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Abstract— The bootstrap problem is often recognized as one
of the main challenges of evolutionary robotics: if all individuals
from the first randomly generated population perform equally
poorly, the evolutionary process won’t generate any interesting
solution. To overcome this lack of fitness gradient, we propose
to efficiently explore behaviors until the evolutionary process
finds an individual with a non-minimal fitness. To that aim,
we introduce an original diversity-preservation mechanism,
called behavioral diversity, that relies on a distance between
behaviors (instead of genotypes or phenotypes) and multi-
objective evolutionary optimization.

This approach has been successfully tested and compared
to a recently published incremental evolution method (multi-
subgoal evolution) on the evolution of a neuro-controller for
a light-seeking mobile robot. Results obtained with these two
approaches are qualitatively similar although the introduced
one is less directed than multi-subgoal evolution.

I. INTRODUCTION

Evolutionary algorithms have been widely used to design

controllers, and especially neuro-controllers, for robots (see

[1], [2] and [3] for an overview). Compared to other learning

methods, one of their main strength is their ability to evolve

both the structure and the parameters of complex architec-

tures using a high-level reward function. However, this huge

amount of work hides many unsuccessful attempts to evolve

complex behaviors by only rewarding the performance of the

global behavior. The bootstrap problem is often viewed as the

main cause of this difficulty, and consequently as one of the

main challenges of evolutionary robotics: if the objective is

so hard that all the individuals in the first generation perform

equally poorly, evolution cannot start and no functioning

controllers will be found. For instance, it has been found hard

to evolve a light-seeking behavior for a robot in a complex

arena without having first evolved an obstacle-avoidance

reflex [4].

In consequence, many researchers added some kind of

rewards for intermediate steps, leading to successful incre-

mental evolution processes [4]–[9]. Nonetheless, these evolu-

tionary approaches rely on some assumptions that require an

accurate knowledge of the problem to solve and can lead the

evolutionary algorithm to a local extremum. Most of them,

for instance, require to precisely order the different sub-tasks

or to determine when to switch from a sub-task to another

one. These biases prevent them from scaling up well to more

complex or more open tasks; remarkably, most of them have

been tried with only two or three sub-tasks.
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Fig. 1. Dominated and non-dominated solutions for a problem in which
the two objectives f1 and f2 must be maximized.

Another idea to bootstrap an evolutionary process is to

efficiently explore the neighborhood of current candidate

solutions to find one with a non-minimal fitness. This concept

is close to diversity-preserving mechanisms, widely inves-

tigated in evolutionary computation (e.g [10]–[12]), which

typically rely on a distance between the genotypes or the

phenotypes. However, such distances are conceptually and

computationally difficult to employ with complex structures

as neural networks.

Drawing inspiration from these diversity-preserving mech-

anisms and adapting them to evolutionary robotics, we in-

troduce in this paper the behavioral diversity, an original

method to maintain the diversity in a population that relies

on a distance between behaviors and a multiobjective evolu-

tionary algorithm (MOEA, see [13]). We then show how such

a diversity preservation mechanism can efficiently overcome

the bootstrap problem in an evolutionary robotics experiment

in which a simulated robot that has to successively reach

some lights in an arena. As a reference point, we compare the

results obtained using this new approach with the ones ob-

tained with multi-subgoal evolution [9], a recently published

incremental method based on multiobjective evolution.

The remainder of this paper is organized into four parts. In

section II, we briefly review the related literature about multi-

objective evolutionary algorithms, incremental evolution and

diversity preservation. The proposed method is detailed in

section III. Section IV describes an evolutionary robotics

experiment and reports the results of both methods. A short

discussion concludes this paper.



II. PREVIOUS WORK

A. Multi-objective evolutionary algorithms

Most problems tackled in evolutionary robotics involve

trade-offs between numerous objectives, such as energy

versus efficiency (see e.g. [14]). The classical approach is to

aggregate objectives using a weighted sum or a product to

define a composite fitness. Hence, a particular set of weights

defines a particular trade-off. Despite its experimental suc-

cess, this method has several substantial drawbacks. First,

it can be theoretically shown that some trade-offs cannot

be found (see [13]), thus silently constraining the study to a

subset of possible trade-offs. Second, weights have usually to

be inferred from a time-consuming trial-and-error approach

because no theoretical methods to define them are available.

Last, the exploration of each trade-off requires launching

a new evolutionary process. These different implications

generally limit analysis and discussions of results to one

or two particular trade-offs, associated to a particular set of

weight parameters that may be difficult to explain.

Recent research in evolutionary computation proposed

numerous algorithms to simultaneously optimize several ob-

jectives without aggregating them [13]; most of them rely on

the concept of domination and generate the so-called Pareto

Front (figure 1):

Definition 1: A solution x(1) is said to dominate another

solution x(2), if both conditions 1 and 2 are true:

1) the solution x(1) is not worse than x(2) with respect to

all objectives;

2) the solution x(1) is strictly better than x(2) with respect

to at least one objective.

The non-dominated set of the entire feasible search space is

the globally Pareto-optimal set (Pareto front).

Multi-objective evolutionary algorithms are designed to

find the Pareto-front, i.e. the set of all the Pareto-optimal

trade-offs. Most of them rely on two mechanisms:

• a selection procedure that ensures that non-dominated

individuals have a selective advantage;

• a diversity-preservation method designed to spread non-

dominated individuals along the whole Pareto front,

i.e. that as many different trade-offs as possible are

explored.

A typical MOEA sorts individuals with respect to dom-

ination. Non-dominated individuals may, for instance, be

ranked 1, making them the most suitable for reproduction.

Individuals which are only dominated by non-dominated

ones may be ranked 2, and so on. The diversity on the Pareto

front can be maintained using several ways such as fitness

sharing [15] or clustering methods [16].

Despite their considerable success in the optimization

field (see [17]), MOEAs deserved little attention in the

evolutionary robotic literature (notable exceptions being [14],

[18]–[21]). One of the ambitions of this paper is to highlight

how they can be useful in evolutionary robotics, in particular

to solve the bootstrap problem.

B. Incremental evolution

Four main approaches emerge from the different attempts

to tackle the bootstrap problem in evolutionary robotics:

staged evolution, environmental complexification, fitness

shaping and behavioral decomposition.

Staged evolution is probably the most intuitive – and

most used – incremental process. The main task is split into

ordered sub-tasks, each with a corresponding fitness function.

During each stage, individuals are selected only using the

associated fitness. The process is switched from each stage

to the next one once a convergence criterion is reached, for

instance when a “good enough” fitness is obtained by the

best individual or when the best fitness doesn’t change for

some generations. This technique has first been successfully

employed by Harvey et al. [5] to evolve a vision-based

target location task. Three stages were used, from locating

a large immobile target to tracking a moving smaller one.

Many other examples of staged evolution can be found in

the literature (e.g. [7], [8], [14], [22]–[24]).

Following the same idea, environmental complexification

aims at more continuously changing the complexity of the

task through the tuning of dedicated parameters. Gomez

and Miikkulainen [6] thus worked on a prey-capture task

parameterized with the prey speed and the delay before

starting the pursuit. Ten ordered sub-tasks were thus defined

by specific values of these parameters and their use proved

to lead to more efficient solutions.

In behavioral decomposition, each sub-task is solved by

a sub-controller evolved using a dedicated fitness, different

from the main goal. Another evolutionary process is then

used to combine all the sub-controllers together. This ap-

proach has been recently used to evolve a position controller

for an autonomous helicopter [25].

Fitness shaping is sometimes used to help to bootstrap

an evolutionary process, though it is not often seen as

an incremental evolution scheme. The fitness is defined as

an aggregation (a weighted sum or a product) of different

evaluation criteria in order to create a fitness gradient. For

example, Nolfi and Parisi [26] successfully evolved a feed-

forward neuro-controller for a robot to locate, recognize,

and grasp a target object. The fitness was increased if the

individual was close to the target object, if the target was in

front of the robot, if the robot tried to pick-up the object,

if the robot had the object in the gripper and if the robot

released the object outside the area.

C. Multi-subgoal evolution

The previously mentioned approaches allowed to generate

non trivial behaviors, but they require an important help

from the human designer: intermediate steps have to be

defined, ordered and their combination also requires the

intervention of the human designer, may it be to trigger the

switch between these steps or to gather all the elementary

solutions in a wider controller. The method introduced in

[9], called multi-subgoal evolution, intends to relax some of

the constraints of these incremental approaches.



In multi-subgoal optimization, intermediate steps still have

to be defined, but once this is done, the evolutionary process

will do the rest, without the need to order them or to choose

when to switch between the goals. Another interesting aspect

with this approach is that all those intermediate steps are

optional. We can therefore provide more information than

what is actually necessary without endangering the conver-

gence of the evolutionary run. This feature also differentiates

it from fitness shaping in which the fitness pushes towards

individuals that fulfill all the intermediate behaviors even if

some of them are not mandatory.

The principle of multi-subgoal optimization consists in

defining an objective for each of the intermediate steps and

another one for the final goal and then to use multiobjective

evolutionary algorithms to perform the search. In such a

context, difficult objectives that require to solve simpler tasks

won’t be explored at all by the algorithm at the beginning

of the search process, as all individuals will perform equally

poorly, while simpler objectives will draw much of the search

effort. As soon as performances will be high enough on

simpler tasks so that more complex tasks resolution will be

reachable, individuals able to solve them will appear and

the algorithm will then automatically start to concentrate on

this part of the search space. The other advantage is that

this ”switch” is not irremediable because the search with

respect to the simpler tasks will never stop, thus leaving

the possibility to obtain individuals relying on more efficient

solutions of the simpler problems. On the other side, the

search on the complex task will start as soon as possible,

thus avoiding to consider only individuals that may be

overspecialized on the simple task which could be difficult

to adapt to the complex one, as it can happen with manual

switches. Formally, this approach can be considered as a

multiobjective formulation of fitness shaping.

More details about multi-subgoal evolution can be found

in [9].

D. Diversity

The previously described approach requires to optimize

many objectives whereas current multiobjective evolutionary

algorithms have poor performance when more than three

objectives are used [27], [28]. We consequently explored a

different idea relying on the exploration of new behaviors.

The bootstrap problem, and similarly the local minima

problem, takes its roots in a lack of a useful selective gradient

to select potentially good individuals: all of them share the

same poor fitness (sometimes, all of them get a null fitness).

In the best case, the evolution is then equivalent to a random

search; in the worst case, we observe a premature conver-

gence of the evolutionary process to one, often degenerate,

solution. Among genotypes with the same fitness, we can

heuristically choose the ones which are the most original.

This idea, which can be seen as a push in favor of diversity,

has a long history in evolutionary algorithm literature, one of

the most popular method being fitness sharing [10]. In this

approach, the search landscape is modified by decreasing

the fitness of similar individuals, thus encouraging search

in unexplored regions. More precisely, if di j is the distance

between the genotype of i and j, the sharing function sh(di j)
is defined as follows:

Sh(di j) =

{

1− (
di j

σshare
)α , if d ≤ σshare

0 otherwise
(1)

where σshare is a user-defined parameter. The fitness of

individual i is then divided by the niche count ci:

Fi =
F(xi)

ci

where ci =
N

∑
j=1

Sh(di j) (2)

Dividing the fitness by the niche count can be seen as an

aggregation of two objectives, the fitness and the diversity.

Given the recent progress of Pareto-based multiobjective

evolutionary algorithms, some researchers suggested to use

a multiobjective approach instead of the aggregation. This

explicitly models the classic trade-off between exploration

and exploitation [29] and let the evolutionary algorithm

automatically tune it. Different ways to improve the diversity

by adding an objective have been investigated and compared,

from the distance to the nearest neighbor to a simple random

value [20], [30], [31]. All the available studies conclude that

(1) multiobjective methods to preserve the diversity are more

efficient than their single-objective counterparts and (2) the

mean distance between the individual and the remaining of

the population leads to the best results.

III. BEHAVIORAL DIVERSITY

Computing a distance between individuals is, however,

difficult in evolutionary robotics, especially when evolving

the topology of neuro-controllers. The distance between

genotypes is often hard to compute because typical distances

between two graphs, thereby two neural networks, are NP-

complete [32]. The permutation problem [33] prevents the

definition of simple metrics on neural-networks with a fixed

topology. Although some methods have been published to

allow the fitness sharing of neural networks [34], an infinity

of very different neural-networks can lead to a similar

behavior. This is especially striking with degenerate indi-

viduals as those observed when the evolutionary process is

unable to start: any neural network not linked to the motors

will lead to an immobile robot, thus fitness sharing won’t

help here. Moreover, fitness sharing has not originally been

formulated for multiobjective evolution while the interest

of using these methods in evolutionary robotics is growing

(see [14], [35], [36], for instance). Hence, maintaining the

diversity of genotypes with fitness sharing when evolving

neuro-controllers for robots is hard to implement and often

inefficient.

The goal of fitness sharing was to differentiate individ-

uals on other aspects than fitness values. Considering the

genotype to provide some more information to push towards

diversity was natural in classical evolutionary algorithms, but

evolutionary robotics experiments offers some other possi-

bilities: the behavior can be used to distinguish individuals.

Fitness values are based on an observation of the behavior,



but they are focused on a small set of behavior consequences,

not on behaviors on their own. As an alternative approach to

fitness sharing, we propose to compute a distance between

behaviors instead of genotypes, thus explicitly promoting

new behaviors. This distance could be used to modulate the

fitness, as in fitness sharing. However, using a multiobjective

evolutionary algorithm allows to rely on the good results

obtained with multiobjective approaches to preserve the

diversity and to explicitly model the exploration/exploitation

trade-off.

Let us denote by Di j the distance between the behaviors

of individuals i and j. In its simplest form, the behavior

sharing function B(i) can be formulated as the mean distance

between the behavior of i and the one of each individual of

the population. Instead of maximizing the fitness F(i) only,

we have to maximize two objectives:
{

F(i)
B(i) = 1

N ∑
N
j=1 Di j

(3)

Designing a distance between behaviors of robots may

seem to be a challenging task. However, we have found

that in many cases a distance built on basic features tied

to robot behavior was sufficient to bootstrap the evolutionary

process and avoid many local minima. A simple and efficient

approach for mobile robotics is to associate to each individual

i a vector v(i) describing the state of the environment at

the end of the experiment. Di j can then be defined as the

Euclidean distance between v(i) and v( j). For instance, if the

robot has to move objects in an arena, a v(i) may contain the

positions of the objects. If the robot has to explore a maze,

the final positions can also be used. As a last example, when

evolving a n inputs logic function, e.g. XOR, the output for

each of the 2n set of inputs can be stored in a 2n-dimensional

vector.

The behavioral diversity approach shares some similarities

with the recently published novelty search [37]. In this

paper, Lehman and Stanley proposed to maximize the novelty

of behaviors instead of fitness to define an open-ended

evolutionary process. Using a distance between behaviors

D(i, j), similar to the one discussed here, they defined the

sparseness ρ at a point x: ρ(x) = 1
k ∑

k
i=0 D(x,µi) where µi

is the i-th nearest neighbor of x with respect to the distance

D. The neighbors are computed using the current population

and an archive of all the previously explored behaviors. Three

main points differentiate the two approaches:

• they optimize only novelty whereas we propose to use a

multiobjective algorithm that does not ignore the main

goal;

• they use an archive of all the previously explored

behaviors;

• since the distance is computed using the archive and the

current population, they mixed a diversity measure with

a novelty one.

Despite the substantially high computational cost induced by

the growing archive, novelty search could avoid evolutionary

cycles that could occur with behavioral diversity. Nonethe-

less, we will see in the next section that some intuitive

Fig. 2. Overview of the benchmark task. Seven colored lights are placed
in an arena, each of them being mounted on a button switch which turns on
some other lights; the light circuit (unknown to the algorithm) is represented
by arrows. The goal-task is to turn on light 6.

behavior distance can not be employed with novelty search

while they can be used with behavioral diversity.

IV. LIGHT-SEEKING ROBOT

A. Main task

To benchmark the proposed approach on a typical incre-

mental task, we designed a variant of the light-seeking task

which involves seven sub-tasks with complex dependencies.

A similar but simple version of this task has, for example,

been studied in [38]. A simulated wheeled robot is placed

in an arena with seven different colored lights (figure 2).

Each light is mounted on a button switch which, when

pressed, turns on one or more lights in the arena. Once

a light is on, it remains in the same state during the

whole experiment. The main goal is to turn on a particular

light. The connection between lights and switches, a simple

explicit dependency between tasks, is to be discovered by

the evolutionary algorithm. To benchmark future incremental

algorithms, the task can be easily complexified by adding

lights or changing the dependencies between lights. This task

has been chosen because it does not require nor complex

genotypes nor complex fitness functions to be solved: its

main challenge is its incremental nature.

The underlying structure of this incremental task is de-

picted on figure 2. Each lights turn on only if the previous re-

lated light is on, following the relations depicted on figure 2.

The first light turns on two other lights, creating two paths to

solve the goal-task. A part of the population may choose to

learn to turn on lights {0,1,2,3,4,5,6} and another one may

learn sequence {0,4,5,6}. This task can therefore be learned

in different ways. Despite the simplicity of this problem and

of the different sub-tasks, it involves at least four sub-tasks

(turn on each of the lights belonging to the shortest path to

the goal light), making it one of the most complex composite

tasks explored with incremental evolution at this time.

The simulated robot (figure 3) is equipped with seven pairs

of light-sensors, each one sensing a different light color.

Light sensors have a 90 degrees field of view and a binary

output (1 if the light is in the field of view, 0 otherwise).



Fig. 3. The simulated robot is equipped with seven pairs of binary light
sensors, each one sensing a different light. The controller is an evolved
neural-network with 14 inputs and 2 outputs (the speed of the motors).

A robot is controlled by an evolved neural network with 14

inputs and 2 outputs whose topology and synaptic weights

are encoded by a simple direct encoding [1]: the network is

represented by a weighted directed graph in which neurons

and connections can be randomly added or removed. Two

kinds of mutations are possible:

• structural mutation: addition/removal of a neuron or a

connection;

• parametric mutation: change of a randomly chosen

synaptic weight or a neuronal bias; we used here a

change in a set of 15 possible values (similar results

were obtained using real-valued weights and Gaussian

mutation).

The mutation rates of each operator are detailed in appendix.

Cross-over is not used. Neurons use the following activa-

tion function, based on tanh(x), to easily allow the inhibition

of a neuron in the case of negative inputs:

f (x) =

{

tanh(x) if x > 0

0 otherwise

B. Experimental setup

Behavioral diversity and multi-subgoal evolution have

been tested on this problem to compare them.

To use the multi-subgoal approach, one objective for

each light (Fmsb
i , i ∈ 0,1, · · · ,6) was defined. To avoid over-

learning and check the robustness of the evolved behaviors,

each objective is the minimal score for three experiments in

which the robot starts from different positions:

Fmsb
i (x) = min

n=1,2,3

−ϕ(n, i)

T
(4)

where i = 0,1, ...,6 is the identifier of the light, T is the

length (in time-steps) of each experiments and ϕ(n, i) denotes

the number of time-steps spent before reaching light i, for

experiment n.

The behavioral diversity approach first requires to define

a classic fitness Fbd corresponding to the goal to be reached.

Here we used the number of time-steps to reach the last light:

Fbd(x) = Fmsb
6 (x) = min

n=1,2,3

−ϕ(n, i)

T
(5)

We then have to define a distance Di j between the behavior

of i and j. We chose to describe the behavior of i by a

Multi-subgoal Evol.. Behavioral div. T-test

Bootstrap gen. 138(38) 218(75) p < 0.001
Goal objective −0.27(0.04) −0.27(0.05) p < 0.853

TABLE I

MEAN BOOTSTRAP GENERATION AND MEAN OBJECTIVE VALUE AFTER

500 GENERATIONS.

Boolean vector v(i) such that:

v
(i)
k =

{

1 if the k-th switch has been pressed

0 otherwise
(6)

Di j can be computed using an Euclidean distance between

v(i) and v( j):

Di j =
∣

∣

∣

∣v(i) −v( j)
∣

∣

∣

∣ (7)

This distance lead to surprising results if we use it with

novelty search. To distinguish novelty and diversity, we only

consider here the archive when computing ρ . Thus, we

will not mix the diversity with the novelty. At the end of

the random generation, the archive typically contains the

following behaviors, due to the incremental structure of the

task: 0000000, 10000000, 1000100 and 1100000. We are

clearly more interested in 1000100 and 1100000 because the

corresponding robot reaches more lights. Since the archive

contains only 4 entries, only 4 kinds of behaviors are present

in the population. Let’s compute their novelty score to know

which ones will be selected for the reproduction:

0000000 : ρ = 0.957

1000000 : ρ = 0.75

1000100 : ρ = 0.957

1100000 : ρ = 0.957

The most interesting individuals have the same fitness than

individuals with the 0000000 behavior. Since the latter is the

least interesting and easiest to obtain, we can predict that

the evolutionary process will never start. This prediction has

been confirmed by some preliminary experiments.

We used NSGA-2 [39], a state-of-the-art MOEA, to max-

imize the objectives in the multi-subgoal case and in the

behavioral diversity case, with a population of 200 individ-

uals. 30 runs of 1000 generations for each of the proposed

methods have been launched.

V. RESULTS

Runs of a direct evolution algorithm designed to minimize

the number of time-steps to turn-on the last light, did not

find any working controller, all individuals obtaining the

minimum fitness. This contrasts with the results obtained

with the two presented methods, summarized in table I. In

both cases, all the runs converged to very similar values of the

goal fitness. The bootstrap generation (the generation where

at least one individual reach a main fitness greater than −0.8)

was significantly lower with multi-subgoal evolution than

with the behavioral diversity (138 versus 218) but both values



Fig. 4. Trajectory of a typical non-dominated individual after 500
generation. The robot follows the shortest path (0,4,5,6).

i0

19

1.5

25

2

i1

o0

5

23

5

i2

17

1.5

i3

21

2

i4

-2

i9

o1

-0.5

i10

-5

i11

-4

20

3

i12

2

i13

-4

3

i14

5 1.5

5

5

2

22

23

-4

Fig. 5. Neural network of a typical non-dominated individual, after 500
generations. Input and output neurons are double-circled (some inputs are
unused); i0 and i1 are connected to the sensors able to see the first light, i2
and i3 the second one, etc.

are of the same order of magnitude: the bootstrap problem

was overcome in a few hundred of generations and similar

fitness values were obtained at comparable generations.

All observed dominant individuals for the last light ob-

jective followed the shortest path (i.e. 0,4,5,6) whereas a

slightly longer path, using more lights, was possible (figure

4). An aggregation of all the subgoals into one single

objective would have lead to individuals trying to push

all the switch buttons. All the obtained neuro-controllers

were robust to the robot starting point: from any reasonable

starting position, the robot efficiently performed the good

sequence. As a consequence, not overlearned behavior was

observed.

Figure 5 displays the neural network of a typical non-

dominated individual, after 500 generations. This neural net-

work is surprisingly simple as it uses only 4 hidden neurons

and some sensors are not connected to any neuron. This

low complexity emphasizes that the investigated problem

is mostly a selection pressure problem and not a genotype

problem. Moreover, it can be noticed that such simple neural

network is unlikely to learn the complex sequence “by heart”

and more likely to rely on its sensors.

To analyze the bootstrap process, we plotted the proportion

of the population which reaches each light in a typical run

of each method (figures 6 and 7).

The diagram corresponding to multi-subgoals evolution

shows a clear staircase structure. Almost 50 generations are

required to obtain the first individuals to reach the light 0

but after 100 generations, the whole population reaches it.

Individuals can then switch the next lights, 1 and 4. These

new skills are shared by the whole population in a few

generations, allowing some individuals to reach light 6 in

less than 150 generations. This incremental structure gives

support to our assumptions about the effect of the multiob-

jective evolutionary pressure: the first attainable objectives

are first optimized and the process automatically switches to

new ones as soon as possible; the two hypothesis – the two

available paths to solve the task – are explored simultane-

ously; and solved objectives apply almost no pressure once

they are solved.

The diagram corresponding to behavioral diversity shows a

very similar structure in which gradients show that each sub-

tasks is successively solved. However, the picture is noisier

because the diversity approach also maintains individuals

that don’t solve each task, since at a given generation, they

may be different from the remaining of the population.

Significantly fewer generations are required to converge with

the multi-subgoal method than with the behavioral diversity.

VI. CONCLUSION AND DISCUSSION

We proposed a new method to solve the bootstrap problem

observed in evolutionary robotics and compared it with a

recently published approach. Compared to previous methods,

both approaches don’t require to order sub-tasks or to specify

when to switch between them since the evolutionary process

automatically explores all the available orders. Moreover,

the performance on the subgoals can be continuously im-

proved and some may be ignored. We showed that both

methods efficiently solved the bootstrap problem on a typical

incremental robotics task although the newly introduced

method is less directive than the previously published one.

Hence, our contribution is twofold: (1) we propose a new

way to maintain the diversity of a population, especially

adapted to evolutionary robotics and (2) we show that such

a diversity preservation mechanism can efficiently overcome

the bootstrap problem in an evolutionary robotics experiment.

Although they seem at first glance very different, the two

approaches actually share the same basic principle: their

common goal is to provide a selective pressure towards

exploration and they only differ by the method used to supply

it. Both behavioral diversity and multi-subgoal will select

individuals which are able to switch on lights that no other

can1. However, the behavioral diversity ranks individuals

according to an averaged Euclidean distance whereas multi-

subgoal uses a Pareto sort. Consequently, behavioral diversity

will also select individuals that can’t switch a single light, as

long as they are the only one to do so, whereas an individual

that switches any light will always dominate an individual

that doesn’t switch any light at all in multi-subgoal. This

1They would be even more similar with a binary value for the subgoals
in the multi-subgoal approach: 0 light not switched on, 1 light switched on
during evaluation.



Fig. 6. Multi-subgoal evolution. (top) Proportion of individuals which reach each light as a function the generation, in a typical run. (bottom) Best fitness
for the main objective.

Fig. 7. Behavioral diversity. (top) Proportion of individuals which reach each light as a function of generation, in a typical run. (bottom) Best fitness for
the main objective.

doesn’t make a huge difference here, as individuals that don’t

switch any light are easy to find and then won’t capture the

search effort for long. More formally, the main difference

lies in the fact that multi-subgoal is an oriented search. It

means that the designer has to know how to sort good and

bad behaviors and how to evaluate the robot’s performance

for each of the subgoals. To use behavioral diversity, only

a frame in which behaviors can be described needs to be

provided. On the toy problem we considered here, this

doesn’t make a huge difference, neither on the results, nor

on the knowledge we have provided to the algorithm, but it

might be more significant in other tasks.

The simplicity of behavioral diversity makes this approach

appealing and easy to integrate in an existent framework.

However, in particular problems, it may be hard to design

a relevant distance between behaviors. A generic way to

describe behaviors of mobile robots would be useful to

design such distances, hence making easier the application

of behavioral diversity to new tasks.

Behavioral diversity makes explicit the exploration and

exploitation part of the algorithm through the behavioral

diversity objective and the goal fitness. Compared to other

learning algorithms like reinforcement learning, there is no

need to explicit here the balance between the two objectives,

it is autonomously managed by the multiobjective algorithm.

The true ability of the algorithm to handle this important

aspect of the search should be more carefully studied.

The cross-over operator, not used in this work for the

sake of simplicity, could have an effect on the two investi-

gated methods. Since multi-subgoal evolution and behavioral

diversity maintain individuals able to solve different sub-

tasks, each part of them could be combined to create more

efficient individuals. Using this operator to evolve neuro-

controllers would probably require a modular encoding of



neural networks, such as MENNAG [40].
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APPENDIX

• population size: 200
• number of runs : 30 for each method
• weights:

{

−5.0,−4.0,−3.0,−2.0,−1.5,−1.0,−0.5,

0.0,0.5,1.0,1.5,2.0,3.0,4.0,5.0
}

• weight mutation rate: 0.2
• number of inputs: 15
• number of outputs: 2
• min. neurons (random gen.): 10
• max. neurons (random gen.) : 20
• min. connections (random gen.) : 20
• max. connections (random gen.) : 35
• rate of connection addition: 0.15
• rate of connection removal: 0.25
• rate of connection change: 0.1
• rate of neuron addition: 0.025
• rate of neuron removal: 0.025
• activation function: yi = tanh

(

−b+5 ·∑ j wi jx j

)


