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Evolving modular neural-networks through exaptation

Jean-Baptiste Mouret Stéphane Doncieux

Abstract— Despite their success as optimization methods,
evolutionary algorithms face many difficulties to design artifacts
with complex structures. According to paleontologists, living
organisms evolved by opportunistically co-opting characters
adapted to a function to solve new problems, a phenomenon
called exaptation. In this paper, we draw the hypotheses (1) that
exaptation requires the presence of multiple selection pressures,
(2) that Pareto-based multi-objective evolutionary algorithms
(MOEA) can create such pressures and (3) that the modularity
of the genotype is a key to enable exaptation. To explore these
hypotheses, we designed an evolutionary process to find the
structure and the parameters of neural networks to compute a
Boolean function with a modular structure. We then analyzed
the role of each component using a Shapley value analysis.

Our results show that: (1) the proposed method is efficient
to evolve neural networks to solve this task; (2) genotypic
modules and multiple selections gradients needed to be aligned
to converge faster than the control experiments. This promi-
nent role of multiple selection pressures contradicts the basic
assumption that underlies most published modular methods for
the evolution of neural networks, in which only the modularity
of the genotype is considered.

I. INTRODUCTION

Finding the parameters and the topology of neural net-

works is a complex task that has been successfully tackled

with evolutionary algorithms many times (e.g. [1]–[5]). Al-

though these methods easily lead to good parameters for

many systems, they turn out to be inefficient to evolve

artifacts with arbitrary complex structures. In other words,

current evolutionary algorithms are widely successful op-

timization methods but are bad engineers. This result is

surprising with regard to the complexity reached by living

organisms using “natural” evolution.

These difficulties echo the main criticisms addressed by

early – and current – opponents to Darwin. While it is easy

to admit that natural selection can maintain and improve a

given trait, how do complex characters emerge at first? Put

differently, how natural selection could favor the intermediate

structures required to solve complex tasks? Darwin wrote a

lengthy answer to this challenge in the last edition of The

Origin of Species [6] in which he highlighted that a structure

does not have to be employed for the same purpose during

the whole evolution of a species. Consequently, structures

might originate from an adaptation to a function and then be

opportunistically co-opted to solve a new problem. Darwin

termed this concept preadaptation, but modern evolution-

ary biologists use the less connoted word exaptation [7].

According to current paleontology, exaptation explains, in

particular, crucial steps of the evolution of life such as the
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appearance of the digits of tetrapods, initially adapted to an

aquatic environment [8], or first bones, useful for the storage

of inorganic ions.

Despite the prominent role of exaptation in the evolution

of complex organisms, this phenomenon seems to be, if

not absent, at least rare in artificial evolution. Complex

life forms are subject to many selection pressures such

as the performance of their vision system, the ability to

move faster, the variety of food they can eat, etc. As a

consequence, evolution can improve organisms with respect

to many selection gradients and the obtained adaptations

can later be employed to solve problems raised by another

selection gradient, resulting in an exaptation. Classical artifi-

cial evolution defines only one selection gradient, the fitness

function, thus preventing the evolutionary process to exploit

exaptation to lead to complex artifacts.

Recognizing this problem, several researchers (e.g. [9]–

[12]) proposed to replace the fitness function by an implicit

evaluation scheme in which individuals are situated in an

artificial world. Inhabitants of these simulated environments

compete for limited resources while trying to meet sexual

partners to spread their genotype. These studies provide

many insights about the dynamics of evolutionary systems

and can lead to complex “artificial life forms”; however,

they are not designed to solve concrete problems, such as

creating a neuro-controller for a robot to clean a room or

finding the optimal structure of a bridge. In this paper,

we draw the hypothesis that Pareto-based multiobjective

evolutionary algorithms (MOEA, see [13]) can explicitly

provide multiple selection gradients, thus enabling exaptation

to evolve complex and potentially useful artifacts.

The existence of a selection pressure may not be suf-

ficient to improve a particular trait: if a gene has many

pleiotropic effects1, it may be impossible to improve one

character without altering some other ones; consequently,

the more independent the genes coding for unrelated traits,

the more efficiently a selection gradient can be followed. In

other words, the genotype-phenotype map – how genotype

variations are reflected in the phenotype – should be modular

(see [14]). This intuition is confirmed by a recent theoretical

study [15] that highlights that genotypic modules, phenotypic

modules and selection gradients should be “aligned” to fully

benefit from the advantages of modularity for the evolvability

of complex systems. Moreover, modularity makes easier the

repetition of a functional sub-part in an organism. Such a

duplicated module can then be employed for a new function

without damaging its use in the original context. The impor-

1Pleiotropy occurs when a single gene influences multiple phenotypic
traits.



tance of modularity to evolve complex systems and especially

neural networks has been widely recognized ( [1], [16]–[19])

but, to our knowledge, neural-network modules have never

been explicitly linked to selection gradients.

In this article, we propose an evolutionary process de-

signed to exploit exaptation and modularity to synthesize

complex systems. Our aim is twofold: (1) investigating the

links between evolution, modularity and selection gradients

and (2) introducing a scalable method to evolve complex

systems. We illustrate our ideas by evolving neural-networks

to compute a complex and modular Boolean function, a

problem previously employed in another study about modu-

larity [20].

The remainder of this paper is organized into four parts.

Section II is an overview of the related previous work.

Section III describes our approach, from the definition of

a modular genotype-phenotype map to the use of MOEAs

to create multiple selection gradients. Section IV details our

experiment and analyzes the results using the Shapley value.

The last section is a brief discussion.

II. PREVIOUS WORK

Only a few papers explicitly deal with exaptation and

preadaptation in the evolution of artificial systems [11], [21]–

[23]. De Oliveira [11] studies an artificial ecosystem of

two-dimensional cellular automata designed to make difficult

adaptations by natural selection. Exaptation was possible by

exploiting a sequence of non-adaptations caused by genetic

drift. Studying the evolution of neural networks, Miglino et

al. [22] noticed that some changes of the neural networks

were non-adaptive – and consequently only selected by

chance – but were later required to increase the fitness.

Miglino et al. conclude that this phenomenon was an ev-

idence of artificial preadaptation. While these two papers

report observations of preadaptation in an artificial context,

Graham and Oppacher [23] proposed a process designed

to exploit exaptation to improve existing evolutionary algo-

rithms. Tackling a toy problem, the authors designed four

fitness functions of increasing difficulty and associated them

to four niches. Individuals of each niche were evaluated

using the corresponding fitness but they were allowed to

migrate between niches at the end of each generation. At the

beginning of their experiments, individuals were viable only

in the simplest niche but, after a few hundred generations,

they managed to migrate from niches to niches to finally

solve the most complex problem. These results demonstrate

the power of exaptation to solve difficult tasks by providing

different fitness gradients.

Using intermediate steps to evolve solutions for complex

problems is often referred to as incremental evolution [4],

[24]–[26]. In these works, the task is split into stages of

increasing complexity. Candidate solutions are first selected

using a first fitness function and, once a convergence criterion

is reached, the experimenter changes the fitness to a more

complex one. Despite its practical successes, this manual

approach has several drawbacks (see [27]) such as the need

to find a good switch criterion, the necessity to follow

designer’s ordering of sub-problems, the inability to explore

multiple hypotheses and the absence of explicit selection

pressures on the previous sub-tasks.

Mouret et al. [27] show that these drawbacks can be ef-

ficiently overcome by defining a multiobjective optimization

problem in which each objective corresponds to a sub-task

and by then solving it using a Pareto-based MOEA (see

[13]). At the beginning of the process, individuals obtain

a non-minimal fitness only for the simplest objectives. As

they improve with respect to these objectives, they will

reach the minimal performance for the sub-tasks required

to try the more complex ones. As a consequence of the

Pareto sort, individuals that obtain a non-minimal fitness on a

previously unreachable sub-task will be non-dominated – and

consequently selected – but best individuals for the simpler

sub-tasks will be non-dominated too. Thus, the evolutionary

process will automatically switch to complex tasks as soon as

possible, while maintaining a selection pressure on previous

tasks and while not depending on any a priori ordering of

sub-tasks. Moreover, a part of the population may dominate

with respect to one of the intermediate sub-tasks while

another part can improve along another selection gradient;

the process can thus simultaneously explore different evo-

lutionary paths. Each selection gradient in this case relies

on complete solutions features and has no direct impact on

sub-parts of it. This differs from natural evolution, in which

particular evolutionary pressures can shape specific organs.

This difficulty will be addressed in the present paper by

introducing modules in candidate solutions.

The evolution of modular systems and especially modular

neural networks has drawn considerable attention in the last

few years because of the intuitive hypothesis that they are

more evolvable than monolithic ones. Most papers about

the evolution of modular neural networks deal with the

design of modular encodings with different approaches. For

instance, Gruau [1], Hornby and Pollack [28] and Mouret

and Doncieux [29] derive techniques from evolutionary pro-

gramming to exploit the intrinsic modularity of tree-based

representations; Doncieux and Meyer [30] and Reisinger

et al. [19] use simpler representations based on a list of

modules, directly encoded, and a blueprint that specifies

how modules are connected. In these papers, the authors

implicitly assume that modular systems will be favored by

the evolutionary process. Consequently, they do not propose

any explicit link between the selection pressures and the

modules.

Nevertheless, this hypothesis is questionable. As noticed

in [31], monolithic neural networks are often more efficient

and easier to obtain than their modular counterpart. The ob-

servation that living organisms are highly modular, and that it

explains at least a part of their success, raises the question:

how modularity did emerge in nature? Wagner et al. [32]

review many proposed explanations and conclude that the

direct selection for evolvability, i.e. the implicit hypothesis

behind modular encodings, is one of the less likely ones.

Recent papers in theoretical biology emphasize the role of



the selection pressure to explain the modular organization

of organisms. In particular, Lipson et al. [33] and Kashtan

and Alon [20] employ numerical models to show that rapid

changes of evolutionary pressures induce modular structures.

In another theoretical study, Altenberg [15] concludes: “My

main proposal is that the evolutionary advantages that have

been attributed to modularity do not derive from modularity

per se. Rather, they require that there be an ‘alignment’

between the spaces of phenotypic variation, and the selection

gradients that are available to the organism.”

III. METHOD

A. Modular genotype-phenotype map

Definitions of what a module is are multiple and rather

vague. In this work, we chose to call a module a subset of a

system containing several entities functionally integrated and

largely independent of the entities that constitute the other

modules. In the context of neural-networks, the interactions

between neurons are defined by the connections and the

synaptic weights; so we can consider the network as a

directed graph and try to find highly connected clusters.

This problem has a long history in graph theory due to its

usefulness in sociology – to analyze groups of people – and

in biology – notably to analyze gene regulatory networks.

Leicht and Newman [34] recently proposed a robust and

efficient approach to detect modules by optimizing a measure

(simply called “modularity”) over the possible divisions of

a network. Broadly, Leicht and Newman [34] state that, in

a good division, the number of edges between groups is

smaller than expected, i.e. in most cases, smaller than the

mean number of edges in a random network of the same

size. Good divisions regarding this measure can be computed

using a spectral analysis method that demands O(n2) time,

where n is the number of vertices in the network.

Such sub-graphs of a neural-network constitute phenotypic

modules. Genotypic modules are more straightforward to

define since one has only to check that genetic operators

only affect sub-parts of the genotype. Using the approach

introduced in [34], phenotypic modules can be extracted from

any network and many modular genotypes can be designed.

Consequently, the important point for the evolvability of

complex systems is not only the existence of modules in the

genotype and in the phenotype; it is how genotypic modules

relate to phenotypic ones.

This relation, called the genotype-phenotype map, is said

to be modular if genotypic modules are developed into

phenotypic modules2. The neural network modules emerge

from the topology of the neural network. As a consequence, a

small change in the neural network, for instance the addition

of a connection induced by a mutation, can considerably

modify the optimal division. This makes it difficult to define

a modular genotype-phenotype map: depending on the neural

network encoding, it can be difficult to guarantee that a

genotypic module will lead to a meaningful phenotypic

2In real organisms, many levels of modules are nested and so the
modularity of genotype-phenotype map can be difficult to express clearly.

Fig. 1. An individual’s genotype is made of a main network and one or
several sub-networks. Each sub-network is associated with a list of links
that connect the sub-networks to the main network. If several lists of links
exist for a same sub-network, the latter is added several times to the main
network. The neural network on the right is an example of a phenotype that
could have been encoded with the genotype on the left.

Fig. 2. The three main mutation operators. (a) Parcellation: isolation
of a sub-network. (b) Integration: replacing a sub-network by a link to a
parcellated one (this allows the repetition of a module) (c) Differentiation:
putting a sub-network back in the main network.

module. In a biological context, Wagner et al. [32] explain

that only two processes can lead to a modular genotype-

phenotype map: parcellation, which consists in a differential

suppression of pleiotropic effects between groups of char-

acters, and integration, which corresponds to the selective

acquisition of pleiotropy among characters from the same

group. How could these two concepts be transposed to neural

networks? Removing pleiotropic effects can be interpreted as

making the contour of phenotypic modules more resistant to

mutations. Parcellation can consequently be the isolation of

the part of the genome coding for a module, extracted using

the approach described in [34]. Thus a phenotypic module

would remain stable during the evolution. Integration can be

seen as the replacement of a module by a copy of another

one, thus providing a repetition mechanism.

Trying to implement these operations as mutations in the

simplest genotype possible, we start by considering a typical

graph-based direct encoding in which two kinds of mutations

are possible:

• structural mutation: addition/removal of a neuron or a

connection;

• parametric mutation: change of a randomly chosen



Fig. 3. Principle of the cross-over operator. If both parents have a
parcellated module, it is exchanged to create their offspring. Otherwise,
the each children is a copy of one of the parent (mutation operators are
then applied).

synaptic weight or a neuronal bias; we use here a change

in a set of 9 possible values (see appendix).

To easily add integration and parcellation as mutation op-

erators, we then defined our neural network encoding as

a main network – encoded using the previously described

direct encoding – and a list of sub-networks, each of them

associated with links towards the main network (figure 1).

Before applying any operator, the main network is divided

into modules using [34] and their inputs and outputs are

identified. Inputs of a module are either a connection between

an extra-module neuron to an intra-module one, or an input of

the main network. Outputs are defined similarly. The specifi-

cation of each modular operator is now straightforward. The

parcellation acts in three steps (figure 2(a)):

• removal of a module from the main network;

• addition to the sub-network list;

• addition of the links to the sub-network’s links list.

The removed module can be, either randomly selected or

deterministically chosen as the best module regarding one

of the sub-tasks. In this work, this second approach is used.

The integration requires also three steps (figure 2(b)):

• random selection of a module m1 from the sub-network

list;

• random selection of a module m2 of the main network

with the same number of inputs and outputs as m1;

• removal of the module m2 from the main network;

• addition of the links to the sub-network links list.

To counterbalance the effects of these two operators, we

added an operator named “differentiation” that puts back

a sub-network into the main network and removes the

corresponding links in the list (figure 2(c)). This operator

undoes parcellation and integration and it can be used by the

evolutionary process to create a variant of a repeated module.

Each operator is assigned a mutation rate (between 0.05 and

0.2, see appendix).

A simple cross-over operator is implemented by exchang-

ing two parcellated modules (figure 3).

Note that the proposed encoding aims at being simple and

abstractly related to biology in order to investigate the links

between selection gradients, genotypic modules and selection

gradients. Our main goal is therefore not to introduce a novel

encoding for a neural network but is to provide a tool to study

modularity. Other modular encodings for neural networks

(e.g [17], [19], [30]) might be used but their structure makes

them harder to link to biological literature.

B. Selection gradients

Following the work of Altenberg [15], we “align” pheno-

typic modules and selection gradients, which means that each

phenotypic module should be linked to a fitness function.

To that aim, we propose to first define fitness functions

able to evaluate sub-networks for potentially useful sub-

functions. For each individual, the main network is divided

into modules using the approach described in [34]. Each

such module and each parcellated module are then evaluated

according to each objective. We use the best value obtained

by a module for each objective as the fitness of the individual

with respect to this objective. Each of these fitness functions

constitutes an objective of a multiobjective problem. The

main fitness, which rewards the ability to solve the problem

we are interested in, is added as another objective.

Using a Pareto-based MOEA to optimize this multiobjec-

tive problem has several consequences. An individual with

an inefficient overall behavior will be considered as Pareto-

optimal if it contains at least a good module for a sub-task. If

the main task requires such an efficient module to build more

complex solutions, it will be gradually improved thanks to the

selection pressure inducted by the corresponding objective.

This module can be later co-opted at any time. Moreover, the

same module can be repeated (it may be useful elsewhere)

or propagated in the population by cross-over.

Another important consequence of the use of a MOEA is

that, as shown in [27], solving each sub-task is not manda-

tory. If the evolutionary process finds better solutions without

using modules, these individuals will dominate with regard

to the main objective and will consequently be selected.

Different hypotheses about the usefulness of each sub-task

can therefore be investigated at once: some individuals will

be good at one sub-task while some other ones will contain

useful modules for other sub-tasks; the evolutionary process

will opportunistically modify them, without any a priori

knowledge about the ordering of sub-tasks or about their

utility.

C. Shapley value

When designing and evaluating an evolutionary process,

it is important to understand what makes it efficient. A

particular genetic operator may be mandatory to lead to

working results; it may also only change the convergence

speed or even have no influence on the results. Furthermore,

the critical components may be combinations of some par-

ticular genetic operators, in which all of them are required

to bring improvements but each one is useless alone. In the

context of this paper, we would like to be able to estimate

the usefulness of each modular operator (parcellation, inte-

gration, differentiation and cross-over) and to evaluate what

brings the multiobjective approach.

Evaluating the contribution of each such component is

equivalent to finding a fair allocation of gains, e.g. the fitness,



between players in a coalitional game, a problem solved in

game theory by the Shapley value [35]. The Shapley value

is defined from the marginal contribution of a player i to a

coalition S, where i /∈ S and v(S) is a value function (the

fitness or any other relevant measure of efficiency):

∆i(S) = v(S ∪ {i}) − v(S)

The Shapley value is then defined by the payoff γi of each

player i ∈ N :

γi =
1

|N |!

∑

r∈R

∆i(Si(r))

where R is the set of all |N |! orderings of N and Si(r) is

the set of players preceding i in the ordering r.

Once the efficiency of the 2n configurations has been eval-

uated, the Shapley value can be computed as a summation

of v(s) for all the configurations, properly weighted by the

number of possible orderings of the elements (see [36]):

γi =
1

|N |!

∑

S⊂N,i∈S

v(s) · (|S| − 1)! · (|N | − |S|)!

︸ ︷︷ ︸

configurations with i

−
1

|N |!

∑

S⊂N,i/∈S

v(S) · (|S|)! · (|N | − |S| − 1)!

︸ ︷︷ ︸

configurations without i

IV. EXPERIMENT

A. Experimental setup:
[
(a ⊕ b) ∧ (c ⊕ d)

]

We evaluated the proposed approach on the evolution of

neural networks to compute the Boolean function
[
(a⊕ b)∧

(c⊕d)
]
, where a, b, c and d are Boolean values and ⊕ denotes

the exclusive “or” operator (xor). This function, previously

used in [20] to study the evolution of modular NAND

networks, has a clear modular structure: it is made of two

“xor” functions, each of them requiring at least one hidden

neuron, linked by a simpler logical “and”. The truth table of
[
(a ⊕ b) ∧ (c ⊕ d)

]
shows that a simple neural network that

returns “false” for any input would have a 75% success rate, a

good score at the beginning of the evolutionary process. As a

consequence, these degenerated neural networks could easily

invade the population whereas they do not constitute a good

starting point. This makes the typical single-objective fitness

for this function very deceptive. The
[
(a⊕b)∧(c⊕d)

]
function

therefore constitutes a simple illustration of the situations in

which exaptation could be useful: the typical fitness does not

provide useful enough search gradients and we can suggest

a helpful sub-function (xor).

We used the sum of errors for each possible set of inputs

as the main fitness (expressed in a fitness maximization

scheme):

Fx = 1 −
1

16

16∑

i=1

|oi − di|

where oi is the output of the neural network for the input

set i and di the desired output. Each neural network is

simulated during 100 time-steps. Since we do not constrain

the structure of the neural networks, nothing prevents them

from oscillating. To avoid such behaviors, we attribute an

arbitrary low fitness if the output is not constant during the

last 10 time-steps.

We then defined a second objective Fm that rewards the

efficiency of a “xor” module in an individual:

Fm = max
m∈M

Fxor(m)

where M is the set of all modules. Considering that a module

m is compatible if it has 2 inputs and 1 output, Fxor is the

sum of errors for the module m with respect to the function

“xor”:

Fxor(m) =

{

1 − 1

4

∑
4

i=1
|oi − di| if m is compatible

−1 otherwise

The NSGA-II algorithm was employed with a population

of 400 individuals and the parameters described in appendix.

We launched five sets of experiments, each of them made of

32 runs:

• exaptation: parcellation (P), integration (I), differenta-

tion (D), cross-over (C) and multiple selection pressures

(M);

• M: multiple selection pressures only, i.e. no genotypic

modules;

• P+I+D+C: genotypic modules only;

• standard: direct encoding without genotypic modules

and without selection pressures;

• NEAT, a popular neuro-evolution approach [3].

We didn’t compare our results with a modular encoding

for neural network because (1) they are very complex to

implement and to tune and (2) our main focus is on the

benefits of linking selection gradients to modules.

B. Results

Figure 4(a) shows the proportion of converged runs (Fx >
0.9) as a function of generation, for each of the three

investigated approaches. Less than half of the control runs

converged within 5000 generations. This result agrees with

[20], in which the authors report that only 72% of their

control runs converged in less than 105 generations. NEAT

leads to substantially better results since almost all the

runs converged in 1500 generations and more than half of

them in only 500 generations. This confirms the published

results in which NEAT outperforms direct encodings (e.g.

[3]). Nevertheless, the exaptation-based approach converged

faster than NEAT. The 32 experiments converged in less than

1000 generations and half of them in about 300 generations.

Figure 4(b) corroborates this observation: on average, 400
generations are required with the exaptation-based approach

while NEAT need 700 generations3.

Surprisingly, not only did the approach based only on the

genotypic modularity (P+I+D+C) not improve the conver-

gence rate over the control experiments, but also it deterio-

rated it slightly. The runs that employed only the multiple

3This difference is statistically significant (p < 0.003).



Fig. 4. (a) Proportion of converged runs (Fx > 0.9) as a function
of generation. “M+P+I+D+C” denotes the full exaptation experiments,
“standard” denotes the control experiments, which use a simple direct
encoding (with the same parameters as the one used by the exaptation
experiment) and one objective; the experiments “M” correspond to the
multiobjective approach with the modular genetic operators disabled; in
“P+I+D+C”, the modular operators are used with the main fitness only.
(b) Mean generation of convergence and standard deviation (the other
experiments are omitted because only a few runs converged in less than
5000 generations). The differences between these two sets of experiments
are statistically significant (p < 0.003).

Fig. 5. (a) Typical neural network obtained with the proposed approach.
(b) The parcellated module used in (a).

pressures scheme (M) obtained even worse results: only one

run converged in less than 1500 generations. Given that our

exaptation experiment used the combination of P, I, D, C and

M, these results demonstrate that, at least in this experiment,

both a modular encoding and multiple selection gradients are

required to improve the efficiency of the evolutionary pro-

cess. A simple “waste of resources” may explain the results

obtained with the “M” experiment: a part of the population

is used to maintain many Pareto-optimal candidate solutions

with a low main fitness; if this scheme does not improve the

evolutionary process, it is broadly equivalent to reducing the

population size, hence possibly deteriorating the convergence

rate over the control experiment. Further investigations are

needed to fully understand this phenomenon.

A typical neural network obtained with the exaptation

approach is drawn on figure 5. It Is clearly made of two

repeated modules, each of them computing a “xor” function.
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Fig. 6. Shapley values for each component. M: Multiple selection gradients;
P: Parcellation; C: Cross-over; I: Integration; D: differentiation.

These modules are two instances of a parcellated module,

which obtained an optimal fitness according to Fxor.

C. Shapley value analysis

To draw a better picture of what makes the proposed

approach efficient, we employed the Shapley value analysis

described in section III-C. We investigated the role of the use

of two selection gradients (M), of the parcellation (P), of the

cross-over (C), of the integration (I) and of the differentiation

(D). The efficiency of 25 = 32 variants must therefore be

evaluated.

Several choices are available for the value function, which

should reflect the efficiency of a variant. We chose to focus

our work on the convergence rate because we are primarily

interested in getting as much successful experiments as possi-

ble. In some configurations, some components of our system

can substantially decrease the convergence rate. For instance,

we found that using the two selection gradients without

parcellation lead to a 3% success rate whereas the control

experiment has a 44% rate (section IV-B). If this component

is required to obtain good scores in other configurations,

it should have a high Shapley value but this value can be

substantially lowered by these bad configurations, hiding the

interesting analysis. We are interested in understanding which

components improve over the control experiments and not

about the fact that they can lower the scores in some cases.

We consequently designed the following value function:

v(S) = max(vc(∅), vc(S))

where vc(S) is the convergence rate for the configuration

S and vc(∅) denotes the convergence rate of the control

experiment.

We launched 32 runs of each variant for 1500 generations

with the same parameters as in section IV-B. The resulting

Shapley values are displayed on figure 6.

The two highest values are obtained by the multiple

selection gradients (M) and the parcellation operator (P).

This means that these two components are critical to get the

highest convergence rates. The fact that their values are very



close4 confirms that using only one of them is not sufficient

to improve the efficiency of a variant; both of them are

required. The parcellation operator links genotypic modules

to phenotypic modules and selections gradients are linked

to phenotypic modules by the multiobjective approach (M).

As a consequence, the obtained Shapley values highlights

the need for the alignment suggested by the theoretical

work of [15]: genotypic modularity (P) is useless if it is

not linked to selection gradients. This conclusion contradicts

the underlying hypothesis of current modular encodings for

neural networks, which assumes that providing a modular

genetic encoding is enough to improve the efficiency of the

evolutionary process.

The next highest value is obtained by the integration

operator, which is trivially useful for the
[
(a ⊕ b) ∧ (c ⊕

d)
]
function. This Shapley value is substantially lower than

the two previous ones, showing that the key-point in the

evolution of our modular neural networks is not the repetition

mechanism. The cross-over only slightly improves the results

and the differentiation has almost no effect.

V. DISCUSSION

In the artificial evolution paradigm, researchers often try

to design a universal encoding which would allow to easily

solve any problem by only specifying a simple and high-level

fitness function. Hence, they put complex mechanisms in the

encoding and try to use as little knowledge as possible in the

fitness function. This approach is surprisingly disconnected

from evolutionary biology, in which most descriptions of

the evolution of living organisms primarily rely on selection

pressures. When Darwin introduced his theory, nothing was

known about the genome; but this didn’t prevent him and

his successors from successfully explaining the essence of

the origin of most species.

The results presented in this paper indicate that the use

of a single fitness function might be an over-simplification

of the natural evolutionary process, which could prevent the

evolution of complex artifacts. In particular, the Shapley

value analysis shows that multiple selection pressures are

required to efficiently evolve neural networks for the inves-

tigated problem. This result was expected as the presence of

multiple selection gradients is the key to enable exaptation,

hence the evolution of complex designs. However, a more

interesting result of this analysis is that multiple selection

gradients are useless by themselves. Both modularity and

selections pressures are required: if one of them is omitted,

the evolutionary process is less efficient than the control ex-

periment. This leads to a new evolutionary scheme centered

on evolutionary pressures and genome modularity.

Since we add more knowledge in the fitness function, this

approach might move our research away from a mythical

“universal problem solver”. However, all the published meth-

ods to evolve complex systems rely on biases that could

constrain them to specific problems, since we do not know

4Actually, they are equals but proving this equality is out of the scope of
this work.

any universally good bias. NEAT, for instance, begins the

evolutionary process using only one topology, typically a

feed-forward neural network without hidden nodes. This

requires from the experimenter the implicit knowledge that

such a network is a good starting point. Putting biases in

the selections gradients possesses at least the advantage of

being explicit, and therefore could allow a better analysis.

Compared to incremental evolution methods, the approach

presented in this paper puts fewer constraints on the search

because intermediate steps are not mandatory. We only

suggest potentially useful steps; the process is then free to

use or to ignore them.

Having highlighted the need for multiple selection gradi-

ents and modular genomes, we can wonder if the selected

genome and MOEAs are the best tools for these tasks. The

main difference between the proposed encoding and other

modular encodings lies in the idea that genotypic modules

should develop to phenotypic modules. However, applying

a selection pressure directly on the sub-network associated

with a genotypic module might be enough to facilitate the

emergence of phenotypic modules. Hence, more elaborated

modular encodings (e. g. [29]) could be used as long as the

inputs and outputs of each module can be determined.

The use of a classical Pareto-based MOEA to introduce

multiple selection gradients allows us to rely on a well

established set of efficient algorithms. However, recent the-

oretical [37] and empirical [38] studies demonstrate that

such evolutionary processes were not well suited to optimize

more than three antagonistic objectives. By employing an

objective for each sub-function, the proposed process will

easily require more than three objectives and consequently

could put Pareto-based MOEA out of their limits. Neverthe-

less, if our starting hypothesis is valid, the objectives will

not be antagonistic: the exaptation process should exploit

individuals with a good fitness on one objective to build

individuals for the more difficult objectives. Therefore, some

individuals could dominate on most objectives. However,

the dominance relation puts all objectives at the same level

whereas we are mainly interested in the main task. Some

experiments with modified domination criteria may therefore

reveal themselves more efficient.

VI. CONCLUSION

We explored the hypothesis that multiple selection gra-

dients and a modular genotype-phenotype map were two

key-points to evolve complex artifacts. To that aim, we

defined a bio-inspired modular encoding and employed it

with a Pareto-based MOEA in which one objective rewarded

the efficiency of a module to complete a sub-function. We

further hypothesized that exaptations should occur in this

evolutionary framework by co-opting modules evolved for

simple sub-functions to solve more complex ones.

We tested these ideas on the evolution of neural networks

to compute a modular Boolean function. Our results show

that: (1) the proposed method is efficient to solve this task;

(2) both modularity and multiple selections gradients were

required to converge faster than the control experiments. This



prominent role of multiple selection pressures contradicts the

basic assumption that underlies previously published modular

methods for the evolution of neural networks.

In further work, we will try to link modules used in other

modular encodings to selection gradients in order to under-

stand the set of features required for modular encoding. Then,

other methods to create multiple selection gradients should

be investigated because Pareto-based MOEA are not well

suited to optimize more than three antagonistic objectives.

Last, the proposed method should be benchmarked on other

tasks to assess its generality.
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APPENDIX

• population size: 400
• weights/biases:

˘

−2.0,−1.5,−1.0,−0.5, 0.0, 0.5, 1.0, 1.5, 2.0
¯

• weight/bias mut. rate: 0.2;
• min. neurons (random gen.): 10

• max. neurons (random gen.) : 20

• min. connections (random gen.) : 20

• max. connections (random gen.) : 35

• cross rate : 0.5
• parcellation rate: 0.25

• differentation rate: 0.02

• integration rate: 0.1
• rate of connection addition: 0.15

• rate of connection removal: 0.25

• rate of connection change: 0.1
• rate of neuron add: 0.025

• rate of neuron removal: 0.025

• activation function: yi = tanh
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