
HAL Id: hal-00473118
https://hal.science/hal-00473118v1

Submitted on 14 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scalable Address Allocation Protocol for Mobile Ad Hoc
Networks

Yu Chen, Eric Fleury, Tahiry Razafindralambo

To cite this version:
Yu Chen, Eric Fleury, Tahiry Razafindralambo. Scalable Address Allocation Protocol for Mobile Ad
Hoc Networks. Mobile Ad-hoc and Sensor Networks, International Conference on, Dec 2009, Wi Yi
Mountain, China. pp.41-48, �10.1109/MSN.2009.10�. �hal-00473118�

https://hal.science/hal-00473118v1
https://hal.archives-ouvertes.fr

Scalable Address Allocation Protocol for Mobile

Ad Hoc Networks

Yu Chen

Google, UK

chenyu@google.com

Eric Fleury

ENS Lyon, D-NET/INRIA, France

Eric.Fleury@inria.fr

Tahiry Razafindralambo

INRIA Lille - Nord Europe, France

tahiry.razafindralambo@inria.fr

Abstract—In this paper, we present for mobile ad hoc networks
an efficient distributed address allocation protocol which is
immune to topology changes caused by node’s mobility. Contrary
to the common belief that mobility makes protocol design more
difficult, we show that node’s mobility can, in fact, be useful
to provide efficient address allocation in ad hoc networks. In
our protocol, each node that has been assigned an address
manages a disjoint subset of free addresses independently. By
taking advantage of node mobility, we can achieve roughly even
distribution of free addresses amongst nodes in the system, which
enables a new joining node to be configured by its neighbors
via only local communication. Theoretical analysis and extensive
simulation results are presented. We show that most of the
address allocation requests can be processed in a timely fashion
via local communication in the requester’s neighborhood with
time and message complexity in the order of node’s degree,
regardless of the network size.

I. INTRODUCTION

A wireless mobile ad hoc network is a collection of mobile

nodes that communicate over wireless links in a multi-hop

fashion without any fixed infrastructure or centralized servers.

The focus of this work is on dynamic address allocation in

wireless mobile ad hoc networks. Address allocation is a

fundamental functionality required in mobile ad hoc networks.

A majority of routing protocols for mobile ad hoc networks

assume that nodes are configured a priori with a unique ad-

dress before they communicate. However, such an assumption

is not trivial, since there is no global identification which is

truly unique; e.g., duplicates exist in IEEE medium access

control (MAC) addresses. Hence, it is required to dynamically

configure wireless nodes with a unique address upon their

entry into the network.

Address allocation should be designed specifically to ad-

dress the characteristics of mobile ad hoc networks. Mobility

is one fundamental issue that needs to be addressed. In

traditional networks, dynamic address allocation can be per-

formed by a Dynamic Host Configuration Protocol (DHCP) [2]

server. But this solution is not well suited in wireless ad hoc

networks due to the unavailability of centralized servers. Thus

the goal should be to design a distributed fast efficient address

allocation protocol that is immune to topology changes.

In this work, we present a solution that achieves this goal in

spite of its simplicity. Our basic idea is to let each node play an

independent equal role in the address allocation service in the

sense that each node manages independently a disjoint subset

of free addresses. In most existing works on address allocation,

the assignment of an address to a new joining node is either

authorized by multiple nodes, which are potentially distributed

in the whole network, (e.g., [6]) or by a single node (e.g.,

[10]). In this work, we let each node take a full responsibility

in managing a disjoint set of free addresses, A fundamental

difference between our work and existing works is that our

approach takes the advantage of node mobility to achieve

roughly even distribution of free addresses, and thus, different

from most existing works, the assignment of an address

requires the authorization from only one node and there are

multiple nodes that can authorize address assignments, which

implies a reduction in communication cost if new joining

nodes can find such a node in their neighborhood.

Contrary to the common belief that mobility makes protocol

design more difficult, we show that node mobility can, in

fact, be useful to provide efficient address allocation in ad

hoc networks. Although, node mobility creates uncertainty on

the network topology, it can also be exploited to disseminate

information without incurring much communication overhead.

Based on this observation, we aim to achieve even distribution

of free addresses as follows: when a new node acquires a free

address, it gets the free addresses held by all its neighbors

and redistributes them evenly among its neighbors and itself.

Since mobility increases the chance that different nodes meet

each other, such a mechanism can even out the distribution of

the free addresses held by nodes in the network, as verified

by our analyses and simulation results.

We show by theoretical analyses and simulations that, in

our approach, most nodes can be allocated addresses via local

communication. As acquiring an address from a neighbor only

generates a small number of messages (in the order of the new

joining node’s degree) and can be done a timely way regardless

of the network size, our work provides fast efficient address

allocation and it scales well to larger networks. Furthermore,

as our approach mainly relies on local communication, it is

less vulnerable to topology changes caused by node’s mobility.

In this work, our proposed solution is targeted at address

assignment, but the idea can be easily extended to general

resource management.

An overview of related work is given in Section II. Then we

give the basic idea of our approach in Section III and describe

our implementation in Section IV. Theoretical analyses are

given in Section V and simulation results are presented in

Section VI. Last we conclude our paper in Section VII.

2

II. RELATED WORK

A number of address auto-configuration protocols have

been proposed for ad hoc networks, which aim to provide

an efficient address assignment in a dynamic environment; a

comprehensive survey can be found in [12].

One strategy is to employ some duplication address detec-

tion mechanism in address allocation. The basic idea is to

let a new joining node pick an address by itself and checks

the uniqueness of the picked address by some duplication

detection mechanism, and if duplication is detected, a new

address is chosen; this procedure is repeated until a unique

address is found. Examples of protocols that take this strategy

including [11] and [5]

Another strategy is based on a central or a distributed entity

that assigns unique addresses to new nodes. The Dynamic

Host Configuration Protocol (DHCP) [2] is an example of

this strategy. DHCP is a four phases protocol, a new joining

node floods the network with a DHCP discover packet. Every

DHCP server that can configure the new joining node sends

(using flooding) a DHCP offer packet containing the assigned

address and other configuration information to the client. The

client sends back a DHCP request packet to the first server

to confirm the reception of an address. In the last phase,

the DHCP server sends an acknowledgment to the client. In

[8], each node maintains a list of all the addresses in use in

the network. When a new node joins the system, it requests

an address through one of its neighbors that have joined the

system. The latter chooses an address that is free according

to its address list and query throughout the network for the

permission to assign the chosen address; the assignment is

granted only if a positive acknowledgment is received from all

known nodes. In [6], address space is stored in a distributed

way on a subset of specific nodes called ADA (ADdresses

Agents). Each node is at least one hop away from an ADA.

Each ADA periodically sends an HELLO message. A new

joining node that receives the HELLO message is assigned

an address by the ADA. If the new joining node does not

receives an HELLO message, it becomes an ADR (ADdresses

Root) with an address pool it also randomly generates partition

identifier for merging purpose.

Works that are most similar to our work is Dynamic

Configuration Distribution Protocol (DCDP) [7], which uses

a transactional model whereby nodes are either requesters of

or responders to individual configuration requests. As in our

approach, each node in DCDP owns an address pool; the

essential difference is how the free addresses are distributed

in the address pools of nodes in the network. In DCDP, when

node responds a requesting node, it sub-leases part of its

available address pool to the requester; while in our approach,

instead of obtaining the address pool from a single node, a

requester gets the information of the free addresses in the

address pools of all its neighbors and redistributes them evenly

in the address pools held by its neighbors and itself; since

mobility increases the chance that different nodes meet each

other, such a mechanism can even out the distribution of the

free addresses among nodes in the network. As we will see,

the performance is much improved in our approach. The work

presented in [4] is very close to [7].

A fundamental characteristic of mobile ad hoc networks is

nodes’ mobility. In most works, mobility has a negative impact

on protocols’ performance and most of them do not consider

node’s mobility or assume that nodes are static until they are

configured. However, it is also shown mobility can also help

to provide better services, such as capacity [3], security [1]. In

this work we exploit mobility to design and efficient address

allocation protocol.

III. BASIC IDEA OF OUR APPROACH

In our protocol, in order to reduce communication overhead

and latency, we let each node take a full responsibility in man-

aging a disjoint set of free addresses — when a new joining

node’s address allocation request is successfully processed,

it is assigned an address and a set of free addresses that it

is responsible to manage. We aim to evenly distribute the

free addresses among nodes, thus a new joining node can be

configured by its neighbors via local communication, provided

that it is connected to at least one node in the system. Our

basic idea is that, during the process of its address allocation

request, the new joining node redistributes evenly among its

neighbors and itself the free addresses that were previously

held by its neighbors. In this paper, the term “broadcast” stands

for message propagation in a node’s neighborhood and the

term “flooding” refers to network-wide message propagation.

We refer address space to the set of addresses from which

addresses are to be assigned to nodes in the system. The

system can be initialized manually by assigning one or several

nodes an address and a set of free disjoint addresses. These

particular nodes are only important for initialization, since

nodes play an equal role after this initialization phase.

After the system initialization, when a new joining node,

called client, acquires an address, the following steps are taken.

1) The client broadcasts an address allocation request. 2) When

a node in the system receives a request, it responds with its free

addresses ; we refer a server to a node that has responded to an

address allocation request. 3) The client listens to the responds

from its neighbors for a timeout period. If it receives at least

one free address, it picks one of them as its own address and

divides the rest into D+1 roughly equal size portions, where D

is the number of servers from which the client has received the

responses. The client keeps one portion as its free addresses

and send one portion to each of its servers, which will update

its free addresses as the received addresses.

If the client does not get any free address during the timeout

period, it resends the request; as nodes are moving around in

the network, the client might meet some nodes that hold an

non-empty set of free addresses when it resends the request.

Address release upon nodes departure is simple in our

protocol: when a node leaves the system, it sends its address

and the set of free addresses it holds to one of its neighbors

which can be chosen randomly. These addresses are merged

3

into the set of free addresses held by this neighbor and thus

they can be reassigned to other nodes later.

Note in our approach, as free addresses managed by each

node are disjoint, duplicate addresses will not occur in the

scenarios with node crashes, network partitions or message

loss; instead, address loss might happen. Our approach does

not deal with network partitions or node crashes explictly. The

idea behind is that, from the aspect of address allocation, the

detection of network partition and node crashes is unnecessary

as long as free addresses are available for new joining nodes.

If a node does not get an address after a given number of

requests, in most of solutions described in the literature, a

request is flooded in the network and the new joining node is

assigned an address in a multi-hop flooding way (since nodes

are mobile). The flooding can also be used to recover lost

addresses or to generate new address pools.

It is worth noting that even if a flooding can be time and

resource consuming from the network point of view it can

be used in our protocol. However, in the protocol implemen-

tation proposed in this paper, thanks to nodes’ mobility, we

remove the flooding approach and allow some nodes, not to

be configured. Our analysis and simulations show that the

percentage of unconfigured node is very small and that most of

the address allocation requests can be processed in a timely

fashion via local communication, regardless of the network

size. Moreover, unlike most of the works proposed in the

literature, our work is imune to topology change.

IV. PROTOCOL DESCRIPTION

In this section, we present a protocol implementation of our

algorithm. We will also discuss in details the implementation

of basic enhacements that can improve the performance of our

protocol.

As many low-level protocols (e.g., MAC protocols), we

assume that each node is equipped with a timer and each node

has an identifier that is unique within its two-hop neighbor-

hood; here we use the term “identifier” to distinguish it from

the one, termed “address”, assigned by our address allocation

protocol. We denote the identifier of node n by id(n). A

node’s identifier can be a number randomly generated from a

sufficiently large space. It is worth noting that the this identifier

has to be unique at least in the two-hop neighborhood of the

node. In our protocol, such identifiers are used only in local

communication. Thus even though the length of identifiers is

large, the overhead is restricted. Note once nodes are assigned

addresses by our protocol, it is the assigned addresses, instead

of the identifiers, that are used in high level communication.

A. Local variables and message formats

The local variables maintained by each node and the formats

of messages exchanged by our protocol are given in Algorithm

1, where we denote the data type of node identifiers by

Identifier and the data type of node addresses by Address.

A node n’s address allocation state is represented by three

variables: the address addr assigned to n, the set addr space

of free addresses managed by n, and the identifier client of

the node whose request is being processed by n; client is set

−1 if n is not processing any request. Temparory variables

are also used.

Three types of messages are defined by our protocol. The

first type is ARQ (Address ReQuest) messages. This type of

messages are sent by new joining nodes that require addresses.

An ARQ message contains the identifier of the sender in the

field src.

Upon the reception of an ARQ message, nodes that process

this request responds with ARR(Address Request Response)

messages. An ARR message has three fields: the identifier of

the sender src, the identifier of the destination dst, that is,

the identifier of the client whose address allocation request is

being processed by the sender, and the set addr space of the

free address space managed by the sender.

After a client receives ARR messages from servers that

are processing its request, it broadcasts an ASU (Address

Space Update) message to update the servers’ state. An ASU
message has three fields: the identifier of the sender src, a list

server list of identifiers of the servers whose free address

spaces will be updated by the client; the updated space of the

ith node in server list is specified by addr space[i].
In the sequel, given a node n and a name x that identifies

a variable, we use the denotation n.x to refer to variable x at

node n, and given a message m and a name x that identifies a

field, we use the denotation m.x to refer to field x in message

m.

B. Algorithm sketch

The protocol version of the proposed algorithm, named

MAAA (Mobility-Aided Address Allocation) protocol, is given

in Algorithm 1. A new joining node follows Part I of Algo-

rithm 1 to request an address. We use a variable try, initialized

in lines 1 and updated in line 2, to trace the number of requests

a node has sent.

A client sends an address allocation request via an ARQ

message and it sets the timer to expire in time WaitTimeOut
(lines 3-4). Before the timer expires, the client collects the free

address spaces managed by the servers that process its request

(lines 5-11); this information is carried in the ARR messages

and the received free space and the identifiers of servers are

recorded in variables recv addrs and recv servers respec-

tively. If the client receives any free address (line 12), it

picks one free address as its address (line 13) and divides

the received free addresses into roughly equal size sets (line

14). The client picks one set as the free space managed by

itself and it broadcasts an ASU message to update the free

address space managed by servers in recv servers.

If the client fails to receive any ARR message, it resends the

request (lines 17-25); the number of requests sent by a client

is bounded by parameter MaxTry (line 18). The client waits

for IntervalARQ (lines 19-20) before it resends the request

(line 21).

Nodes that have joined the system (is already configured)

follow Part II of Algorithm 1 to process address allocation

requests. Each server can process more than one request at

4

a time. When a node receives an ARQ message, even if it

has no free addresses or if it is processing another request,

sends an ARR message that carries the information of its free

address space which can be 0 if it has no free addresses; a

random backoff mechanism is used to avoid collisions (lines

3-4), where MaxMACDelay is an estimation on the maximum

latency to send a message in one hop by the underlying MAC

protocol. The accuracy of MaxMACDelay will not affect the

correctness of the protocol. When a server receives an ASU

message from a client (line 7), it updates its free space as

indicated by this ASU message (lines 8-11).

Algorithm 1 MAAA (Mobility-aided address allocation) pro-

tocol
• Message formats:

ARQ messages: Identifier src;

ARR messages: Identifier src, dst; Address addr space[];
ASU messages: Identifier src, server list[]; Address addr spaces[][];

• Local variables: Address addr, addr space[]; Identifier client = −1;

• Parameter:
double WaitTimeOut, IntervalARQ, MaxMAXDelay;

int MaxTry;

PartI — Code on a client n:

1: int try = 0;

2: try + +;

3: broadcast an ARQ message m with m.src = id(n);

4: set TIMER to expire in time WaitTimeOut;
5: Address recv addrs[] = ∅;

6: Identifier recv servers[] = ∅;

7: while (TIMER 6= 0) do

8: Upon reception of an ARR message m with m.dst = id(n)
9: recv addrs = recv addrs ∪ {m.addr space};

10: recv servers = recv servers ∪ {m.src};

11: end while

12: if (recv addrs 6= ∅) then {{/* Successfully get an address */}}
13: addr = one address from recv addrs;

14: divide recv addrs − {addr} into k = |recv servers| + 1 subsets a0,

. . ., ak with roughly equal size;

15: addr space = ak;

16: broadcast an ASU message m with m.src = id(n), m.server list =
recv servers and ∀i ∈ [0, |recv servers|], m.addr space[i] = ai;

17: else {{/* Fail to get an address */}}
18: if try < MaxTry then

19: set TIMER with expiration time IntervalARQ;

20: while (TIMER 6= 0) do no-op; endwhile

21: go to line 2;

22: end if

23: end if

PartII — Code on a server n:

1: while receive an ARQ message m do

2: client = m.src;

3: backoff random time in [0, WaitTimeOut − MaxMACDelay];
4: send ARR message m′ with m′.src = id(n), m′.dst = client,

m′.addr space = n.addr space;

5: n.addr space = 0
6: end while

7: while receive an ASU message m with (m.src == client) do

8: if (id(n) ∈ m.server list) then

9: i = index such that m.server list[i] = id(n);

10: n.addr space = n.addr space + m.addr spaces[i];
11: end if

12: end while

V. PERFORMANCE ANALYSES

Theoretical analyses are presented in this section. Intu-

itively, with higher node density or node mobility, more

nodes can be assigned addresses via local communication,

as they have more chance to meet different nodes. This is

verified by our analyses. Our algorithm is designed for general

mobile scenarios. However, as arbitary mobility prevents most

problems from being analyzed, we present our analyses for a

simplified scenario modeled as follows, where for presentation

simplification, we allow each node to hold a “floating-point

number” of addresses (non-integer).

• Initially there are N0 nodes, denoted by {n1, . . . , nN0
},

each of which holds R addresses, including one address

allocated to itself and R − 1 free addresses that can be

allocated to new joining nodes. We denote by S = N0R

the size of the address space.

• Only one node joins the system at a time.

• When a node n joins the system, it connects to D nodes

such that each node in the system becomes n’s neighbor

with an equal probability.

Our analyses indicate that the performance improves as node

mobility or node density increases. We show in this section

that the expected number of addresses at a node, including its

address and the free addresses it holds, is proportional to the

ratio of the total number of available addresses to the number

of nodes in the system. In particular, we prove that, when 1
r

of

the available addresses have been assigned to N = S
r

nodes,

the expected number of addresses at a node is at least r D
D+1 .

This result implies that, as long as the total number of nodes

is no more than D
D+1S, the expected number of addresses at

a node is at least one.

Note the case N0 < D+1 can be modeled by a system with

D + 1 initial nodes, each of which has N0R
D+1 addresses, since

when D +1−N0 new nodes join the system, the system will

reach a state with D + 1 nodes and each node having N0R
D+1

addresses. So we only need to consider the case N0 ≥ D +1.

We divide the execution into steps such that given any t > 1,

the tth new node joins the system at step t; we denote by

Nt = N0 + t the total number of nodes that have joined the

system at the end of step t and denote by nNt
the node that

joins the system at step t. In particular, we refer “the state at

the end of step 0” to the initial state. For any t ≥ 0 and any

i ∈ [1, Nt], we denote by r(i)(t) the amount of addresses held

by node ni at the end of step t.

Addresses are reallocated by our algorithm as follows. Here

we focus on the steps in which address allocation can be done

via the standard procedure; this represents the number of nodes

that can be assigned addresses via only local communication.

Since we are interested by the total amount of addresses held

by a node, for each t, we present the update on the value

of r(i)(t) for each node ni, instead of the specific r(i)(t)
addresses allocated to ni.

• Initially, only nodes n1, . . . , nN0
exist in the system, each

of which holds R addresses. That is,

r(i)(0) = R,∀i = 1, . . . , nN0

• At step t, node nNt
joins the system and the free

addresses are reallocated as follows.

– A set D nodes = {i1, . . . , iD} of D indices are ran-

domly chosen from {1, . . . , Nt−1}, representing the

D nodes that are randomly picked as the neighbors

of nNt
.

5

– Note the address reallocation is simplified by allow-
ing each node to hold a floating-point number of
addresses. We have

r(i)(t)=

{
∑

k∈D nodes
r(k)(t−1)

D+1 if i ∈ D nodes ∪ {Nt}
r(i)(t − 1) otherwise

Only nodes in {ni|i ∈ D nodes ∪ {Nt}} update their

addresses. These nodes have the same number, rNt
(t),

of addresses at the end of step t. The new join node nNt

cannot obtain an address from its neighbors if and only

if r(Nt)(t) < 1.

Since our focus is on address allocation via local com-

munication, we define local allocation processes as those

from step 0 to step t where t satisfies r(Nt)(t) < 1.

In the sequel, we present our analyses for (1) the number of

addresses held by each node at the end of each step, and (2) the

number of nodes in the system when a local address allocation

process stops. We denote the step in which a local address

allocation process stops by step T , that is, rNT −1(T) ≥ 1
and rNT

(T) < 1. The total number of nodes that have been

allocated an address via only local communication is NT −1.

In this section, given a vector v, we use v(i) to denote the ith

element in v and given a matrix M , we use M(i,j) to denote

the element at the ith row and jth column in M .

A. State vector and transition matrix

We describe the state of address allocation at the end of step

t ≥ 0 by a vector of N elements for some large number N ≥
N0; the ith element, i ∈ [1, N], is the number of addresses held

by node ni at the end of step t. Note only nodes {n1, . . . , nNt
}

have joined the system, and the number of addresses held by

nodes in {nNt+1, . . . , nN} are defined to be 0.
Definition 1 (State Vector r(t)): Given any t ≥ 0, the state

of address allocation at the end of step t is described by a
state vector r(t) defined as:

r(t) ≡ 〈r(1)(t), r(2)(t), . . . , r(Nt)
(t), 0, . . . , 0〉,

where r(i)(t), i ∈ [1, Nt], is the number of addresses held by

node ni at the end of step t.
As D nodes are randomly chosen at each step, r(t) is a random
variable. Given t ≥ 1 we denote by R(t) the sample space of
the random variable r(t). Given any t ≥ 0 and r ∈ R(t), we
denote by P (r, t) the probability that the state at the end of
step t is r. Formally,

∀t ≥ 0, ∀r ∈ R(t), P (r, t) ≡ the probability of (r(t) = r)

The initial state vector and sample space are given below:
• the state vector

r(0) = 〈r(1)(0), . . . , r(N0)(0), 0, . . . , 0〉,

where r(1)(0) = . . . = r(N0)(0) = R, and
• the sample space of the state vector

R(0) = {〈r(1)(0), r(2)(0), . . . , r(N0)(0), 0,〉}.

The state r(t) is decided by the state r(t− 1) at the end of

step t− 1 and the action taken at step t. We model the action

taken at step t by a matrix A(t), called a transition matrix.
Definition 2 (Transition Matrix): Given ∀t ≥ 1, we use an

N × N matrix A(t), called the transition matrix, to represent

the action taken at step t on the state of address allocation.
That is, ∀r(t − 1) ∈ R(t − 1), we have

r(t) = r(t − 1)A(t),

which is equivalent to

r(i)(t) =

N
∑

k=1

r(k)(t − 1)A(k,i)(t).

Given any t > 1, the transition matrix A(t) is a random vari-
able. We denote by A(t) its sample space. Given A ∈ A(t),
we denote by P (A, t) the probability that the transition matrix
at step t is A. Formally

∀t ≥ 1, ∀A ∈ A(t), P (A, t) ≡ the probability of (A(t) = A).

The matrix A(t) that models our algorithm is computed as fol-
lows. At step t ≥ 1, given the indices {i1, . . . , iD} ⊆ [1, Nt−1]
of the D picked nodes, the transition matrix is

A(t) = T (i1, . . . , iD, t),

where T (i1, . . . , iD, t) is an N × N matrix such that

T(i,j)(i1, . . . , iD , t) ≡

1
D+1 if i, j ∈ {i1, . . . , iD}

1
D+1 otherwise, if i ∈ {i1, . . . , iD}, j = Nt

1 otherwise, if i = j, i, j ≤ Nt−1

0 otherwise

Given a matrix A = T (i1, . . . , iD, t), we denote
{i1, . . . , iD} by D nodes(A); intuitively, these are the D
nodes picked in the action modeled by A. We can verify that
the A(t) so computed is consistent with our algorithm, since
letting r = r(t − 1)A(t), we have

r(i) =

{

∑

k∈D nodes(A(t))
r(k)(t−1)

D+1 if i ∈ D nodes(A(t)) ∪ {Nt}
r(i)(t − 1) otherwise

.

The sample space of A(t), denoted by A(t), is the set
of matrix T (i1, . . . , iD, t) for all the possible combinations
{i1, . . . , iD} of D indices from {1, . . . , Nt−1}. Formally, we
have

A(t) =

{

T (i1, . . . , iD, t) :
(

ik1
6= ik2

, ∀k1, k2 ∈ [1, D]
)

∧

(ik ∈ [1, Nt−1],∀k ∈ [1, D])

}

B. Expected state vector

Now we investigate the expected value of the state vector
at step t. We define

r(t) ≡
∑

r∈R(t)

P (r, t)r and A(t) ≡
∑

A∈A(t)

P (A, t)A

Below we give a property of the expected state vector.
Lemma 1:

r(t + 1) = r(0) · A(1) · A(2) . . . A(t + 1)

Proof: Due to space limitation, the proof will not be

developped here. The intuition of the proof is that by defintion

we have: r(t + 1) =
∑

r∈R(t+1) P (r, t + 1)r. And we can

show that r(t + 1) =
∑N

k=1

(

r(k)(t) · A(k,i)(t + 1)
)

.

Since r(0) = 〈r1(0), r2(0), . . . , rN0
(0), 0, . . . , 0〉 is known,

r(t + 1) can be computed if A(1), . . ., A(t + 1) are computed.

In the next lemma, we present a computation of A(t); in

particular, we compute A(i,j)(t), ∀i, j ∈ [1, N].

6

Lemma 2: Given t ≥ 0, letting x(t) = 1 − D2

Nt(D+1) ,

y(t) = D
Nt(D+1) and z(t) = 1

Nt−1

(

D2−D
Nt(D+1)

)

= 1−x(t)−y(t)
Nt−1 ,

we have

Ai,j(t) =

{

x(t) if (i ∈ [1, Nt]) ∧ (j ∈ [1, Nt]) ∧ (i == j)
z(t) if (i ∈ [1, Nt]) ∧ (j ∈ [1, Nt]) ∧ (i 6= j)
y(t) if (i ∈ [1, Nt]) ∧ (j == Nt+1)
0 otherwise.

Proof: First note at step t + 1,

• the probability for a node ni, i ∈ [1, Nt], to be picked is
∑

A∈A(t),i∈D nodes(A)
P (A, t) = D

Nt
, and

• the probability for two nodes ni, nj , i, j ∈ [1, Nt], i 6=
j, to be picked is

∑

A∈A(t),i,j∈D nodes(A)
P (A, t) =

D(D−1)
Nt(Nt−1) .

Here we compute A(i,j)(t), ∀i, j ∈ [1, Nt]. Note A(i,j)(t) =
∑

∀A∈A(t) P (A, t) · A(i,j). There are four cases.

• Case 1: (i ∈ [1,Nt]) ∧ (j ∈ [1,Nt]) ∧ (i == j).
In this case, ∀A ∈ A(t), A(i,i) = 1

D+1 if i ∈
D node(A), and A(i,i) = 1 otherwise. So we have

A(i,i)(t) = 1 −
D2

Nt(D + 1)
= x(t)

• Case 2: (i ∈ [1,Nt]) ∧ (j ∈ [1,Nt]) ∧ (i 6= j) .
In this case, ∀A ∈ A(t), A(i,j) = 1

D+1 if i, j ∈
D node(A), and A(i,j) = 0 otherwise. So we have

A(i,j)(t) =
D2 − D

Nt(Nt − 1)(D + 1)
= z(t)

• Case 3: (i ∈ [1,Nt]) ∧ (j == Nt+1).
In this case, ∀A ∈ A(t), A(i,Nt+1) = 1

D+1 if i ∈
D node(A), and A(i,Nt+1) = 0 otherwise. So we have

A(i,Nt+1)
(t) =

D

Nt(D + 1)
= y(t)

• Otherwise, that is, (i ∈ [Nt + 1,N]) || (j ∈ [Nt + 2,N]).
In this case, ∀A ∈ A(t), A(i,j) = 0. So we have

A(i,j)(t) = 0.

Note that the prove is shorten du to space limitation.

Given a state r(t−1) at step t−1, addresses are redistrbuted

at step t according to A(t). Note for any step t, ∀k ∈ [1, Nt],

the sum of entries at row k is
∑Nt+1

i=1 A(k,i)(t) = x(t)+(Nt−
1)z(t)+ y(t) = 1. This means no address lost. The difference

of two entries A(i,j)(t) and A(i′,j′)(t), i, i′ ∈ [1, Nt], j, j′ ∈
[1, Nt + 1], is

• x(t) − y(t) = Nt−D
Nt

≥ 0,

• x(t) − z(t) = (Nt−D)(NtD+Nt−1)
Nt(Nt−1)(D+1) ≥ 0, or

• y(t) − z(t) = D(Nt−D)
Nt(Nt−1)(D+1) ≥ 0,

each of which decreases as D increases; in particular, the

minimum value, 0, is achieved when D = Nt. Since a

smaller difference in the A(t) means addresses are more

evenly distributed in the system, this explains why a better

performance can be achieved with a larger D.

Below we present a property of r(t), which will be used in

our proof for the main theorem.

Lemma 3:
∑Nt

i=1 r(i)(t) =
∑Nt−1

k=1 r(k)(t − 1) = . . .

=
∑N0

i=1 r(i)(0) = RN0

Proof: We can prove the lemma by showing ∀t > 0,

Nt
∑

i=1

r(i)(t) =

Nt
∑

i=1

(

Nt−1
∑

k=1

r(k)(t − 1) · A(k,i)(t − 1)

)

=

Nt−1
∑

k=1

r(k)(t − 1)

Note here that the proof is shorten due to space limitation.

We have our main theorem below, which states that the

expected number of addresses at a node, including its address

and the free addresses it holds, is proportional to the ratio of

the total number of available addresses to the number of nodes

in the system.
Theorem 4: At step t ≥ 0, we have

r(i)(t) ≥ r(Nt)
(t) = RN0

D

(N0 + t − 1)(D + 1)
.

Proof: It is easy to see ∀t ≥ 0, r(i)(t) ≥ r(Nt)(t). For
any t ≥ 0, we have

r(Nt)
(t) =

Nt−1
∑

k=1

r(k)(t − 1) · A(k,Nt)(t − 1)

=

Nt−1
∑

k=1

r(k)(t − 1) · y(t − 1)

= RN0y(t − 1)

= RN0
D

(N0 + t − 1)(D + 1)

In particular, when 1
r

of the available addresses have been

assigned to N = S
r

nodes, the expected number of addresses

at a node is at least r D
D+1 . This result implies that, as long as

the total number of nodes is no more than D
D+1 of the total

number of addresses, the expected number of addresses at a

node is at least one.

VI. SIMULATION RESULTS

We evaluate the performance of our address allocation

scheme through simulations using ns-2 [9]. As our protocol

distinguishes from others in that we aim to achieve address

allocation via only local communication, our focus in the

simulations is on the percentage of nodes that are assigned

addresses by neighboring nodes; we denote this value by “% of
nodes” in the sequel. We examine the impact of the mobility,

the protocol’s parameters and the time needed for a node to be

configured. Due to space limitation, we do not investigate the

protocols parameters such as MaxTry or IntervalARQ. In our

protocol, whether a new node can get free addresses via local

communication depends on the state of servers that handle

its request when it sends (up to MaxTry) address allocation

requests; the probability that it is allocated free addresses by

neighbors is higher if it meets more servers and thus depends

on node mobility and size of address space.

7

We consider scenarios where nodes are randomly deployed

in an 1000 meters × 1000 meters square; the radio range

of each node is set to be 120 meters. The total number of

nodes is denoted by N and the address space is R. We first

consider R = N . The value of N is varied from 50 to 400
to achieve different levels of node density. Initially there is

exactly one node in the system and new nodes are randomly

joining the system as they are moving in the network area

according to the a random waypoint mobility model (RWP),

a random waypoint mobility model with attractors (ATT) or

a Manhattan mobility model (MAN). In RWP model, nodes

travel from a starting point to a randomly chosen destination at

randomly chosen speed from [2, 25]m/s. When a node reaches

its destination it pauses for 2 seconds before it randomly

choose a new destination. ATT model is the same as the RWP

model except that we define 4 attractors and the node randomly

chooses a destination within a range of an attractor. In the

MAN model the network area is divided into 10 × 10 grid.

A node follow the edges of the grid. At a given intersection

and after a pause time of 2s, the node randomly chooses an

edge and leave the actual intersection at a random speed. The

simulation duration is 300 seconds. We set WaitTimeOut to be

0.10 second, MaxMACDelay to be 0.05 second, IntervalARQ
to be 5 seconds. We also run simulations where nodes are static

to show how mobility can aid address allocation.

(a) Random way point (RWP)

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400

%
 o

f
n

o
d

e
s

nodes

static
speed 2m/s

speed 15m/s
speed 25m/s

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400

%
 o

f
a

v
a

ila
b

le

nodes

static
speed 2m/s

speed 15m/s
speed 25m/s

(b) Attractor (ATT)

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400

%
 o

f
n

o
d

e
s

nodes

static
speed 2m/s

speed 15m/s
speed 25m/s

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400

%
 o

f
a

v
a

ila
b

le

nodes

static
speed 2m/s

speed 15m/s
speed 25m/s

(c) Manhattan mobility (MAN)

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400

%
 o

f
n

o
d

e
s

nodes

static
speed 2m/s

speed 15m/s
speed 25m/s

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400

%
 o

f
a

v
a

ila
b

le

nodes

static
speed 2m/s

speed 15m/s
speed 25m/s

Fig. 1. Simulation results (Part I)

Our simulations consist of two parts. In part I, we first eval-

uate the percentage of nodes that are allocated addresses via

only local communication. Our simulation results show that

∼70% of nodes can be allocated via only local communication

(for Speed ≥ 15m/s, R = 200 and RWP). Since address

allocation via local communication can achieve efficiency and

immunity to mobility, it is interesting to investigate whether it

is possible to enable most nodes to be allocated addresses

locally by giving extra bits in addresses as shown in our

theorem. In part II, given a number of nodes N , we evaluate

the percentage of nodes that are allocated addresses via local

communication with up to 3 extra bits in addresses, that is,

we consider address space R = rN with r = 1, 2, . . . 8.

Our simulation results show that a very small number (up

to 3) of extra bits in the addresses can enable most of the

nodes to be allocated addresses via only local communication.

The simulation results are given in Figures 1 and 2. More

explanations and discussions follow.

A. Impact of mobility

Impact of Speed: We observe that for all mobility models

an increasing speed, roughly increases the number of node

allocated via local communication (left figures of Part I of

Fig. 1). Indeed, when node’s speed is high, it enables a new

node to meet different sets of nodes when it sends allocation

requests. It is worth noting that the % of nodes are roughly

similar for different speed because MaxTry is set to infinity.

Results in Subsection VI-C shows clearly how different speed

can affect the protocol’s performances.

Impact of density: The impact of node density differs depend-

ing on node mobility models. Surprisingly, we observe that for

the random way point (RWP) model the % of nodes is stable

when the density increases. The right figures of PartI of Fig. 1

show the % of available address at the end of the simulation.

We can see that this value is decreasing for all mobility models

but the sum of % of nodes and % of available address is

not 100%. This tells us that the increasing density increase the

address losses due to message collisions and thus reduce the

% of nodes. As in our analysis we do not consider message

losses the results of our theorem and the impact of density are

different.

Impact of node’s mobility model: We observe that the shape

of the curves are different depending on the mobility model.

However, an increasing speed increase the % of nodes for all

model compared to static network. For RWP, the % of nodes
of node is stable. Indeed, when the node density increase the

probability for a new joining node to meet a server increases.

As stated earlier, when the node density is high, messages are

more likely to be lost especially ASU and thus address pool

are lost and % of nodes decreases. For ATT, the attractor are

useful when node’s mobility is low since new joining nodes

are more likely to meet server around an attractor. However,

the density around an attractor is very high and thus increases

the message losses and address pool loss. For the Manhattan

model (MAN), the nodes are evenly distributed on the plane

which reduce the collision probability compared to the other

model. Since nodes are evenly distributed, the probability for

a new joining node to meet a server is also low compared to

the other models.

8

B. Impact of protocol’s parameters

Impact of R: We observe in Figure 2 (left figures) that

increasing the address space increases the % of nodes. These

behaviour is related to the right figures of PartI of Figure 1

since increasing the value of R reduce the effect of address

pool losses.

Impact of initialized nodes: We observe in Figure 2 (the

right figures) that the impact of the number of initialized node

is important only for low speed. Indeed for high speed, the

address pool is more likely to be distributed among nodes.

It is worth noting that for MAN, increasing the number of

initialized nodes has a greater impact since nodes are evenly

distributed on the plane with this model.

(a) Random way point (RWP)

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8

%
 o

f
n

o
d

e
s

r=R/N

N=200

static
s 2m/s
s 15m/s
s 25m/s

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 6 10 14

%
 o

f
n

o
d

e
s

starting nodes

R=200

static
s 2m/s

s 15m/s
s 25m/s

(b) Attractor (ATT)

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8

%
 o

f
n

o
d

e
s

r=R/N

N=200

static
s 2m/s
s 15m/s
s 25m/s

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 6 10 14

%
 o

f
n

o
d

e
s

starting nodes

R=200

static
s 2m/s

s 15m/s
s 25m/s

(c) Manhattan mobility (MAN)

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8

%
 o

f
n

o
d

e
s

r=R/N

N=200

static
s 2m/s
s 15m/s
s 25m/s

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 6 10 14

%
 o

f
n

o
d

e
s

starting nodes

R=200

static
s 2m/s

s 15m/s
s 25m/s

Fig. 2. Simulation results (Part II)

C. Protocol’s performance evaluation

In this section we show the performance evaluation results

of our protocol1. We assume that R = 2 × N with N = 200,

and that we have 4 starting nodes. With these paremeters,

the number of configured node is ∼ 99% except for static

networks. The Figure 3 plots the distribution of configuration

time for RWP. We can see from this graphs that mobility

increase the performance of address allocation because with

the same density of node, the maximum time needed to

configure all nodes when the nodes’ speed is 25m/s is ∼ 40s,

this value is ∼ 70s for a speed of 15m/s and ∼ 138s for a

1Due unfair assumptions, comparison with other address allocation proto-
cols are omitted since most of the protocols presented in the literature consider
the mobility as an issue. Moreover since our protocol does not explicitly deal
with network merging, duplication address detection, we do not compare our
work with protocols that focus on these properties

1 6
1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
7

5
2

5
7

6
2

6
7

7
2

7
7

8
2

8
7

9
2

9
8

1
0
3

1
0
8

1
1
3

1
1
8

1
2
3

1
2
8

1
3
3

1
3
8

1
4
3

1
4
9

1
5
4

1
5
9

0
0.2
0.4
0.6
0.8

1

STATIC

1 6
1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
7

5
2

5
7

6
2

6
7

7
2

7
7

8
2

8
7

9
8

1
0
3

1
0
8

1
1
3

1
1
8

1
2
3

1
2
8

1
3
3

1
3
8

0
0.2
0.4
0.6
0.8

1

RWP, 2m/s

1 6
1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
7

5
2

5
7

6
7

7
2

0
0.2
0.4
0.6
0.8

1

RWP, 15m/s

1 6
1
1

1
6

2
1

2
6

3
1

3
6

4
1

0
0.2
0.4
0.6
0.8

1

RWP, 25m/s

Fig. 3. Simulation results (Performance evaluation)

speed of 2m/s. These distributions also tell us that more than

80% of the nodes are configured in less than 6s which means

that these nodes are configured after the first ARQ request (for

RWP, 25m/s).

VII. CONCLUSION

We present in this work an efficient distributed address

allocation protocol which is immune to topology changes. In

our protocol, each node that has been assigned an address

manages a disjoint subset of free addresses independently. By

taking advantage of node mobility, we can achieve roughly

even distribution of free addresses amongst nodes in the

system, which enables a new joining node to be configured by

its neighbors. Theoretical analyses and extensive simulation

results are presented. We show that most of the address

allocation requests can be processed in a timely fashion via

local communication, regardless of the network size.

REFERENCES

[1] S. Capkun, J.-P. Hubaux, and L. Buttyan. Mobility helps security
in ad hoc networks. In MobiHoc ’03: Proceedings of the 4th ACM

international symposium on Mobile ad hoc networking & computing,
pages 46–56, New York, NY, USA, 2003. ACM Press.

[2] R. Droms. Dynamic host configuration protocol, rfc 2131, 1997.
[3] M. Grossglauser and D. N. C. Tse. Mobility increases the capacity of

ad-hoc wireless networks. In INFOCOM, pages 1360–1369, 2001.
[4] Z. Hu and B. Li. Zal: Zero-maintenance address allocation in mobile

wireless ad hoc networks. In ICDCS’05, pages 103–112, Washington,
DC, USA, 2005. IEEE Computer Society.

[5] J. Jeong and J. Park. Autoconfiguration technologies for ipv6 multicast
service in mobile ad-hoc networks. Networks, 2002. ICON 2002. 10th

IEEE International Conference on, pages 261–265, 2002.
[6] J.-L. Lu, F. Valois, D. Barthel, and M. Dohler. Low-energy address

allocation scheme for wireless sensor networks. PIMRC 2007, pages
1–5, Sept. 2007.

[7] A. Misra, S. Das, A. McAuley, and S. Das. Autoconfiguration,
registration, and mobility management for pervasive computing. IEEE

Wirel. Comm., 8(4):24–31, Aug 2001.
[8] S. Nesargi and R.Prakash. Manetconf: Configuration of hosts in a mobile

ad hoc network. In INFOCOM 2002, June 2002.
[9] V. P. Team. The network simulator – ns-2. VINT Project Team, Available

at http://www.isi.edu/nsnam/ns/, November 2000.
[10] M. Thoppian and R. Prakash. A distributed protocol for dynamic address

assignment in mobile ad hoc networks. IEEE Trans. Mob. Comput.,
5(1):4–19, 2006.

[11] N. H. Vaidya. Weak duplicate address detection in mobile ad hoc
networks. In MobiHoc’02, pages 206–216, New York, NY, USA, 2002.
ACM.

[12] K. Weniger and M. Zitterbart. Address Autoconfiguration in Mobile
Ad Hoc Networks: Current Approaches and Future Directions. IEEE

Network Mag., July 2004.

