
HAL Id: hal-00473154
https://hal.science/hal-00473154

Submitted on 14 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Full and convex linear subcategories are incompressible
Claude Cibils, Maria Julia Redondo, Andrea Solotar

To cite this version:
Claude Cibils, Maria Julia Redondo, Andrea Solotar. Full and convex linear subcategories are in-
compressible. Proceedings of the American Mathematical Society, 2013, 141 (6), pp.1939 - 1946.
�10.1090/S0002-9939-2013-11470-X�. �hal-00473154�

https://hal.science/hal-00473154
https://hal.archives-ouvertes.fr


Full and convex linear subcategories are

incompressible

Claude Cibils, Maria Julia Redondo and Andrea Solotar ∗

Abstract

Consider the intrinsic fundamental group à la Grothendieck of a linear
category, introduced in [5] and [6] using connected gradings. In this article
we prove that a full convex subcategory is incompressible, in the sense that
the group map between the corresponding fundamental groups is injective.
The proof makes essential use of the functoriality of the intrinsic fundamental
group, and it is based on the study of the restriction of connected gradings to
full subcategories. Moreover, we study in detail the fibre product of coverings
and of Galois coverings.

2010 MSC: 16W50, 18G55, 55Q05, 16B50

1 Introduction

In two recent papers [5, 6] we have considered a new intrinsic fundamental group
attached to a linear category. We have obtained this group using methods inspired
by the definition of the fundamental group in other mathematical contexts. Note
that in [6] we made explicit computations of this new intrinsic fundamental group
for several families of algebras.

In this paper we first recall the main tools in order to provide the definition à la
Grothendieck, in the sense that the intrinsic fundamental group is the automorphism
group of a fibre functor.

Previously, a non canonical fundamental group has been introduced by R. Mart́ınez-
Villa and J.A. de la Peña in [11] and K. Bongartz and P. Gabriel in [2] and [8]. This
group is not canonical since it varies considerably according to the presentation of
the linear category, see for instance [1, 3], as well as a first approach to solve this
problem [9, 10].

The main tool we use are connected gradings of linear categories. The fun-
damental group that we consider is a group which is derived from all the groups
grading the linear category in a connected way. More precisely each connected

∗This work has been supported by the projects UBACYTX212, PIP-CONICET 112-
200801-00487, PICT-2007-02182 and MATHAMSUD-NOCOMALRET. The second and third
authors are research members of CONICET (Argentina). The third author is a Regular As-
sociate of ICTP Associate Scheme.
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grading provides a Galois covering through the smash product, see [4]. Considering
the category of Galois coverings of this type we define the intrinsic fundamental
group as the automorphism group of the fibre functor over a chosen object.

In this paper we face a difficulty for this theory which makes it non standard
with respect to other similar theories, hence, some usual tools are not available here.
In fact the fibre product of two Galois coverings is not even a covering in general.
Nevertheless other properties hold, for instance the fibre product of a Galois covering
with a fully faithful functor is a Galois covering. Also, the square fibre product of a
Galois covering is a trivial covering and this characterizes Galois coverings.

The main purpose of this paper is to prove that full and convex subcategories are
incompressible, in the sense used in algebraic topology where a subvariety is called
incompressible if the group map between the corresponding fundamental groups is
injective.

In order to do so, we first need to prove that the intrinsic fundamental group
is functorial, answering in this way a question by Alain Bruguières. Note that this
is not automatic due to the already quoted difficulty on fibre products of Galois
coverings.

We provide a description of elements of the intrinsic fundamental group as
coherent families of elements lying in each group which grades the linear category
in a connected way. The other main ingredient for proving the functoriality is a
procedure for constructing a connected grading out of a non-connected one. This
depends on some choices which appear to be irrelevant at the intrinsic fundamental
group level.

Finally we consider convex subcategories. Recall that a linear subcategory of
a linear category is convex if morphisms of the subcategory can only be factorized
through morphisms in the subcategory. We prove that given a full and convex sub-
category, the group map obtained by functoriality between the intrinsic fundamental
groups is injective.

2 Coverings

In this section we recall some definitions and results from [5] that we will use
throughout this paper.

Let k be a commutative ring. A k-category is a small category B such that each
morphism set yBx from an object x ∈ B0 to an object y ∈ B0 is a k-module, the
composition of morphisms is k-bilinear and the identity at each object is central
in its endomorphism ring. In particular each endomorphism set is a k-algebra, and

yBx is a yBy − xBx-bimodule.
Note that each k-algebra A provides a single object k-category BA with en-

domorphism ring A. The structure of A can be described more precisely using
k-categories as follows: for each choice of a finite set E of orthogonal idempotents
of A such that

∑

e∈A e = 1, consider the k-category BA,E whose set of objects is
E, and the set of morphisms from e to f is the k-module fAe. Composition of mor-
phisms is given by the product in A. Note that in this way BA = BA,{1}. The direct
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sum the k-modules of morphisms of BA,E can be equipped with a matrix product
combined with composition of morphisms, the resulting algebra is isomorphic to A.

Definition 2.1 The star StbB of a k-category B at an object b is the direct sum of
all k-modules of morphisms with source or target b:

StbB =





⊕

y∈B0

yBb



 ⊕





⊕

y∈B0

bBy





Note that this k-module counts twice the endomorphism algebra at b.

Definition 2.2 Let C and B be k-categories. A k-functor F : C → B is a covering
of B if it is surjective on objects and if F induces k-isomorphisms between all
corresponding stars. More precisely, for each b ∈ B0 and each x in the non-empty
fibre F−1(b), the map

F x
b : StxC −→ StbB.

induced by F is a k-isomorphism.

Remark 2.3 Each star is the direct sum of the source star St−b B =
⊕

y∈B0
yBb

and the target star St+b B =
⊕

y∈B0
bBy. Since St− and St+ are preserved by

any k-functor, the condition of the definition is equivalent to the requirement that
the corresponding target and source stars are isomorphic through F . Moreover this
splitting goes further: the restriction of F to

⊕

y∈F−1(c) yCx is k-isomorphic to the
corresponding k-module cBb. The same holds with respect to the target star and
morphisms starting at all objects in a single fibre.

Remark 2.4 The previous facts show that Definition 2.2 coincides with the one
given by K. Bongartz and P. Gabriel in [2]. In particular a covering is a faithful
functor.

Definition 2.5 Given k-categories B, C,D, the set of morphisms Mor(F,G) from a
covering F : C → B to a covering G : D → B is the set of pairs of k-linear functors
(H, J) where H : C → D, J : B → B are such that J is an isomorphism, J is the
identity on objects and GH = JF .

We will consider within the group of automorphisms of a covering F : C → B,
the subgroup Aut1F of invertible endofunctors G of C such that FG = F .

Next we recall the definition of a connected k-category. We use the following
notation: given a morphism f , its source and target object are denoted s(f) and
t(f) respectively. We will also make use of walks. For this purpose we consider the
set of formal pairs (f, ǫ) as virtual morphisms, where f is a morphism in B and
ǫ ∈ {−1, 1}. We extend source and target maps to this set as follows:

s(f, 1) = s(f), s(f,−1) = t(f), t(f, 1) = t(f), t(f,−1) = s(f).
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Definition 2.6 Let B be a k-category. A non-zero walk in B is a sequence of non-
zero virtual morphisms (fn, ǫn) . . . (f1, ǫ1) such that s(fi+1, ǫi+1) = t(fi, ǫi). We
say that this walk goes from s(f1, ǫ1) to t(fn, ǫn). A k-category B is connected if
any two objects b and c of B can be joined by a non-zero walk.

Remark 2.7 Let F : C −→ B be a covering of k-categories, and let C′ be a full
connected component of C such that F restricted to C′ is still surjective on objects.
Then this restriction functor is a covering of B.

We recall the following known results.

Proposition 2.8 [9, 5] Let F : C −→ B be a covering of k-categories. If C is
connected, then B is connected.

Proposition 2.9 [9, 5] Let F : C −→ B and G : D −→ B be coverings of k-linear
categories. Assume C is connected. Two morphisms (H1, J), (H2, J) from F to G
such that H1 and H2 coincide on some object are equal.

Corollary 2.10 Let F : C → B be a connected covering of a k-linear category B.
The group Aut1(F ) = {s : F → F | s is an isomorphism of C verifying Fs = F}
acts freely on each fibre.

Next we recall the definition of a Galois covering:

Definition 2.11 A covering F : C −→ B of k-categories is a Galois covering if C is
connected and Aut1F acts transitively on some fibre.

As expected the automorphism group acts transitively at every fibre as soon as
it acts transitively on a particular fibre, see [9, 10, 5]. A quotient category by the
action of a group exists in case the action is free on objects. The following is a
structure theorem providing an explicit description of Galois coverings.

Theorem 2.12 [9, 5] Let F : C −→ B be a Galois covering. Then there exists a
unique isomorphism of categories F ′ : C/Aut1F −→ B such that F ′P = F , where
P : C −→ C/Aut1F is the Galois covering given by the categorical quotient.

3 Fibre products

Definition 3.1 Let F : C −→ B and G : D −→ B be k-functors of k-categories.
The fibre product C ×B D is the category defined as follows: objects are pairs
(c, d) ∈ C0×D0 such that F (c) = G(d); the set of morphisms from (c, d) to (c′, d′)
is the k-submodule of c′Cc ⊕ d′Dd given by pairs of morphisms (f, g) verifying
Ff = Gg. Composition of morphisms is defined componentwise.

Remark 3.2 The fibre product defined above is the categorical fibre product defined
in the category of k-linear categories, satisfying the usual universal property that
makes commutative the following diagram
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C ×B D
prG //

prF

��

D

G

��
C

F // B.

As already quoted in the introduction, the next example shows that the be-
haviour of the fibre product is unusual, since the functors prG nor prF are not even
coverings in general.

Example 3.3 Let B be the k-category associated to the Kronecker quiver given by
two parallel arrows a and b with common source object s and common target object
t. More precisely, sBs = tBt = k, the k-module tBs is free with basis {a, b} and

sBt = 0. Let C be the k-category associated to the quiver which has four vertices
{s0, s1, t0, t1} and four arrows: ai : si −→ ti and bi : si −→ ti+1 for i ∈ Z/2Z.

C : s1
a1 //

b1

��@
@@

@@
@@

@ t1

s0 a0

//
b0

??~~~~~~~~
t0

, B : s
a //

b
// t

We consider two Galois coverings F,G : C −→ B, both functors sending si to s and
ti to t. The functor F respects the given basis, namely F (ai) = a and F (bi) = b.
The functor G do the same for the arrows a0 and a1, while G(bi) = a + b. One
can check that both F and G are Galois coverings of B.

We assert that the fibre product C ×B C is not a covering of C through the
second component projection corresponding to G. Indeed, consider the objects s0
and t1, and choose the object (s0, s0) in the fibre of s0. Morphisms in C from s0 to
t1 are scalar multiples of b0. If C ×B C was a covering, t1Cs0 should be isomorphic
to the direct sum

(t1,t0) (C ×B C)(s0,s0) ⊕ (t1,t1) (C ×B C)(s0,s0) .

Now (t1,t0) (C ×B C)(s0,s0) = 0 since the only candidate is (b0, a0) (and its scalar

multiples) but this element is not in the fibre product since F (a0) 6= G(b0). On the
other hand, (t1,t1) (C ×B C)(s0,s0) = 0 also since the only candidate is (b0, b0), but

F (b0) 6= G(b0). Hence the direct sum to be considered in the fibre product is zero,
which is not isomorphic to kb0.

Remark 3.4 An easy example of a covering which is not Galois can be given using
the previous one. Consider F ′, which coincides with F above, except that F ′(b1) =
a + b. Clearly F ′ is a covering but Aut1F

′ is trivial, its action on the fibre of an
object cannot be transitive since each fibre has two objects.
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Lemma 3.5 Let F : C → B be a covering. Let D be a k-subcategory of B and let
G : D −→ B be the inclusion functor. Then C ×B D is canonically identified with
F−1D, where

(

F−1D
)

0
= {c ∈ C0 | Fc ∈ D0} and

c′(F
−1D)c = {f ∈ c′Cc | Ff ∈ Fc′DFc}.

Proposition 3.6 Let F : C −→ B be a covering and let D be a full subcategory of
B, G : D −→ B the inclusion functor. The functor prG : C×BD → D is a covering.

Proof. Since D is a full subcategory of B, then F−1D is also full in C. As a
consequence the defining property of coverings concerning isomorphisms between
stars is preserved. ⋄

Note however that in general F−1D is not connected even if D is connected.

Next we want to prove an analogous result for a fully faithful functor G : D −→
B. We will first provide a description of such functors (see for instance [7]). We recall
the definition of an inflated category Bα where B is a k-category and α : I → B0 is
a surjective map assigning inflating sets Ib = α−1b to each object of B. The set of
objects of Bα is I, while j (B

α)i is a copy of α(j)Bα(i). Composition is the evident
one.

Two objects of Bα which belong to the same inflating set are isomorphic. Clearly
there exists a deflating functor which sends all the objects in Ib to the object b.
Any choice of exactly one object in each inflating set provides a full subcategory of
Bα which is isomorphic to B. In this way Bα is equivalent to B.

Proposition 3.7 Let F : C −→ B be a covering of k-categories, and let α : I → B0

be a surjective map. Let G : Bα −→ B be the deflating functor. The fibre product
C×BB

α is identified with Cβ where J is the set fibre product C0×B0
I and β : J → C0

is the projection map. The functor Cβ −→ Bα is a covering.

The proof follows by a direct computation.

Theorem 3.8 Let F : C −→ B be a covering and let G be a fully faithful functor
G : D −→ B. Then the projection C ×B D → D is a covering.

Proof. The image of G is a full subcategory GD of B. We consider the set
of objects D0 as an inflating set for GD, the required surjective map α is given
by G. A straightforward computation shows that the inflated category (GD)α is
isomorphic to D.

The original functorG decomposes as a composition of functorsD ≃ (GD)α −→
GD ⊂ B where the last inclusion corresponds to the inclusion of the full subcategory
GD of B and the middle functor is the deflating functor. Using the previous results
we get that all the vertical maps in the following diagram are covering functors:

(C ×B GB)×GB D //

��

C ×B GB //

��

C

F

��
D

G // GD
�

�

// B
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Since both squares are fibre squares, the same is true for the big one, and (C ×B

GB)×GB D ∼= C ×B D. ⋄

Next we prove several results concerning fibre products of Galois coverings.

Theorem 3.9 If F : C −→ B is a Galois covering then the fibre square of F is a
disjoint union of copies of C indexed by Aut1F .

Proof. Let (c, c′) be an object of C ×B C, which means that c and c′ are in the
same F -fibre. Since F is a Galois covering there exists a unique s ∈ Aut1F such
that c′ = sc. Consequently objects of C ×B C are precisely the pairs (c, sc) where
c ∈ C0 and s ∈ Aut1F .

We assert that if s and t are different elements of Aut1F , then the k-module

(c1,tc1) (C ×B C)(c0,sc0)

is zero while it is identified with c1Cc0 if s = t. Indeed, let (c1fc0 , tc1gsc0) be
a non-zero morphism in the fibre product, hence verifying F (f) = F (g). Since
s−1 ∈ Aut1F we infer that F (g) = F

(

s−1g
)

. The point is that f and s−1g share a
common source c0. Since F is a covering, it induces an isomorphism between stars,
then f and s−1g have also a common target, namely c1 = s−1tc1, and f = s−1g.
Since the action of Aut1F is free on objects, s−1t = 1 and s = t. Moreover the
morphism is of the form (f, sf), which provides the identification with a disjoint
union of copies of C indexed by Aut1F . ⋄

Definition 3.10 A trivial covering of a k-category B is a covering which is iso-
morphic to the the product B×E of B by a set E, with objects B0 ×E and where
the morphisms are (y,e)(B × E)(x,e) = yBx while (y,f)(B × E)(x,e) = 0 if e 6= f .
The covering functor is the projection functor to the first factor.

Remark 3.11 We have proved that if a covering is Galois, then its fibre square is
trivial. In order to prove the converse, we need the following lemmas.

Lemma 3.12 Let F : C −→ B be a connected covering of k-categories. Let S be
a section of F , namely a k-functor S : B −→ C such that FS = 1B. Then the
subcategory SB is full and it is a connected component of C.

Proof. Let f be a non-zero morphism of C having one of its extreme objects in
SB. Let x0 ∈ SB0 and let f ∈ yCx0

. Let b0 ∈ B0 be such that x0 = Sb0. In order
to prove that y is also in the image of S, consider Stx0

C which is isomorphic through
F to Stb0B. Since FS = 1B, we have that S : Stb0B −→ Stx0

C is the inverse of
F at the star level. Hence f = SFf and y = SFy. We have also shown that a
morphism between objects in the image of S is in the image of S, which shows that
SB is full in C. Since SB is isomorphic to B, the category SB is connected. ⋄
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Lemma 3.13 Let F : C −→ B be a covering of connected k-categories. The
covering is trivial if and only if for each object x ∈ C0 there exists a section S :
B −→ C such that FS is the identity functor of B and SFx = x.

Proof. Assume that for each x ∈ C0 there exists a section S : B −→ C such
that FS is the identity functor of B and SFx = x. Let Σ be the set of all the
sections of F and consider the functor α : B ×Σ −→ C given by α(b, S) = Sb and
α
(

(c,S)f(b,S)

)

= Sf . This functor is clearly faithful and surjective on objects. It is
also full by the previous lemma. The other implication is immediate. ⋄

Theorem 3.14 Let F : C −→ B be a covering of connected k-categories and
assume that the fibre square of F is a trivial covering of C. Then F is a Galois
covering.

Proof. Let c and c′ be in the same F -fibre. In order to define an automorphism
s carrying c to c′, let S be the section of the projection functor through (c, c′)
obtained using Lemma 3.13. Let s be defined by Sy = (y, sy) and Sf = (f, sf).
By definition of the fibre product it is clear that Fs = F . Note that s is invertible:
consider the morphism s′ sending c′ to c, then s′s(c) = c. Since there is at most
one morphism of coverings sending an object to another fix one, and the identity
already carries c to c, we infer s′s = 1. ⋄

Definition 3.15 A universal covering U : U → B is a Galois covering such that
for any Galois covering F : C → B, and for any u ∈ U0, c ∈ C0 with U(u) = F (c),
there exists a unique morphism (H, 1) from U to F verifying H(u) = c.

We already know that the fibre square of a universal covering U is trivial, since
U is Galois. We shall prove that for any Galois covering F : C → B, the fibre
product U ×B C is trivial. This property characterizes universal coverings.

Theorem 3.16 A connected covering U : U −→ B is universal if and only if the
fibre product of U with any Galois covering F : C −→ B provides a trivial covering
of U .

Proof. In case U is universal, we assert that objects of the fibre product U ×B C
can be written uniquely as pairs (u,Hu) where u is an object of U and H is a
morphism from U to C verifying FH = U . Indeed if (u, c) is an object of the
fibre product then U(u) = F (c) and there exists a unique morphism H such that
H(u) = c. Moreover if H1 and H2 are different morphisms we assert that

(v,H2v) (U ×B C)(u,H1u)
= 0.

In order to prove this assertion, let (f, g) be a non-zero morphism in this fibre
product, hence U(f) = F (g). Since FH1 = U we infer FH1(f) = U(f) = F (g).
Note that H1(f) and g share the same source object H1(u). Since F is a covering
the star property implies g = H1(f), consequently they share the same target
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object, namely H2(v) = H1(v) which implies H2 = H1. Note that in this case the
k-module of morphisms in the fibre product is identified with vUu. This shows that
the category U ×B C is a product of copies of U , using any fibre of F as an indexing
set. The converse can be proved using the same methods. ⋄

4 Elements of the intrinsic fundamental group

The intrinsic fundamental group of a k-category is obtained form its connected
gradings, see [5, 6]. The main purpose of this section is to prove that this group
is functorial with respect to full subcategories. In order to do so we will use results
on fibre products as well as a concrete interpretation of elements of the intrinsic
fundamental group that we provide below.

Recall that a grading X of a k-category B by a group ΓX is a direct sum
decomposition of each k-module of morphisms

cBb =
⊕

s∈ΓX

Xs
cBb

such that for s, t ∈ ΓX

Xt
dBc Xs

cBb ⊂ Xts
dBb.

A morphism is called homogeneous of degree s from b to b′ if it belongs to
Xs

b′Bb. A walk is homogeneous if its virtual morphisms are homogeneous. The
degree of a non-zero homogeneous walk is the ordered product of the degrees of the
non-zero virtual morphisms, where the degree of a homogeneous virtual morphism
(f,−1) is the inverse in ΓX of the degree of f , see [6]. Of course the degree of
(f, 1) is the degree of f . The grading is connected if given any two objects they
can be joined by a non-zero homogeneous walk of arbitrary degree.

Definition 4.1 [4] Let B be a k-category and let X be a grading of B. The smash
product category B#X has set of objects B0×ΓX , the morphisms are homogeneous
components as follows:

(c,t)(B#X)(b,s) = Xt−1s
cBb.

Note that we have slightly changed the notation from the one used in [4] in
order to emphasize that the smash product category depends on the grading X and
not just on the corresponding group ΓX .

Note that the evident functor FX : B#X −→ B is a Galois covering.

Let B be a connected k-category with a fixed object b0. The category Gal(B, b0)
has as objects the Galois coverings of B. A morphism in Gal(B, b0) from F : C → B
to G : D → B is a morphism of coverings (H, J), see Definition 2.5. We will say
that H is a J-morphism.

The group Aut1(FX) of a Galois smash product covering can be identified with
ΓX . Since any Galois covering F of B is isomorphic to a smash product Galois

9



covering by considering the natural grading of B by Aut1F , we consider, as in [6], the
full subcategory Gal#(B, b0) whose objects are the smash product Galois coverings
provided by connected gradings of B. It can be proved that this full subcategory
is equivalent to Gal(B, b0), see [6]. The fibre functor Φ# : Gal#(B, b0) → Groups
given by

Φ#(FX) = F−1
X (b0) = ΓX

is the main ingredient for the definition of the fundamental group, namely

Π1(B, b0) = AutΦ#.

Next we will consider in detail this group, and we will prove that an element
of Π1(B, b0) is a family of elements in the groups of connected gradings, related
through canonical surjective morphisms. We recall an important result obtained by
P. Le Meur [9, 10], see also [5].

Proposition 4.2 Let F and G be Galois coverings of a k-category B and let (H, J)
be a morphism from F to G in Gal(B, b0). There is a unique surjective group
morphism

λH : Aut1F −→ Aut1G

such that Hf = λH(f)H .

Remark 4.3 For any smash product Galois covering FX , we identify the isomorphic
groups Aut1FX and ΓX through left multiplication, that is, by the correspondence
s : FX → FX with s(x) = sx for any s ∈ ΓX .

In case of Galois coverings given by smash products the preceding proposition
can be reformulated and completed as follows:

Proposition 4.4 Let X and Y be connected gradings of a k-category B, and let
FX and FY be the corresponding smash product Galois coverings with groups ΓX

and ΓY . Let (H, J) be a morphism from FX to FY in Gal#(B, b0), where H :
B#X −→ B#Y is given on objects by H = (J,HΓ). Then there exists a unique
canonical surjective morphism of groups λH : ΓX → ΓY verifying

HΓ(sx) = λH(s)HΓ(x) for all x ∈ ΓX .

Moreover the complete list of J-morphisms from FX to FY is given by {qH}q∈Γy
,

and
λqH = q (λH) q−1.

Proof. The first part of the proposition is a reformulation of the preceding one.
Concerning the second part, note first that qH is indeed a morphism from FX to
FY since FY q = FY . Moreover we know (see for instance [5]) that J-morphisms are
completely determined by the image of b0 in its fibre. Since ΓY acts transitively and
freely on the FY -fibre, we infer that {qH}q∈Γy

is indeed the complete list without
repetitions of J-morphisms.
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Finally we have that

(qH)Γ(sx) = qλH(s)HΓ(x) = qλH(s)q−1qHΓ(x) = λqH (s)(qH)Γ(x)

which proves that λqH = q (λH) q−1 since λqH is uniquely determined by last
equality. ⋄

Corollary 4.5 Under the previous hypothesis, HΓ is determined by λH as follows:

HΓ(s) = λH(s)HΓ(1).

There is a canonical surjective group morphism µ : ΓX −→ ΓY attached to the fact
that there exist morphisms from FX to FY . This map is given by

µ(s) = HΓ(1)
−1λH(s) HΓ(1).

Moreover HΓ(s) = HΓ(1)µ(s).

Proof. The first assertion is clear since HΓ(sx) = λH(s)HΓ(x) for all x. We need
to prove that µ is independent of the considered morphism. Let qHΓ be another
J-morphism, then

(qHΓ(1))
−1

λqH(s) qHΓ(1) = HΓ(1)
−1q−1qλH(s)q−1qH(1) =

= HΓ(1)
−1λH(s) HΓ(1) = µ(s).

The last equality is clear from the previous ones. ⋄

We are now able to describe any automorphism of the fibre functor, namely any
element of the intrinsic fundamental group of a k-category.

Recall that σ ∈ AutΦ# is a family {σX : ΓX → ΓX} where X is any connected
grading of B, making commutative the following diagram for any morphism H in
Gal#(B, b0):

ΓX
σX //

HΓ

��

ΓX

HΓ

��
ΓY

σY // ΓY

Lemma 4.6 The map σX is the right product by an element gX ∈ ΓX .

Proof. In case X = Y , the vertical arrows in the above diagram can be specialized
by any element in Aut1FX = ΓX . By Remark 4.3, this vertical morphisms are
left product by any g ∈ ΓX . We infer σX(g) = σX(g1) = gσX(1) and we set
gX = σX(1). ⋄
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Proposition 4.7 The defining elements {gX} of the above lemma for σ ∈ Π1(B, b0)
are the families of group elements verifying µ(gX) = gY for each canonical surjec-
tive group morphism µ obtained in case of existence of a morphism from B#X to
B#Y .

Proof. Let (H, J) be a morphism from FX to FY where X and Y are connected
gradings of B, and let µ : ΓX → ΓY be the corresponding canonical surjective
group morphism. The previous diagram is then:

ΓX

.gX //

HΓ(1)µ

��

ΓX

HΓ(1)µ

��
ΓY

.gY // ΓY

Hence
HΓ(1)µ(xgX) = HΓ(1)µ(x)gY

for any x. Since µ is a group homomorphism we infer µ(gX) = gY . Reciprocally a
family of elements with the stated property clearly defines an automorphism of the
fibre functor. ⋄

5 Functoriality

An important tool for proving the functoriality of the intrinsic fundamental group
concerns the restriction of a grading to full subcategories.

Let B be a k-category and let X be a connected grading of B by the group ΓX .
Let D be a connected full subcategory of B. The restricted grading by the same
group ΓX is denoted X ↓D. Note that since D is full, each k-module of morphisms
in D preserves the same direct sum decomposition of the original grading. Clearly
the grading X ↓D is not connected in general.

Lat X be a non necessarily connected grading of a connected k-category B. Let

b2(ΓX)b1 be the set of walk’s degrees from b1 to b2, that is, the set of elements
in ΓX which are degrees of homogeneous non-zero walks from b1 to b2. Note that
if b1 = b2 this set is a subgroup of ΓX which we denote ΓX,b1 . Let s be any walk’s
degree from b1 to b2. Then

b2(ΓX)b1 = s [ΓX,b1 ] = [ΓX,b2 ] s.

Recall that by definition, the gradingX is connected if and only if for any objects
b1, b2 ∈ B0

b2(ΓX)b1 = ΓX .

This is equivalent to b2(ΓX)b1 = ΓX for some pair of objects, see [6].
Next we will describe the construction of a connected grading out of a non

necessarily connected grading of a k-category B. This construction will depend on
some choices of non-zero homogeneous walks and it will be used for the restriction
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of a connected grading to a full connected subcategory, which is non-connected in
general. In this case we will prove that the choices we made are irrelevant with
respect to the fundamental group.

Definition 5.1 Let X be a non necessarily connected grading of a connected k-
category B, (ab)b∈B0

a family of elements in ΓX . We define a conjugated grading
aX of B by the same group ΓX as follows: we set the aX-degree of a non-zero
homogeneous morphism from b to c of X-degree s as a−1

c sab, that is,

(aX)scBb = Xacsa
−1

b cBb.

Hence the underlying homogeneous components remain unchanged, and there is no
difficulty to prove that aX is indeed a grading.

We observe that aX is connected if X is so.

Proposition 5.2 Let B be a connected k-category with a non necessarily connected
grading X with group ΓX . Let b0 be a fixed object. There exists a (non canonical)
connected grading of B with group ΓX,b0 .

Proof. First we prove that b(ΓX)b0 is non empty for any object b. Indeed, since
B is connected there exists a non-zero walk from b0 to b. Each non-zero morphism
is a sum of homogeneous morphisms, and at least one of them is non-zero. We
replace the morphisms of the walk by one of these non-zero homogeneous morphism,
obtaining in this way a non-zero homogeneous walk from b0 to b.

Secondly we choose a family u = (ub)b∈B0
of walk’s degrees from b0 to b for

each object b, with the special choice ub0 = 1.
Third we consider the conjugated grading uX , that is, the uX-degree of a non-

zero homogeneous morphism of X-degree s from b to c is u−1
c sub. Note that this

element is also the X-degree of a non-zero homogeneous closed walk at b0, hence
it belongs to ΓX,b0 .

Finally we assert that the group of this grading at b0 is the full ΓX,b0 . Indeed
the new degree of each homogeneous non-zero closed walk at b0 equals its X-
degree since each change of degree of a morphism of the walk compensates with
the change of the following one and ub0 = 1. By definition ΓX,b0 is precisely the
set of X-degrees of non-zero closed walks at b0, then ΓuX,b0 = ΓX,b0 . We conclude
that uX is a connected grading. ⋄

Remark 5.3 As quoted before, the connected grading we have constructed de-
pends on the choice (ub)b∈B0

, where ub ∈ b(ΓX)b0 . Nevertheless any other choice
(u′

b)b∈B0
with u′

b0
= 1 is obtained as (ubab)b∈B0

where ab ∈ ΓX,b0 and ab0 = 1.

Note that the group of the connected gradings is the same for uX and u′

X .

Theorem 5.4 Let B be a connected k-category with a fixed object b0 and let D
be a connected full subcategory containing b0. Then there is a canonical group
morphism

κ : Π1(D, b0) −→ Π1(B, b0).

which makes Π1 a functor.
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Proof. According to Proposition 4.7, let σ = (gZ) be an element of Π1(D, b0)
where Z varies over all the connected gradings of D and gZ ∈ ΓZ . Recall that
µ(gZ) = gZ′ for each pair of connected gradings Z and Z ′ such that there is a
morphism from D#Z to D#Z ′. Let X be a connected grading of B. In order to
define (κ(σ))X , we first consider the restricted grading X ↓D by the same group
ΓX .

This grading is not connected in general. Hence we choose a set of walk’s
degrees u from b0 to each object of D in order to construct the associated (non
canonical) connected grading Y = u (X ↓D). Note that the group of this connected
grading is ΓX↓D,b0 . We define

κ(σ)X = gY .

In order to prove that κ is well defined we need to check that for another set of
walk’s degrees u′ = (u′

b) and for the resulting connected grading Y ′ = u′

(X ↓D),
we have gY = gY ′ . This will be insured by the following Lemma, which shows
that there is a morphism between the corresponding Galois smash coverings whose
corresponding canonical group map µ is the identity (recall that µ(gY ) = gY ′).

In order to prove that the obtained family of elements is coherent, let X and
X ′ be two connected gradings of B and let (H, J) be a morphism of coverings
from B#X → B#X ′. Let µ : ΓX → ΓX′ be the canonical group map associated
to the Galois covering morphism B#X → B#X ′. We know that H(b0, s) =
(b0, HΓ(1)µ(s)), hence we can modify H in order to have H(b0, s) = (b0, µ(s)).
Since J is the identity on objects of B, the full subcategory D is preserved by J
and we infer a morphism of Galois coverings u(X ↓D) →

u(X ′ ↓D) where u = (ub)
is a choice of walk’s degrees from b0 to each object b. The group map µ restricts
to the corresponding grading groups, since σ is a coherent family of elements for
D we infer µ(g[u(X↓D)]) = g[u(X′↓D)]. Finally note that the map κ clearly preserves
composition of inclusions of full subcategories. ⋄

Next we will prove the lemma used in the preceding proof. Observe that the
concerned gradings u(X ↓D) and u′

(X ↓D) are two connected gradings of a linear
category which differ in a simple way, since u′

b = ubab, see Remark 5.3. Note that
ab0 = 1.

Remark 5.5 The connected gradings u(X ↓D) and
u′

(X ↓D) are conjugated grad-
ings by the family (ab)b∈B0

with ab0 = 1.

Lemma 5.6 Let (ab)b∈B0
be a family of elements in ΓX . There is a covering mor-

phism B#X → B#aX between conjugated gradings. The corresponding induced
canonical group morphism µ : ΓX → ΓX is conjugation by ab0 . In particular if
ab0 = 1 then µ = 1.

Proof. The functorH is given on objects byH(b, s) = (b, sab) while on morphisms
the functor is the identity since

(c,tac)(B#
aX)(b,sab) = (aX)a

−1

c t−1sab
cBb = Xt−1s

bBc = (c,t) (B#X)(b,s) .
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Note that the functor is of the form (H, 1) and H(b0, s) = (b0, sa0) = (b0, HΓ(s)).
In order to compute µ we first show that λH = 1. Recall that λH : ΓX →

ΓaX ,where ΓX = ΓaX , is a group morphism uniquely determined by the property
Hs = λH(s)H for any s in ΓX . Clearly Hs = sH , then λH(s) = s. The
canonical morphism µ is given by µ(s) = HΓX

(1)−1λH(s) HΓX
(1), see Corollary

4.5. Consequently µ(s) = a−1
b0

sab0 . ⋄

We end this section by giving a general criterion for κ being injective, and we
give a family of cases where the criterion applies.

Theorem 5.7 Let B be a connected k-category, let b0 be a fixed object and let D
be a connected full subcategory containing b0. Assume any connected grading of D
is a connected component of the restriction of some connected grading of B. Then
the group morphism

κ : Π1(D, b0) −→ Π1(B, b0)

is injective.

Proof. Let σ = (gZ) be a coherent family defining an element in Π1(D, b0).
Assume κ(σ) = 1, which means that for any connected grading X of B we have
κ(σ)X = 1. Recall that κ(σ)X = g[u(X↓D)]. Consequently those elements are
trivial. By hypothesis any connected grading Z of D is of this form, then σ = 1.⋄

Definition 5.8 A subcategory D of B is said to be convex if any morphism of D
only factors through morphisms in D. In case D is full, this condition is equivalent
to the fact that any composition of an outcoming morphism (with source in D and
target not in D) and an incoming one (reverse conditions) must be zero.

The following corollary shows that convex connected full subcategory of B is
incompressible .

Corollary 5.9 Let B be a connected k-category, let b0 be a fixed object and let D
be a connected full convex subcategory containing b0. Then κ is injective.

Proof. Let Z be a connected grading of D. We extend it to B by providing trivial
degree to any morphism whose source or target is not in D. By hypothesis there is
no non-zero morphism of the form gf where f has source in D, g has target in D,
and the source of g and the target of f coincides without being in D. We infer that
this setting indeed provides a grading. The grading is connected since any element
of the group is a walk’s degree, already in D. The preceding result insures that κ
is injective. ⋄
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Institut de mathématiques et de modélisation de Montpellier I3M,

UMR 5149
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