = h(A;M) while hn(A) ≥ ωd

γrn
H(Gn,rn), so that

lim supn
ωd

γrn
H(Gn,rn) ≤ h(A;M). Then we obtain the upper bound of Theorem 1 by taking the

infimum over all such subsets A.

4 Proof of Theorems 2 and 3: consistent estimation

4.1 Exponential inequalities

Given β > 0 and ρ > 0, with β > ωdρ
d, let Aβ,ρ be the class of subsets of M defined by

Aβ,ρ = {R ∩M : reach(∂R) > ρ,Vold(R) ≤ β}. (4.1)

Proposition 6. There exists a constant C depending only on M , such that, for any ε > 0, any
r > 0, and all n satisfying n/ log(n) > C/ε2 and nrd > C/ε, we have

P

(

sup
A∈Aβ,ρ

|µn(A)− E [µn(A)]| ≥ ε

)

≤ C exp

(

−nε
2

C

)

+ C exp

(

−nr
dε

C

)

. (4.2)

Proof. Define the kernel class
F = {φA,r : A ∈ Aβ,ρ}, (4.3)

where φA,r is defined in (3.1). And set

F1 =
{

x 7→ µφ(x, .) − µ⊗2φ : φ ∈ F
}

, (4.4)

F2 =
{

(x, y) 7→ φ(x, y)− µφ(x, .) − µφ(y, .) + µ⊗2φ : φ ∈ F
}

. (4.5)

Define the following functionals respectively over F1 and F2:

Mn(φ) =
1

n

∑

i 6=j

φ(Xi), Un(φ) =
1

n(n− 1)

∑

i 6=j

φ(Xi,Xj).
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Observe that

sup
A∈Aβ,ρ

|µn(A)− E [µn(A)]| =
1

ωdrd
sup
φ∈F

∣

∣Un(φ)− µ⊗2(φ)
∣

∣ ,

which we bound by the sum of a first-order term and a second-order term:

sup
φ∈F

∣

∣Un(φ)− µ⊗2(φ)
∣

∣ ≤ sup
φ∈F1

|Mn(φ)|+ sup
φ∈F2

|Un(φ)| ,

so that

P

(

sup
A∈Aβ,ρ

|µn(A)− E [µn(A)]| ≥ ε

)

≤ P

(

sup
φ∈F1

|Mn(φ)| >
ωdr

dε

2

)

+ P

(

sup
φ∈F2

|Un(φ)| >
ωdr

dε

2

)

.

First order term. Take any φ ∈ F1 of the form φ(x) = µφA,r(x, ·)− µ⊗2φA,r. Since for all x and y,
φA,r(x, y) ≤ 1{‖x− y‖ ≤ r}, we have

‖φ‖∞ := sup
x∈M

|φ(x)| ≤ sup
x∈M

|µφA,r(x, ·)| + µ⊗2φA,r ≤ ωd[1 + Vold(M)]rd =: C1r
d. (4.6)

Therefore
sup
φ∈F1

Var (φ(X)) ≤ C2
1r

2d, (4.7)

and so, for all n > 32C2
1/(ωdε

2), we have

1− 4

n(ωdrdε/2)2
sup
φ∈F1

Var (φ(X)) >
1

2
.

Hence, we are in a position of applying the symmetrization inequality for probabilities [33, Lem 2.3.7].
Let {ξi}i≥1 be a Rademacher sequence. We have

P

(

sup
φ∈F1

|Mn(φ)| >
ωdr

dε

2

)

≤ 4P

(

sup
φ∈F1

∣

∣

∣

∣

∣

1

n

n
∑

i=1

ξiφ(Xi)

∣

∣

∣

∣

∣

>
ωdr

dε

8

)

.

Let C be a minimal (ωdr
dε/8)-covering of F (1)

n with respect to the L1(Pn) metric. A simple union
bound (conditional on X ) yields

P

(

sup
φ∈F1

|Mn(φ)| >
ωdr

dε

2

)

≤ 4E

{

N1

(

ωdr
dε

8
,F1, Pn

)

max
φ∈C

P

(∣

∣

∣

∣

∣

1

n

n
∑

i=1

ξiφ(Xi)

∣

∣

∣

∣

∣

>
ωdr

dε

8

)}

.

By Lemma 10

logN1

(

ωdr
dε

8
,F1, Pn

)

≤ C2 log(C2/(r
dε)),

for some constant C2 not depending on n. Since ‖φ‖∞ ≤ C1r
d for all φ ∈ F1 with (4.6), it follows

by Hoeffding’s inequality that for all φ ∈ C

P

(∣

∣

∣

∣

∣

1

n

n
∑

i=1

ξiφ(Xi)

∣

∣

∣

∣

∣

>
ωdr

dε

8

)

≤ 2 exp

(

−1

2

n2(ωdr
dε/8)2

n(C1rd)2

)

=: 2 exp
(

−C3nε
2
)

.
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Therefore

P

(

sup
φ∈F1

|Mn(φ)| >
ωdr

dε

2

)

≤ 8 exp

[

−C3nε
2

(

1− C2

C3nε2
log

(

C2

rdε

))]

,

and so, for all n satisfying
n

log(n)
>

C2

2C3ε2
and nrd >

C2

ε
,

we have

P

(

sup
φ∈F1

|Mn(φ)| >
ωdr

dε

2

)

≤ 8 exp

(

−C3nε
2

2

)

. (4.8)

Second order term. Using Lemma 10, we have, for all n ≥ 1, and all η > 0, that

logN2(η,F2, P ) ≤ C5 log(C5/η),

for some constants C5 not depending on n, and for all probability measure P on M ×M . This,
together with the fact that ‖φ‖∞ ≤ 2 for all φ in F2, yields

sup
P

∫ 4

0
logN2 (η,F2, P ) dη ≤ C6,

for some constant C6 < ∞. Then by Lemma 23, there exists a constant C7 such that, for all n
satisfying

nrd >
C7 log(C7)C6

ωdε/2
,

we have

P

(

sup
φ∈F2

|Un(φ)| >
ωdr

dε

2

)

≤ C7 exp

(

−nr
dε

C7

)

. (4.9)

Proposition 6 follows from (4.8) and (4.9).

Proposition 7. There exists a constant C depending only on M such that, for all ε > 0, all r in
(

0;min{reach(∂M), ρ/2}
)

, and all n satisfying

n

log(n)
>

C

r2ε2
, nrd+1 >

C

ε
, n >

Cβ

r2ρ2ε2

we have

P

(

sup
A∈Aβ,ρ

|νn(A)− E[νn(A)]| ≥ ε

)

≤ C exp

(

−nr
2ε2

C

)

+ C exp

(

−nr
d+1ε

C

)

.

Proof. The proof follows that of Proposition 6, with the symmetric kernel φ̄A,n defined in 3.2 and
corresponding classes F̄ , F̄1 and F̄2 defined by (4.3), (4.4), and (4.5), with φA,r replaced by φ̄A,r.
Observe that

|νn(A)− E [νn(A)]| =
1

γrd+1
sup
φ∈F̄

∣

∣Un(φ)− µ⊗2(φ)
∣

∣ ,

10



which we decompose into first-order and second-order terms:

sup
φ∈F̄

∣

∣Un(φ)− µ⊗2(φ)
∣

∣ ≤ sup
φ∈F̄1

|Mn(φ)|+ sup
φ∈F̄2

|Un(φ)| ,

Therefore

P

(

sup
A∈Aβ,ρ

|νn(A)− E[νn(A)]| ≥ ε

)

≤ P

(

sup
φ∈F̄1

|Mn(φ)| >
γrd+1ε

2

)

+ P

(

sup
φ∈F̄2

|Un(φ)| >
γrd+1ε

2

)

.

First order term. Take any φ ∈ F̄1 of the form φ(x) =
(

µφ̄A,r(x, ·)− µ⊗2φ̄A,r

)

. Denote by D the
set

D = {x ∈ A : dist(x,M \ A) ≤ r} ∪ {x ∈M \ A : dist(x,A) ≤ r}.
Then for all x in M ,

µφ̄A,r(x, .) ≤
ωdr

d

2
1D(x),

and by using Lemma 14 and Lemma 16, we have

Vold(D) ≤ Vold (∂R, r) ≤
(

1 +
r

ρ

)d−1

Vold−1(∂R)2r ≤ 2dr
dVold(R)

ρ
≤ d2d

rβ

ρ
.

Therefore,

sup
φ∈F̄1

Var (φ(X)) ≤ sup
A∈Aβ,ρ

E

[

(

µφ̄A,r(X, ·)
)2
]

≤ C1
r2d+1β

ρ
,

where C1 is a constant depending only on M (through Vold(M)), and so, for all n > 32C1
γ2 β/(rρε2),

we have

1− 4

n(γrd+1ε/2)2
sup
φ∈F̄1

Var (φ(X)) >
1

2
.

We may therefore apply the symmetrization inequality for probabilities [33, Lem 2.3.7] and proceed
as before, this time using Lemma 11 to control the (random) entropy term, to deduce that, for all
n such that

n

log(n)
>

C2

r2ε2
and nrd+1 >

C2

ε

we have

P

(

sup
φ∈F̄1

|Mn(φ)| >
γrd+1ε

2

)

≤ C2 exp

(

−nr
2ε2

C2

)

,

for some constant C2.

Second order term. We use again using Lemma 11 to control the entropy term, and combine it
with Lemma 23 as before, to deduce that,

P

(

sup
φ∈F̄2

|Un(φ)| >
γrd+1ε

4

)

≤ C3 exp

(

−nr
d+1ε

C3

)

.

for all n such that nrd+1 > C3/ε.

11



4.2 A uniform control on hn(A)

Define the (random) class An of subsets of M by:

An = {A = R ∩M : R ∈ Rn, ∃i, j such thatB(Xi, αn) ⊂ R, B(Xj , αn) ⊂ Rc} . (4.10)

Since, by definition, h‡n is finite if and only if both R and Rc contain a ball of radius αn centered
at a sample point, we have

min
R∈Rn

h‡n(R) = min
A∈An

νn(A)

min{µn(A), µn(Ac)} = min
A∈An

νn(A)

µn(A)
.

Note also that
An ⊂ Aβn,ρn , (4.11)

where we Aβ,ρ is defined in (4.1), so that Aβn,ρn = {R ∩M : R ∈ Rn}.

Lemma 8. We have

lim inf
n→∞

inf
A∈An

(

hn(A)−
Vold−1(∂A ∩Mrn)

Vold(A ∩Mrn)

)

≥ 0. (4.12)

Proof. For any A ∈ An, we denote by An := A ∩Mrn . It is easy to check that

(

hn(A)−
ν(An)

µ(An)

)(

µn(A)

µ(An)

)

=
ν(An)

µ(An)
× νn(A)− ν(An)

ν(An)
+
ν(An)

µ(An)
× µ(An)− µn(A)

µ(An)

=: ζn(A) +ξn(A).

Now we define the probability event

Ωn =

[

sup
A∈An

∣

∣

∣

∣

1− µn(A)

µ(An)

∣

∣

∣

∣

≤ 1

2

]

.

on which we have 1
2 ≤ µn(A)/µ(An) ≤ 3

2 for all A in An. We deduce that on this event Ωn,

inf
A∈An

[(

hn(A)−
ν(An)

µ(An)

)

µn(A)

µ(An)

]

≤ 3

2
inf

A∈An

(

hn(A)−
ν(An)

µ(An)

)

+

− 1

2
inf

A∈An

(

hn(A) −
ν(An)

µ(An)

)

−

.

Consequently, for all ε > 0,

P

([

inf
A∈An

ζn(A) > −ε
4

]

∩
[

inf
A∈An

ξn(A) > −ε
4

]

∩Ωn

)

≤ P

(

1

2
inf

A∈An

(

hn(A) −
ν(An)

µ(An)

)

> −ε
2

)

,

so that

P

(

inf
A∈An

(

hn(A)−
ν(An)

µ(An)

)

< −ε
)

≤ P

(

inf
A∈An

ζn(A) < −ε
4

)

+ P

(

inf
A∈An

ξn(A) < −ε
4

)

+ P (Ωc
n)

=: I1 + I2 + P (Ωc
n) . (4.13)

12



Bounding I1. By Lemma 18, µ(An) = Vold(A ∩Mrn)/Vold(M) ≥ Cαd
n for all A in An, so that

inf
A∈An

ζn(A) ≥ − C

αd
n

inf
A∈An

(

νn(A)− ν(An)
)

−
.

Consequently

I1 ≤ P

[

inf
A∈An

(νn(A) − ν(An)) < −Cεαd
n

]

≤ P

[

inf
A∈An

(

νn(A)− E[νn(A)]
)

+ inf
A∈An

(

E[νn(A)]− ν(An)
)

< −Cεαd
n

]

.

Using Lemma 13 together with Lemma 16, we have

inf
A∈An

(

E[νn(A)] − ν(An)
)

≥ −Cβnrn
ρ2n

.

By assumption, ρnα
2d
n /(βnrn) → ∞ and ρn > αn, so that βnrn/(ρ

2
nα

d
n) → 0. And An ⊂ Aβn,ρn .

Hence, for all n large enough,

I1 ≤ P

[

inf
A∈An

(νn(A)− E[νn(A)]) < −Cεαd
n/2

]

≤ P

[

sup
A∈Aβn,ρn

|νn(A)− E[νn(A)]| > Cεαd
n/2

]

.

Moreover, βnrn/(ρ
2
nα

d
n) → 0 implies that αd

n ≫ rn. Consequently, since nrd+2
n / log(n) → ∞ by

assumption, and since d ≥ 2, it follows that

nr2nα
2d
n

log(n)
≥ nr4n

log(n)
→ ∞ ; nrd+1

n αd
n ≥ nrd+2

n → ∞ ;
nr2nρ

2
nα

2d
n

βn
= nr3nα

d
n × ρ2nα

d
n

βnrn
→ ∞.

We may therefore apply Proposition 7 to deduce that

I1 ≤ C exp

(

−nr
2
nα

2d
n

C

)

+ C exp

(

−nr
d+1
n αd

n

C

)

for some constant C > 0 and all n large enough. Since nr2nα
2d
n / log(n) → ∞ and nrd+1

n αd
n/ log(n) ≥

nrd+2
n / log(n) → ∞, we obtain that, for all ε > 0,

∑

n

P

[

inf
A∈An

ζn(A) < −ε/4
]

<∞. (4.14)

Bounding I2. We have

I2 = P

(

inf
A∈An

ξn(A) < −ε/4
)

≤ P

(

sup
A∈An

|ξn(A)| > ε/4

)

.

Using Lemma 16, ν(An)/µ(An)
2 ≤ Cβn/(ρnα

2d
n ) for all A in An, so that

I2 ≤ P

(

sup
A∈An

|µn(A)− µ(An)| >
ρnα

2d
n ε

4Cβn

)

. (4.15)
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Using Lemma 12 and Lemma 15, for all A in An and all n large enough,

|µn(A)− µ(An)| ≤ |µn(A)− E[µn(A)]| + |E[µn(A)]− µ(A)|+ |µ(A)− µ(An)|
≤ |µn(A)− E[µn(A)]| + Crn.

Hence, since ρnα
2d
n /(βnrn) → ∞ by assumption, we have

I2 ≤ P

(

sup
A∈An

|µn(A)− E[µn(A)]| >
ρnα

2d
n ε

8Cβn

)

≤ P

(

sup
A∈Aβn,ρn

|µn(A)− E[µn(A)]| >
ρnα

2d
n ε

8Cβn

)

.

Since ρnα
2d
n /(βnrn) → ∞ implies that α2d

n ≫ βnrn/ρn, and since nrd+2
n / log(n) by assumption, we

have
nρnα

4d
n

β2n log(n)
≥ nr2n

log(n)
→ ∞ ;

nrdnρnα
2d
n

βn
≥ nrdnρnα

2d
n

βn log(n)
≥ nrd+1

n

log(n)
→ ∞.

Hence we may apply Proposition 6 to deduce that

I2 ≤ C exp

(

−nρ
2
nα

2d
n ε

2

β2n

)

+ C exp

(

−nr
d
nρnα

2d
n ε

βn

)

,

for some constant C > 0 and all n large enough, which yields

∑

n

P

(

inf
A∈An

ξn(A) < −ε/4
)

<∞. (4.16)

Bounding P (Ωc
n). Since µ(An) > Cαd

n for some C uniformly over A ∈ An by Lemma 18, we
have

P (Ωc
n) = P

(

sup
A∈An

|µn(A)− µ(An)|
µ(An)

>
1

2

)

≤ P

(

sup
A∈An

|µn(A)− µ(An)| > Cαd
n

)

,

which we may bound by the right-hand side of (4.15) for all ε > 0 and all n large enough, so that

∑

n

P (Ωc
n) <∞. (4.17)

Conclusion. Reporting (4.14), (4.16) and (4.17) in (4.13), we deduce that for all ε > 0,

∑

n

P

[

inf
A∈An

(

hn(A)−
ν(An)

µ(An)

)

< −ε
]

<∞.

Consequently, applying the Borel-Cantelli lemma, we conclude the proof.
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4.3 Proof of (i) in Theorem 2

Lower bound. Now let Rn be a sequence in Rn satisfying

h‡n(Rn) = min
R∈Rn

h‡n(R).

Then

h‡n(Rn)− h(M) =
[

h‡n(Rn)− h(Rn;Mrn)
]

+ [h(Rn;Mrn)−H(Mrn)] + [H(Mrn)−H(M)] .

≥ inf
A∈An

(

hn(A)−
Vold−1(∂A ∩Mrn)

Vold(A ∩Mrn)

)

+ [H(Mrn)−H(M)] ,

since the second term [h(Rn;Mrn)−H(Mrn)] is non-negative for all n by definition of H(Mrn).
By Proposition 21 H(Mrn) → H(M) as n→ ∞ and using this, together with Lemma 8, we obtain
that

lim inf
n→∞

min
R∈Rn

h‡n(R) ≥ H(M) a.s. (4.18)

Upper bound. To obtain the matching upper bound, fix a subset A ⊂ M with smooth relative
boundary and such that 0 < Vold(A) ≤ Vold(M\A) < Vold(M). Then, for n large enough, there
exists Rn in Rn such that Rn ∩M = A, implying that

min
R∈Rn

h‡n(R) ≤ hn(A).

By Theorem 1, hn(A) → ν(A)/µ(A) = h(A;M) almost surely, so that

lim sup
n→∞

min
R∈Rn

h‡n(R) ≤ h(A;M) a.s.

By minimizing over A, we obtain

lim sup
n→∞

min
R∈Rn

h‡n(R) ≤ H(M) a.s. (4.19)

Combining the lower and upper bounds (4.18) and (4.19), we conclude that

lim
n→∞

min
R∈Rn

h‡n(R) = H(M) a.s. (4.20)

4.4 Proof of (ii) in Theorem 2

Let Rn be a sequence in Rn satisfying

h‡n(Rn) = min
R∈Rn

h‡n(R),

and set An = Rn ∩ M . Fix a subset A0 ⊂ M with smooth relative boundary and such that
h(A0) < ∞. Then for n large enough, there exists R in Rn such that A0 = R ∩ M . Hence
hn(An) ≤ hn(A

0) and since hn(A
0) → h(A0) by Theorem 1, we have

lim sup
n→∞

Vold−1(An) ≤ lim sup
n→∞

h(An)min{Vold(An),Vold(A
c
n ∩M)} ≤ h(A0)Vold(M)/2.
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Therefore by Proposition 24, with probability one, {An} admits a subsequence converging in the
L1-metric.

On the one hand,

h(An;Mrn)−H(M) = [h(An;Mrn)−H(Mrn)] + [H(Mrn)−H(M)] ,

where the first difference term on the right-hand side is non-negative by definition, while the second
difference term tends to zero by Proposition 21, so that with probability one:

lim inf
n→∞

h(An;Mrn) ≥ H(M).

On the other hand,

h(An;Mrn)−H(M) =
[

h(An;Mrn)− h‡n(An)
]

+
[

h‡n(An)−H(M)
]

≤ − inf
R∈Rn

(

h‡n(R)− h(R;Mrn)
)

+
[

h‡n(An)−H(M)
]

so that

lim sup
n→∞

h(An;Mrn)−H(M) ≤ − lim inf
n→∞

inf
R∈Rn

(

h‡n(R)− h(R;Mrn)
)

+
[

h‡n(An)−H(M)
]

which goes to 0 as n→ ∞ from (4.12) and (4.20). Hence

lim
n→∞

h(An;Mrn) → H(M) a.s.

Now let fn denote the bi-Lipschitz function mapping Mrn to M defined in Lemma 20 with r
and s replaced by rn and sn, where sn/rn → ∞. Define Bn = fn(An ∩Mrn). By Lemmas 19
and 20, we have

h(Bn;M) ≤
(

1 +
2rn

sn − rn

)2d

h(An;Mrn),

so that h(Bn;M) → H(M) almost surely as n→ ∞. Moreover, by Proposition 24, with probability
one, there exists a subset B∞ of M and a subsequence {Bnk

} such that Bnk
converges to B∞ in

the L1-metric. Since h(·;M) is lower-semi-continuous by Proposition 25, with probability one,
lim infn→∞ h(Bn;M) ≥ h(B∞;M). Since we also have lim infn→∞ h(Bn;M) = H(M) a.s., it
follows that h(B∞;M) = H(M) a.s. and so B∞ is a Cheeger set of M .

Moreover, since fn leaves Msn unchanged,

Vold(An∆Bn) ≤ Vold(M\Msn) → 0 as n→ ∞.

Hence with probability one, 1An − 1Bn → 0 in L1. Consequently, the sequences {An} and {Bn}
have the same accumulation points, and so any convergent subsequence of {An} converges to a
Cheeger set of M .
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4.5 Proof of Theorem 3

Let An = Rn ∩M . For all n ≥ 1, and all f in the class of bounded and continuous functions on
M , say Cb(M), we have

∣

∣

∣

∣

Qnf −
∫

M
f(x)1Rn(x)µ(dx)

∣

∣

∣

∣

≤ sup
A∈An

|Pn (f1A)− µ (f1A)| ,

where An is the class of subsets of M defined in (4.10). Using the bound on the covering numbers
in Lemma 9, it is a classical exercise to prove that the collection of functions x 7→ f(x)1A(x) where
A ranges over An is a Glivenko-Cantelli class, whence

∣

∣

∣

∣

Qnf −
∫

M
f(x)1Rn(x)µ(dx)

∣

∣

∣

∣

→ 0 a.s. as n→ ∞.

Next,
∣

∣

∣

∣

∫

M
f(x)1Rnk

(x)µ(dx)−Qf

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

M
f(x)1Ank

(x)µ(dx)−Qf

∣

∣

∣

∣

≤ ‖f‖∞P (Ank
∆A∞) ,

which tends to 0 by definition ofA∞. Thus, we have shown that, for all f in Cb(M), P (Qnf → Qf) =
1. Using the separability of Cb(M), see, e.g., [19, p. 131], we deduce that

P
[

∀f ∈ Cb(M), Qnf → Qf
]

= 1,

so that the event “Qn converge weakly to Q” is of probability 1.

5 Auxiliary results

5.1 Covering numbers

For ρ > 0, let Aρ be the class of subsets of A ⊂M with reach(∂A ∩M) ≥ ρ. Note that Aβ,ρ given
(4.1) is a sub-class of Aρ for all β.

Lemma 9. There exists constant C, v depending only on M such that, for any measure P on M ,
p ≥ 1, ρ > 0 and ε > 0:

Np(ε,Aρ, P ) ≤
(

C

ε

)pv

.

Proof. Consider 2d points of M forming the vertices of a cube and a point x at the center of the
cube. Upon choosing the side of the cube small enough, the center point x cannot be isolated by
some A ∈ Aρ. Indeed, if A ∈ Aρ contains x, because reach(∂A) ≥ ρ, there is y ∈ A such that
x ∈ B(y, ρ) ⊂ A; and when r is small enough relative to ρ, B(y, ρ) contains at least one vertex of
the cube. This shows that Aρ has VC-index less than 2d − 1 and so is a VC-class. The bound then
follows from [33, Thm. 2.6.4].

Lemma 10. Let Fr,ρ = {φA,r : A ∈ Aρ}, where φA,r is defined in (3.1), and for a probability
measure Q on M , let QFr,ρ = {x 7→ Qφ(x, .) : φ ∈ Fr,ρ}. There exists constant C, v depending
only on M such that, for any probability measures P and Q on M ,

N1 (ε,Fr,ρ, P ⊗Q) ≤
(

C

ε

)v

, N2 (ε,Fr,ρ, P ⊗Q) ≤
(

C

ε

)v

and N1(ε,QFr,ρ, P ) ≤
(

C

ε

)v

.
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Proof. By Lemma 9, we have

N1(ε,Fr,ρ, P ⊗Q) ≤ N1

(

2ε, {(x, y) 7→ 1A(x) + 1A(y) : A ∈ Aρ}, P ⊗Q
)

≤ N1 (ε,Aρ, P )×N1 (ε,Aρ, Q) ≤
(

C

ε

)2v

.

That the L2-covering number is bounded by the same quantity follows from the fact that functions
in Fr,ρ are uniformly bounded by 1, and the bound on N1(ε,QFr,ρ, P ) follows from the inequality

N1(ε,QFr,ρ, P ) ≤ N1(ε,Fr,ρ, P ⊗Q).

Lemma 11. Let F̄r,ρ = {φ̄A,r : A ∈ Aρ}, where φ̄A,r is defined in (3.2), and for a probability
measure Q on M , let QF̄r,ρ = {x 7→ Qφ̄(x, .) : φ̄ ∈ F̄r,ρ}. There exists constant C, v depending
only on M such that, for any probability measures P and Q on M ,

N1

(

ε, F̄r,ρ, P ⊗Q
)

≤
(

C

ε

)v

, N2

(

ε, F̄r,ρ, P ⊗Q
)

≤
(

C

ε

)v

and N1(ε,QF̄r,ρ, P ) ≤
(

C

ε

)v

.

Proof. By Lemma 9, we have

N1(ε, F̄n, P ⊗Q) ≤ N1

(

2ε, {(x, y) 7→ 1A(x)1Ac(y) + 1A(y)1Ac(x) : A ∈ Aρ}, P ⊗Q
)

≤ N1

(

ε, {(x, y) 7→ 1A(x)1Ac(y)}, P ⊗Q
)2

≤ N1

(ε

2
,Aρ, P

)4
≤
(

2C

ε

)4v

.

The remainder of the proof is similar to the one of Lemma 10.

5.2 Technical results on bias terms

Lemma 12. Let φA,r be defined as in (3.1). There exists a constant C, depending only on M , such
that, for any A ⊂M and r < reach(∂M),

∣

∣

∣

∣

1

ωdrd
E [φA,r(X1,X2)]− µ(A)

∣

∣

∣

∣

≤ 2µ(A ∩M c
r ).

Proof. We first note that

E [φA,r(X1,X2)] = E [1A(X1)1{‖X1 −X2‖ ≤ r}] .

We partition A into A ∩Mr and A ∩M c
r . By conditioning on X1, we have

E [1A∩Mr(X1)1{‖X1 −X2‖ ≤ r}] = ωdr
dµ(A ∩Mr) = ωdr

dµ(A)− ωdr
dµ(A ∩M c

r );

E
[

1A∩Mc
r
(X1)1{‖X1 −X2‖ ≤ r}

]

≤ ωdr
dµ(A ∩M c

r ).

Hence the result.

Lemma 13. Let A = R∩M , where R is a bounded domain with smooth boundary and reach(∂R) =
ρ > 0. Let φ̄A,r be defined as in (3.2).
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(i) There exists a universal constant C, depending only on d, such that, for any A ⊂ M and
r < min{ρ/2, reach(∂M)},
∣

∣

∣

∣

1

γrd+1
E
[

φ̄A,r(X1,X2)
]

− ν(A)

∣

∣

∣

∣

≤ C

(

Vold−1(∂R ∩ V(∂M, r)) + Vold−1(∂R ∩M)
r

ρ

)

.

(ii) There exists a universal constant C, depending only on d, such that, for any A ⊂ M and
r < min{ρ/2, reach(∂M)},

1

γrd+1
E
[

φ̄A,r(X1,X2)
]

− Vold−1(∂A ∩Mr)

Vold(M)
≥ −Cν(A)r

ρ
. (5.1)

Proof. Assume without loss of generality that Vold(M) = 1. Let S denote ∂R ∩M . Then

E
[

φ̄A,r(X1,X2)
]

= E [1A(X1)1Ac(X2)1 {‖X1 −X2‖ ≤ r}] =
∫

D
Vold [B(x, r) ∩Ac]µ(dx),

where
D = {x ∈ A : dist(x, ∂R) ≤ r} .

Since r < ρ, the projection on ∂R is well-defined on D, and any x in D can be written as x = p+tep,
for p ∈ ∂R, and with ep the unit normal vector of ∂R at p pointing inwards.

We partition D into D ∩Mr and D ∩M c
r . Denote by Sr the projection of D ∩Mr on S. We

have
∫

D∩Mr

Vold [B(x, r) ∩Ac] dx =

∫

Sr

∫ 0

−r
Vold [B(p+ tep, r) ∩Ac]ϑ(p, t)dt vσ(dp)

= r

∫

Sr

∫ 1

0
Vold [B(p− ηrep, r) ∩Ac]ϑ(p, rη)dη vσ(dp).

Therefore
∣

∣

∣

∣

1

rd+1

∫

D∩Mr

Vold [B(x, r) ∩Ac] dx− γν(A)

∣

∣

∣

∣

(5.2)

≤ 1

rd

∫

Sr

∫ 1

0

∣

∣

∣
Vold [B(p− ηrep, r) ∩Ac]− πd(η)r

d
∣

∣

∣
ϑ(p, rη)dη vσ(dp)

+

∣

∣

∣

∣

∫

Sr

∫ 1

0
πd(η)ϑ(p, rη)dη vσ(dp)− γν(A)

∣

∣

∣

∣

.

Using Lemma 17, and then Lemma 14, the first term on the right-hand side is bounded by

2ωd−1(r/ρ)

∫

Sr

∫ 1

0
ϑ(p, rη)dη vσ(dp) ≤ 2dωd−1(r/ρ)Vold−1(Sr).

Next, using the expansion ϑ(p, rη) = 1 + ϑ′(p, rξη)rη for some 0 < ξη < 1, with |ϑ′(p, t)| ≤
(d− 1)2d/ρ for all t ∈ (−r, r) by Lemma 14, and since r < ρ/2, we bound the second term by

∣

∣

∣

∣

∫

Sr

∫ 1

0
πd(η)dη vσ(dp)− γν(A)

∣

∣

∣

∣

+ r

∫

Sr

∫ 1

0
ηπd(η)|ϑ′(p, rξη)|dη vσ(dp)

≤ γ |Vold−1(Sr)−Vold−1(S)|+ (d− 1)2dγ(r/ρ)Vold−1(Sr)

≤ γVold−1(S ∩M c
r ) + (d− 1)2dγ(r/ρ)Vold−1(Sr),
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since S\Sr ⊂M c
r because S ∩Mr ⊂ Sr. Collecting terms, the term in (5.2) is bounded by

γ Vold−1(S ∩M c
r ) + C

r

ρ
Vold−1(Sr),

for some constant C independent of M .
For the integral over D ∩M c

r , since D is included in the intersection of tubes of radius r about
∂R and ∂M , i.e., D ⊂ V(∂R, r) ∩ V(∂M, r), we have

∫

D∩Mc
r

Vold [B(x, r) ∩Ac] dx ≤
∫

∂R∩V(∂M,r)

∫ 0

−r
Vold [B(p+ tep, r) ∩Ac]ϑ(p, t)dt vσ(dp)

= r

∫

∂R∩V(∂M,r)

∫ 1

0
Vold [B(p− ηrep, r) ∩Ac]ϑ(p, rη)dη vσ(dp)

≤ 2d−1ωdr
d+1Vold−1(∂R ∩ V(∂M, r)),

where we used Lemma 14 in the last inequality.
Combining the bounds on the integrals over D ∩Mr and D ∩M c

r , we obtain that

∣

∣

∣

∣

1

γrd+1
E
[

φ̄A,r(X1,X2)
]

− ν(A)

∣

∣

∣

∣

≤ Vold−1(S ∩M c
r ) + C

r

ρ
Vold−1(Sr) + 2d−1ωd Vold−1(∂R ∩ V(∂M, r))

≤ C

(

Vold−1(∂R ∩ V(∂M, r)) + Vold−1(S)
r

ρ

)

,

which proves the first bound stated in Lemma 13.

To prove (ii), using the bound on (5.2), we deduce that

1

γrd+1
E
[

φ̄A,r(X1,X2)
]

≥ 1

γrd+1

∫

D∩Mr

Vold [B(x, r) ∩Ac] dx

≥ Vold−1(S)−
[

Vold−1(S ∩M c
r ) +

C

γ

r

ρ
Vold−1(Sr)

]

≥ Vold−1(S ∩Mr)− C
r

ρ
Vold−1(Sr),

and since Sr ⊂ S, the result follows.

6 Geometrical results

6.1 Integration in tubes

We introduce the notion of tubes and some of their properties; see [22] for an extensive treatment.
Let S be a submanifold of Rd. The tubular neighborhood of radius r > 0 about S, denoted V(S, r),
is the set of points x in R

d for which there exists s ∈ S with ‖x − s‖ < r and such that the line
joining x and s is orthogonal to S at s. When S is without boundary, V(S, r) coincides with the
set of points x in R

d at a distance no more than r from S. If S has boundary, then the tube
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coincides with the set of points at distance no more than r, with the ends removed, corresponding
to the points projecting onto ∂S. Assume S is of codimension 1, and oriented, and define ep as
the (unit) normal vector of S at p ∈ S. When and r < reach(S), V(S, r) admits the following
parameterization

V(S, r) = {x = p+ tep : p ∈ S,−r ≤ u ≤ r}.
Denote by IIp the second fundamental form of S at p ∈ S. The infinitesimal change of volume

function is defined on S × (−r; r) by ϑ(p, t) = det(I − tIIp); the dependence of ϑ on S is omitted.
Given an integrable function g on V(S, r), we have:

∫

V(S,r)
g(x)dx =

∫

S

∫ r

−r
g(p, t)ϑ(p, t)dt vσ(dp),

where vσ is the Riemannian volume measure on S.

Lemma 14. Assume S is a submanifold of Rd of codimension 1, with ρ := reach(S) > 0. Then,
for all r < ρ,

sup
p∈S

sup
−r≤t≤r

ϑ(p, t) ≤ (1 + r/ρ)d−1,

and

sup
p∈S

sup
−r≤t≤r

|ϑ′(p, t)| ≤ (d− 1)(1 + r/ρ)d−1

ρ− r
.

Proof. By [20, Thm. 4.18], the reach bounds the radius of curvature from below so that the prin-
cipal curvatures κ(1), . . . , κ(d−1) (the eigenvalues of the second fundamental form) are everywhere
bounded (in absolute value) from above by 1/ρ. Therefore, for r < ρ and −r ≤ t ≤ r,

0 ≤ ϑ(p, t) = det(I − tIIp) =
d−1
∏

i=1

(

1− κ(i)p t
)

≤ (1 + r/ρ)d−1.

For the derivative of ϑ, we have

ϑ′(p, t)

ϑ(p, t)
= −

d−1
∑

i=1

κ
(i)
p

1− κ
(i)
p t

.

Hence

|ϑ′(p, t)| ≤ ϑ(p, t)(d− 1)
1/ρ

1− r/ρ
≤ (d− 1)(1 + r/ρ)d−1

ρ− r
.

Lemma 15. There exists a positive constant C, depending only on M , such that, for all r <
reach(∂M),

µ [V(∂M, r)] ≤ Cr.

Proof. Let ρ = reach(∂M). By Lemma 14,

µ [V(∂M, r)] =
1

Vold(M)

∫

∂M

∫ r

−r
ϑ(p, u)du vσ(dp)

≤ Vold−1(∂M)

Vold(M)
2r(1 + r/ρ)d−1 ≤ 2d Vold−1(∂M)

Vold(M)
r.
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6.2 Perimeter bounds

Let E, F be two Borel subsets of Rd. Recall the following isoperimetric inequality in R
d (see e.g.,

Evans and Gariepy, 1992):

dω
1/d
d Vold(E)1−1/d ≤ Vold−1(∂E). (6.1)

We also have

Vold−1

(

∂(E ∪ F )
)

+Vold−1

(

∂(E ∩ F )
)

≤ Vold−1(∂E) + Vold−1(∂F ). (6.2)

Lemma 16. Let R be a bounded open subset of Rd with smooth boundary and reach(∂R) = ρ > 0.
Then,

Vold−1(R) ≤ dVold(R)/ρ.

Proof. Since reach(∂R) = ρ > 0, a ball of radius ρ rolls freely in R. Consequently R can be written
as a countable union of balls of radius ρ, i.e.,

R =

∞
⋃

i=1

B(xi, ρ).

Set Rn = ∪n
i=1Bi where Bi = B(xi, ρ).

Using the decomposition Rn+1 = Rn ∪Bn+1, on the one hand we have

Vold(Rn+1) = Vold(Rn ∪Bn+1) = Vold(Rn) + ωdρ
d −Vold(Rn ∩Bn+1),

and on the other hand, using inequality (6.2), we have

Vold−1(∂Rn+1) = Vold−1(∂(Rn ∪Bn+1)) ≤ Vold−1(∂Rn) + dωdρ
d−1 −Vold−1(∂(Rn ∩Bn+1)).

Consequently

Vold−1(∂Rn+1)−
d

ρ
Vold(Rn+1) ≤ Vold−1(∂Rn)−

d

ρ
Vold(Rn)

+

[

d

ρ
Vold(Rn ∩Bn+1)−Vold−1(∂(Rn ∩Bn+1))

]

.

But, using the isoperimetric inequality (6.1), we may write

d

ρ
Vold(Rn ∩Bn+1)−Vold−1

(

∂(Rn ∩Bn+1)
)

≤ d

ρ
Vold(Rn ∩Bn+1)− dω

1/d
d

(

Vold(Rn ∩Bn+1)

)1−1/d

≤
(

Vold(Rn ∩Bn+1)

)1−1/d[d

ρ
Vold(Rn ∩Bn+1)

1/d − dω
1/d
d

]

≤ 0

since, in the last bracket, Vold(Rn ∩Bn+1) ≤ Vold(Bn+1) = ωdρ
d. Therefore, for all n ≥ 1, we have

Vold−1(∂Rn+1)−
d

ρ
Vold(Rn+1) ≤ Vold−1(∂Rn)−

d

ρ
Vold(Rn).

22



But since R1 is a ball of radius ρ, we have Vold−1(∂R1)− dVold(R1)/ρ = 0 and so

Vold−1(∂Rn)−
d

ρ
Vold(Rn) ≤ 0 for all n ≥ 1.

Since Rn converges to R in L1, it follows from the lower semi-continuity of the perimeter, see
e.g. [23, Prop. 2.3.6], that lim infnVold−1(∂Rn) ≥ Vold−1(∂R). This concludes the proof.

6.3 Volume bounds

Lemma 17. Let R be a bounded open subset of Rd with smooth boundary and reach(∂R) = ρ > 0.
Set A = R ∩M . For any r < min{reach(∂M); ρ}, any 0 ≤ η ≤ 1, and all p in ∂A ∩Mr, we have

∣

∣

∣vold (B(p+ ηrep, r) ∩Ac)− πd(η)r
d
n

∣

∣

∣ ≤ 2ωd−1r
d+1/ρ,

where ep denotes the unit normal vector at p pointing inward A.

Proof. For ease of notation, set B = B(p+ ηrep, r). Let (ẽ1, . . . , ẽd) be an orthonormal frame at p,
with ẽd = ep. Denote by x̃1, . . . , x̃d the local coordinates in this frame, such that p has coordinates
0. Then ∂A∩M can be expressed locally as the set of points x̃ such that x̃d = F (x̃1, . . . , x̃d−1) for
some function F , and, if we set x̃(d) = (x̃1, . . . , x̃d−1), then

Vold(B ∩Ac) =

∫

B
1{x̃d < F (x̃(d))}dx̃

=

∫

B

[

1{x̃d < F (x̃(d))}1{x̃d < 0} + 1{x̃d < F (x̃(d))}1{x̃d > 0}
]

dx̃

Since

πd(η)r
d =

∫

B
1{x̃d < 0}dx̃

it follows that
∣

∣

∣vold (Bn ∩Ac)− πd(η)r
d
n

∣

∣

∣ ≤
∫

B

[

1{x̃d > F (x̃(d))}1{x̃d < 0}+ 1{x̃d < F (x̃(d))}1{x̃d > 0}
]

dx̃

≤
∫

Bn

1
{

|x̃d| ≤ |F (x̃(d))|
}

dx̃ ≤ 2

∫

{‖x̃(d)‖≤r}
|F (x̃(d))|dx̃(d).

Expanding F at 0, we have, for all x̃ with ‖x̃‖ ≤ r,

F (x̃(d)) =

d−1
∑

i,j=1

Hij(ξ)x̃
ix̃j ,

for some ξ := ξ(x̃(d)). Since the reach bounds the principal curvatures by 1/ρ [20], we have
supp∈∂A∩Mr

‖H(p)‖ ≤ 1/ρ. Then, using the change of variable u = rx̃, we deduce that

∣

∣

∣
vold (B(p+ ηrep, r) ∩Ac)− πd(η)r

d
n

∣

∣

∣
≤ 2ωd−1 sup

p∈∂A∩M
‖H(p)‖rd+1

≤ 2ωd−1r
d+1/ρ.
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Lemma 18. There exists a constant C > 0 such that, for all α, r satisfying 0 < 2r ≤ α ≤
reach(∂M), and all x in M ,

Vold(B(x, α) ∩Mr) ≥ Cαd.

Proof. The main argument is to include a ball of radius α/4 into B(x, α) ∩Mr. First, because
ρ := reach(∂M) > 0, for any x ∈ M there is y ∈ M such that x ∈ B(y, ρ) ⊂ M . Second, since
dist(y, ∂M) ≥ ρ and ρ ≥ 2r, we have y ∈Mr and B(y, ρ− r) ⊂Mr. Hence

B(x, α) ∩B(y, ρ− r) ⊂ B(x, α) ∩Mr.

If y = x, the result is trival. Otherwise, let z := x + (r + α/4)(y − x)/‖y − x‖ and note that
B(z, α/4) is a ball of radius α/4 included in B(x, α) ∩B(y, ρ− r).

6.4 Some properties of the Cheeger constant and Cheeger sets

In this section, we prove some properties of the Cheeger constant and Cheeger sets. As in all the
paper,M denotes a bounded, connected, open subset of Rd with smooth boundary. To this aim, we
will make use a bi-Lipschitz deformation ofM . For a Lipschitz map f , let ‖f‖Lip denote its Lipschitz
constant. If f is bi-Lipschitz, we define its condition number by cond(f) := ‖f‖Lip ‖f−1‖Lip. We
shall need the following two lemmas.

Lemma 19. Let f be a bi-Lipschitz on M . Then for any A ⊂M measurable,

max

{

h(f(A); f(M))

h(A;M)
,

h(A;M)

h(f(A); f(M))

}

≤ cond(f)d.

Proof. For any A ⊂ M , ∂f(A) = f(∂A) and f(A)c ∩ f(M) = f(Ac ∩M), and if A is measurable,
for k = 1, . . . , d,

‖f−1‖−k
Lip Volk(A) ≤ Volk(f(A)) ≤ ‖f‖kLip Volk(A).

Therefore,

h(f(A); f(M)) =
Vold−1(f(∂A ∩M))

min{Vold(f(A)),Vold(f(Ac ∩M))}

≤
‖f‖d−1

Lip Vold−1(∂A ∩M)

‖f−1‖−d
Lip min{Vold(A),Vold(Ac ∩M)}

≤ cond(f)d h(A;M).

And vice-versa.

Lemma 20. For any r < ρM , we denote by Mr the subset of M made of points at a distance r
or more from ∂M . Fix r < s ≤ reach(∂M). Then, there is a bi-Lipschitz map between Mr and M
that leaves Ms unchanged, and with condition number at most (1 + 2r/(s − r))2.

Proof. For x in M such that δ(x) := dist(x, ∂M) < s, let ξ(x) ∈ M be its metric projection onto
∂M and ux be the unit normal vector of M at ξ(x) pointing outwards. We define the map

fr :Mr 7→M, fr(x) = x+
r(s− δ(x))+

s− r
ux,
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where a+ denotes the positive part of a ∈ R. By construction, f is one-to-one, with inverse

f−1
r :M 7→Mr, f−1

r (x) = x− r(s− δ(x))+
s

ux.

By [20, Thm. 4.8(1)], δ is Lipschitz with constant at most 1, therefore so is x 7→ (s − δ(x))+; and
since the reach bounds the radius of curvature from below [20, Thm. 4.18], x 7→ ux is Lipschitz
with constant at most 1/ reach(∂M). Therefore, using the fact that (s− δ(x))+ ≤ s and ‖ux‖ = 1,
fr and f−1

r are Lipschitz with constants at most 1 + 2r/(s − r) and 1 + 2r/s respectively.

Proposition 21. For r < reach(∂M), let Mr denote the subset of M made of points at a distance
r or more from ∂M . Then

H(Mr) = (1 +O(r))H(M), r → 0.

Proof. From Lemmas 19 and 20, we deduce that

max

{

H(Mr)

H(M)
,
H(M)

H(Mr)

}

≤ (1 + 2r/(ρM − r))2d,

for any r < ρM := reach(∂M), which immediately yields the desired result.

The Appendix

A U-statistics

The following is Hoeffding’s Inequality for U -statistics [24] and is a special case of [18, Thm. 4.1.8].

Lemma 22. Let φ be a measurable, bounded kernel on R
d × R

d and let {Xk : k ∈ N} be i.i.d.
random vectors in R

d. Assume that E [φ(X1,X2)] = 0 and that b := ‖φ‖∞ < ∞, and let σ2 =
Var(φ(X1,X2)). Then, for all t > 0,

P





1

n(n− 1)

∑

i 6=j

φ(Xi,Xj) ≥ t



 ≤ exp

(

− nt2

5σ2 + 3bt

)

.

The following is a uniform version of Lemma 22 and is a special case of [18, Thm. 5.3.15].

Lemma 23. Let H be a class of symmetric kernels φ on R
d×R

d such that b := supφ∈H ‖φ‖∞ <∞
and

c := sup
P

∫ 2b

0
logN2(ε,H, P )dε <∞,

where the supremum is over all the probability measures on R
d × R

d. Let {Xk : k ∈ N} be i.i.d.
random vectors in R

d and assume that E [φ(X1,X2)] = 0 for all φ ∈ H. Then there exists a constant

C1, not depending on n or H, such that, for all ε > 0 and all n ≥ C1 log(C1)c
ε ,

P



sup
φ∈H

∣

∣

∣

∣

∣

∣

1

n(n− 1)

∑

i 6=j

φ(Xi,Xj)

∣

∣

∣

∣

∣

∣

> ε



 ≤ C1 exp

(

− nε

C1c

)

.

25



B Convergence of sets in the L1-metric

The following propositions are adapted from [23, Thm. 2.3.10] and [23, Prop. 2.3.6] respectively.

Proposition 24. Let En be a sequence of measurable subsets of M . Suppose that

lim sup
n→∞

Vold−1(∂En ∩M) <∞.

Then (En) admits a subsequence converging for the L1-metric.

Proposition 25. Let En and E be bounded measurable subsets of M such that 1En

L1

→ 1E and
h(E;M) <∞. Then

lim inf
n

h(En;M) ≥ h(E;M).
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