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Abstract
Based on scaling laws describing the statistical struc-

ture of turbulent motion across scales, we propose a mul-
tiscale and non-parametric regularizer for optic-flow esti-
mation. Regularization is achieved by constraining motion
increments to behave through scales as the most likely self-
similar process given some image data. In a first level of
inference, the hard constrained minimization problem is op-
timally solved by taking advantage of lagrangian duality.
It results in a collection of first-order regularizers acting
at different scales. This estimation is non-parametric since
the optimal regularization parameters at the different scales
are obtained by solving the dual problem. In a second level
of inference, the most likely self-similar model given the
data is optimally selected by maximization of Bayesian ev-
idence. The motion estimator accuracy is first evaluated
on a synthetic image sequence of simulated bi-dimensional
turbulence and then on a real meteorological image se-
quence. Results obtained with the proposed physical based
approach exceeds the best state of the art results. Further-
more, selecting from images the most evident multiscale
motion model enables the recovery of physical quantities,
which are of major interest for turbulence characterization.

1. Introduction
The inverse modeling of fluid motion in images is an im-

portant issue in various application areas like meteorology,
oceanography or turbulence studies and experimental fluid
mechanics. Image analysis and data-assimilation methods
are particularly important for studying multi-scale geophys-
ical dynamical systems since they can characterize a large
range of scales in comparison to sparse information con-
tained in standard ”in situ” data. For such turbulent flows,
motion cannot be represented by a single spatial polyno-
mial model. Instead, at each point a direct optic-flow obser-
vation model (relying on mass conservation, scalar trans-
port, ...) links a motion vector to the image intensity func-
tion [7, 11, 17]. For these dense representations, regular-
ization models are required to remove the motion ambigu-
ities and achieve inversion. However, actual regularizers
are all insufficient since they impose in a small scale spa-
tial neighborhood a prior smoothness which describes im-
properly the regularity of turbulent flows. Moreover, they
rely on the choice of a regularization weight, which may
yield too smooth or on the contrary over-fitted solutions.

Nevertheless, it is possible to overcome such limitations.
Firstly, important advances have been achieved in statisti-
cal modeling of turbulence since the precursor work of Kol-
mogorov in 1941 [8, 13, 16]. In particular, it has been shown
from the Navier-Stokes equations for different kind of flows
that turbulent motion regularity can be characterized using
some universal scaling properties of the Probability Distri-
bution Function (PDF) of motion increments. Secondly,
Bayesian modeling provides a reliable framework for the
design of non-parametrical methods and for selecting the
regularization model given some data [18]. Therefore, this
work exploits simultaneously two ideas: the use of turbu-
lence scaling laws for motion regularization in optic-flow
inverse problems; and the selection by Bayesian evidence
maximization of the most appropriate scaling law model de-
scribing the image intensity function based on a variable hi-
erarchy linking ‘image’ to ’motion’ to ’scaling laws’. The
resulting regularization is built from the physics of fluid. It
is multiscale, non-parametric (in the sense that it does not
involve the tuning of any parameters) and allows the recov-
ering of quantities such as energy flux across scales.

2. Related work
2.1. Optic-flow methods
Aperture problem The apparent motion v = (u, v)T , per-
ceived through image intensity I(s, t) variations, respects
the standard Optical Flow Constraint (OFC) observation
model. Apparent motion and the real underlying velocity
field are identical when considering rigid motion and stable
lighting conditions. For fluids, this identity remains valid in
the case of 2D incompressible flows. Based on mass con-
servation, the integrated continuity equation has been pro-
posed in the literature for various 3D fluid flows visualized
in a projected image plane in order to link the image inten-
sity function I to a vertically averaged horizontal velocity
field v [5, 7, 10, 11, 17]. However, the observation models
are underconstrained, as they provide only one equation for
two unknowns at each spatio-temporal location (s, t). This
constitute the so-called aperture problem.

Standard regularization To deal with this problem, the
most common assumption consists in enforcing locally spa-
tial coherence. Global regularization schemes over the en-
tire image domain Ω are convenient to model global coher-
ence via local spatial dependencies. More precisely, esti-
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mation is performed through the minimization of an energy
composed of two terms: f(I,v) = fd(I,v) + αfr(v). The
first one fd(I,v), called the data term, penalizes discrepan-
cies from the observation models. For example, discretizing
in time the OFC equation results in the data term:

fd(I,v)=
1
2

∫

Ω
(Ĩ−I+v ·∇Ĩ)2ds (1)

where Ĩ denotes the image I(t + ∆t). The second com-
ponent fr(v), called the regularization term, acts as a spa-
tial prior enforcing the solution to follow some smooth-
ness properties. In the previous expression, α > 0 denotes
a regularization parameter controlling the balance between
the smoothness and the global adequacy to the observation
model. In this framework, Horn and Schunck [12] proposed
a first-order regularization of the two spatial components u
and v of velocity field v:

fr(v) =
1
2

∫

Ω
(||∇u||2+||∇v||2)ds (2)

However, motion gradient penalization is not adapted
to fluid flows as it penalizes spatially non-homogeneous
velocity fields. Second order regularizers on motion
vorticity and divergence have been proposed to overcome
those limitations [6]. Regularizations including additional
constraints on vanishing divergence have also recently
been proposed [21]. However, state of the art models only
mimic qualitatively physical behavior but are not precisely
related to the physics of fluid motion. They all depend on
the tuning of α which can be chosen optimally [14, 18, 19].
Multi-resolution approach One major problem with ob-
servation models is the estimation of large displacements.
Indeed, these equations are only valid if the solution re-
mains in the region of linearity of the image intensity func-
tion. A standard approach for tackling non-linearity con-
sists to apply successive linearizations around a current es-
timate and to warp a multi-resolution representation of the
data accordingly. More explicitly, a large displacement field
ṽ is first estimated with the original data term at coarse res-
olution, where the linearity assumption is valid. Then, in-
troducing the decomposition:

v = ṽ + v′, (3)
motion is refined through an incremental fields v′ estimated
using a linearized motion-compensated data term while go-
ing down the resolution levels of an image pyramid [3].

2.2. Turbulence statistical modeling
Since Kolmogorov’s works, turbulent motion increments

are known to be structured as nearly scale invariant spa-
tial processes. To review turbulence models, we need to
introduce a central quantity: the longitudinal velocitity in-
crement function. It is defined in the direction of unitary
vector n by:

δv‖(#, s,n) = (v(s + #n)− v(s)) · n (4)

where the scalar # represents a spatial increment. As a
classical hypothesis in turbulence studies, we assume ho-
mogeneity and isotropy, that is to say we consider that the
statistical properties of the velocity field are invariant un-
der translation of spatial location s and rotation of direc-
tion n. In agreement with these assumptions, index to s
and n can be dropped and moments of PDF of velocity in-
crements P!(δv‖), the so-called structure functions, can be
approached by spatial integration:

E[δv‖(#)p] =
∫

R
δv‖(#)pp!(δv‖(#))dδv‖(#) (5)

≈ 1
2π|Ω|

∫

Ω

∫

[0,2π]

(
δv‖(#, s,n)

)p
dn ds

where |Ω| denotes the spatial domain area.
For three-dimensional isotropic turbulent flows, Kol-
mogorov [8] demonstrated from the Navier-Stokes equa-
tions that the third order moment of PDF p!(δv‖), namely
the third order structure function, is linear w.r.t scale. That
is E[δv‖(#)3] = − 4

5ε# in a so-called inertial range. The
inertial range is defined as [η, #0], where η represents the
largest molecular dissipative scale and where #0 is much
smaller than the diameter L of the largest vortex. Within
this range, an energy flux cascades from large to small
scales. The energy dissipation rate ε is this energy flux
passed accross scales which is evacuated at small scales by
molecular viscosity. Analogously, for pure bi-dimensional
turbulence with energy injection at scale #0, Kraichnan [13]
demonstrated that there exist two different self-similar pro-
cesses: a direct cascade where E[δv‖(#)3] = 1

8εω#3 within
the inertial range [η, #0], and an inverse cascade where
E[δv‖(#)3] = 3

2ε# within range [#0, L]. An enstrophy flux
εω (L2 norm of vorticity) passes in the direct cascade from
large to small scales, whereas an energy flux ε passes in
the inverse cascade from small to large scales. Concern-
ing atmospheric turbulence, there are still open questions
on the observed scaling laws. Lindborg [15, 16] proposed
an answer to the question: “can atmospheric flow statistics
be explained by two-dimensional turbulence?”. He showed
that the self-similar processes observed in aircraft data [20]
at small scales and at large scales could be modeled by the
superposition of a 3D direct energy cascade and a 2D direct
enstrophy cascade so that:

E[δv‖(#)3] = −ε# +
1
8
εω#3. (6)

Going further, Kolmogorov assumed that the longitudinal
velocity increment functions were strictly self-similar pro-
cesses. In this case the normalized PDF of motion incre-
ments is self-similar through scales as illustrated in Fig. 1.
This implies that, in a given cascade, the p-th order structure
function follows a power law:

βp#
ζp ∼ E[δv‖(#)p] = E[δv‖(#)3]

p
3 ∼ β#

pζ3
3 (7)

with universal exponents ζp depends on space dimension
and where factor βp is a function of the energy flux ε or the



enstrophy flux εω. A corollary of the strictly self-similar
assumption is that in the inertial range any 3D turbulent
flow has a uniform Lipschitz regularity of ζ1 = 1/3 while
a 2D turbulent flow is characterized by ζ1 = 1 (i.e. is
regular). However, it is now well known that Kolmogorov
assumption deviates from reality because of intermittency
(coherent structures appearing in turbulence). As a con-
sequence, only non-strict self-similarity can in reality be
assumed for turbulent flows. It results that deviations on
exponent values can be expected for p %= 3. Finally, any
2D or 3D turbulent flow is regular in the dissipative range
and using Taylor expansion we have E[δv‖(#)2]∼#2 within
# ∈ [0, η].
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3. Self-similar regularization of optic-flow
Besides providing a closure for motion estimation, self-

similar priors can yield several benefits:
• first, they constitute physical sound regularizers for

fluid motion,
• second, they are prior multi-scale models which struc-

tures motion across scales,
• third, they lead to non-parametric estimation methods

with no regularization parameter α.

3.1. Self-similar constraints
Let us first formalize self-similar constraints. Al-

though it does not provide an exact prediction on scal-
ing laws for non-strictly self-similar flows, we chose to
use the second order structure function E[δv‖(#)2] be-
cause it constitutes a convenient quadratic constraint. Nev-
ertherless, in section 4 we take into account deviations
from the predicted law by selecting the most likely scal-
ing law defined by parameters (β, ζ) given the image data.
E[δv‖(#)2] is an expectation which can be obtained by
spatial integration over the image domain as presented
in Eq. 5. The integral on all directions n is approched
by a sum on the 4 horizontal-vertical directions nh =
{(−1, 0), (1, 0), (0, 1), (0,−1))} and on the 4 diagonal di-
rections

√
2nd = {(1, 1), (1,−1), (−1,−1), (−1, 1)} of

the bi-dimensional plane :

E[δv‖(#)2] =
1

8|Ω− {Ω(#)}|

∫

Ω−{Ω(!)}
ds

∑

n

(
δv‖(#, s,n)

)2

(8)

In order to avoid using boundary conditions when calcu-
lating E[δv‖(#)2], we have excluded image borders Ω(#) of
width # in the integral of Eq. 8. A self-similar constraint
g!(v) is then defined at each scale # as the difference be-
tween the 2-nd order structure function and a given power
law. Thus, an estimated motion field should respect the con-
straint:

g!(v) =
1
2
(E[δv‖(#)2]− β#ζ) = 0 (9)

for given scaling exponent ζ and factor β.

3.2. Constrained motion estimation problem
Referring to section 2.1, the minimization of the ill-

conditionned optic-flow estimation problem reads:
(v̂) = arg min

v
fd(I,v). (10)

Adding the self-similar constraints, we obtain a closed con-
straint optic-flow minimization problem:





minv fd(I,v), v ∈ Rn

subject to the constraints:
g!(v) = 0, ∀# ∈ I

(11)

where I is the scale range of the given power law.

3.3. Discrete problem formulation
Let us now express the constraint problem in its discrete

form. The derivatives ∇vfd(I,v) related to any motion-
compensated data term (which is quadratic with respect to
motion increments v′) can be expressed in the matricial
form A0v′−b0, when discretized on an image grid S of m
points with a finite difference scheme. The two discretized
components of v′ ∈ Rn now represent a field of n = 2m
variables supported by the grid S, A0 is n × n symmetric
positive-definite, b0 ∈ Rn represents a vector of size n.
The discrete data term can be rewritten as:

fd(I,v) =
1
2
v′T A0v′ − bT

0 v′ + c0., (12)

where c0 ∈ R denotes a scalar. For the self-similar
constraints, the quadratic constraint derivatives can be ex-
pressed in the vectorial form A!v′−b!, where A! are sym-
metric positive semi-definite matrices and b! are vectors of
size n. Thus, the constraints reads using variables v′:

g!(v) =
1
2
v′T A!v′ − bT

! v′ + c! = 0, ∀# ∈ I, (13)

where c! ∈ R are scalars. The constraint motion estima-
tion problem defined in Eq. 11 can thus be rewritten in its
discrete form as:

(P )






minv fd(I,v) = 1
2v

′T A0v′ − bT
0 v′ + c0

subject to:
g!(v) = 1

2v
′T A!v′ − bT

! v′ + c! = 0, ∀# ∈ I
v = v′ + ṽ ∈ Rn.

(14)

3.4. Dual problem and optimal solution
To define optimality conditions, we now introduce the

lagrangian function L(v,λ) associated to (P ):

L(v,λ) = fd(I,v) +
∑

!

λ!g!(v), λ = {λ!}. (15)



In the lagrangian duality formalism, the optimal solutions
of the so-called primal problem P , are obtained by search-
ing saddle points of the lagrangian function. Saddle points
denoted by (v∗,λ∗) are defined as the solutions of the so-
called dual problem:

(D)
{

L(v∗,λ∗)=maxλ w(λ)=maxλ{minvL(v,λ)}
λ! ∈ R, ∀# ∈ I , (16)

where w(λ) denotes the dual function. As the functions f
and g! are convex and as the constrained group is not empty,
for positive lagrangian multipliers λ!, L is convex and the
minimization problem (P ) has a unique saddle point i.e. an
optimal solution v∗ which is unique. Lagrangian multipli-
ers λ!, which represent the regularization parameter at scale
#, are then optimally given by the coordinates of the saddle
point. Note that for negative lagrangian multipliers, the con-
vexity of the functional is no longer insured, and there is no
guarantee of the solution unicity. Nevertherless, there exists
local optimal solutions.
3.5. Convex optimization

The minimum v̂′ of a locally convex lagrangian function
at point λ can be obtained by solving the following Euler-
Lagrange equations:
∇vL(v,λ) = ∇vfd(I,v) +

∑

!

λ!∇vg!(v) = 0, (17)

which reduce (using Eq. 12 and Eq. 13) to solve the large
linear system:

(A0 + A)v̂′ = b0 + b, (18)

with A =
( ∑

! λ!A!

)
and b =

∑
! λ!b!. It can be

shown that the linear system components A! and b! are
constituted by the superposition of a collection of discrete
operators obtained in a centered 2-nd order finite difference
scheme on a grid of mesh #, which represent 2-nd order
derivatives at different scales. Since we have no guaran-
tee that matrix A0 + A is positive-definite depending on
the sign of lagrangian multipliers λ!, the resolution of the
large system of Eq. 18 is efficiently achieved using a Con-
jugate Gradient Squared (CGS) method with an incomplete
LU preconditionner. The dual function is then given by:
w(λ) =

1
2
v̂′T

(
A0 + A

)
v̂′ −

(
b0 + b

)T
v̂′ + c0 + c, (19)

where the constant c =
∑

! λ!c!. The dual function is
by definition concave and possesses so-called sub-gradients
equal to g!(v̂′+ ṽ). We employ a classical gradient method
to find λ∗ which maximizes the dual function and thus ob-
tain the solution v∗. Finally, the constraint motion estima-
tion method results in a Uzawa algorithm , which is used to
converge towards the saddle point (v∗,λ∗), i.e. the optimal
motion estimate under self-similar constraints. To cope with
non-linearity of the data term, incremental motion fields
are estimated using motion compensated images and a mul-
tiresolution approach1. An important remark is that once

1Note that the scaling law factor β must be scaled by the multiplicative
factor (2j)−ζ+2 at each scale j of the multi-resolution pyramid.

the regularization coefficient vector λ∗ has been estimated
for two consecutive images of the sequence, assuming mo-
tion stationarity, only one step of the Uzawa algorithm is
needed to process the following image pairs. Therefore, the
complexity of the algorithm reduces to the resolution of the
linear system by CGS, that is O(κn), where κ is the con-
ditioning number of A0 + A. The multiresolution Uzawa
algorithm is presented below.

• Iterate until resolution j reaches the finest level:
– Compensate image I(j) with coarse motion es-

timate ṽ(j)
– Iterate until convergence from initial point

(ṽ(j),λ
0
(j)) with λ0

(j) > 0:

∗ At iteration k, find increment v̂′
(j) by solv-

ing Eq. 18
∗ Define λk+1

(j) by a gradient ascent step:

∀# ∈ I, λk+1
!,(j) = λk

!,(j) + ρkg!(v̂′
(j)+ṽ(j))

– (v∗
(j),λ

∗
(j)) = (v̂′

(j)+ṽ(j),λ
k
(j))

– Define ṽ(j−1) by projection of v∗
(j) on levelj−1

– j = j − 1
ρk denotes the displacement step at iteration k. The latter parameter is
relaxed at each iteration.

Multiresolution Uzawa algorithm converging towards (v∗, λ∗).
4. Selection of a multiscale prior model

In the previous section, we have proposed to model mo-
tion in images conditioned by a prior scaling law model
(defined by power law factor β and exponent ζ or slope in
log-log coordinates). We now want to select the most ap-
propriate scaling law model for motion estimation given the
image data. Model selection will yield several advantages:

• first, prior model inference will result in a non-
parametric method,

• second, the modeling will deal with uncertainties in
turbulence theoretical predictions,

• third, inference of (β̂, ζ̂) will reveal important physical
quantities in turbulence such as power law exponents
(linked to motion regularity), flux across scales, or the
energy and enstrophy dissipation rates.

After reformulating the constrained motion estimation
problem in a probabilistic framework, we show how the
multiscale prior model likelihood probability given the im-
age data can be evaluated.
4.1. Bayesian hierarchical modeling

Bayes’ rule provides a nice framework to evaluate this
model likelihood probability, the so called evidence. In-
deed, a probabilistic reformulation of the global motion es-
timation problem yields a 3-level hierarchical model linking
image, motion and scaling laws:

I → v → β, ζ (20)
Note that regularization weights λ∗(ζ,β) do not appear in
the variable hierarchy as they are deterministically given for
fixed (ζ,β). Applying Bayes’ rule, we obtain two levels of
inference in this hierarchy [18]:



• Scaling model fitting. We assume some scaling model
parameters (ζ,β) i.e regularization weights λ∗(ζ,β)
(lagrangian multipliers) given by the dual formalism.
Solving the primal problem in the previous section is
equivalent to infer a velocity field v∗ according to a
Maximum A Posteriori (MAP) criterion. The posterior
PDF of this first level of inference is given by Bayes’
relation:

p(v|I, ζ, β)=
p(I|v, ζ, β)p(v|ζ,β)

p(I|ζ,β)
=

likelihood×prior
evidence

∝ p(I|v, ζ, β)p(v|ζ,β) (21)
and is a Gibbs PDF which reads p(v|I, ζ, β)=

exp{− 1
2v′T(A0+A(ζ,β))v′+(b0+b(ζ,β))T v′−c0−c(ζ,β)}

ZL(ζ,β)
(22)

where ZL(ζ,β) denotes a normalization constant.
• Scaling model selection. A second level of inference

can be performed on the scaling law model parameters
(ζ,β) using Bayes’ relation:

p(ζ,β|I) =
p(I|ζ,β)p(ζ,β)

p(I)
∝ p(I|ζ,β)p(ζ,β) (23)

For a flat prior p(ζ,β), the MAP of Eq. 23 w.r.t self-
similar model parameters (ζ,β) is simply the Maxi-
mum Likelihood (ML) estimate or in other words the
maximum of the evidence p(I|ζ,β). The evidence can
be obtained by marginalization w.r.t. the velocity field:

p(I|ζ,β) =
∫

Rn

p(I|v, ζ, β)p(v|ζ,β)dv (24)

Direct calculation of this integral is prohibitive since
it is in huge dimensions. However, let us recall that
the evidence is the normalization constant (w.r.t. ve-
locity field v) which has been ignored in the first level
of inference (Eq. 21). Therefore, we can rewrite the
evidence as a normalization constant ratio:

p(I|ζ,β)=
likelihood×prior

posterior
=

ZL(ζ,β)
ZfdZg"(ζ,β)

(25)

where Zfd and Zg" denote the normalization constants
of the Gibbs likelihood and prior PDF.

4.2. Scaling model selection by evidence
The scaling law model evidence can now be evaluated

as a normalization constant ratio. First, the likelihood PDF
p(I|v, ζ, β) related to a quadratic optic-flow data term fd

is a normalized m dimensional Gaussian with uncorrelated
components. Thus its normalization constant reads:

Zfd =
∫

Rm

exp{−fd(I,v)}dI = (2π)m/2, (26)

where m denotes the number of pixels. Therefore Zfd is
a constant w.r.t. (ζ,β) which can be ignored. Then, the
posterior PDF of Eq. 22 may be a multivariate Gaussian
or not depending on the positivity of lagrangian multipliers
λ!. For a multivariate Gaussian, the normalization constant
integral ZL can be exactly calculated using the Laplace’s
relation:

ZL(ζ,β) =
∫

Rn

exp{−L(v,λ∗(ζ,β))}dv (27)

= exp{−L(v∗(ζ,β),λ∗(ζ,β))}2π
n
2 det(A0+A(ζ,β))−

1
2 ,

where we recall that v∗ is the MAP estimate, λ∗ is the as-
sociated set of lagrangian multipliers and where n = 2m
denotes the number of unknown velocity variables. For
other distributions, Laplace’s relation stills constitutes a
good approximation [9]. The determinant of such large and
sparse matrices can be efficiently approximated via an in-
complete LU decomposition. Finally, as the prior PDF nor-
malization constant can not be evaluated analytically such
as in [18, 19], we expand it around its maximum using
Laplace’s relation. The prior reads:

p(v|ζ,β) =
exp{− 1

2v′T A(ζ,β)v′+bT (ζ,β)v′−c(ζ,β)}

Zg"(ζ,β)
. (28)

This self-similar prior is degenerated and has an infinity
set of maxima corresponding to the infinite set of admis-
sible velocity field solutions respecting the self-similar con-
straint. To make this prior well-defined, we use dirich-
let boundary conditions (only for evaluating the evidence).
Note that the precise value on the boundaries need not to be
specified since it modifies vector b but does not have impact
on the hessian matrix A (only the size of A is reduced with
dirichlet boundary conditions). Considering these bound-
aries, we get a slightly changed hessian matrix A which is
of full rank. As previously, the normalization constant can
be calculated using Laplace’s approximation:

Zg"(ζ,β) =
∫

Rn

exp{−
∑

!

λ∗! (ζ,β)g!(v)}dv (29)

=max
v

(
exp{−

P
" λ∗

" (ζ,β)g"(v)}
)

︸ ︷︷ ︸
=1

2π
n
2 detA(ζ,β)−

1
2 .

As the set of admissible solution for v for the self-similar
constraint is not empty, the exponential term in Eq. 27 has
a maximum value equal to 1. Finally, using Eq. 25, Eq. 27
and Eq. 29, the log evidence of the scaling model reads:

log p(I|ζ,β)∝−fd(v∗, I)︸ ︷︷ ︸
data term

−1
2
(log

det(A0 + A)
det(A)

)
︸ ︷︷ ︸

log Occam factor

, (30)

where for simplification we have dropped the dependance
to parameters (ζ,β). The last terms, known as Occam fac-
tor, penalizes the model complexity. It is the ratio of the
posterior accessible volume on the prior accessible volume
in v (a variance ratio in 1D). Note that term

∑
! λ∗!g!(v∗)

does not appear in Eq. 30 as the constraints vanish at the
saddle point.
5. Experiments
Simulated 2D turbulence. To evaluate the performance

of the self-similar regularization, a synthetic particle image
sequence was generated based on forced two-dimensional
turbulence obtained by direct numerical simulation (DNS)
of Navier-Stokes equations with a Reynold number of 3000,



Figure 2. 2D turbulence. Particle image (left). Scalar visualiza-
tion [1] of true (middle) and estimated (right) velocity fields
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Figure 3. Scaling model selection by evidence maximization. Be-
havior of data term and minus the evidence logarithm w.r.t slope ζ
(left) and factor β (right) in comparison to the RMSE. For compar-
ison, evidence and data term ranges of value have been rescaled
on the RMSE.
and a particle image generator [4]. Fig. 2 presents one of
the particle images of 256 × 256 pixels and a scalar repre-
sentation of the true underlying velocity field displayed in
Fig. 1. In such visualizations color and intensity code vec-
tor orientations and magnitudes [1]. The motion estimate
minimizing the quadratic OFC based data-term (Eq. 1) un-
der self-similarity constraints is displayed for comparison
in Fig. 2.
Evaluation of model selection. The evidence of the self-
similar model in the scale range of I = [1, 10] pixels (cor-
responding either to dissipation or the enstrophy cascade)
is evaluated by sampling ζ respectively around the theoreti-
cal value of 2 for the power law exponent, and by sampling
factor β around a Least Square (LS) estimate given by any
rough estimator (e.g. [12]). Fig. 3 shows the behavior of
the log-evidence and the Root Mean Square Error (RMSE)
w.r.t the scaling law slope and factor. Note that the evi-
dence reaches its maximum in ζ̂ = 1.90 and β̂ = 0.0026
which corresponds to the RMSE minimum but not to the
exponent fitting ground truth (ζ = 1.94 in the LS sense).
As RMSE and minus the logarithm of the evidence seem to
define parabolas around their minimum, we fit them with
quadratic functions for visualization convenience. While
parabolas share roughly the same minimum in β, one can
notice a slight shift of 0.018 between the two parabolas in
ζ. This shift has however a minor incidence in the error in-
crease. The power law minimizing the evidence probability
is plotted in Fig. 4. It is identical in the scale range I to the
true second order structure function E[δv‖(#)2]. Bayesian
evidence constitutes a theoretical sound and therefore reli-
able criteria for selecting the scaling model. In particular, as
shown in Fig. 3 it is more efficient than the data-term error.
Evaluation of motion estimation. A comparison of end

Average Barron angular error :
4.3581◦ 3.0485◦ 2.8836◦

Root mean square error:
0,13402 0.09602 0.09141

Corpetti & al. (2002) Yuan & al. (2007) proposed method
(div-curl reg.) (zero div & curl reg.) (zero div & self-similar reg.)
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Figure 4. Motion estimation accuracy & 2-nd order statistics. Im-
ages: Barron’s angular error (1-st line) and end point errors (2-
nd line) comparisons with state of the art. RMSE and average
Barron angular error are displayed above the figures. Log-log
plots: power law maximizing evidence (continuous red line). True
(dash line) and estimated (crosses) 2-nd order structure functions
in horizontal-vertical (in blue and turquoise) and diagonal (in pink
and green) directions (left). Energy spectra E(k) of first order (in
turquoise), div-curl (in blue or pink) and proposed (in green) reg-
ularizers compared to the true (in red) spectrum.(right).

point errors (L1 norm of velocity vector difference) and
Barron’s angular errors [2] with state of the art estimators
is presented in Fig. 4. Based on these criteria, the pro-
posed method outperforms in average most accurate opera-
tional correlation-based techniques2, first order3 [12] and
div-curl [6, 21] regularizers. Let us remark that for this
incompressible bi-dimensional experiment, we have sub-
tracted the divergent component of the estimated flow us-
ing Helmoltz decomposition in order to make results com-
parable to [21]. The error maps comparison displayed in
the same figure shows that the proposed regularization en-
hances in particular the estimation of small scale displace-
ments compared to other approaches. At larger scales, the
method also outperforms other approaches. Nevertheless,
medium structures very similar to those obtained in [21]
can be observed. The 2-nd order structure function log
plots show that, especially in the scale interval where con-
straints have been applied, the estimation fits perfectly the
ground truth. The power law maximizing the model evi-
dence fits in this interval also very well the ground truth.

2Operational software from LaVision compagny (www.lavision.de)
gave a RMSE of 0.1313

3Horn&Schunk estimator gave a RMSE of 0.1385



One can observe that the turbulent flow possess isotropic
statistics at small scales since structure functions calculated
in horizontal-vertical and in diagonal directions are nearly
identical. We also compute the average L2 norm of the
fourier transform over each line of the horizontal velocity
component as it produces a 1D energy spectrum E(k) rep-
resentation which enables to analyze motion at the different
scales. The log plot of the ground truth energy spectrum ex-
hibits a slope close to−5 which is much steeper than the−3
slope expected according to Kraichnan’s theory, but which
is not unusual for DNS of bi-dimensional turbulence. Un-
fortunately, for slopes outside the interval ]−1,−3[, no cor-
respondence can be made with the slope of the related 2-nd
order structure function [8]. This explains that, although the
power law of the 2-nd order structure function has been ac-
curately estimated, the tale of the estimated spectrum is not
constraint to fit to the -5 slope. Nevertheless, the proposed
regularization restitutes the spectrum at higher frequencies.

Figure 5. Meteorological turbulence : sparse input images of
layer at intermediate altitude for consecutive times. White or black
regions correspond to missing observations.

Atmospheric flow. The multi-scale regularizer has then
been assessed on real data. A benchmark constituted with
METEOSAT Second Generation meteorological image
sequences acquired above the north Atlantic Ocean at a rate
of an image every 15 min has been used. The image spatial
resolution is 3 × 3 km2 at the center of the whole Earth
image disk. According to the physical-based methodology
proposed in [11], sparse image of 256 × 256 pixels related
to a layer at intermediate altitude have been derived. A
robust data term using semi-quadratic M-estimator and
relying on a layer mass conservation model has been
used to relate the image intensity function to a vertically
averaged horizontal wind field. The two input images are
displayed in figure 5.

Energy flux ε selection by evidence maximization. We as-
sume that the exponent ζ = 2/3 predicted by Lindborg in
the direct energy cascade holds in the range I = [1, 4] pix-
els equivalent to I = [3, 12] km (the direct energy cascade is
only visible for the 2-nd order structure function up to sep-
aration of about 10 kilometers [15]). We thus only need to
infer parameter β by evidence maximization. Fig. 6 shows
that the evidence maximum is around β̂ = 0.0024. This
plot also illustrates the shared contribution of the Occam
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Figure 6. Scaling model selection by evidence maximization.
Minus log of evidence (blue), likelihood (green) and Occam factor
(red) v.s. power law factor β
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Figure 7. 2-nd order statistics. Left : 2-nd order structure func-
tion (in red) and its parametrical model (in green). Right : Para-
metrical model (blue) and 1D energy spectrum estimated by our
approach (red) compared to [11] (green).

factor and the data term in the evidence. Note that alone,
the data term is an insufficient criteria for model selection
as it vanishes almost completely for large values of β. The
model proposed in [15] provides an expression for the 2-nd
order structure function and the energy spectrum:{

E[δv‖(#)2] = C2ε
2
3 #

2
3 + b #2 − c #2 log #

E(k) = C2ε
2
3 k−

5
3 + c k−3/2

(31)

In Eq. 31, the energy flux (or the energy dissipation rate)
can be related in the scale range I to the power law factor
by β = C2ε

2
3 . In the previous equations, b and c denote

parameters and C2 - 6 is a Kolmogorov constant. The
evidence maximum provides the most likely energy flux:

ε̂ - 0.79× 10−5m2s−3.

This estimate has the same order of magnitude as previous
reported results based on aircraft data [15, 16]. Thus we
find the agreement very good as the measure is only based
on image data. Parameters b and c can be estimated in a
LS sense fitting the parametrical models of Eq. 31 to the
estimated energy spectrum and to the 2-nd order structure
functions for scales # > 50 km. As shown in figure 7, those
second order statistics are consistent with their associate
parametrical models. For comparison, the energy spectrum
obtained by [11] is displayed on the same plot. It can be
noticed here that there is a clear under estimation of the
energy flux ε (magnitude about 10 times smaller in [11]).
Evaluation of atmospheric wind estimation. In Fig. 8, one
can visualize estimated wind fields for different factor β
(i.e. energy flux ε) superimposed on sparse image observa-
tions. The wind fields are all visually consistent. It clearly
appears that the smoothness of the wind fields decrease with



ε=0.1e−5

ε̂=0.8e−5

ε=2.1e−5

given by [11]
Figure 8. Winds & energy flux. Vector (left) and scalar (right)
motion representations for increasing energy flux (including the
most likely flux ε̂ selected by Bayesian evidence) superimposed on
the sparse image data compared to smooth results of [11].
factor β. In agreement with the previous spectral compar-
ison, the most likely wind field selected by evidence max-
imization is much more structured than the estimate pro-
vided in [11], which is displayed in Fig. 8.

6. Conclusions
We have presented a physical-based, multi-scale and

non-parametric (no tuning of any parameters) method for
fluid motion modeling in images. It relies on a Bayesian
hierarchical model which simultaneously provides optimal
solutions for two problems: motion estimation and reg-
ularization model selection. Regularization models rise
from Kolmogorov’s theoretical work on turbulent flow self-

similarity. Experiments on a synthetic sequence shows that
the method is more accurate than the best motion estima-
tors. Moreover, the method constitutes a valuable tool for
physical characterization of turbulence from images. In par-
ticular, consistent flux across scales in atmospheric turbu-
lence are recovered from a meteorological image sequence.
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