

Vers une évaluation plus fine des performances énergétiques des exploitations agricoles: quels indicateurs et quelles solutions technologiques pour les renseigner?

Marilys Pradel, D. Boffety, V. Abt

▶ To cite this version:

Marilys Pradel, D. Boffety, V. Abt. Vers une évaluation plus fine des performances énergétiques des exploitations agricoles: quels indicateurs et quelles solutions technologiques pour les renseigner?. Colloque Ecotechs'09 "Maîtrise de l'énergie à l'échelle de l'exploitation agricole: quelles perspectives technologiques?", Oct 2009, Montoldre, France. p. 133 - p. 141. hal-00473263

HAL Id: hal-00473263

https://hal.science/hal-00473263

Submitted on 14 Apr 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Vers une évaluation plus fine des performances énergétiques des exploitations agricoles : quels indicateurs et quelles solutions technologiques pour les renseigner ?

Pradel Marilys*, Boffety Daniel, Abt Vincent
UR TSCF – Cemagref – Domaine des Palaquins 03150 MONTOLDRE
*auteur correspondant : (+33) 4 70 47 74 26 – marilys.pradel@cemagref.fr

Ce papier porte sur l'étude de solutions à la fois méthodologique et technologique pour évaluer les performances énergétiques des exploitations agricoles à l'échelle fine de la parcelle ou de l'opération technique tout en cherchant à améliorer les référentiels ACV existants. A partir d'une étude des outils de diagnostic existants et des opérations mise en œuvre au sein des exploitations agricoles, de nouveaux indicateurs de performances énergétiques adaptés aux échelles considérées sont proposés. Ceci pose la question de la disponibilité de solutions technologiques pour mesurer, collecter et stocker les informations nécessaires à la définition de ces indicateurs à un coût raisonnable pour l'agriculteur.

Diagnostic énergétique, indicateurs de performances, NTIC, exploitation agricole, ACV

Contexte

La prise de conscience de l'importance de la préservation des ressources énergétiques et non renouvelables est une certitude comme le témoigne la politique énergétique mise en place depuis quelques années par les pouvoirs publics (politique énergétique de 2005, Grenelle de l'Environnement...). Appliquée au monde agricole, cette réalité passe par le plan de performance énergétique des exploitations agricoles qui vise, entre autre, à mieux évaluer le bilan énergétique des exploitations agricoles.

Objectif

Dans ce contexte national, le projet Casdar Energé'TIC (2009-2011) a pour ambition d'apporter une solution à la fois scientifique et technique à l'évaluation des performances énergétiques des exploitations agricoles. Ce projet, coordonné par l'ACTA et le Cemagref, vise à quantifier finement les dépenses énergétiques des exploitations agricoles par l'utilisation des Nouvelles Technologies de l'Information et de la Communication (NTIC). Installées directement sur les équipements agricoles, les solutions technologiques envisagées permettront ainsi d'acquérir des informations en routine dans le but d'alimenter des indicateurs de performances énergétiques à une échelle fine (opération culturale, parcelle...) et des référentiels de consommations énergétiques (Référentiels ACV notamment). L'objectif de ce papier est donc de présenter la méthodologie utilisée pour la réalisation de l'état de l'art des indicateurs de performances énergétiques à une échelle fine et celle des solutions technologiques envisagées pour la collecte des données.

Méthodologie

Pour élaborer un diagnostic fin des performances énergétiques d'une exploitation agricole, il est nécessaire au préalable d'identifier les informations à collecter, la manière de les collecter et de les traiter et à quelle échelle les collecter. Pour cela, un état de l'art des méthodes de diagnostics à partir des indicateurs et des données existants a été réalisé, ainsi qu'un état de l'art des solutions technologiques existantes pouvant être mises en œuvre à un coût raisonnable.

L'état de l'art des travaux existants sur les bilans énergétiques a été constitué de trois phases : (i) identification des différents outils permettant d'évaluer les performances énergétiques des exploitations agricoles, (ii) identification des opérations réalisées sur l'exploitation pouvant être consommatrices d'énergie, (iii) identification et conception d'indicateurs pouvant permettre d'évaluer les performances énergétiques des opérations identifiées à plusieurs échelles.

Des indicateurs de performances à des échelles plus fines

Parmi 22 méthodes recensées, quinze sont utilisées en France pour établir des diagnostics énergétiques. Ces méthodes utilisent pour la plupart différents types d'indicateurs qui sont soit peu sensibles à des variations de pratiques car définis à l'échelle de l'exploitation agricole, soit de mauvais outils de pilotage par manque de distinction des énergies utilisées. Ces indicateurs

ne sont donc pas adaptés à une évaluation fine des dépenses énergétiques d'une exploitation agricole. Une dizaine de nouveaux indicateurs ont donc été proposés pour évaluer à une échelle plus fine les consommations énergétiques des exploitations agricoles. Préalablement, pour chaque opération technique pouvant avoir lieu sur une exploitation agricole, les postes de consommations énergétiques ont été identifiés ainsi que d'une part les types d'énergie directe et indirecte mobilisés (fuel, électricité, gaz...) et leur unité brute de flux (unité de mesure) et d'autre part l'échelle de mesure de ces flux. Ces éléments ont ainsi permis de construire une dizaine d'indicateurs pour l'évaluation des dépenses et des performances, le suivi des consommations, le pilotage des pratiques agricoles et la possibilité d'établir des référentiels de consommations énergétiques. Ces indicateurs, par agrégation des informations techniques de l'exploitation disponibles, permettent d'obtenir des indicateurs à différentes échelles (parcelle, culture, exploitation). Un exemple (en italique) concernant le fuel et une collecte de données à l'échelle spatiale est présenté dans le tableau ci-dessous. Ces indicateurs seront testés sur l'ensemble des exploitations agricoles des partenaires du projet Energé'tic.

Type d'énergie	Indicateur	Solution technologique envisagée	
Directe	Unité brute de flux/ha de	Capteur bas-coût installé sur le	
	culture/parcelle/opération technique	tracteur ou l'automoteur	
Fuel	Consommation de fuel en litre pour désherber	Jauge carburant ou compteur	
	1 ha sur une parcelle en pente	volumétrique	
Indirecte	Unité brute de flux/ha de	Système de pesée embarquée	
	culture/opération technique	Epandeur centrifuge avec	
Engrais	Consommation d'engrais minéraux pour	système de pesée intégrée	
minéraux	fertiliser 1 ha de blé		

De nouvelles solutions technologiques à envisager

Les données utiles au calcul de ces nouveaux indicateurs de performances énergétiques des exploitations agricoles nécessitent une collecte plus fine et un stockage plus important d'informations auxquels seules les avancées technologiques peuvent répondre. Un travail de recensement des solutions technologiques existantes, réalisé notamment à l'occasion du 73^{ème} SIMA en 2009, montre que de plus en plus de solutions sont aujourd'hui disponibles, notamment sur les nouveaux agroéquipements, pour fournir un grand nombre de données utiles à la définition de ces indicateurs (consoles de tracteurs avec estimation de la consommation instantanée de carburant ...). Un important travail reste cependant à réaliser pour proposer aux agriculteurs des solutions bas-coûts, faciles de mise en œuvre et totalement adaptées à leur besoin pour faciliter la mesure, la collecte et le stockage des informations de façon automatique et raisonnée.

Perspectives

Ce premier travail d'identification d'indicateurs pertinents pour l'évaluation fine des performances énergétiques des exploitations agricoles a permis d'identifier les données utiles et doit permettre de guider le choix et les développements technologiques nécessaires à leur collecte dans l'objectif d'une utilisation en routine dans les exploitations agricoles, et dans un premier temps sur les sites pilotes identifiés dans le cadre du projet.

Bibliographie

Ministère de l'Agriculture et de la Pêche, Plan de performance énergétique des exploitations agricoles 2009-2013, février 2009. 10 pages. Accessible en ligne : http://agriculture.gouv.fr Buisson Julie. 2009. Etat de l'art des outils, indicateurs et données pour l'évaluation des performances énergétiques des exploitations agricoles. Rapport licence professionnelle « Gestion durable des ressources en agriculture. 36 pages + annexes.

Bourlon Mathilde – Hénault Xavier. 2009. Acquisition et communications de données à partir de technologies électroniques et informatiques. Rapport ingénieur IUP mécatronique. 60 pages.

Remerciements

Les auteurs remercient Julie Buisson, Mathilde Bourlon et Xavier Henault pour leur contribution à ce travail respectivement dans le cadre de leur stage de formation de licence et d'ingénieur.

Vers une évaluation plus fine des performances énergétiques des exploitations agricoles

Quels indicateurs et quelles solutions technologiques pour les renseigner?

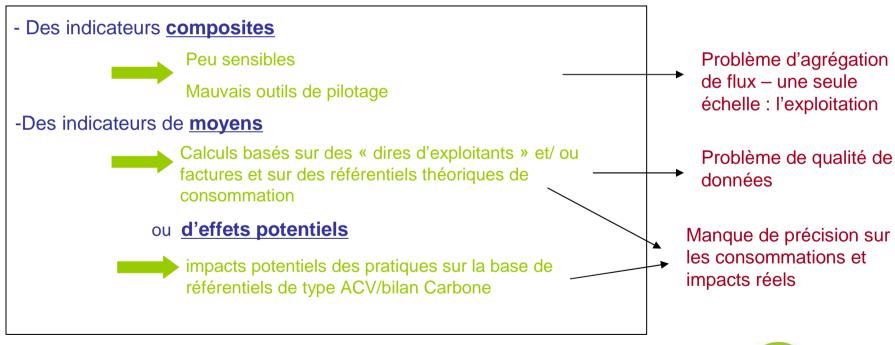
Marilys PRADEL, Daniel BOFFETY, Vincent ABT Cemagref de Clermont-Ferrand Domaine des Palaquins – 03150 MONTOLDRE

Ecotechs'09 - 22 & 23 octobre 2009

Contexte et enjeux

- Afin de faire face au défi énergétique à venir, l'agriculture doit contribuer à la réduction des consommations énergétiques globales de la France
- Un enjeu = l'amélioration des performances énergétiques des exploitations agricoles
 - A une échelle plus fine (parcelle, atelier, opération)
 - maîtriser les performances énergétiques
 - permettre des gains environnementaux et économiques
 - Quels indicateurs pour évaluer finement les performances énergétiques des exploitations agricoles?
 - pour le pilotage des exploitations agricoles
 - pour le suivi des consommations énergétiques
 - Comment les renseigner?

- Projet lauréat CASDAR 2008
- Projet coordonné par l'ACTA et le Cemagref
- 14 partenaires


Objectifs

- apporter une solution scientifique et technique à l'évaluation des performances énergétiques des exploitation agricoles
- quantifier finement les dépenses énergétiques des exploitations agricoles par l'utilisation des NTIC
- alimenter des indicateurs de performances énergétiques à une échelle fine et des référentiels d'Analyse du Cycle de Vie

Quels indicateurs pour évaluer plus finement les performances énergétiques?

Etat de l'art => 13 outils de diagnostic énergétique retenus en fonction de leurs pertinences et leurs accessibilités

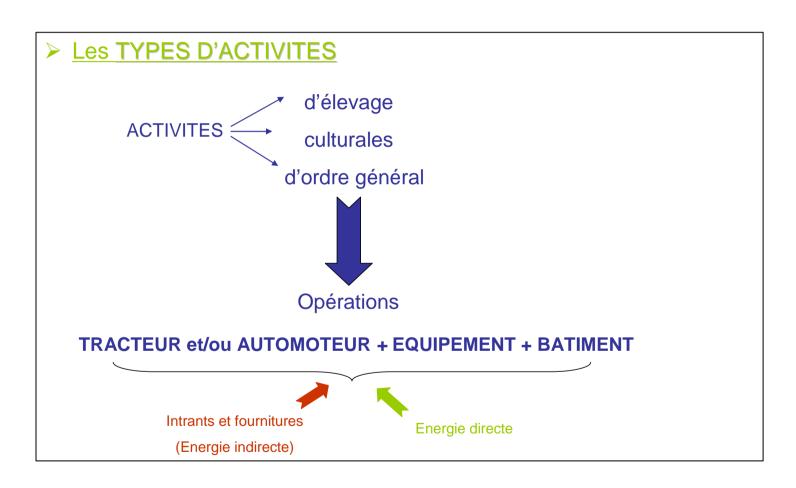
Comment construire des indicateurs de performances énergétiques à une échelle plus fine?

- Trois dimensions identifiées sur la base de l'état de l'art pour construire des indicateurs de performances énergétiques à une échelle plus fine
 - les flux à prendre en compte

Type de flux d'énergie directe et indirecte

Energie directe	Unité brute (UF)	
Les carburants	Litre (1)	
Essence (C-E)		
Gasoil-fuel (CG/F)		
Fioul domestique (FD)		
HVP		
Les gaz		
Gaz de ville (GV)	M³ Kilo Watt (kW)	
Propane (GP)		
Butane(GB)		
Energie électrique	kW	
Electricité (E)		
Energies Renouvelables	Stère	
Bois (EnR B)		
Solaire (EnR S)	kW	
Géothermie (EnR G)	K VV	

Energie indirecte	Unité brute (UF)		
Produits maintenance (PM)	1:4		
Huiles et lubrifiants	litre		
Produits nettoyage (PN)	Lituo		
Désinfectants, détergents	litre		
Produits et matériel vétérinaires (PMV)			
Vaccins, antibiotique etc	Kilogramme (kg)		
Seringue, gants etc			
Fournitures divers (FD)			
Plastique divers			
Métaux	Kg		
Verre	Tonne (t) Euros (€)		
Carton			
Verre			
Produits phytosanitaires (PP)			
Désherbant			
Fongicide	Kg (Solide)		
Pesticide	litre (liquide)		
Insecticides			
Autres produits de protection des végétaux	1		
Fertilisants minéraux (FM)	IZ (D. 1.')		
Azote, Potassium, Phosphore	Kg (Produit commerciaux)		
Amendement (A)	Kg (produits		
Calcium	commerciaux)		
Autres intrants (AI)	Va		
Semence	Kg		


Comment construire des indicateurs de performances énergétiques à une échelle plus fine?

- Trois dimensions identifiées sur la base de l'état de l'art pour construire des indicateurs de performances énergétiques à une échelle plus fine
 - les flux à prendre en compte
 - les postes de consommations énergétiques présents sur une exploitation agricole

Identification des postes de consommations énergétiques

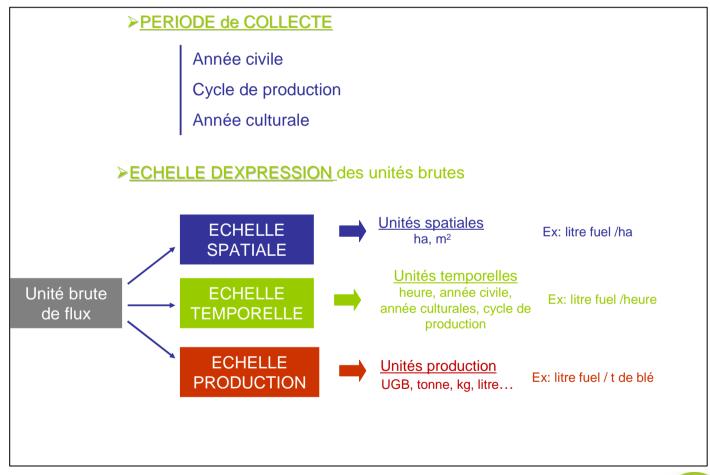
Identification des postes de consommations énergétiques

• Exemple pour une opération d'élevage

OPERATIONS D'ELEVAGES								
Sous opérations	MATERIELS			BATIMENTS				
	Tracteur (T) et/ou Automoteur (A)	Matériel et Equipement	Énergie directe	Energie indirecte	Type de bâtiment	Energie directe*	Niveau	Echelle de valeur
GESTION de	la TRAITE							
-Traite		-Bloc de traite (Robot, épis, par l'arrière)			-Bâtiment de traite	-Electricité -Fioul -Gaz -Solaire	Lots d'animaux Bâtiment	
		-Pompe à vide	-Electricité					
-Pompage lait		-Pompe à lait						
-Refroidissement lait		-Refroidisseur						
-Stockage lait		-Tank à lait			-Bois -Géothermie			
-Nettoyage matériel /bâtiment		-Chauffe eau	-Electricité	-Produits de nettoyage/désinf ection			Bâtiment	
-Stockage eaux blanches					-Fosse		Lots d'animaux	

• Exemple pour une opération culturale

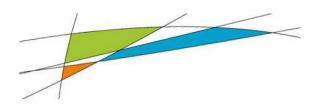
OPERATIONS CULTURALES								
Sous opérations	MATERIEL			BATIMENT				
	Tracteur (T) et/ou Automoteur (A)	Type matériel et/ou Equipement	Energie directe	Energie indirecte	Type de bâtiment	Energie directe*	Niveau	Echelle de valeur
> FERTILISATI	> FERTILISATION							
-Epandage minéral		-Epandeur minéral -Epandeur organique -Gasoil		-N, P, K, Ca			Culture Parcelle Matériel	
-Epandage organique	т		-Gasoil	-Matières organiques				

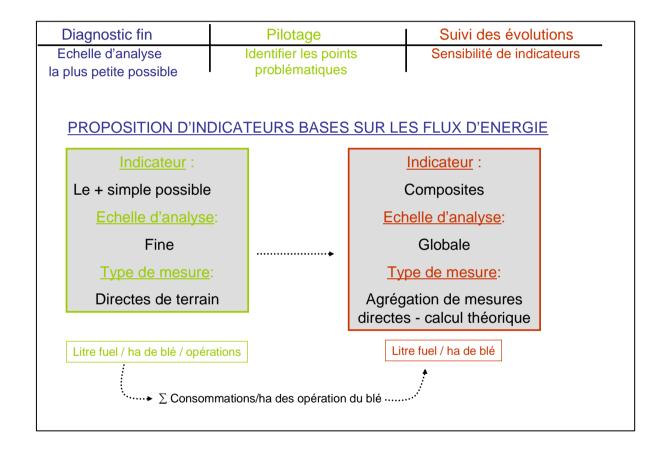


Comment construire des indicateurs de performances énergétiques à une échelle plus fine?

- Trois dimensions identifiées sur la base de l'état de l'art pour construire des indicateurs de performances énergétiques à une échelle plus fine
 - les flux à prendre en compte
 - les postes de consommations énergétiques présents sur une exploitation agricole
 - la définition de l'échelle spatiale et temporelle pour l'expression des mesures

Choix de l'échelle spatiale et temporelle



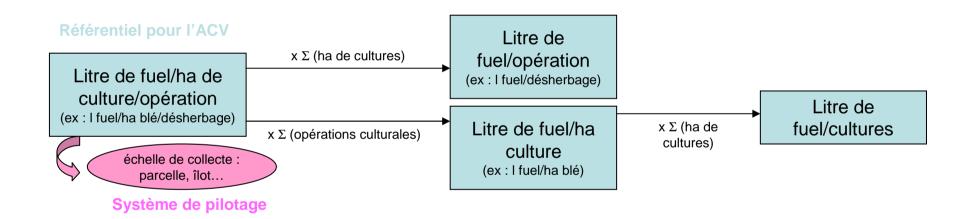

Comment construire des indicateurs de performances énergétiques à une échelle plus fine?

- Trois dimensions identifiées sur la base de l'état de l'art pour construire des indicateurs de performances énergétiques à une échelle plus fine
 - les flux à prendre en compte
 - les postes de consommations énergétiques présents sur une exploitation agricole
 - la définition de l'échelle spatiale et temporelle pour l'expression des mesures
- Identification d'indicateurs basés sur la plus petite échelle d'analyse des performances énergétiques pertinente

Principe de construction des indicateurs

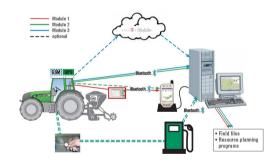
Indicateurs de performances énergétiques proposés

Flux d'énergie directe (Code*)	''Indicateur''	Exemple	Objectif de l'indicateur	Pertinence vis-à-vis Projet			
➤ Eche	elle spatiale						
C.E C.D/F G.P/B HVP	U.F/ha de culture/opération technique	Conso pour désherber 1 ha de blé.	 -Evaluer les opérations les plus énergivores pour chaque itinéraire technique de chaque culture. -Comparer les consommations d'une même opération pour différentes culture. 	→Evaluer la rentabilité et l'efficacité énergétique par culture et/ou opération →Alimenter les bases de données			
C.F.D C.E C.G/F E G.V EnR.B EnR.S	U.F/m² de bâtiment	Conso pour chauffer à l'électricité 1 m² de la salle de traite.	-Evaluer les bâtiments les plus énergivores	 →Orientations les améliorations et modifications à effectuer. →Alimenter les bases de données 			
	Echelle temporelle						
C.E C.D/F E G.P/B HVP	2.e) UF/h d'opération technique/équipem ent/culture	Conso. pour 1 h de désherbage d'un blé avec la herse XY	-Identifier les outils les plus énergivores pour chaque opération de chaque itinéraire technique.	→Orienter les choix pour remplacer le matériel →Alimenter les bases de données concernant la consommation du matériel.			


Indicateurs de performances énergétiques proposés

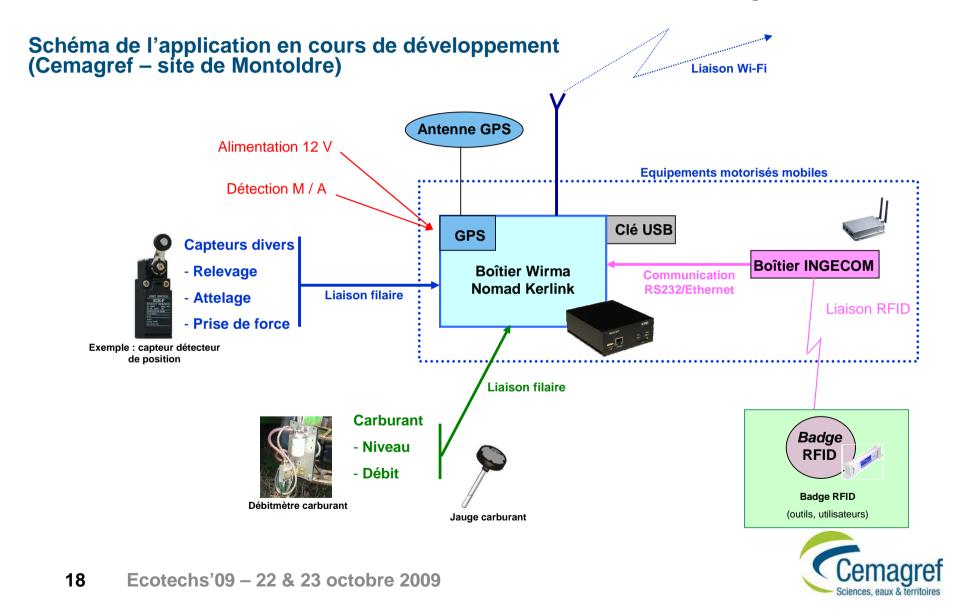
Flux énergie indirecte (Code*)	"Indicateur"	Exemple	Objectif de l'indicateur	Pertinence/Projet
> Echelle	spatiale			
P. M F.M P.P A A.I P.N	1/d) U.F/ha culture/opération technique	Conso pour désherber 1 ha de blé	-Evaluer les opérations les plus consommatrices pour chaque itinéraire technique.	→Evaluer la rentabilité et l'efficacité énergétique par culture et ou opération. →Orienter un changement d'assolement, de pratique, de produits
P.N	1.e) U.F/m2/bâtiment	Conso pour nettoyer 1 m ² de la salle de traite.		
> Echelle	temporelle			
F.M P.P F.D* F.M P.N P.M A	2.e) U.F/mois /opération technique /culture	Conso mensuelle pour désherbage du blé	-Identifier les opérations les plus énergivores de chaque itinéraire technique.	→Evaluer rentabilité des cultures →Orienter les changements de pratiques.

Exemple d'agrégation d'indicateurs à partir de la plus petite échelle d'analyse des performances énergétiques



Comment les renseigner ?

- Privilégier l'automatisation dans la collecte des données
- Des solutions disponibles au niveau des constructeurs d'agroéquipements
 - Travail de recensement à l'occasion du 73ème SIMA à Villepinte en Février 2009 (Salon International du machinisme agricole) auprès des exposants, constructeurs et fournisseurs d'agroéquipements
 - Matériels et équipements pris en compte (Liste non exhaustive)
 - Tracteurs et automoteurs
 - Outils de travail du sol semi-portés
 - Matériels d'épandage et de pulvérisation
 - Dispositif d'aide ou d'automatisation du guidage
 - Récolte des fourrages
 - Distribution des fourrages
 - Systèmes d'irrigation fixes et/ou mobiles
 - Equipements et installations de traite
 - Equipements de suivi, logiciels


Concept MoDaSys Fendt

Des solutions technologiques bas-coûts à mettre à place



Perspectives envisagées

- Dans la suite du projet EnergéTIC…
 - Mettre en place les solutions technologiques dans les 8 sites pilotes partenaires du projet
 - Finaliser le cahier des charges SI (organisation et gestion des données)
 - Valider les modalités de calcul des indicateurs proposés sur la base des informations qui seront collectées
 - Mettre en adéquation les données obtenues avec leurs utilisations en ACV (bilan énergie-matières)
- A plus long terme...
 - Mettre en place des référentiels ACV représentant des situations représentatives des exploitations françaises
 - Analyse spatiale des informations (géoréférencement des données, analyses fines des itinéraires techniques...)

Merci pour votre attention !!!!

Les auteurs tiennent à remercier Julie BUISSON, Mathilde BOURLON et Xavier HENAULT pour le travail effectué sur ce projet

