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Abstract

We use time-resolved charge detection techniques to investigate single-electron tunneling in semiconductor quantum dots. The
ability to detect individual charges in real-time makes it possible to count electrons one-by-one as they pass through the structure.
The setup can thus be used as a high-precision current meter for measuring ultra-low currents, with resolution several orders of
magnitude better than that of conventional current meters. In addition to measuring the average current, the counting procedure
also makes it possible to investigate correlations between charge carriers. Electron correlations are conventionally probed in noise
measurements, which are technically challenging due to the difficulty to exclude the influence of external noise sources in the
experimental setup. Using real-time charge detection techniques, we circumvent the problem by studying the electron correlation
directly from the counting statistics of the tunneling electrons. In quantum dots, we find that the strong Coulomb interaction makes
electrons try to avoid each other. This leads to electron anti-bunching, giving stronger correlations and reduced noise compared to
a current carried by statistically independent electrons.

The charge detector is implemented by monitoring changes in conductance in a near-by capacitively coupled quantum point
contact. We find that the quantum point contact not only serves as a detector but also causes a back-action onto the measured
device. Electron scattering in the quantum point contact leads to emission of microwave radiation. The radiation is found to
induce an electronic transition between two quantum dots, similar to the absorption of light in real atoms and molecules. Using
a charge detector to probe the electron transitions, we can relate a single-electron tunneling event to the absorption of a single
photon. Moreover, since the energy levels of the double quantum dot can be tuned by external gate voltages, we use the device
as a frequency-selective single-photon detector operating at microwave energies. The ability to put an on-chip microwave detector
close to a quantum conductor opens up the possibility to investigate radiation emitted from mesoscopic structures and give a deeper
understanding of the role of electron-photon interactions in quantum conductors.

A central concept of quantum mechanics is the wave-particle duality; matter exhibits both wave- and particle-like properties
and can not be described by either formalism alone. To investigate the wave properties of the electrons, we perform experiments
on a structure containing a double quantum dot embedded in the Aharonov-Bohm ring interferometer. Aharonov-Bohm rings are
traditionally used to study interference of electron waves traversing different arms of the ring, in a similar way to the double-slit
setup used for investigating interference of light waves. In our case, we use the time-resolved charge detection techniques to detect
electrons one-by-one as they pass through the interferometer. We find that the individual particles indeed self-interfere and give
rise to a strong interference pattern as a function of external magnetic field. The high level of control in the system together with
the ability to detect single electrons enables us to make direct observations of non-intuitive fundamental quantum phenomena like
single-particle interference or time-energy uncertainty relations.
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photon-electron interactions, quantum point contacts, Aharonov-Bohm effect
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1. The quantum point contact as a charge detector

The quantum point contact (QPC) is the electron analogue of
a photon waveguide. Since the width of the constriction is of the
order of the electron wavelength, constructive and destructive
interference only allow electron wavefunctions corresponding
to standing waves in the directions of the confinement. Due to
the Fermionic nature of electrons, each mode within the QPC
carries a fixed conductance of G0 = e2/h. The conductance of
a QPC with N available modes is thus equal to [1, 2]

G = N G0, (1)

with N integer. The effect is called conductance quantization.
If the measurement is performed in the absence of magnetic
fields, the electron spin states are degenerate and the conduc-
tance quantization appears in units of 2e2/h instead of e2/h.
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Figure 1: (a) Quantum point contact, defined by etching trenches (marked in
blue in the figure) in a GaAs heterostructure containing a 2DEG 37 nm be-
low the surface. A quantum dot defined in an InAs nanowire (purple) is lying
on top of the structure. (b) Conductance of the QPC versus voltage applied
to the 2DEG. The measurement was performed in a two-terminal setup, with
VQPC−SD = 200 µV applied across the QPC. A series resistance of 4 kΩ was
subtracted because of the ohmic contact resistance. The measurement was per-
formed at a temperature of T = 1.7 K.

The conductance of the QPC depends strongly on its elec-
trostatic surroundings. This may be utilized to detect charge
fluctuations in a quantum dot (QD) close to the constriction
with single-electron resolution. In this section, we show how
to operate the quantum point contact as a charge detector and
investigate how to optimize the device to obtain the best charge
sensitivity

We are concerned with quantum point contacts formed in a
two-dimensional electron gas (2DEG). For such structures, the
confinement in growth direction is usually much stronger than
in the lateral direction. In the following, we assume the part
of the electron wavefunction in the growth direction to be in its
ground state and consider additional modes only in the lateral
direction. Quantum point contacts may be fabricated using a va-
riety of methods, for example by depleting the 2DEG by apply-
ing negative voltages to metallic gates put on the heterostructure
surface [1, 2]. Here we investigate structures formed by etching
or by local oxidation of the heterostructure surface.

Figure 1(a) shows a scanning electron microscope (SEM)
image of the device used in the experiments in this section.
An InAs nanowire is deposited on top of a shallow (37 nm
below the surface) AlGaAs/GaAs heterostructure based two-
dimensional electron gas. The QPC is defined by etched
trenches, which separate the QPC from the rest of the 2DEG.
The parts of the 2DEG marked by L and R are used as in-plane
gates. The horizontal object in the figure is the nanowire lying
on top of the surface, electrically isolated from the QPC. The
QD in the nanowire and the QPC in the underlying 2DEG are
defined in a single etching step using patterned electron beam
resist as an etch mask. The technique ensures perfect alignment
between the two devices. Details of the fabrication procedure
can be found in Ref. [3]. The QD charging energy is around
10 meV, due to the small size of the structure.

In Fig. 1(b), we plot the conductance of the QPC, measured
when shifting the voltage on the part of the 2DEG connected
to the QPC (V2DEG) and keeping the other contacts grounded.
Making V2DEG more positive has the same effect as making the
surrounding gates more negative, leading to pinch-off of the
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Figure 2: Current in the QPC and the QD for the structure shown in Fig. 1(a),
measured vs voltage on the 2DEG. A second gate is tuned simultaneously to
keep the potential of the QPC roughly constant during the sweep. As the voltage
of the 2DEG is lowered, electrons are unloaded from the QD. At each transition
there is a corresponding increase in the QPC conductance. At the same gate
voltages, sequential tunneling gives rise to peaks in the QD current.

QPC. As V2DEG is lowered, the constriction opens up to allow
the first electron mode to populate the QPC. Further lowering
V2DEG makes more modes available and the conductance in-
creases stepwise.

1.1. Charge detection
Next, we investigate the electrostatic interactions between

the QPC and the QD in the nanowire. Figure 2 displays simulta-
neous measurements of QPC and QD currents for the structure
of Fig. 1(a). As the gate voltage is lowered, electrons are un-
loaded from the QD and the QD current shows clear Coulomb
peaks at each charge transition. At the same time, the QPC
conductance changes in steps at the positions of the Coulomb
peaks [4]. The QPC was voltage biased with VQPC−SD = 200 µV
and operated between pinch-off and the first plateau. The QPC
conductance is kept roughly constant during the sweep by ap-
plying a compensation voltage to the side gate marked by L in
Fig. 1(a).

The left-most peak in the QD current in Fig. 2 is barely mea-
surable due to weak tunnel coupling between the QD and its
leads. However, the charge transition is still clearly visible in
the QPC signal. This demonstrates one of the advantages of
the charge detection method compared to a standard current
measurement. A conventional current meter has a resolution of
∼10 fA/

√
Hz, meaning that the tunneling rates of the QD must

be kept larger than Γ > 10 fA/e ∼ 60 kHz for reasonable inte-
gration times. Moreover, in order to measure current through
the QD it needs to be hooked up to two leads. On the other
hand, a charge detector can measure electron tunneling which
occurs on much slower timescales as well as detect equilibrium
fluctuations between a QD and a single lead.

Figure 3(a) shows a measurement of the QPC conductance
for a small region around one charge transition in the QD. The
measurement was performed without any bias voltage applied
to the QD and with the drain lead of the QD pinched off. At
VL = −172 mV, the electrochemical potential of the QD shifts
below the Fermi levels of the source lead and an electron may

tunnel onto the QD. This gives a decrease ∆GQPC of the QPC
conductance corresponding to the change ∆q = e of the charge
population on the QD. The curve in Fig. 3(a) shows the average
QPC conductance, which gives the time-averaged QD popula-
tion. In Fig. 3(b), we perform a time-resolved measurement
of the QPC conductance at VL = −172 mV. The QPC con-
ductance fluctuates between the two levels corresponding to (n)
and (n + 1) electrons on the QD. Transitions between the levels
occur on a millisecond timescale, which provides a direct mea-
surement of the tunnel coupling between the QD and the source
lead [6].

1.2. Time-resolved operation
As described in the previous section, charge transitions in

the QD may be detected in real-time if tunnel couplings be-
tween the QD and its leads are tuned below the QPC measure-
ment bandwidth. This allows a wealth of experiments to be per-
formed, like investigating single-electron dynamics or probing
interactions between charge carriers in the system. We post-
pone the detailed investigation of single-electron tunneling in
quantum dots to section 2; here we focus on the experimen-
tal setup and how to optimize the QPC in order to perform the
best possible charge detection measurement. Figure 4(a) shows
a time trace of the QPC current, measured in a configuration
where the coupling between the QD and the source lead is be-
low 1 kHz, and the other lead is completely pinched off. Again,
the QPC current shows two levels, corresponding to (n) and
(n + 1) electrons on the QD.

The time resolution available for detecting charge transitions
as seen in Fig. 4(a) is set directly by the bandwidth of the QPC
measurement circuit. On the other hand, increasing the band-
width also increases the noise in the measurement, leading to a
trade-off between noise and bandwidth. The effect is visualized
in Fig. 4, where the two curves show the same set of data but
filtered with different bandwidths, 10 kHz (black) and 50 kHz
(red). The filtering was performed numerically with a 6th-order
Bessel low-pass filter. In Fig. 4(b), we zoom in on one of the
transitions of Fig. 4(a). The data taken with lower bandwidth
shows a considerably slower time response than the trace taken
with higher bandwidth. The lower-bandwidth filter also intro-
duces a time offset; this is not a major problem since we are
interested in determining the time intervals between transitions
rather than the absolute transition times.
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Figure 3: (a) QPC conductance measured versus voltage on gate L. At VL =

−172 mV an electron is added to the QD, leading to a decrease of GQPC. (b)
Time trace of the QPC conductance measured at VL = −172 mV, showing a
few electrons tunneling into and out of the QD. The upper level corresponds to
a situation with n electrons on the QD. Adapted from Ref. [5].
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Figure 4: (a) Time trace of the current through the quantum point contact, show-
ing a few transitions due to electrons tunneling into and out of the QD. The two
traces are taken with 10 kHz and 50 kHz bandwidth. (b) Blow-up of one switch-
ing event from the trace in (a). The rise time is clearly different for the data
taken with 10 kHz and 50 kHz bandwidth. (c) Histogram showing the distribu-
tion of the current for the data in (a). The two levels are easily distinguished.

In Fig. 4(c), we plot the distribution functions for the two
traces shown in Fig. 4(a). The distributions contain two peaks
associated with the two QPC current levels. The distance be-
tween peaks gives directly the change in QPC current (∆IQPC)
for one electron entering the QD, while the standard deviation
of the current distribution p(I) around each peak (Inoise) reflects
the amount of noise in the measured signal. As a consequence
of the increased bandwidth for the red trace, the data contains
noise contributions from a broader frequency spectrum and the
peaks in the distribution function become significantly broader.

1.3. Signal-to-noise

The ratio between the change in current ∆IQPC and the noise
Inoise is conveniently expressed as a signal-to-noise (S/N) ratio.
To maximize the useful information that can be extracted from
the measurement, we need to maximize the signal and minimize
the noise. In this subsection we consider the effects of the noise,
in the following sections we describe how to optimize the signal
by tuning the operation point of the QPC.

The noise of the QPC signal can be seperated into intrin-
sic and extrinsic contributions. With intrinsic noise we refer to
noise generated by the QPC itself, while extrinsic noise is due
to amplifiers and other external noise sources. It turns out that
the main source of noise in the setup is given by amplifier noise.
Since the noise is extrinsic, it is essentially independent of both
operating point and biasing conditions of the QPC. The only
way to reduce this noise is to use an amplifier with lower noise
figures or to reduce cable capacitances. The amplifier noise
spectrum is not flat and depends on the details of the experi-
mental setup [7, 8]; a rough estimate for the noise contribution
in the relevant frequency range is ∼400 fA/

√
Hz.

The fundamental intrinsic noise of the QPC current is the
shot noise, which arises due to the fact that the current is carried
by discrete charged particles. The shot noise has a flat power
spectrum in the region of interest which scales linearly with
the magnitude of the current. For typical currents used here

(∼ 10 nA), the white noise power is ∼ 30 fA/
√

Hz, which is
considerably lower than the amplifier noise. The thermal noise
or Johnson-Nyquist noise is generated by the thermal agitation
of the charge carriers in a conductor and appears regardless of
applied voltage. Since the sample is held at very low temper-
atures, its thermal noise becomes negligible compared to the
amplifier noise. Another form of intrinsic noise arises because
of fluctuations of trapped charges close to the QPC. The charge
traps sit at lattice defects or at the heterostructure surface and
may be activated by a large current passing the QPC. Such noise
is usually referred to as burst noise or popcorn noise. In GaAs
QDs, it is believed that the 1/f -noise is generated by fluctuations
in an ensemble of charge traps distributed uniformly in the de-
vice [9]. The magnitude of the noise depends on the quality of
the heterostructure and on the abundance of traps close to the
QPC. As we will see later in this section, the charge detection
technique provides a method for mapping out the charge traps
near the QPC.

The noise is described by a power spectral density S (ω),
which depends on the physical process responsible for gener-
ating the fluctuations. The amplitude of the current noise in
a trace as shown in Fig. 4 is given by integrating the spectral
density over the measurement bandwidth

Inoise ∼
√

Pnoise =

(∫ 2π fBW

0
S (ω) dω

)1/2

. (2)

Here, Pnoise is the noise power and fBW the measurement band-
width. If we assume for simplicity the spectrum to be indepen-
dent of frequency (S (ω) = const.), then the current noise scales
with the square root of the bandwidth,

Inoise ∼
√

fBW. (3)

Increasing the bandwidth thus increases the noise and lowers
the S/N, as visualized in Fig. 4. A single-electron detector must
be able to reliably detect transitions between the two levels in
the QPC current. How much can the bandwidth and the noise
be increased before the detection mechanism becomes unreli-
able? A qualitative answer would be when Inoise is comparable
to the step height ∆IQPC. To investigate the issue quantitatively,
we need to estimate the probability of detecting false transi-
tions due to the noise. The problem is well understood in the
language of information theory [10]; here we make a simplified
analysis to get a quick estimate of the risk of detecting false
counts.

For this purpose, we assume the distribution of the QPC
current p(IQPC) to be Gaussian around each of its two levels
and evaluate the part of the distribution deviating by more than
∆IQPC/2 from the peak value,

pout =

∫ ∞

∆IQPC/2
p(IQPC) dIQPC. (4)

This fraction is beyond the midline between the two peaks of
the distribution p(IQPC) and gives rise to false counts. The num-
ber of false counts nfalse registered during a time interval ∆t is
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Figure 5: (a) Part of the QPC current having I > ∆IQPC/2, assuming a Gaussian
distribution. (b) Average number of false counts, calculated from Eq. (5) in the
text with ∆t = 1 s and fBW = 10 kHz. The risk off detecting false events falls
off rapidly with increased S/N.

equal to pout multiplied with the number of measurements per-
formed in the interval, which according to sampling theorem
needs to be nmeas ∼ 2 ∆t fBW. For the false counts, we get

nfalse = pout nmeas ∼ 2 pout ∆t fBW. (5)

In Fig. 5(a) we plot pout as a function of S/N. As a conse-
quence of the Gaussian distribution, the risk of detecting false
counts falls off stronger than exponential with increased S/N.
Figure 5(b) shows the risk of detecting a false count, calculated
using Eq. (5) with ∆t = 1 s and fBW = 10 kHz. For S/N=7,
we find that the detector will register an average of four false
counts per second.

1.4. Tuning the QPC operating point
Next, we investigate the best regime for operating the QPC as

a charge detector. The conductance of a QPC depends strongly
on the confinement potential UQPC(~r). When operating the QPC
in the region between pinch-off and the first plateau (0 < G <
2e2/h), a small perturbation δUQPC(~r) leads to a large change in
conductance δG. If a QD is placed in close vicinity to the QPC,
we expect a fluctuation δq in the QD charge population to shift
the QPC potential UQPC(~r) and thus give rise to a measurable
change in QPC conductance. A figure of merit for using the
QPC as a charge detector is then

δG
δq

=
δG

[
UQPC(~r)

]
δUQPC(~r)

δUQPC(~r)
δq

. (6)

The first factor describes how the conductance changes with
confinement potential, which depends strongly on the operat-
ing point of the QPC. The second factor describes the electro-
static coupling between the QD and the QPC and is essentially
a geometric property of the system.

The performance of the charge detector depends strongly on
the operating point of the QPC. The best sensitivity for a de-
vice of given geometry is expected when the QPC is tuned to
the steepest part of the conductance curve. This corresponds
to maximizing the factor δG/δUQPC in Eq. (6). In Fig. 6(a) we
plot the conductance change ∆G for one electron entering the
QD versus QPC conductance, in the range between pinch-off

and the first conductance plateau (0 < GQPC < 2e2/h). The
change ∆G is maximal around GQPC ∼ 0.4 × 2e2/h but stays
fairly constant over a range from 0.3 to 0.6×2e2/h. The dashed
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Figure 6: (a) Change of QPC conductance as one electron enters the QD, mea-
sured for different values of average QPC conductance. The dashed line is the
numerical derivative of the QPC conductance with respect to gate voltage. The
change is maximal at GQPC = 0.4×2e2/h, which coincides with the steepest part
of the QPC conductance curve [see inset in (b)]. (b) Relative change of QPC
conductance for one electron entering the QD, defined as (Ghigh −Glow)/Ghigh.
The relative change increases with decreased GQPC, reaching above 50% at
GQPC = 0.02 × 2e2/h. The inset shows the variation of GQPC as a function of
gate voltage. Adapted from Ref. [5].

line in Fig. 6(a) shows the numerical derivative of GQPC with re-
spect to gate voltage. The maximal value of ∆G coincides well
with the steepest part of the QPC conductance curve. The inset
in the figure shows how the conductance changes as a function
of gate voltage.

In Fig. 6(b), we plot the relative change in conductance
∆G/GQPC for the same set of data. The relative change in-
creases monotonically with decreasing conductance, reaching
above 50% at GQPC = 0.02×2e2/h. The relative change in QPC
conductance ∆GQPC/GQPC in this particular device is extraor-
dinarily large compared to top-gate defined structures, where
∆GQPC/GQPC is typically around one percent for the addition of
one electron on the QD [7, 11]. We attribute the large sensi-
tivity to the close distance between the QD and QPC (∼50 nm,
due to the vertical arrangement of the QD and QPC) and to the
absence of metallic gates on the heterostructure surface, which
reduces screening.

The results of Fig. 6 indicate that it may be preferable to
operate the charge detector close to pinch-off, where the rela-
tive change in conductance is maximized. The quantity rele-
vant for optimal detector performance in the experiment is the
signal-to-noise (S/N) ratio between the change in conductance
∆G and the noise level of the QPC conductance measurement.
We measure the conductance by applying a fixed bias voltage
VSD across the QPC and monitoring the current. In the linear re-
sponse regime, both the average current IQPC and the change in
current for one electron on the QD (∆IQPC) scale linearly with
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applied voltage bias. The noise in the setup is dominated by the
voltage noise of the amplifier, which is essentially independent
of the QPC operating point and the applied bias in the region
of voltages discussed here. The S/N thus scales directly with
∆IQPC

S/N =
∆I2

QPC

〈∆I2
noise〉

∝ V2
QPC ∆G2 = I2

QPC

(
∆G
G

)2

. (7)

In practice the maximal usable QPC current is limited by ef-
fects like heating or emission of radiation which can influence
the measured system. When considering heating effects, it be-
comes important to minimize the power P = VQPC IQPC dis-
sipated in the QPC. Putting the power dissipation as a con-
straint to Eq. (7), the highest S/N is reached for the maximal
value of (∆G)2/G. For the data shown in Fig. 6 this occurs at
GQPC = 0.2 × 2e2/h. However, this operation point requires
a large voltage bias to be applied to the QPC. If the QPC bias
is larger than the single-particle level spacing of the QD, the
current in the QPC may drive transitions in the QD and thus
exert a back-action on the measured device [12] (see section
5). Therefore, a better approach is to limit the QPC voltage.
Here, the best S/N is obtained when optimizing ∆G rather than
∆G/G and operating the QPC close to GQPC = 0.5×2e2/h. The
sensitivity of the QPC together with the bandwidth of the mea-
surement circuit allows a detection time of around 4 µs [13].

1.5. Charge traps in the vicinity of the QPC

In the previous sections, we mentioned that charge fluctua-
tions in traps in the vicinity of the QPC may induce excess noise
in the QPC current measurement [9]. If the trap is close enough
and if the fluctuations occur on a timescale slower than the
measurement bandwidth, the charge dynamics of the individ-
ual traps can be investigated using the time-resolved charge de-
tection methods. By comparing the conductance change ∆Gtrap
due to charge fluctuations in a trap with the conductance change
∆GQD due to an electron in the QD, we get an idea of the po-
sition of the trap relative to the QD. The trap position may be
further pinned down by checking the influences of various gate
voltages [14].

Figure 7 shows electron counts registered by the QPC charge
detector for a QD-QPC structure defined by local oxidation [see
Fig. 9(a)]. The two voltages VG1 and VG2 are applied to gates
to the left and right of the structure that have roughly the same
capacitive lever arms (αG1/αG2 ∼ 1) on the QD states. The lines
with slope ∆VG1/∆VG2 ∼ −1 in Fig. 7 all give the same ∆GQPC
and thus belong to tunneling in the QD. In the lower-left region
of the graph the tunneling in the QD disappears due to pinch-off

of the QD leads.
Various other lines are seen in the plot; their gate voltage

dependences and their influence on the QPC conductance are
given in the figure. Traps with αG1/αG2 > 1 are situated closer
to gate G1, traps with αG1/αG2 < 1 are closer to gate G2. The
trap with αG1/αG2 = 4.8 seen to the left in the graph is prob-
ably relatively close to the QD; the lines from the trap and the
lines from the QD anticross due to their mutual charging energy,
similar to a double quantum dot system. Almost all traps give a
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Figure 7: Count rates for a single QD, measured vs voltage on the two gates
G1 and G2. Apart from the transitions due to electrons tunneling into and out
of the QD, there are several other lines present in the figure. These originate
from charge traps sitting in the substrate close to the QPC. Such events can be
distinguished from tunneling in the QD by investigating the change of the QPC
conductance or looking at how the switches depend on gate voltages. The boxes
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the gates relative to the trap. The electron temperature was 200 mK.
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Figure 8: Same as Fig. 7, this time measured for a QPC defined by etching.
The switches due to traps are more frequent than in the AFM-defined sample,
possibly because of surface states formed in the etched trenches. The data was
also taken at a higher electron temperature (T = 1.7 K instead of 200 mK)

smaller ∆GQPC compared to the QD, showing that the major in-
fluence on QPC conductance still originates from the QD. We
note that the method only shows traps where the charge fluc-
tuates on timescales slower than the measurement bandwidth;
traps with faster fluctuations will give an overall increase in the
noise floor.

It is not clear whether the charge traps are formed inside the
heterostructure or if they are sitting on the surface. In Fig. 8,
we present a measurement similar to the one shown in Fig. 7,
but this time for a QPC defined by etching [see Fig. 1(a)]. This
sample shows a greater trap density compared to the structure
defined by local oxidation used in Fig. 7. The difference could
be due to the fabrication method; the etching procedure will
bring surface states closer to the QPC. For a structure defined
by local oxidation, the surface is kept further away. On the other
hand, it is dangerous to draw too far-going conclusions from the
two sets of data; the structures were fabricated on different (but
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similar) wafers, and the measurement of Fig. 8 was performed
at a higher electron temperature (T = 1.7 K compared to T =

200 mK). Further experiments are necessary to clarify the issue.

2. Time-resolved electron transport

In this section, we show how time-resolved charge-detection
is used to investigate properties of electron transport in a single
quantum dot. We start with describing the dynamics of electron
tunneling between one lead and a single QD state, before mov-
ing on to more complex situations involving multiple leads, fi-
nite bias, excited states and degenerate states. Finally, we show
how the potential landscape forming the tunnel barriers is influ-
enced by changing the gate voltages.

2.1. Sample and experimental setup

The sample investigated in this section is shown in Fig. 9(a).
The structure was fabricated on a GaAs-GaAlAs heterostruc-
ture containing a two-dimensional electron gas 34 nm below
the surface (density 4.5× 1015 m−2, mobility 25 m2(Vs)−1). An
atomic force microscope (AFM) was used to oxidize locally the
surface, thereby defining depleted regions below the oxide lines
[15, 16].

The sample consists of a QD [dotted circle in Fig. 9(a)] and a
nearby QPC. The charging energy of the QD is 2.1 meV and the
mean level spacing is 200 − 300 µeV. From the geometry and
the characteristic energy scales, we estimate that the QD con-
tains about 30 electrons. The QD is connected to source and
drain leads through tunnel barriers. The transparency of the
tunnel barriers is controlled by changing the voltage on gates
G1 and G2. In the experiment, we tune the tunnel coupling
rates between the QD and the leads to below 10 kHz. This
allows electron tunneling to be detected in real-time with the
low-bandwidth (∼30 kHz) detector. The P gate is used to tune
the conductance of the QPC to a regime where the sensitivity
to changes in the QD charge is maximal. The voltage on gate
P is adjusted to keep the QPC in the region of maximum sen-
sitivity whenever changing the voltage on another gate. The
measurements were performed in a dilution refrigerator with a
base temperature of 60 mK.

2.2. Electron tunneling with one lead connected to the quantum
dot

First, we investigate the case of electron tunneling between a
QD and one lead. This is achieved by keeping the drain bar-
rier open but making the source barrier very opaque, allow-
ing electron tunneling only between the QD and the drain lead
[Fig. 9(b)]. Coulomb blockade prohibits the QD to hold more
than one excess electron. When an electron enters the QD, the
conductance through the QPC is reduced due to the electrostatic
coupling between the QD and the QPC. As the electron leaves,
the QPC conductance returns to the original value. This gives
rise to a QPC current switching between two levels, as shown
in Fig. 9(c). The low level corresponds to a situation where
the dot holds an excess electron. Transitions between the two
levels occur whenever an electron enters or leaves the QD. The
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Figure 9: (a) Quantum dot with integrated charge read-out investigated in this
section. (b) Schematic drawing depicting the electrochemical potentials of the
system. By making the barrier between source and the QD very opaque, elec-
tron tunneling is only possible between the QD and the drain lead. (c) Current
through the QPC as a function of time, showing a few electrons tunneling into
and out of the QD. The lower current level corresponds to a situation where the
QD holds one excess electron. Transitions between the two levels occur when-
ever an electron enters or leaves the QD. The quantities τin and τout specify the
time it takes for an electron to tunnel into and out of the dot, respectively.

duration between transitions gives directly the time it takes for
an electron to tunnel into or out of the QD. In Fig. 9(c), these
times are marked by τin and τout.

In the regime of single-level transport, the process of an elec-
tron tunneling into or out of the dot is described by the rate
equation

ṗin/out(t) = −Γin/out × pin/out(t). (8)

Here, pin/out(t) is the probability density for an electron to tun-
nel into or out of the dot at a time t after a complementary event.
Solving the differential equation and normalizing the resulting
distribution gives

pin/out(t)dt = e−Γin/outt × Γin/out dt. (9)

The tunneling rates Γin/out in Eqs. (8, 9) are effective rates in-
volving the dot-lead tunnel coupling Γ and the thermal popula-
tion of the states in the lead, with

Γin = Γ × f (∆µ/kBT ) (10)
Γout = Γ × (1 − f (∆µ/kBT )). (11)

Here, f (x) = 1/(1 + exp(x)) is the Fermi distribution function,
T is the electron temperature in the lead and ∆µ is the energy
difference between the electrochemical potential of the QD and
the Fermi level in the lead. Equations (10-11) are valid in a
small range around δµ = 0 where the tunnel coupling Γ can be
assumed to be independent of energy and gate voltages. The
gate-voltage influence on the tunnel coupling is investigated in
greater detail in section 2.6. Also, Eqs. (10-11) assume the QD
state to be non-degenerate. In the case of degenerate states,
the rates should be multiplied with the appropriate degeneracy
factor. Here, we assume non-degenerate states and postpone the
discussion of degenerate states to section 2.7.
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Figure 10: (a) Average dot population versus voltage on gate G2. The fit shows
the Fermi distribution function with T = 230 mK. (b) Counts per second for
the same data as in (a). The data was fit to Eq. (14), giving Γ = 9.2 kHz and
T = 230 mK. (c) Tunneling rates for electrons entering (squares) and leaving
(circles) the QD, extracted from the same set of data as in (a, b). The solid lines
are the results of Eqs. (10- 11) in the text, with Γ = 9.2 kHz and T = 230 mK.
(d) Distribution of tunneling times for electrons entering (squares) and leaving
(circles) the QD, extracted at VG2 = −96.3 mV [marked by arrow in (c)]. The
solid lines show the exponential behavior given by Eq. (9) in the text, with
Γin = 1/〈τin〉 = 7.2 kHz, Γout = 1/〈τout〉 = 2.0 kHz. The length of the time
trace for the data shown in the figure is 0.5 s.

The method of time-resolved charge detection makes it pos-
sible to test the validity of the model described in Eqs. (8-11).
The tunneling rates Γin, Γout are determined directly from time
traces such as the one shown in Fig. 9(c). Using Eq. 9, we find

Γin = 1/〈τin〉, Γout = 1/〈τout〉, (12)

where 〈τin〉 and 〈τout〉 are the average tunneling times extracted
from the time trace. It should be noted that the expression in
Eq. (12) is valid only for an infinite-bandwidth detector, and
that the finite bandwidth of the detector leads to a systematic
under-estimation of the actual rates. However, knowing the
bandwidth makes it possible to correct for the deviations [17].
The influence of the detector bandwidth is discussed in greater
detail in section 3.7.

Combining Eqs. (10-12) gives an expression for the Fermi
function

f (∆E/kBT ) = 〈τout〉/(〈τin〉 + 〈τout〉) = 〈nexcess〉, (13)

with 〈nexcess〉 being the average excess charge on the QD. The
average dot population can be determined by monitoring the
average conductance of the QPC [18]. By adding time resolu-
tion to the detector and counting electrons one by one as they
enter the QD, we can extract not only the Fermi function of the
lead but also the tunnel coupling Γ. Assuming sequential tun-
neling and using Eqs. (10-11), we find that the rate for electrons
entering the dot rE is given by

rE = 1/(〈τin〉 + 〈τout〉) = Γ × f (1 − f ). (14)

Measuring the count rate rE thus directly determines the tunnel
coupling Γ.

In Fig. 10(a, b) we plot the average QD population and the
number of counts per second as gate G2 was used to change

the electrochemical potential of the QD. The solid lines are the
fits to Eq. (13) and Eq. (14), demonstrating the good agree-
ment between the data and the expected relations. By first
determining the lever arm between gate G2 and the dot from
standard Coulomb diamond measurements [19], it was possible
to extract the electronic temperature (T = 230 mK) from the
width of the Fermi function. The same temperature was found
by checking the width of standard Coulomb blockade current
peaks [19], measured with the QD in a more strongly coupled
regime.

The time-resolved detection method also allows the tunnel-
ing rates Γin and Γout to be determined separately. The rates
are plotted in Fig. 10(c), extracted from the same set of data as
shown in Fig. 10(a, b). The solid lines are fits to Eqs. (10-11),
with Γ = 9.2 kHz and T = 230 mK. The figure clearly demon-
strates an exponential falloff of the tunneling rates as the QD
electrochemical potential is shifted above or below the Fermi
level of the lead. This is a direct consequence of the Fermi dis-
tribution for the electrons in the lead. The fact that both Γin and
Γout can be fitted with a single tunneling rate Γ shows that the
QD state is non-degenerate. This is not always the case, as will
be seen in section 2.7.

The results presented so far rely on the assumption that
Eq. (9) is correct. The validity of this assumption can be tested
by extracting the experimental distribution function pin/out(t) of
tunneling times τin, τout from a time trace containing a large
number of events. Such distributions are shown in Fig. 10(d),
taken at the position marked by the arrow in Fig. 10(c). The
data exhibit the expected exponential behavior of Eq. (9), with
dashed lines being fits with Γin = 7.2 kHz and Γout = 2.0 kHz.

The measurements presented so far only involve tunneling
between the QD and one lead. These tunneling events are due
to equilibrium fluctuations and do not give rise to a net current
through the QD. Consequently, it is impossible to investigate
such effects with conventional current measurement techniques.
This demonstrates the power of time-resolved charge detection
methods for probing properties of mesoscopic structures. The
overall good agreement between Eqs. (9-11) and the results of
Fig. 10 makes us confident that the model of single-electron
tunneling is well capable of describing the system. Next, we
move on to the case where the QD is connected to two leads.

2.3. Electron tunneling with two leads connected to the quan-
tum dot

In order to perform time-resolved measurements of electron
transport through the dot, the tunnel barriers have to be sym-
metrized so that both give similar tunneling rates. The rates
must be kept lower than the bandwidth of the setup, but still
high enough to give good statistics. Figure 11(a) shows the
number of events per second as a function of the two gate volt-
ages VG1 and VG2. In the upper left corner of the figure, VG1 is
high and VG2 is low, corresponding to the case where the source
lead is open and the drain lead is closed. In the bottom right
corner, the configuration is inverted. For the region in between,
marked by the ellipse in Fig. 11(a), the data indicate that both
leads are weakly coupled to the dot.
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Figure 11: (a) Counts per second versus VG1 and VG2. For low values of VG1
and VG2, both the source lead and the drain lead are pinched off. For high volt-
ages, the barriers open up so that tunneling occurs on a timescale faster than
the measurement bandwidth. (b) Temperature (squares) and tunnel coupling
(crosses), extracted from data shown within the ellipse in (a). As VG2 is in-
creased, VG1 is decreased, in order to keep the dot at a constant potential. For
low VG2, tunneling occurs between the source lead and the dot, for high VG2,
the electrons tunnel between the drain and the dot. For intermediate gate val-
ues, both leads contribute to the tunneling. The electron temperature was found
to be the same for both leads, within the accuracy of the experimental data.
Adapted from Ref. [20].

For zero voltage bias across the QD, the measurement
method does not enable us to distinguish whether an electron
that tunnels into the dot arrives from the left or from the right
lead. Therefore, when both leads are connected to the dot, the
rates in Eqs. (10-11) must be adjusted to contain one part for
the left lead and one part for the right lead,

Γin = Γin
L + Γin

R = ΓL fL + ΓR fR,

Γout = Γout
L + Γout

R = ΓL(1 − fL) + ΓR(1 − fR). (15)

Here, fL and fR are the Fermi distribution functions of the left
and the right lead, respectively. Using Eq. (15), we calculate
the rate of events for the case when both leads are coupled to
the dot with rates accessible for the detector,

rE =
[ΓL fL + ΓR fR][ΓL(1 − fL) + ΓR(1 − fR)]

ΓL + ΓR
. (16)

With no bias applied across the dot, the two distributions func-
tions fL and fR are identical except for a possible difference
in electronic temperature in the two leads. However, assuming
TL = TR = T , we have fL = fR = f , and Eq. (16) simplifies
to rE = (ΓL + ΓR) × f (1 − f ). Fitting this expression to curves
similar to that shown in Fig. 10(b), we extract the temperature
and combined tunneling rate ΓL + ΓR from the data within the
ellipse of Fig. 11(a). The result is presented in Fig. 11(b).
The rates and the temperature shown in the graph are due to
the combined tunneling to and from both leads. Still, for low
VG2/high VG1, the drain lead is pinched off and tunneling occurs
mainly between the source lead and the dot. For high VG2/low
VG1, the source is pinched off and the tunneling is dominated by
electrons going between the drain and the dot. The fact that the
electronic temperatures extracted from both regimes turn out to
be the same (T = 230 mK) within the accuracy of the analysis
justifies the assumption that TL = TR.

2.4. Finite bias
With the barriers properly symmetrized, we apply a finite

bias voltage between source and drain leads and measure elec-
tron transport through the QD. Figure 12(a) shows Coulomb
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Figure 12: (a) Coulomb diamonds, measured by counting electrons entering
the QD. For low values of VG1, the source lead is pinched off and tunneling can
only occur between the dot and the drain lead. As VG1 increases, the source
lead opens up and a current can flow through the dot. (b) Diagrams depicting
the energy levels of the dot at points I, II and III. In case III, the bias is higher
than the charging energy of the dot, meaning that the dot may hold 0, 1 or
2 excess electrons. (c) Time trace taken at point III. The three possible dot
populations (n, n + 1 or n + 2 electrons) are clearly resolvable. Adapted from
Ref. [20].

blockade diamonds measured by counting electrons entering
the QD. The bias is applied symmetrically, with

µS = |e|VSD/2, µD = −|e|VSD/2. (17)

The gate G1 is used as a plunger gate to control the dot elec-
trochemical potential. However, the gate also strongly affects
the source tunnel barrier. For low G1 voltages, the source lead
is closed, giving strong charge fluctuations only when the drain
lead is in resonance with the dot [see case I in Fig. 12(a, b)].

At higher gate voltages, the source lead opens up and a cur-
rent can flow through the dot. In point II of Fig. 12(a), the QD
electrochemical potential µn lies within the bias window but far
away from the thermal broadening of the Fermi distribution in
the leads. The condition can be expressed as

|±eV/2 − µn| � kBT, (18)

where the ”+” case refers to the source contact and the ”-” case
refers to the drain. Whenever Eq. (18) is fulfilled, electrons can
only enter the dot from the source lead and only leave through
the drain. This makes it possible to determine the individual
tunnel couplings ΓS/ΓD, with

ΓS = Γin = 1/〈τin〉, ΓD = Γout = 1/〈τout〉. (19)

In this regime, we measure the current through the dot by count-
ing events. This opens up the possibility to use the QD as a very
precise current meter for measuring sub-fA currents [21, 22].
Since the electrons are detected one by one, the noise and higher
order correlations of the current can also be experimentally in-
vestigated. This is explained in more detail in section 3.2

When the bias exceeds the dot charging energy, EC ∼

2.1 meV, and the electrochemical potentials of the (n + 1) and
the (n + 2) states are within the bias window [see case III of
Fig 12(a,b)], transport processes are allowed where the dot may
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Figure 13: (a) and (b): Blow-up of the upper left region of Fig. 12(a), showing
the rates for electrons tunneling into (a) and out of (b) the QD, respectively.
The white solid lines mark the positions where the source lead lines up with the
electrochemical potential of the QD ground state. The dashed lines mark the
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color scales are different for the two figures, the rate for tunneling out is roughly
10 times faster than tunneling in. (c) Diagram depicting the energy levels along
the dashed lines in (a) and (b). As the source lead is raised [corresponds to
going upward along the dashed lines in (a)], excited states become available
for tunneling. (d) Energy diagram for the configuration marked by the arrow in
(b). Here, the excited states is visible in the rate for electrons tunneling out of
the QD. (e) Tunneling rate for electrons entering the dot, measured along the
dashed line in (a). Three excited states are clearly resolvable. Adapted from
Ref. [20].

contain 0, 1 or 2 excess electrons. A time trace measured at
point III of Fig. 12(a) is shown in Fig. 12(c). The sensitivity of
the QPC charge detector allows to measure switching between
three different levels, corresponding to (n), (n + 1) and (n + 2)
electrons on the dot. It is not possible to make this distinction
in a standard current measurement.

2.5. Excited states

If there are excited states inside the bias window, tunneling
may occur into any of the available states. In this regime, the
rates ΓS and ΓD of Eq. (19) will not be the tunneling rates of the
single ground state but rather a sum of rates from all states con-
tributing to the tunneling process. A further complication with
excited states is that there may be equilibrium charge fluctua-
tions between the lead and the excited state, thereby removing
the unidirectionality of the electron motion. However, if the re-
laxation rate of the excited state into the ground state is orders
of magnitude faster than the tunneling-out rate, the electron in
the excited state will have time to relax to the ground state be-
fore equilibrium fluctuations can take place.

The separate rates Γin and Γout for a close-up of the upper-left
region of Fig. 12(a) are plotted in Fig. 13(a, b). It is important to
note that the requirement of Eq. (18) is met only for the region
along and above the dashed lines in the figures. At the lower
left end of the dashed lines, the energy levels of the dot are
aligned as shown in Fig. 13(c). Going diagonally upward along
the lines corresponds to raising the Fermi level of the source
lead, while keeping the energy difference between the dot and
the drain lead fixed.

Starting at low bias and low voltage on the gate VG1, the dot
is in the Coulomb blockade regime, and no tunneling is possi-
ble. Following the dashed line upwards, the QD ground state
becomes available for tunneling at Vbias = 0.3 mV. The transi-
tion is marked by the white solid lines in Fig. 13(a, b). At these
low gate voltages, the source tunnel barrier is almost completely
pinched off, meaning that the rate for electrons entering the QD
is still low [Fig. 13(a)]. Even so, some electrons do enter the
QD, as can be seen from the few points of measurements of
Γout within the corresponding region of Fig. 13(b).

We first concentrate on the tunneling-in rate in Fig. 13(a). As
the source level is further raised, excited states become avail-
able for transport. The first excited state (at Vbias = 0.85 mV
along the dashed line) is more strongly coupled to the lead than
the ground state, giving a tunneling rate of ∼ 70 Hz for elec-
trons entering the dot. The large difference in the tunneling-in
rate between the ground and the excited state can be understood
if the wavefunctions of the ground and excited state have dif-
ferent spatial distributions. If the overlap with the lead wave-
function is larger for the excited state, the tunneling rate will
also be larger. Similar differences in tunneling rates have been
found between the singlet and triplet states in a two-electron dot
[23, 24].

By further raising the source level, tunneling can also oc-
cur through a second excited state. The measured tunneling-
in rate will now be the sum of the rates from both excited
states; by subtracting the contribution from the first state, the
rate for the second state can be determined. Using this method,
we can resolve three excited states, with excitations energies
ε1 = 0.55 meV, ε2 = 1.0 meV, ε3 = 1.3 meV and with tunnel-
ing rates Γ1 = 70 Hz, Γ2 = 190 Hz, Γ3 = 190 Hz. The excited
states are clearly seen in Fig. 13(e), which is a cut along the
dashed diagonal line in Fig. 13(a).

Focusing on the rates for electrons tunneling out of the QD
[Fig. 13(b)], there is a noisy region where the ground state but
no excited states are within the bias window (0.3 < Vbias <
0.85 mV along the dashed line). In this regime, few electrons
will enter the dot, meaning that the statistics needed for measur-
ing the rate of electrons leaving the dot is not sufficient. How-
ever, for bias voltages higher than the first excited state, the
tunneling-out rate remains constant along the dashed line. This
is in contrast to the steps seen in the tunneling-in rates, indicat-
ing that the rate for tunneling out of the QD does not depend
on the state used for tunneling into the QD. Since the individ-
ual excited states are expected to have different rates also for
tunneling out of the dot, the data is consistent with the inter-
pretation that an electron entering the dot into an excited state
will always have time to relax to the ground state before it tun-
nels out. The rate for tunneling out is ∼6 kHz, giving an upper
bound for the relaxation time of ∼170 µs.

The main relaxation mechanism in quantum dots is thought
to be electron-phonon scattering [25]. Measurements on few-
electron vertical quantum dots have shown relaxation times of
10 ns [26]. Recent numerical investigations have shown that
the electron-electron interaction in multi-electron dots can lead
to reduced relaxation rates [27]. Still, the relaxation rate is ex-
pected to be considerably faster than the upper limit we give
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here.
The rate for tunneling out is actually not constant for the

whole region of the Coulomb diamond, but shows a change at
the position marked by the arrow in Fig. 13(b). This transition
occurs along a line perpendicular to the ones seen in Γin. This
is expected assuming the transition seen in Fig. 13(b) involves
changes in Γout instead of in Γin. Going perpendicular to the
dashed lines in Figs. 13(a, b), we keep the QD and source po-
tential constant while lowering the drain lead. At some point,
the Fermi level of the drain is low enough so that an electron in
the QD (n + 1)-electron ground state may tunnel out and leave
the QD in an (n)-electron excited state. The process is sketched
in Fig. 13(d). Comparing Figs. 13(c-d), we see that the rate Γin
probes the excitation spectrum of the (n+1)-electron QD, while
Γout reflects the spectrum of the (n)-electron QD.

2.6. Tuning the tunnel couplings
Changing a gate voltage does not only shift the electrochem-

ical potential of the QD, but also affects the height of the tun-
nel barrier connecting the QD to the leads. The effect was
mentioned already in relation with the results of Figs. 11 and
12. Here we investigate the behavior more carefully. Fig-
ure 14(a) shows a sketch of the potential landscape for a QD
with a bias voltage applied between the source and drain con-
tacts. Electrons entering the QD from the source lead need to
tunnel through a potential barrier of height (USB − µQD), while
the barrier height for electrons tunneling from the QD to drain
is (UDB − µQD). By changing the voltages on gates G1 and G2,
we expect to be able to tune the potentials USB and UDB and
thereby control the tunneling rates.

The tunneling probability also strongly depends on the width
of the barrier as well as on the exact shape of the electrostatic
potential forming the QD and the barriers. These details are
not known, but for small perturbations to the barrier potential
δUSB/DB and QD potential δµQD, the tunneling rate is expected
to depend exponentially on the energy difference (δUSB/DB −

δµQD) [28]

Γ ∼ Γ0 exp[−κ(δUSB/DB − δµQD)]. (20)

Here, Γ0 and κ are constants given by the exact shape of the
potential. To make quantitative comparisons with the experi-
ments, we use a capacitor model to estimate the influence that
gate voltages have on the different potentials in the system [29] δµQD

δUSB
δUDB

 = (21)

αS−QD αD−QD αG1−QD αG2−QD
αS−SB αD−SB αG1−SB αG2−SB
αS−DB αD−DB αG1−DB αG2−DB




δµS
δµD

δ(|e|VG1)
δ(|e|VG2)

 .
The coefficients α are the capacitive lever arms between the
gates and the various sample potentials. It should be noted that
both the gate voltages VG1, VG2 and the source and drain poten-
tials µS, µD have gating effects on the QD and on the barriers.
In the following, we focus on the influence of the gate voltages
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Figure 14: (a) Potential landscape of the QD when a fixed bias voltage is applied
between the source and drain contacts. (b) Tunneling rates ΓS/ΓD measured
versus Vdiff = VG2 − VG1. The sold lines are fits to Eq. (24) in the text. The
measurements were performed by sweeping both gate voltages VG1, VG2, with
VG1 = −0.142 − VG2.

VG1, VG2 and assume a fixed bias voltage VSD applied symmet-
rically across the QD, with µS = |e|VSD/2, µD = −|e|VSD/2.
Also, by operating the QD at fixed bias and ensuring that elec-
tron transport is unidirectional [Eq. (18)], we can use the rela-
tions of Eq. (19) to determine the tunnel couplings ΓS and ΓD
separately.

As seen in Eq. (20), the tunneling strength depends on the
difference δUSB/DB − δµQD. To simplify matters we want to fix
the QD potential µQD and investigate only the influence that the
gate voltages have on the barrier potentials USB and UDB. This
is done by sweeping the two gate voltages VG1 and VG2 against
each other in a way that µQD remains constant. Setting δµQD = 0
in Eq. (21), assuming a fixed bias voltage (δµS = δµD = 0) and
solving for VG1 gives the prescription

δVG1 = −
αG2−QD

αG1−QD
δVG2. (22)

Due to the symmetry of the device, we have αG1−QD ≈ αG2−QD
so that the above expression reduces to δVG1 ≈ −δVG2. Intro-
ducing Vdiff = VG2 − VG1 we find from Eqs. (20-21)

ΓS ∼ exp[κS
|e|δVdiff

2
(αG2−SB − αG1−SB)] ≡

≡ exp[γS δVdiff], (23)

ΓD ∼ exp[κD
|e|δVdiff

2
(αG2−DB − αG1−DB)] ≡

≡ exp[γD δVdiff]. (24)

Thus we expect the tunneling rates to depend exponentially on
the voltage difference Vdiff . The sign of the factors γS and γD
determine if the rates increase or decrease with Vdiff . From the
geometry of the device we expect the source barrier to be more
strongly influenced by gate G1 than gate G2 (αG1−SB > αG2−SB),
while the opposite is true for the drain barrier. This would make
ΓS decrease (γS < 0) and ΓD increase (γD > 0) with Vdiff .

In Fig. 14(b), we plot the tunneling rates ΓS and ΓD measured
while changing Vdiff . The solid lines are fits to Eq. (24), with
fitting parameters γS = −33.0 V−1 and γD = 22.8 V−1. The
results are consistent with Eq. (24), although one would expect
γS = −γD from the symmetry of the device. However, the exact
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Figure 15: (a) Current through the QPC as a function of voltage on gates G1,
G2. The diagonal lines show positions where the population of the QD changes
by one electron. The numbers specify the dot occupation in the different re-
gions. (b) Effective tunneling rates for electrons entering and leaving the dot,
measured at the three charge degeneracy points marked by circles along the
dashed line in (a). The solid lines are fits using Eqs. (25, 26), with T = 230 mK
and the other fitting parameters given in Table 1 in the text. (c) Alignment of
the QD electrochemical potential relative to the Fermi level of the lead for the
gate voltage configurations shown in the middle plot in (b). Adapted from Ref.
[30].

shapes of the confining potential and the QD wavefunction are
not known and it must be considered unlikely that the potential
barriers separating the QD from source and drain contacts are
geometrically exactly identical.

2.7. Degenerate states
In this section, we discuss how degenerate states may influ-

ence the measured statistics. For simplicity, we limit the dis-
cussion to the case where the QD is connected only to one lead,
with the other lead being completely pinched off. In this config-
uration, the tunneling is due to equilibrium fluctuations between
the QD and the lead. Fig. 15(a) shows the average dc current
through the QPC when sweeping the two gates G1 and G2. The
diagonal lines correspond to electrons being loaded/unloaded
from the QD. Along these lines, the electrochemical potential
of the QD is aligned with the Fermi level of the right lead. From
the slope of the line we see that the voltages on the two gates
G1 and G2 have roughly the same influence on the energy lev-
els of the QD, as expected from the device geometry. We now
focus on determining the tunneling rates for three electronic
states along the dotted line in Fig. 15(a). Starting at low VG1
voltages, the dot gets successively populated as the voltage on
G1 is increased. At each charge degeneracy point, we use the
time-resolved measurement techniques to determine the rates
for electrons entering and leaving the dot. The results are shown
in Fig. 15(b).

Taking the possibility of degenerate states into account, the
results of Eqs. (10-11) are extended to

Γin = gin ΓR × fR(∆µ/kBT ), (25)
Γout = gout ΓR × [1 − fR(∆µ/kBT )]. (26)

Initially empty

Tunneling
in

Tunneling
out

Initially occupied

Figure 16: Effective tunneling rates for spin degenerate states in different con-
figurations. The empty circles represents empty spin states, filled circles repre-
sent occupied ones. The arrows depict the number of possible tunnel processes.

Here, the factors gin and gout account for possible degeneracies.
For electrons entering the QD, the factor gin should include the
number of degenerate empty states. For tunneling out, only the
degeneracy of occupied states is relevant. The tunnel coupling
ΓR is assumed to be independent of energy and of the QD level
within the small gate voltage range considered here. The energy
level for three different gate voltages are drawn schematically in
Fig. 15(c). The middle plot of Fig. 15(b) indicates the gate volt-
age ranges corresponding to the drawings shown in Fig. 15(c).

The effective rates for electrons tunneling into and out of the
QD involve the density of states and the occupation probability
in the lead. This gives a strong dependence on the alignment be-
tween the Fermi level in the right lead and the electrochemical
potential of the dot. Starting at low VG1 voltages in Fig. 15(b)
[case I in Fig. 15(c)], the QD potential is far above the Fermi
level of the lead. At this point, the density of occupied states in
the lead is low and the effective rate for tunneling into the QD
is low. If an electron eventually manages to tunnel in, the ef-
fective rate for tunneling out again will be high, since there are
many empty states in the lead to tunnel into. As the gate volt-
age is increased, the QD potential goes down to the Fermi level
of the lead [case II in Fig. 15(b, c)]. In this configuration, the
effective rates for tunneling into and out of the QD are roughly
equal. As the gate voltage is further increased, the potential of
the QD is pushed below the Fermi level. Here, the density of
occupied states in the lead is large, giving a high effective rate
for electrons entering the QD. Conversely, the effective rate for
leaving the dot is low [case III in Fig. 15(b, c)].

Looking at the shape of the data in Fig. 15(b), we see that
they indeed follow a Fermi function. The solid lines in the fig-
ure are fits using Eqs. (25-26), with T = 230 mK. The pa-
rameters used in the fitting procedure are summarized in Table
1.

VG1 gin ΓR gout ΓR gin/gout

-30.35 mV 210 Hz 115 Hz 1.8
15.70 mV 220 Hz 440 Hz 0.5
45.35 mV 315 Hz 600 Hz 0.5

Table 1: Fitting parameters for the solid lines in Fig. 15(b), fitted using Eqs. (25,
26).

Comparing the numbers of Table 1, we see that the effective
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coupling gin/out ΓR differs strongly depending on whether it was
extracted from the tunneling in or from the tunneling out data.
One possible explanation for the difference is degeneracy due to
the electron spin. Assuming a spin-degenerate state with both
the spin-up and the spin-down state initially empty, electrons
from the lead could tunnel into either of the two states. This
makes gin = 2. Once the electron has tunneled into the QD, it
sits in either the spin-up or the spin-down state. Since only one
of the spin-degenerate states is occupied, the degeneracy for
tunneling out will be gout = 1. The situation is different if we
start with a QD with one of the spin-degenerate states already
occupied. For the tunneling-in process, there is only one empty
state available, giving gin = 1. For the tunneling-out process,
any of the two electrons sitting on the dot may tunnel out. This
leads to gout = 2. The different situations are shown schemat-
ically in Fig. 16. The model discussed here assumes that the
spin states are not influenced by Coulomb interactions, which
may be an oversimplification considering that we are dealing
with a many-electron system. Still, spin pairing has been ob-
served in chaotic QDs containing a large number of electrons
[31].

The experimental method described here can only determine
the ratio gin/gout. In the following we assume the degeneracies
to be due to spin to be able to extract tunnel couplings and ab-
solute degeneracies from the data. The results of this model are
shown in Table 2. For the first resonance at VG1 = −30.35 mV
we extract gin = 2 and gout = 1, indicating a two-fold degener-
acy with both states initially empty. At the next resonance, the
degeneracy factors are exchanged, with gin = 1 and gout = 2.
For the third resonance, the degeneracy factors are the same as
for the second resonance, with gin = 1 and gout = 2.

VG1 ΓR gin gout

-30.35 mV 110 Hz 2 1
15.70 mV 220 Hz 1 2
45.35 mV 307 Hz 1 2

Table 2: Possible interpretation of the data shown in Table 1, assuming spin-
degenerate states.

The first and second resonance could be attributed to consec-
utive filling of spin states, meaning that the two first electrons
would form a so-called spin pair. The third electron does not
follow the rules expected from simple spin-filling. The rea-
son could be due to many-body effects between the electrons in
the quantum dot or due to a charge rearrangement taking place
between the second and third resonance (at VG1 ∼ 30 mV).
Also, we stress that there are other possible explanations for
the measurement results, like energy-dependent tunneling rates
or accidental degeneracies of orbital states. To prove the spin
degeneracy, one would need to perform measurements at non-
zero magnetic fields. This would lift the spin degeneracy and
make gin = 1 and gout = 1.

As seen in section 2.6, changing a gate voltage also affects
the tunnel couplings in the system. Since the tunneling rates
Γin/Γout are measured at slightly different gate voltages, it could
be that the differences seen in Fig. 15(b) are due to tuning of the

tunneling barrier. To avoid such influences, we used gate G1 to
tune the QD electrochemical potential, since it is expected to
have a smaller effect on the tunnel barrier between the QD and
drain than gate G2. From Eq. (24) and the results of section
2.6, we estimate the change of tunneling rates within the gate
voltage range shown in Fig. 15(b) to be well below 10%. Also,
the gating effect of G1 on the tunnel barrier would make it more
likely for ΓR to increase with VG1. Since Γin is determined at a
slightly higher gate voltage than Γout, we would expect Γin to
be larger than Γout. This is in contradiction with the results of
Table 1 and thus supports our interpretation of additional de-
generacies of the QD states influencing the tunneling rates.

3. Statistics of electron transport

In this section, we investigate the statistical properties of
single-electron tunneling through a quantum dot. In the gen-
eral case, we find that current fluctuations due to shot noise
are suppressed because of Coulomb blockade. Electrons tend
to avoid each other, giving anti-bunching or sub-poissonian
noise. In other regimes we find bunching of electrons, or super-
poissonian noise. Finally, we investigate how the finite band-
width of the detector influences the measured statistics and dis-
cuss the possibilities of using a quantum dot combined with a
charge-detector as a current meter.

3.1. Electron transport and shot noise

Electrical current is carried by electrons passing through the
conductor. The current is given as

I = e/〈t〉, (27)

where e is the electron charge and 〈t〉 the average time between
electrons. The discreteness of the charge carriers gives rise to
temporal fluctuations in the current. These statistical fluctua-
tions are called shot noise. The principle behind the shot noise
is illustrated in Fig. 17. In Fig. 17(a), we show an idealized
current flow. Each spike corresponds to one electron passing
the conductor. The time interval between two electrons ∆t is
constant, so that the current is given as I = e/∆t. Figure 17(b)
displays a more realistic current, where the time intervals be-
tween electrons show random fluctuations. If the average time
between electrons 〈t〉 = ∆t, then a measurement of the time-
averaged current in case (a) and (b) will give the same value.

Still, the currents in the two cases are obviously different.
This becomes clear in Fig. 17(c-d), where we plot the distri-
bution function Pt0 (N) of the number of electrons N that pass
through the conductor within a fixed time-interval t0. The time
t0 is chosen so that the average number of transmitted electron
〈N〉 = 5 in both cases. The distribution function for the ide-
alized current in (a) is simply a single peak with Pt0 (5) = 1
[Fig. 17(c)]. On the other hand, the realistic current gives a
broad distribution due to the statistical fluctuations in the cur-
rent.

In this way, the shape of the distribution function is a mea-
sure of the statistical fluctuations of the current. To be more
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Figure 17: (a) Idealized current flow. Each spike corresponds to an electron
passing the conductor, with constant time intervals between electrons. (b) Same
as (a), but for a realistic current. The electron flow shows random variations.
(c-d) Distribution function for the currents shown in (a-b). The distribution
function is formed by counting the number of electrons passing the conductor
within a time t0.

quantitative, we calculate the central moments of the distribu-
tion

µ1 = 〈N〉, µi = 〈(N − 〈N〉)i〉, for i = 2, 3, . . . (28)

Here, 〈. . .〉 represents the mean over a large number of periods
of length t0. The first moment (mean) gives access to the aver-
age current, I = eµ1/t0. The second central moment (variance)
defines the shot noise power, with

S I = 2e2µ2/t0. (29)

Equation (29) is valid if t0 is much larger than correlation times
in the system. In the following section, we will also evalu-
ate the third central moment, µ3. It describes the asymmetry
(skewness) of the distribution function around its maximum.

The noise of a current is often expressed as the Fano factor,
which is the width of the distribution divided by its mean,

F = S I/2eI = µ2/µ. (30)

For processes governed by Poisson statistics, like electron tun-
neling through a single barrier, the Fano factor is equal to
one. If the Fano factor is smaller than one, we speak of sub-
Poissonian noise. This generally means lower noise power and
electron correlation in time. Conversely, if the Fano factor is
greater than one, the noise is super-Poissonian and the electron
transport is less regular than in the Poissonian case.

If the charge is transferred in units of q instead of e, the Fano
factor will be modified by a factor q/e. By measuring both the
shot noise S I and current I, one can use this relation to directly
determine the fractionality of the charge of the carriers. Such
measurements have been performed to demonstrate the charge
of quasi-particles in the fractional quantum Hall effect [32, 33]

as well as the double charge of Cooper pairs in superconduc-
tors [34]. These are examples where noise measurements pro-
vide additional information about the system that can not be
extracted from a standard current measurement [35].

In electron transport through a semiconductor quantum dot
(QD), the noise is typically suppressed compared to the Pois-
son distribution. This is due to Coulomb blockade, which en-
hances the temporal correlation between successive electrons
and thereby reduces the noise [36, 37, 38, 39, 40]. The Pauli
exclusion principle provides an additional noise suppression
mechanism [41, 42]. However, when several channels with dif-
ferent coupling strengths contribute to electron transport, inter-
actions can lead to more complex processes and to an enhance-
ment of the noise [43, 44, 45, 20]. Furthermore, there are pre-
dictions that entangled electrons may lead to super-Poissonian
noise, thus making noise measurements a possible way of de-
tecting entanglement in mesoscopic systems [46, 47, 48].

The above examples demonstrate that noise measurements
are important tools for characterizing properties of mesoscopic
systems. However, due to the very low current levels in-
volved, it is difficult to perform the experiments with conven-
tional measurement techniques. One has to carefully eliminate
other noise sources like Johnson-Nyquist thermal noise and the
noise of the amplifiers. Recent attempts include using a reso-
nant circuit together with a low-temperature amplifier [49, 50],
a superconductor-insulator-superconductor junction [51] or a
second QD acting as a high-frequency detector [52].

A different approach is to use time-resolved charge detec-
tion methods as described in Chapter 2 to count the electrons
one-by-one as they pass through the conductor. From such a
measurement, one can directly determine the probability distri-
bution function pt0 (N). The distribution function is then used
to calculate both the shot noise as well as higher order mo-
ments. This way of measuring is analogous to the theoretical
concept of full counting statistics (FCS), which was introduced
as a new way of examining current fluctuations [53]. In the
following sections, we investigate the experimental method in
more detail.

3.2. Sequential transport – Sub-Poissonian noise

In order to use a charge detector for measuring current and
current noise, one has to avoid that electrons tunnel back and
forth between the dot and the source or drain lead due to thermal
fluctuations [Fig. 18(a)]. This is achieved by applying a finite
bias voltage between source and drain, i.e.

kBT � | ± eV/2 − µn| � EC . (31)

Here, EC is the charging energy, µn is the electrochemical po-
tential of the QD and V is the bias voltage, symmetrically ap-
plied to the QD [Fig. 18(b)]. With a finite bias applied to the
QD, and with the Fermi levels of the leads far away from the
electrochemical potential of the QD, the probability for elec-
trons to tunnel in the opposite direction is exponentially sup-
pressed. In this regime, we attribute each transition n → n + 1
to an electron entering the QD from the source contact, and
each transition n + 1 → n to an electron leaving the QD to the
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Figure 18: (a) Energy level diagram for the quantum dot in the regime of equi-
librium fluctuations. Electrons may leave or enter the dot from either of the two
leads. (b) Energy level diagram for the quantum dot in the high bias regime.
With a large bias applied to the QD, and with the Fermi levels of the leads far
away from the electrochemical potential of the dot, electrons can only enter the
QD from the source lead and only leave to the drain.

drain contact. The charge fluctuations in the QD then corre-
spond to a non-equilibrium process, and are directly related to
the current through the dot. The current is determined by the
tunneling rates Γin and Γout, with

I = e
ΓinΓout

Γin + Γout
. (32)

From the tunneling rates, one could calculate all the higher mo-
ments of the current distribution as well [54]. However, the
results are only valid assuming that Eq. (9) is correct. In order
to measure the current and the current distribution function for
any experimental configuration, we instead focus on extracting
the current distribution function pt0 (N) from the experimental
data.

The distribution is found by splitting a time trace of length
T into m = T/t0 intervals of length t0 and counting the number
of electrons entering the QD within each interval. Examples
of such distributions are shown in Fig. 19, taken at two dif-
ferent gate configurations. The noise and the higher moments
are then extracted directly from the measured distribution using
Eqs. (28-30), giving for I = 792 e/s, F = µ1/µ2 = 0.52 for
case (a) and I = 626 e/s, F = 0.89 for case (b). The noise
is relatively close to Poissonian for case (b), but clearly sub-
Poissonian in case (a). This difference is easily seen by eye
by comparing the width of the two distributions. In order to
understand why the shape is different in the two situations in
Fig. 19(a, b), we need to calculated the noise expected from the
QD. This is the subject of the next section.

3.3. Theory and model description

The noise properties of a QD in the sequential tunneling
regime was investigated in detail by Bagrets and Nazarov [54],
using the framework of full counting statistics. Here, we sum-
marize their results, apply conditions appropriate for our exper-
imental configuration and compare the theoretical results with
experimental data.

The QD occupancy in the low bias, single-level transport
regime is modeled by a two-state rate equation

d
dt

(
pn

pn+1

)
=

(
−Γin Γout
Γin −Γout

) (
pn

pn+1

)
. (33)
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Figure 19: Statistical distribution of the number N of electrons entering the QD
during a given time t0. The two panels correspond to two different values of
the tunneling rates, obtained for different values of the gate voltage VG1. The
time t0 is chosen in order to have the same mean value of number of events,
〈N〉 ≈ 3, for both graphs. The line shows the theoretical distribution calculated
from Eqs. (36) and (35). The tunneling rates are determined experimentally by
the method described in Chapter 2, and no fitting parameters are involved in the
curves showing theoretical results. Adapted from Ref. [40].

Here, pn and pn+1 give the occupation probability for the the
states with n and n + 1 electrons, respectively. The two states
and the possible transitions are depicted in Fig. 20.

To evaluate the counting statistics of the system, we need to
introduce a counting field eiχ into the rate equation. We choose
to count electrons tunneling into the QD, which changes the
matrix in Eq. (33) to:

M(χ) =

(
−Γin Γout

Γin ∗ eiχ −Γout

)
. (34)

In the limit t0 � Γ−1
in ,Γ

−1
out, the normalized distribution pt0 (N/t0)

is independent of t0. In the same limit, the cumulant-generating
function S (χ) is related to the lowest eigenvalue of M(χ), λ0(χ)
as [54]

S (χ) = λ0(χ)t0 =
t0
2

[
Γin + Γout −√

(Γin − Γout)2 + 4ΓinΓoute−iχ
]
. (35)

The distribution function for the number of electrons tunneling
through the quantum dot during a time t0 is generated from the
cumulant-generating function S (χ) [see Appendix A]:

pt0 (N) =

∫ π

−π

dχ
2π

e−S (χ)−iNχ. (36)

The solid lines in Fig. 19 are distributions calculated from
Eqs. (35-36). The tunneling rates Γin and Γout are determined

Γout
Γin

Γin

Γout

n n+1

Figure 20: State diagram of a two-state model describing electron tunneling in
a QD in the single-level regime. Transitions between the states occur with rates
Γin and Γout. The counting field eiχ is introduced for the transition involving an
electron entering the QD, as marked by the dashed circle.
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separately, as explained in Chapter 2. The agreement with the
experimental distribution is very good, in particular, given that
the curves involve no fitting parameters. As mentioned earlier,
the graphs show a clear qualitative difference: Figure 19(b) has
a broader and more asymmetric distribution than Fig. 19(a). We
will see later that this difference comes from the different asym-
metries of the source and drain tunneling rates.

In order to perform a more quantitative analysis, we evalu-
ate the three first central moments µi of the current distribution,
which coincide with the first three cumulants Ci [see Appendix
A for a discussion about the difference between moments and
cumulants]. The cumulants are generated directly from the
cumulant-generating function S (χ). The mean current is then
given by the first cumulant C1 of the distribution:

I =
e
t0

C1 =
e
t0

(
−i

dS
dχ

)
χ=0

= e
ΓinΓout

Γin + Γout
. (37)

The symmetrized shot noise is calculated from the variance,
or the second cumulant C2, of the distribution:

S I =
2e2

t0
C2 =

2e2

t0

(
−

d2S
dχ2

)
χ=0

, (38)

from which we get the Fano factor:

F2 =
S I

2eI
=

C2

C1
=

Γ2
in + Γ2

out

(Γin + Γout)2 =
1
2

(
1 + a2

)
, (39)

where a = (Γin − Γout)/(Γin + Γout) is the asymmetry of the
coupling. This result recovers the earlier calculations for the
shot noise in a quantum dot [36], and shows the reduction of
the noise by a factor 1/2 for a QD symmetrically coupled to
the leads, while the Poissonian limit, F2 = 1, is reached for
an asymmetrically coupled QD (a = ±1). The reduction of
the noise is a direct consequence of Coulomb blockade; when
one electron occupies the QD, a second electron cannot en-
ter before the first one leaves. This leads to correlations in
the current fluctuations, and to a reduction of the noise. The
reduction is maximal when the tunnel barriers are symmetric.
For an asymmetrically coupled QD, the transport is essentially
governed by the weakly transparent barrier and the noise ap-
proaches the value for a single tunneling barrier, S I = 2eI. The
results discussed here assume tunneling with transmission co-
efficients much smaller than one.

Finally, we want to calculate the third cumulant C3, of the
fluctuations, which characterizes the asymmetry of the distri-
bution (skewness):

C3 = i
(

d3S
dχ3

)
χ=0

. (40)

The asymmetry can also be normalized to the mean of the dis-
tribution:

F3 =
C3

C1
=

Γ4
in − 2Γ3

inΓout + 6Γ2
inΓ2

out − 2ΓinΓ3
out + Γ4

out

(Γin + Γout)4

=
1
4

(
1 + 3a4

)
. (41)
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Figure 21: (a) Average number µ of electrons entering the QD, measured as
a function of the gate voltage VG1 and the bias voltage VSD. Far from the
edges of the Coulomb blockade region, i.e. for | ± eVSD/2 − Ed | � kBT , the
fluctuations of n are directly related to current fluctuations. The dashed line
correspond to the cross-section shown in panel (b). (b) Three first moments
of the fluctuations of n as a function of the bias voltage VSD and at a given
gate voltage VG1 = −44 mV. The ground state (GS) as well as two excited
states (ES) are clearly visible. The moments are scaled so that µ corresponds
to the number of electrons entering the QD per second. In the gray region, the
condition | ± eVSD/2 − µn | � kBT is not valid, and the number of electrons
entering the QD cannot be taken as the current flowing through the QD. The
width of this region is 9 × kBT/e ≈ 300 µV, determined from the width for
which the Fermi distribution is between 0.01 and 0.99. (c) Normalized second
and third moments as a function of the bias voltage VSD and at a given gate
voltage VG1 = −44 mV. Adapted from Ref. [40].

The result shows that for a symmetrically coupled QD, the third
moment is reduced by a factor 1/4 compared to the Poissonian
limit. For an asymmetrically coupled dot with a → ±1, we
recover F3 → 1.

3.4. Experimental results

From experimental distributions as the ones shown in Fig 19,
we can easily obtain moments of any order using the relations
in Eq. (28). We first focus on the mean µ of the distribution.
By measuring µ as a function of the voltage applied on gate G1
and the bias voltage V , we construct the Coulomb diamonds
[see Fig. 21(a)]. We observe clear Coulomb blockade regions
as well as regions of finite current. Figure 21(b) shows a cross
section taken at VG1 = −44 mV, the position is indicated by the
dashed line in Fig. 21(a)]. As the bias voltage is increased, we
see steps in the current. As explained in Section 2.5, the first
step in Fig. 21(b) (see left arrow) corresponds to the alignment
of the chemical potential of the source contact with the ground
state in the QD, and the following steps with excited states in
the QD. From the resolution of the Coulomb diamonds, we see
that the sample is stable enough such that background charge
fluctuations do not play a significant role on the time scales
relevant for this experiment [9].

In addition to the mean, we evaluate the second and third
central moments from the measured counting statistics. These
two moments are plotted in Fig. 21(b) as a function of the bias
voltage. The second moment (blue dotted line) reproduces the
steps seen in the current. These two moments can be repre-
sented by their reduced quantities F2 = µ2/µ (Fano factor) and
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Figure 22: (a) Second and (b) third normalized central moments of the fluc-
tuations of n as a function of the asymmetry of the tunneling rates, a =

(Γin − Γout)/(Γin + Γout). To increase the resolution, each point at a given asym-
metry is obtained by averaging over about 50 points at a given voltage VG1 and
in a window of bias voltage 1.5 < VSD < 3 mV. Error bars correspond to the
standard error of this averaging process, and are of the size of the points if not
shown. The dashed lines are the theoretical predictions given by Eqs. (39, 41).
No fitting parameters have been used, since the tunneling rates are fully deter-
mined experimentally. Inset of (b): Variation of the asymmetry of the tunneling
rates, a, as a function of VG1. Adapted from Ref. [40].

F3 = µ3/µ, as shown in Fig. 21(c). Both normalized moments
are almost independent of the bias voltage, and show a reduc-
tion compared to the values µ2/µ = µ3/µ = 1 expected for
classical fluctuations with Poissonian counting statistics.

As described in section 2.6, the tunnel couplings can be tuned
by adjusting the gate voltages VG1 and VG2. In this way, we are
able to continuously change the symmetry of the barriers from
symmetric to very asymmetric coupling. In Fig. 22, we show
the normalized second and third central moments as a function
of the asymmetry a. The tunneling rates are directly measured
as described in section 2, and the inset of Fig. 22(b) shows the
variation of asymmetry with gate voltage in the region of inter-
est. As expected from the discussion in the previous section,
the noise is reduced for symmetric barriers. The experimental
data follow the theoretical predictions given by Eqs. (39, 41)
very well. We note in particular that no fitting parameters have
been used since the tunneling rates are determined separately.

3.5. Time statistics

A complementary way of investigating the correlations is to
look at the temporal statistics of electron transport. Instead of
evaluating the probability distribution for the number of elec-
trons that are transferred within a fixed time t0, we examine the
continuous distribution pN(t) describing the time needed for a
fixed number of N electrons to pass through the QD. With the
rates for tunneling into and out of the QD given by Eq. (9), we
find for N = 1

p N=1(t) =

∫ t

0
pin(t′)pout(t − t′)dt′ =

=
exp(−Γin t) − exp(−Γout t)

1/Γin − 1/Γout
. (42)

In Fig. 23, we show the experimentally determined distribu-
tion pN=1(t) for two different values of the asymmetry together
with the results of Eq. (42). For the symmetric case [a = 0.07
in Fig. 23], there is a clear suppression of transfer probability
for short time scales. Again, this is due to Coulomb blockade.
We measure anti-bunching of electrons and sub-Poisson noise

levels. For the more asymmetric case [a = 0.9 in Fig. 23], anti-
bunching is less prominent and the probability distribution ap-
proaches the exponential behavior expected for a single tunnel
barrier.

The ability to measure the counting statistics of electron
transport relies on the high sensitivity of the QPC as a charge
detector. Given the bandwidth of our experimental setup, ∆ f =

30 kHz, the method allows to measure currents up to 5 fA, and
we can measure currents as low as a few electrons per second,
i.e., less than 1 aA. The low-current limitation is mainly given
by the length of the time trace and the stability of the QD, and
is well below what can be measured with conventional current
meters. In addition, as we directly count electrons one by one,
this measurement is not sensitive to the noise and drifts of the
experimental setup. It is also a very sensitive way of measuring
low current noise levels. The precision and limitations of the
measurement method are described in more details in sections
3.7 and 3.8.

3.6. Bunching of electrons
So far, we have analyzed data where the tunneling events

can be well explained by a rate equation approach with one
rate for electrons tunneling into and another rate for electrons
leaving the dot. For the trace shown in Fig. 24(a), the be-
havior is distinctly different. The electrons come in bunches;
there are intervals where tunneling occurs on a fast time scale
(>10 kHz), in-between these intervals there are long periods of
time (> 1 ms) without any tunneling. The data was taken with
a bias applied so that the Fermi level of the source lead lines
up with the electrochemical potential of the dot, while the drain
lead is far below the electrochemical potential of the dot, thus
prohibiting electrons from entering the QD through the drain
lead. The voltage on gate VG1 was set to 34 mV, which is out-
side the range of the Coulomb diamonds presented in Fig. 21(a).
Since the QPC current is at the high level during the intervals
without tunneling, the dot contains one electron less when the
fast tunneling is blocked.

In order to explain the two different time scales, we assume a
mechanism where there are two almost energy-degenerate dot

0 0.5 1 1.5
Time [(1/ Γ  in + 1/Γout)]

p(
t) 

[a
rb

.]

 

 
a=0.90
a=0.07

Figure 23: Distribution of times needed for one electron to pass through the
QD, measured with both symmetric and asymmetric tunnel couplings. To make
qualitative comparisons of the two distributions easier, the two curves are plot-
ted with different vertical scaling. The time scale is normalized to the average
time needed for one electron to pass the dot.
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The two dot transitions are both within the thermal broadening of the lead.
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model. The rates ΓA
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in refer to electrons entering the QD from the left lead,

thus taking the dot from state S A/B to state S n+1. The rates ΓA
out, ΓB

out describe
electrons leaving the dot to the left lead, giving transitions from state S n+1 to
S A/B. WAB and WBA are the direct transition rates between states S A and S B.
Finally, the rates ΓA

right, ΓB
right refer to electrons leaving the dot through the right

lead. Adapted from Ref. [20].

states within the thermal broadening of the distribution in the
source lead. Because of Coulomb blockade, the dot may hold
one or zero excess electrons. Hence, the model includes three
possible dot states as shown in Fig. 24(b). State S A is the n-
electron ground state, state S B is an excited n-electron state and
state S n+1 is the ground state when the dot contains (n + 1)
electrons. Transitions between the S A/S B states and the S n+1
state occur whenever an electron tunnels into or out of the dot.

The tunnel coupling strength between the dot and the lead is
given by the overlap of the dot and lead electronic wavefunc-
tions. Since the wavefunctions corresponding to the two states
S A and S B may have different spatial distributions, the coupling
strength ΓA of the transition S A ⇔ S n+1 may differ from the
coupling ΓB of the S B ⇔ S n+1 transition. The energy levels
of the dot and the leads for the configuration where we mea-
sure bunching of electrons are shown in Fig. 24(c), while the
possible transitions of the model are depicted in Fig. 24(d).

Starting with one excess electron on the dot [state S n+1 in
Fig. 24(d)], at some point an electron will tunnel out, leaving
the dot in either state S A or state S B. Assuming ΓB � ΓA, it is
most likely that the dot will end up in the excited state S B. If the
tunneling rate ΓB is faster than the relaxation process S B ⇒ S A,
an electron from the lead will have time to tunnel onto the dot
again and take the dot back to the initial S n+1 state. The whole
process can then be repeated, leading to the fast tunneling in
Fig. 24(a).

However, at some point the dot will end up in state S A, ei-
ther through an electron leaving the dot via the ΓA transition, or

through relaxation of the S B state. To get out of state S A, there
must be either a direct transition back to state S B, or an elec-
tron tunneling into the dot through the S A ⇒ S n+1 transition.
With ΓB � ΓA and assuming ΓB � WBA, both processes are
slow compared to the tunneling between the lead and state S B.
This mechanism will block the fast tunneling and produce the
intervals without switching events seen in Fig. 24(a). Similar
arguments can be used to show that the blocking mechanism
will be possible also if ΓB � ΓA.

From the above reasoning, we see that the fast time scale
is set by the fast tunneling state, while the slow time scale is
determined either by the relaxation process S B ⇒ S A or by the
slow tunneling rate, depending on which process is the fastest.
Either way, it is crucial that the relaxation rate is slower than
the fast tunneling rate (in our case WAB � ΓB ∼ 20 kHz). We
speculate that the slow relaxation rate may be due to different
spin configurations of the two states. For a few-electron QD,
spin relaxation times of T1 > 1 ms have been reported [23, 55,
56].

To make quantitative comparisons between the model and the
data, we use the methods of full counting statistics to investigate
how the dot charge fluctuations change as the source lead is
swept over a Coulomb resonance. Theoretical investigations of
multi-level quantum dots have lead to predictions of electron
bunching and super-Poissonian noise [45]. Following the lines
of Refs. [54, 45], we first write the master equation for the
system,

d
dt

 pA

pB

pn+1

 = M

 pA

pB

pn+1

 , (43)

with M =
−ΓA

in −WBA WAB (ΓA
out + ΓA

right) eiχ

WBA −ΓB
in −WAB (ΓB

out + ΓB
right) eiχ

ΓA
in ΓB

in −Γout

 . (44)

Here Γout = (ΓA
out + ΓB

out + ΓA
right + ΓB

right) and pA, pB and pn+1
are occupation probabilities for states S A, S B and S n+1, respec-
tively. The effective tunneling rates are determined by multiply-
ing the tunnel coupling constants for each state with the Fermi
distribution of the electrons in the lead,

Γ
A/B
in/out = f [∓(eV − µA/B)] ΓA/B. (45)

The tunneling rates ΓA
right and ΓB

right are included to account for
the possibility for electrons to leave through the right barrier.
The Fermi level of the right lead is far below the electrochem-
ical potential of the dot, so that the states in the right lead can
be assumed to be unoccupied. Finally, WAB and WBA are the di-
rect transition rates between states S A and S B. These rates obey
detailed balance,

WAB/WBA = exp
[
(µA − µB)/kBT

]
. (46)

The phenomenological relaxation rate between the two states is
given as 1/T1 = WAB + WBA.

In Eq. (44), we introduce charge counting by multiplying
all entries of M involving an electron leaving the dot with the
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counting factor exp(iχ) [54]. We do not distinguish whether
the electron leaves the dot through the left or the right lead. In
this way we obtain the counting statistics pt0 (N), which is the
probability for counting N events within the time span t0. The
distribution describes fluctuations of charge on the dot, which
is exactly what is measured by the QPC detector in the experi-
ment. We stress that this distribution is equal to the distribution
of current fluctuations only if it can be safely assumed that the
electron motion is unidirectional. This is the case if the condi-
tion in Eq. (31) is fulfilled, i.e. if the tunneling due to thermal
fluctuations is suppressed. Here, we are in a regime where there
is a mixture of tunneling due to the applied bias and tunneling
due to equilibrium fluctuations. But since the model defined
in Eq. (44) is valid regardless of the direction of the electron
motion, it can still be used for analyzing the experimental data.

Using the method of Ref. [54], we calculate the lowest eigen-
value λ0(χ) of M and use it to obtain the cumulant generating
function (CGF) for pt0 (N),

S (χ) = −λ0(χ)t0. (47)

The CGF can then be used to obtain the cumulants of any order
using the relation Cn = −(−i∂χ)nS (χ)|χ=0. In order to com-
pare the theory with the experiment we extract the first three
cumulants of pt0 (N) from the experimental data. The cumu-
lants were found by taking a trace of length T = 0.5 s and
splitting it into m = T/t0 independent traces. By counting the
number of electrons N leaving the dot in each trace and repeat-
ing the procedure for all m sub-traces, the distribution function
pt0 (N) could be experimentally determined. The experimental
cumulants were then calculated directly from the measured dis-
tribution function. The time t0 was chosen such that 〈N〉 ≈ 3.
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Figure 25: (a) First, second and third cumulants of the distribution of charge
fluctuations. The symbols show values extracted from the experimental data,
while the solid lines are calculated from the model given in the text. Fitting pa-
rameters are: ΓA = 1.6 kHz, ΓB = 20.5 kHz, ΓA

right = 4.6 kHz, ΓB
right = 310 Hz,

T1 = 8 ms and µA − µB = 13 µeV. The electronic temperature was 400 mK.
(b) Normalized cumulants C3/C1 and C2/C1 versus bias voltage. The noise
is clearly super-Poissonian in the central region of the graph. (c) Calculated
maximal value of C3/C1 as a function of the relaxation time between the two
states. The values are calculated by varying the relaxation time while keeping
the other parameters to the values given by the fit shown in (a). The maximum
value C3/C1 extracted from the experimental data is 15.9. Adapted from Ref.
[20].

Figure 25(a) shows the first three cumulants versus voltage
applied to the source lead. The points correspond to exper-
imental data, while the solid lines show the cumulants cal-
culated from the CGF of our model, with fitting parameters
ΓA = 1.6 kHz, ΓB = 20.5 kHz, ΓA

right = 4.6 kHz, ΓB
right = 310 Hz,

T1 = 8 ms and µA − µB = 13 µeV. The electronic tempera-
ture in this measurement was 400 mK. The figure shows good
agreement between the model and the experimental data.

Figure 25(b) shows the normalized cumulants C2/C1 and
C3/C1 for the experimental data; we notice that both the second
and the third cumulants vastly exceed the first cumulant when
the Fermi level of the source lead is aligned with the electro-
chemical potential of the dot (Vbias = 1.3 mV). For a Poisso-
nian process one expects C2/C1 = C3/C1 = 1; here, the noise is
clearly of super-Poissonian nature, as expected from the bunch-
ing behavior of the electrons.

When the bias voltage is further increased (Vbias > 1.5 mV),
the source lead is no longer in resonance with the electrochem-
ical potential of the dot and the equilibrium fluctuations be-
tween the source and the dot are suppressed. In this regime,
the measured charge fluctuations are due to a current flowing
through the dot. Electrons enter the dot from the source lead
and leave the dot through the drain lead. The blocking mech-
anism is no longer effective and the transport process will pre-
dominantly take place through state S A, since the tunnel cou-
pling to the drain lead is stronger for this state (ΓA

right � ΓB
right).

The transport through the dot can essentially be described by a
rate equation, with one rate for electrons entering and another
rate for electrons leaving the dot. For such systems, it has been
shown in section 3.2 that the Coulomb blockade will lead to
an increase in correlation between the tunneling electrons com-
pared to a single-barrier structure, giving sub-Poissonian noise
[36, 40]. The effect is seen for Vbias > 1.5 mV in Fig 25(b);
both the second and third cumulants are reduced compared to
the first cumulant.

The value of T1 = 8 ms obtained from fitting the experimen-
tal data is of the same order of magnitude as previously reported
values for the spin relaxation time T1. We stress that the bunch-
ing of electrons and the super-Poissonian noise can only exist
if the relaxation time is at least as long as the inverse tunneling
time. This is demonstrated in Fig. 25(c), which shows the max-
imum value obtained for the ratio C3/C1 calculated for different
T1 while keeping the rest of the fitting parameters at the values
given in the caption of Fig. 25.

3.7. Higher order moments and limitations of the detector
So far, we have presented measurements of the second and

third cumulants or central moments. As mentioned in sec-
tion 3.1, the shot noise is a direct consequence of the discrete-
ness of the charge carriers in the system. A measurement of the
second moment (Fano factor) thus provides a way to determine
the charge of those discrete carriers. The third moment of a tun-
neling current has been shown to be independent of the thermal
noise [57, 22], thus making it a potential tool for investigating
electron-electron interactions even at elevated temperatures.

What about the higher order moments? In strongly interact-
ing systems, they are predicted to depend strongly on both the
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conductance [58] and on the internal level structure [45] of the
system. Determining higher order moments may therefore give
a more complete characterization of the electron transport pro-
cess. This can be of importance for realizing measurements of
electron correlation and entanglement effects in quantum dots
[46, 47]. In quantum optics, higher order moments are routinely
measured in order to study entanglement and coherence effects
of the electromagnetic field [59].

In this section, we present measurements of the fourth and
fifth cumulant of the distribution function for charge transport
through a QD. As demonstrated in section 3.2, we determine
the cumulants by first generating the experimental probability
density function pt0 (N). This is done by splitting a time trace
of length T into m = T/t0 intervals and counting the number of
electrons entering the dot within each interval. The higher cu-
mulants describe more subtle features of the distribution func-
tion. To extend the methods of section 3.2 to higher cumulants,
it is therefore necessary to increase the measurement time to
collect more statistics. This requires a stable sample without
any fluctuating charge traps close to the QD.

In the experiment, we use a single QD with the same design
as the one described in section 2 and section 3.2. The cou-
pling between the QD and the QPC was weaker in the sample
used here, meaning that the bandwidth had to be reduced below
10 kHz. On the other hand, the stability of the structure allowed
the measurement of time traces of length T = 10 minutes. In the
experiment, the QPC was voltage biased with VQPC = 250 µV .
The current signal was sampled at 100 kHz, software filtered at
4 kHz using an 8th order Butterworth filter and finally resam-
pled at 20 kHz in real-time to keep the amount of data manage-
able.
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Figure 26: (a-d) Normalized cumulants Cn/C1 versus dot asymmetry, a = (Γin−

Γout)/(Γin + Γout). The solid lines are theoretical predictions assuming a perfect
detector, C2/C1 = (1 + a2)/2, C3/C1 = (1 + 3a4)/4, C4/C1 = (1 + a2 − 9a4 +

15a6)/8 and C5/C1 = (1 + 30a4 − 120a6 + 105a8)/16. The dashed lines show
the cumulants calculated from the model defined by Eq. (50) in the text. The
inset in (c) shows the variation of the total tunneling rate Γtot = Γin + Γout for
the different measurement points. Adapted from Ref. [60].

The results are shown in Fig. 26, where we plot the nor-
malized cumulants for different values of the asymmetry of the

tunneling rates, a = (Γin − Γout)/(Γin + Γout). The asymmetry is
tuned by shifting the voltage on gate G1 by an amount ∆V and
at the same time applying a compensating voltage −∆V on gate
G2. With the two gates having a similar lever arm on the dot, the
electrochemical potential of the QD remains at the same level,
but the height of the tunneling barriers between the dot and the
source and drain leads will change. Doing so, we could tune
the asymmetry from a = −0.94 to a = +0.25 while still keep-
ing both tunneling rates within the measurement bandwidth and
avoiding charge rearrangements. To get data for the full range
of asymmetry, we did a second measurement at a different gate
voltage configuration. For the second set of data, the asymme-
try was tuned from a = 0.07 to a = 0.93. The stars and the
circles in Fig. 26 represent data from the two different sets of
measurements. The measurements were performed with a QD
bias of Vbias = 2.5 mV, with the electrochemical potential of
the dot far away from the Fermi levels of the source and drain
leads. This is to ensure that tunneling due to thermal fluctua-
tions is sufficiently suppressed.

The solid lines in Fig. 26 depict the theoretical predictions
calculated from a two-state model [54]. The analytical expres-
sions are given in the figure caption. The higher cumulants
show a complex behavior as a function of the asymmetry, with
local minima at a = ±0.6 for C4/C1 and at a = ±0.8 for C5/C1.
The fifth cumulant even becomes negative for some configu-
rations. The experimental data qualitatively agrees with the
theory, but for small values of the asymmetry there are devi-
ations from the expected behavior. The deviations are stronger
for the first set of data (stars). Since the tunneling rates in the
first measurement was about a factor of three higher than in the
second measurement [see inset of Fig. 26(c)], we suspect the
finite bandwidth of the detector to be a possible reason for the
discrepancies.

In general, experimental measurements of FCS for electrons
are difficult to achieve due to the need of a sensitive, high-
bandwidth detector capable of resolving individual electrons
[61, 62, 21]. However, a more fundamental complication with
the measurements is that most forms of the FCS theory assume
the existence of (1) a detector with infinite bandwidth and (2)
infinitely long data traces. Since no physical detector or experi-
ment can fulfill these requirements, every experimental realiza-
tion of the FCS will measure a distribution which is influenced
by the properties of the detector. In the following, we inves-
tigate how the violation of the two assumptions modifies the
measured statistics.

Naaman et al. [17] pointed out that measurements of the
transition rates of a Poisson two-state system using a finite
bandwidth detector always leads to an underestimate of the
rates. As a result, the measured probability distribution for
the times needed for an electron to tunnel into or out of the
QD no longer follow the expected exponential pin/out(t) =

Γin/out exp(−Γin/out t). Due to the finite detection time, very fast
tunneling events are less likely to be detected, giving a cut-off

for short time scales in the measured distribution. Moreover,
since the fast events are not detected, the measurement will
over-estimate the occurrence of slow events. The long-time tail
of the measured distribution will still decay exponentially, but
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Figure 27: (a) Probability density of time needed for an electron to tunnel into
the dot. Note the sharp decrease in counts for t < 100 µs due to the finite
bandwidth of the detector. The black curve is a long-time exponential fit with
Γ = 1.39 kHz. (b) Model for the dot-detector system. A state (n,m) corresponds
to n electrons on the dot while the detector at the same time is measuring m
electrons. Adapted from Ref. [60].

the tunneling rate extracted from the distribution will be under-
estimated. To determine the rates correctly, the detection rate
Γdet of the detector must be taken into account [17].

An example of a probability distribution taken from mea-
sured data is shown in Fig. 27(a). The long-time behavior is
exponential, but for times t < 100 µs there is a sharp decrease
in the number of counts registered by the detector. From the fig-
ure, we can estimate τdet = 1/Γdet, which is the average time it
takes for the detector to register an event. We find τdet = 70 µs,
giving a detection rate of Γdet = 1/τdet = 14 kHz. Note that the
detection rate Γdet does not only depend on the measurement
bandwidth but also on the signal-to-noise ratio of the detector
signal as well as the redundancy needed to minimize the risk of
detecting false events [63]. The compensations for the tunnel-
ing rates are given as [17]

Γin = Γ∗in
Γdet

Γdet − Γ∗in − Γ∗out
, (48)

Γout = Γ∗out
Γdet

Γdet − Γ∗in − Γ∗out
. (49)

Here, Γin/out are the true tunneling couplings and Γ∗in/out =

1/〈τin/out〉 are rates extracted from the measurement. All tun-
neling rates presented in the following have been extracted us-
ing Eqs. (48-49) with Γdet = 14 kHz.

The finite bandwidth will also influence the FCS measured
by the detector. Following the ideas of Ref. [17], we account
for the finite bandwidth by including the states of the detector
into the two-state model of section 3.3. Figure 27(b) shows the
four possible states of the combined dot-detector model. The
state (n+1, n) refers to a situation where there are n+1 electrons
on the dot, while the detector at the same time reads n electrons.
The transition from the state (n + 1, n) to the state (n + 1, n + 1)
occurs when the detector registers the electron. This process
occurs with the rate of the detector, Γdet.

To calculate the FCS for the QD-detector system, we write
the master equation Ṗ = M P, with P = [(n, n), (n + 1, n), (n, n +
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Figure 28: Higher cumulants versus relative detection bandwidth Γdet/(Γin +

Γout), calculated from the model in Fig. 27(b). The cumulants are normalized
with respect to the results for the infinite-bandwidth case. The influence of the
finite bandwidth is maximal when the asymmetry a = (Γin − Γout)/(Γin + Γout)
is zero. Adapted from Ref. [60].

1), (n + 1, n + 1)] and Mχ =
−Γin Γout Γdet 0
Γin −(Γout + Γdet) 0 0
0 0 −(Γin + Γdet) Γout
0 Γdet ∗ eiχ Γin −Γout

 . (50)

In the above matrix, we have included the counting factor eiχ

at the element where the detector registers an electron tunnel-
ing into the dot [see dashed circle in Fig. 27(b)]. The statis-
tics obtained in this way relates directly to what is measured
in the experiment. Using the methods of Ref. [54], we calcu-
late the first few cumulants for the above expression as a func-
tion of relative bandwidth k = Γdet/(Γin + Γout) and asymmetry
a = (Γin − Γout)/(Γin + Γout). The normalized second and third
cumulants take the form

C2/C1 =
1 + a2

2
−

k(1 − a2)
2(1 + k)2 , (51)

C3/C1 =
1 + 3a4

4
−

3k(1 + k + k2)
4(1 + k)4 −

6 a2k2

4(1 + k)4 +
3 a4k(1 + 3k + k2)

4(1 + k)4 . (52)

In Fig. 28(a) we plot the second and third cumulants from
Eq. (51) and Eq. (52) for different values of asymmetry a and
relative bandwidth k. The cumulants have been normalized to
the values for the infinite bandwidth detector. Fig. 28(b) shows
the corresponding results for the forth and fifth cumulants. With
Γdet � Γin +Γout, the cumulants approach the infinite bandwidth
result, as expected. However, even with Γdet = 10(Γin + Γout)
and perfect symmetry (a = 0), the second cumulant deviates by
almost 10% and the third cumulant by more than 20% from
the perfect detector values. As the bandwidth is further de-
creased, the deviations grow stronger and reach a maximum as
Γdet = Γin + Γout. With Γdet � Γin + Γout, the cumulants once
again approach the perfect detector values. When the detector is
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Figure 29: Current distribution functions, extracted for different values of t0.
The underlying data is the same in all three figures. For very short t0 [case (a)],
the distribution clearly has different properties compared to case (c).

much slower than the underlying tunneling process, it will only
sample the average population of the two states. In this limit,
the dynamics of the system does not interfere with the dynamics
of the detector and we recover the correct relative noise levels.
It should be noted that this is true only for the noise relative to
the detected mean current. Since the detector will miss most of
the tunneling events, the absolute values of both the current and
the noise will be underestimated.

Over the full range of bandwidth and asymmetry, we find
that the noise detected with the finite bandwidth system is al-
ways lower than for the ideal detector case. The reduction can
be qualitatively understood by considering the probability dis-
tribution pt0 (N). The finite bandwidth makes it less probable
to detect fast events, meaning that the probability of detecting
a large number of electrons within the interval t0 will decrease
more than the probability of detecting few electrons. This will
cut the high-count tail of the distribution and thereby reduce
its width (C2) and its skewness (C3). An interesting feature is
that the cumulants calculated for a less symmetric configura-
tions [a = 0.9 in Fig. 27(c)] show less influence of the finite
bandwidth.

A second limitation of a general FCS measurement is the
finite length of each time trace. In order to generate the exper-
imental probability density function pt0 (N), the total trace of
length T must be split into m = T/t0 intervals, each of length
t0. Most FCS theories only predict results for the case t0 � 1/Γ,
where Γ is a typical transition rate of the system. In the exper-
iment, it is favorable to make t0 as short as possible in order to
increase the number of samples m = T/t0. This will improve
the quality of the distribution and help to minimize statistical
errors. However, if t0 is made too short, this will influence the
extracted distribution. This is visualized in Fig. 29, where dis-
tribution functions for different t0 are extracted from the same
set of experimental data. The distributions give the same cur-
rent I = e〈N〉/t0, but their properties are clearly different. In
the extreme case of t0 � 1/Γ (〈N〉 � 1), the distribution ap-
proaches the Bernoulli distribution, for which only pt0 (0) and
pt0 (1) are non-zero.

The condition t0 � 1/Γ is imposed by the approximation that
the cumulant generating function (CGF) S (χ) for pt0 (N) only
depends on the lowest eigenvalue Λmin of the master equation
matrix Mχ, with S (χ) = −t0Λmin. A FCS valid for finite t0
must include all eigenvalues and eigenvectors of Mχ [54]. The
corresponding expression is

exp[S (χ)] = 〈q0|p(n)〉 exp(−t0Λn)〈q(n)|p0〉, (53)
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Figure 30: Normalized cumulants evaluated for different lengths of the time
interval t0. The symbols show the experimental data, extracted from a time
trace of length T = 10 minutes, containing 350595 events, with a = 0.053, and
Γtot = 3062 Hz. The solid lines are calculations from the FCS given by Eq.
(53) in the text, while the dashed lines are the asymptotes for t0 → ∞. The
inset shows a magnification of the vertical axis (horizontal axis unchanged) for
C4/C1 and C5/C1 for 〈N〉 > 0.6. Adapted from Ref. [60].

where 〈q(n)| and |p(n)〉 are the left and right eigenvectors of the
matrix Mχ, Λn are the eigenvalues of Mχ and 〈q0|, |p0〉 are the
eigenvectors corresponding to the lowest eigenvalue Λmin. The
cumulants generated from the CGF in Eq. (53) will in general
be a function of t0.

To investigate how small t0 can be before systematic errors
become relevant, we calculate the cumulants from the CGF of
Eq. (53) with the master equation matrix Mχ of Eq. (50). The
results are shown in Fig. 30, where we plot the normalized
cumulants as a function of the mean number of counts per in-
terval, 〈N〉 = t0/(1/Γin + 1/Γout). The symbols show cumulants
extracted from measured data (T = 10 minutes, a = 0.053,
Γin + Γout = 3062 Hz and Γdet = 14 kHz), while the solid lines
are results from the CGF for the same set of parameters. The
dashed lines are the asymptotes for the limiting case t0 → ∞.

In general, data and theory are in good agreement. There
are some deviations in the fourth and fifth cumulants for large
t0 (〈N〉 > 6 in Fig. 30), but these are statistical errors in the
experiment due to the finite length of the total time trace. For
short t0, all cumulants converge to Cn/C1 → 1. This is because
as 〈N〉 � 1, the probability distribution pt0 (N) will be non-zero
only for N = 0 and N = 1, with pt0 (0) = 1 − q, pt0 (1) = q and
q = 〈N〉. This is the definition of a Bernoulli distribution, for
which the normalized cumulants Cn/C1 → 1 as q→ 0 [64].

Focusing on the other regime, 〈N〉 > 1, we see that cumulants
of different orders converge to their asymptotic limits for differ-
ent values of t0. The second cumulant needs a longer interval
t0 to reach a specified tolerance compared to the higher cumu-
lants. This is of interest for the experimental determination of
higher cumulants. By choosing a shorter value of t0 when cal-
culating higher cumulants, the amount of samples m = T/t0 can
be increased. For the data in Fig. 26, the cumulants were calcu-
lated with intervals t0 giving 〈N〉 = 15 for C2, 〈N〉 = 6 for C3,
〈N〉 = 3 for C4 and 〈N〉 = 2 for C5. The maximal deviations
between the correct cumulants and the ones determined with a
finite length t0 can be estimated by checking the convergence
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for all values of the asymmetry. For the data shown in Fig. 26,
we find ∆C2/C1 = 0.007, ∆C3/C1 = 0.009, ∆C4/C1 = 0.01
and ∆C5/C1 = 0.03.

Coming back to the results of Fig. 26, we are now able to
explain why the measured cumulants show lower values com-
pared to the perfect-detector theory. The dashed lines in Fig. 26
are the cumulants calculated from the combined QD-detector
model of Eq. (50), with Γdet = 14 kHz. The overall agreement
is good, especially since no fitting parameters are involved.
Higher cumulants end up to be slightly lower than theory pre-
dicts. We speculate that the deviations could be due to low-
frequency fluctuations of the tunneling rates over the time of
measurement.

3.8. Measurement precision

In this section we investigate the precision possible to
achieve with a current meter based on single-electron counting.
For this purpose, we assume a QD in the high-bias regime with
a single state available for transport, i.e., the model defined by
Eq. (33) in section 3.3. As derived in section 3.3, the current I
and the shot noise are

I = e
ΓinΓout

Γin + Γout
, (54)

S I = 2e2 Γin Γout (Γ2
in + Γ2

out)
(Γin + Γout)3 . (55)

When counting electrons passing through the QD, we use
the tunneling electrons to probe the tunnel couplings Γin/Γout.
Since tunneling is a statistical process, it involves a certain de-
gree of randomness and we need to detect an ensemble of elec-
trons in order to be able to form the average Γin/out = 1/〈τin/out〉.
The statistical variations of the tunneling times imply that there
is relation between the duration and the precision of the mea-
surement. More precisely, assuming that the tunneling rates
Γin/Γout in Eqs. (54-55) are constant, for how long is it nec-
essary to measure in order to reach a certain precision in the
current or the noise level? This is investigated in the follow-
ing section. The theoretical findings are then compared with
experimental results.

3.9. Theoretical precision

In the single-level regime, the process of an electron tunnel-
ing into or out of the dot is described by the rate equation

ṗin/out(t) = −Γin/out × pin/out(t). (56)

Here, pin/out(t) is the probability density for an electron to tun-
nel into or out of the dot at a time t after a complementary event.
Since the expressions for electrons entering and leaving the dot
are the same, we drop the subscripts (in/out) and use the no-
tations p(t) and Γ to describe either one of the two processes.
Solving the differential equation and normalizing the resulting
distribution gives

p(t)dt = Γe−Γtdt. (57)

In the experiment, we measure a time trace containing a se-
quence of tunneling times τk, k = 1, 2, 3, . . . To estimate Γ and
its relative accuracy from such a sequence, we need to calcu-
late the probability distribution for extracting a certain value Γ,
given a fixed sequence of tunneling times. We start by divid-
ing the time axis into bins of width ∆τ and number them with
i = 0, 1, 2, . . . A tunneling event τk will be counted in bin i if
i∆τ ≤ τk < (i + 1)∆τ. Using Eq. (57) and assuming ∆τ � 1/Γ,
we find that the probability to get a count in bin i for a given
value of Γ is equal to

p(i|Γ) = Γ∆τe−Γ∆τ i. (58)

A certain sequence {in} is realized with probability

p({in}|Γ) =

N∏
n=1

Γ∆τe−Γ∆τ in =

= (Γ∆τ)Ne−Γ∆τ
∑N

n=1 in =

= (Γ∆τ)Ne−Γ∆τ
∑∞

i=0 nii =

= (Γ∆τ)Ne−Γ∆τN〈i〉. (59)

Here, ni is the number of times an event falls into bin i,∑∞
i=0 ni = N is the total number of events in the trace and
〈i〉 = 1

N
∑∞

i=0 nii is the average of i. A certain set of bin oc-
cupations {ni} can be achieved with many different {in}-series,
namely N!/

∏∞
i=0 ni!. Assuming that they all occur with the

same probability p({in}|Γ), we find

p({ni}|Γ) =
N!∏∞
i=0 ni!

(Γ∆τ)Ne−Γ∆τN〈i〉. (60)

This is our sampling distribution. For an estimate of Γ we use
Bayes theorem

p(Γ|{ni}) = p(Γ)
p({ni}|Γ)
p({ni})

. (61)

Because we have no information on the prior probabilities p(Γ)
and p({ni}), the principle of indifference requires them to be
constants, giving

p(Γ|{ni}) = C (Γ∆τ)Ne−Γ∆τN〈i〉, (62)

where C is constant. Normalization
∫ ∞

0 p(Γ|{ni})dΓ = 1 leads
to

p(Γ|{ni}) =
NN〈i〉N+1∆τ

N!
(Γ∆τ)Ne−Γ∆τN〈i〉

=
NN

N!
〈τ〉(Γ〈τ〉)Ne−NΓ〈τ〉. (63)

The most likely value of Γ is therefore Γ∗ = 1/〈τ〉. The relative
accuracy of this estimate is given by the width of the distribu-
tion. Setting x = Γ〈τ〉 and evaluating the width at half maxi-
mum gives

xNe−xN =
1
2

e−N

⇒ ln(x) = x − 1 −
1
N

ln(2). (64)
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Figure 31: Probability distributions for a sequence of tunneling times {τi} to
belong to a physical process being characterized by the tunnel coupling Γ. The
different graphs correspond to different lengths of the data set.

For large N we can expand ln(x) in a Taylor series around x = 1.
Keeping only the first two terms, it follows

1
2

(x − 1)2 =
1
N

ln(2)

⇒ x = 1 ±

√
2 ln(2)

N
. (65)

Thus the relative accuracy is

∆Γ/Γ =
√

2 ln(2)/N. (66)

3.10. Experimental precision

In order to compare the results of Eq. (66) with the measure-
ment, we take a data set {tin

i , tout
i } containing 120000 events,

extracted from a trace such as the one shown in Fig. 9(c). The
tunneling rates are Γin = 1/〈τin〉 = 594 Hz and Γout = 1/〈τout〉 =

494 Hz. In the following, we choose to investigate the precision
of Γin and drop the subscript. We have also performed the anal-
ysis for Γout, with similar results.

To proceed, we use Eq. (57) to calculate the probability that a
certain set of tunneling times {τi} belongs to a physical process
characterized by the tunnel coupling Γ

p(Γ|{τi}) =

N∏
i=1

Γτi e−Γτi . (67)

In Fig. 31 we plot the probability distributions of Eq. (67) for
subsets of {τi}with different lengths N. As the size of the subset
is increased, the probability distribution gets focused around
Γ = Γin = 594 Hz. This simply reflects the fact that the larger
the amount of experimental evidence available, the less likely it
becomes that the data is generated by a tunneling process with
Γ , Γin.

The experimental uncertainty in Γ is given by the width of
the distributions in Fig. 31. Figure 32 shows the normalized
uncertainty ∆Γ/Γ versus subset size N. The solid line is the
result of Eq. (66), showing very good agreement with the ex-
perimental data. The results validate Eq. (57) and demonstrate
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Figure 32: Accuracy achieved when determining the tunnel coupling Γ versus
the size of the data set. The accuracy was measured by taking the width of the
distributions as shown in Fig. 31. The solid line is the result of Eq. (66)

the stability of the sample; a sudden change in the tunnel cou-
pling Γ during the relatively long measurement time of 10 min-
utes would introduce deviations between Eq. (66) and the mea-
sured precision. For the full data set N = 120000, we find
Γin = 593.8 ± 1.7 Hz and Γout = 494.2 ± 1.4 Hz.

For simplicity, we have assumed a perfect detector with in-
finite bandwidth. We have also performed the analysis for a
model incorporating the detector bandwidth as explained in sec-
tion 3.7, and we obtain very similar results. The analysis is
slightly more involved since a tunnel coupling Γin will depend
not only on the set {τin

i }, but also on {τout
i }.

3.11. Current meter precision
Knowing the precision of the tunneling rates Γin/Γout, we use

the relations in Eqs. (54-55) to determine the precision of the
current and the noise. For the data set with N = 120000 dis-
cussed in the previous section, we find

I = (292.87 ± 0.64) e/s = (46.917 ± 0.10) aA. (68)

The shot noise of the current is equal to

S I = (7.5772 ± 0.017) × 10−36 A2/Hz. (69)

Conventional measurement techniques are usually limited by
the current noise of the amplifiers (typically 10−29 A2/Hz)
[32, 33, 37, 39]: here we demonstrate a measurement of the
noise power with a sensitivity better than 10−37 A2/Hz. The lim-
its in precision investigated here are not due to a measurement
apparatus but appears because of the discreteness of charge; the
precision of the shot noise measurement is limited by the shot
noise itself. In the experiment more uncertainty occurs if (1) the
correction for the finite bandwidth in Eq. (48) is incorrect or (2)
because of the detection of false events due to an insufficient
signal-to-noise ratio in the measurement of the QPC conduc-
tance (see section 1.3).

4. Double quantum dots

The double quantum dot is the mesoscopic analogue of a
diatomic molecule. In weakly coupled dots, the electrons are
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Figure 33: (a) AFM-image of the sample investigated in this section. The struc-
ture consists of a double quantum dot (DQD) (marked by 1 and 2) with a near-
by quantum point contact. (b) Energy level diagram of the DQD. The QDs are
tunnel coupled to source and drain leads with tunneling rates ΓS and ΓD, while
the interdot transitions are characterized by the coupling energy tC.

well localized within the individual dots, their wavefunctions
are spatially separated and electron transport is described by
sequential tunneling between discrete single-dot states. With
increased interdot coupling, the single-dot wavefunctions hy-
bridize and form molecular states extending over both dots. The
ability to tune both the interdot coupling and the energy levels
of the individual QDs make the double quantum dot an inter-
esting model system for studying interactions in coupled quan-
tum systems. In this section we show how to use time-resolved
charge detection techniques to probe various properties of dou-
ble quantum dots.

The measurements presented in this section were performed
on the sample shown in Fig. 33(a). The structure is fabri-
cated with local oxidation techniques and consists of two QDs
(marked by 1 and 2 in the figure) connected by two separate tun-
nel barriers. For the results presented here only the upper tunnel
barrier was kept open; the lower was pinched-off by applying
appropriate voltages to the surrounding gates. For the purpose
of this section, the system may be described as a standard se-
rial double quantum dot (DQD); the ring-shape properties of
the sample are investigated and utilized in section 6.

The DQD is coupled to source and drain leads via tunnel
barriers. Several in-plane gates [marked by T, B, L and R in
Fig. 33(a)] are used to tune the various tunnel couplings. Two
quantum point contacts are located in the upper-left and lower-
right parts of Fig. 33(a). In the measurement, it was only possi-
ble to operate the upper-left QPC as a charge detector; the one
in the lower-right corner was always pinched off. The conduc-
tance of the upper-left QPC was measured by applying a bias
voltage of 200 − 400 µV and monitoring the current (IQPC in
the figure). The QPCs were also used as in-plane gates to con-
trol the electron population in the DQD. This was achieved by
applying fixed voltages VG1, VG2 to both sides of the QPCs in
addition to the bias voltage.

In Fig. 33(b) we sketch the energy levels in the system. The
QD states are coupled to source and drain leads with tunneling
rates ΓS and ΓD, while the interdot coupling is described by a
coupling energy tC. The electrochemical potentials of the two
QDs are denoted by µ1 and µ2, measured relative to the Fermi
levels of the source and drain leads. The next unoccupied QD
states are separated by the charging energies EC1 and EC2.
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Figure 34: Numerical derivative of the QPC current with respect to the voltage
on gate G2. A positive derivative reflects an increase in QPC conductance,
which means that an electron is moving away from the QPC. For a negative
derivative, an electron is coming closer to the QPC. The horizontal white line
most likely originates from electron fluctuations of a charge trap. The numbers
in the figure refer to the number of electrons in the two QDs. The data was
taken with QPC bias VQPC−SD = 400 µV and zero bias across the DQD.

To reach a well-defined DQD configuration we apply neg-
ative gate voltages in order to close the constrictions between
QD1 and QD2. The gate voltages also influence the tunneling
coupling to source and drain; as a consequence the DQD current
IDQD drops below the measurable limit and we need to operate
the charge detector to measure charge transitions in the QDs.
Figure 34 shows the numerical derivative of the QPC current
with respect to the gate voltage VG2. A compensation voltage
was applied to the QPC gate [upper-leftmost part of Fig. 33(a)]
to keep the QPC conductance relatively constant within the gate
voltage of interest. This gives the uniform light-bluish back-
ground of Fig. 34. On top of that there is a clear hexagon pattern
emerging, with all features expected from a DQD [65].

The numbers in brackets denote the electron population of
the two QDs. The charge transitions occurring at the borders
between different regions of fixed charge give rise to different
changes of dIQPC/dVG2. To understand these features we first
note that the QPC is asymmetrically positioned with respect to
the DQD, with QD1 being much closer than QD2. Charge fluc-
tuations in QD1 are therefore expected to give a stronger influ-
ence on the QPC conductance than fluctuations in QD2. Now,
starting within the hexagon marked by (n,m) and increasing VG2
will lower the DQD potentials µ1 and µ2 and eventually allow
an additional electron to enter the DQD. As the transition takes
place, the QPC conductance decreases, giving a sharp peak with
negative dIQPC/dVG2 in Fig. 34. Depending on the energy level
configuration of the two QDs, the electron may enter into either
QD1 or QD2. The dip in dIQPC/dVG2 is stronger for the transi-
tion (n,m)→ (n + 1,m) than for (n,m)→ (n,m + 1), reflecting
the stronger coupling between the QPC and QD1.

Since the gate G2 is located closer to QD2 the gate voltage
VG2 has a larger influence on µ2 than on µ1. Increasing VG2
may thus lead to a situation where µ2 + EC2 is shifted below
µ1. At the transition an electron will tunnel from QD1 over
to QD2. The process takes an electron further away from the
QPC, leading to an increase in QPC conductance and a positive
peak in dIQPC/dVG2. The effect is clearly seen at the transition
(n + 1,m)→ (n,m + 1) in Fig. 34.
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Figure 35: (a) Charge stability diagram of the DQD, measured by counting
electrons entering and leaving the DQD. The data was taken with a voltage
bias of VDQD−SD = 600 µV applied over the DQD. The QPC conductance was
measured with VQPC−SD = 300 µV. The count rates were extracted from traces
of length T = 0.5 s. (b) Energy level diagrams for different configurations in
(a). Adapted from Ref. [66].

An interesting feature of Fig. 34 is that the blue lines cor-
responding to interdot transitions grow broader and fainter at
higher gate voltages. This is a consequence of increased inter-
dot coupling tC; if the coupling is strong enough the interdot
transition is smeared out over the gate voltage region where the
electron is delocalized over both QDs. Measuring the width of
these transitions thus provides a convenient way to determine
the tunnel coupling between the two QDs that works even if the
electron tunneling occurs on timescales much faster than the
detector bandwidth. The method is investigated in more detail
in section 4.2.

4.1. Time-resolved detection

The electron population of the DQD is monitored by operat-
ing the QPC in the lower-right corner of Fig. 33(a) as a charge
detector [4]. By tuning the tunneling rates of the DQD below
the detector bandwidth, charge transitions can be detected in
real-time [7, 6, 62]. In the experiment, the tunneling rates ΓS
and ΓD to source and drain leads are kept around 1 kHz, while
the interdot coupling t is set much larger (t ∼ 20 µeV ∼ 5 GHz).
Interdot transitions thus occur on timescales much faster than it
is possible to register with the detector (τdet ∼ 50 µs) [17], but
the coupling energy may still be determined from charge local-
ization measurements [18]. The conductance of the QPC was
measured by applying a bias voltage of 200−400 µV and moni-
toring the current [IQPC in Fig. 33(a)]. We ensured that the QPC
bias voltage was kept low enough to avoid charge transitions
driven by current fluctuations in the QPC [12]. The sample
is realized without metallic gates so that the coupling between
dots and QPC detectors is not screened by metallic structures.

Figure 35(a) shows a charge stability diagram for the DQD,
measured by counting electrons tunneling into and out of the
DQD. The data was taken with a bias voltage of 600 µV applied
across the DQD, giving rise to finite-bias triangles of sequential
transport [65]. The diagrams in Fig. 35(b) show schematics of
the DQD energy levels for different positions in the charge sta-

bility diagram. Depending on energy level alignment, different
kinds of electron tunneling are possible.

At the position marked by I in Fig. 35(a), the electrochemi-
cal potential µ1 of QD1 is aligned with the Fermi level of the
source lead. The tunneling is due to equilibrium fluctuations
between source and QD1. A measurement of the count rate as
a function of µ1 provides a way to determine both the tunnel-
ing rate ΓS and the electron temperature in the source lead [20].
The situation is reversed at point II in Fig. 35(a). Here, electron
tunneling occurs between QD2 and the drain, thus giving an
independent measurement of ΓD and the electron temperature
of the drain lead. At point III within the triangle of Fig. 35(a),
the levels of both QD1 and QD2 are within the bias window and
the tunneling is due to sequential transport of electrons from the
source lead into QD1, over to QD2 and finally out to the drain.
The electron flow is unidirectional and the count rate relates di-
rectly to the current flowing through the system [22]. Between
the triangles, there are broad, band-shaped regions with low but
non-zero count rates where sequential transport is expected to
be suppressed due to Coulomb blockade [cases IV and V in
Fig. 35(a,b)]. The finite count rate in this region is attributed to
electron tunneling involving virtual processes. These features
will be investigated in more detail in the forthcoming sections.

To begin with, we use the time-resolved charge detection
methods to characterize the system. Typical time traces of the
QPC current for DQD configurations marked by I and II in
Fig. 35(a) are shown in Fig. 36(a). The QPC current switches
between two levels, corresponding to electrons entering or leav-
ing QD1 (case I) or QD2 (case II). The change ∆IQPC as one
electron enters the DQD is larger for charge fluctuations in QD2
than in QD1. This reflects the stronger coupling between the
QPC and QD2 due to the geometry of the device. A measure-
ment of ∆IQPC thus gives information about the charge localiza-
tion in the DQD.

In Fig. 36(b) we investigate the charge localization in more
detail by plotting the absolute change in QPC current ∆IQPC
for the same set of data as in Fig. 35(a). The detector es-
sentially only measures two different values of ∆IQPC; either
∆IQPC ∼ −0.3 nA or ∆IQPC ∼ −0.6 nA. Comparing the results
of Fig. 36(b) with the sketches in Fig. 35(b), we see that re-
gions with high ∆IQPC match with the regions where we expect
the counts to be due to electron tunneling in QD2, while the
regions with low ∆IQPC come from electron tunneling in QD1.

The regions inside the bias triangles are described in de-
tail in the energy level diagrams of Fig. 36(b). We assume
each QD to hold n and m electrons, respectively. In the lower
triangle, the current is carried by a sequential electron cycle.
Starting from the (n,m)-configuration, an electron will tun-
nel in from the source lead at a rate ΓS making the transition
(n,m) → (n + 1,m). The electron then passes on to QD2 at a
rate ΓC ∼ t/h [(n + 1,m) → (n,m + 1)] before leaving to drain
at the rate ΓD [(n,m + 1) → (n,m)]. Since the rate ΓC is much
faster than the detector bandwidth (and ΓC � ΓS, ΓC � ΓD),
the detector will only register transitions between the two states
(n,m) and (n,m + 1). Therefore, we expect the step height
∆IQPC within the lower triangle to be equal to ∆IQPC measured
for electron fluctuations in QD2, in agreement with the results
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Figure 36: (a) Typical time traces of the QPC current from configurations I
and II in Fig. 35. (b) Change of QPC current ∆IQPC as one electron enters the
DQD, extracted from the same set of data as shown in Fig. 35. The two levels
correspond to the QPC detector registering electron tunneling in QD1 and QD2,
respectively. The energy level diagrams describe the hole and the electron cycle
of sequential transport within the finite bias triangles. Adapted from Ref. [66].

of Fig. 36.
For the upper triangle, the DQD holds an additional electron

and the current is carried by a hole cycle. Starting with both
QDs occupied [(n + 1,m + 1)], an electron in QD2 may leave
to the drain [(n + 1,m + 1) → (n + 1,m)], followed by a fast
interdot transition from QD1 to QD2 [(n + 1,m)→ (n,m + 1)].
Finally, an electron can tunnel into QD1 from the source lead
[(n,m + 1) → (n + 1,m + 1)]. In the hole cycle, the detector is
not able to resolve the time the system stays in the (n + 1,m)
state; the measurement will only register transitions between
(n + 1,m + 1) and (n,m + 1). This corresponds to fluctuations
of charge in QD1, giving the low value of ∆IQPC in Fig. 36(b).
Finally, we note that at the transition between regions of low
and high ∆IQPC the electron wavefunction delocalizes onto both
QDs. This provides a method for determining the interdot cou-
pling energy tC, which is the subject of the next section.

4.2. Determining the coupling energy

In the previous section we have shown that interdot transi-
tions occur much faster than the detector bandwidth, but so far
we did not try to quantify the tunnel coupling. As already men-
tioned, the coupling can be determined by looking at the delo-
calization of charge as a function of energy separation of the
QD states [18]. To simplify the problem, we consider the DQD
as a tunnel-coupled two-level system containing one electron,
isolated from the environment [see Fig. 37(a)]. We introduce
the basis states {Ψ1,Ψ2} describing the electron sitting on the
left or the right QD, respectively. The two states are tunnel
coupled with coupling t and separated in energy by the detun-
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Figure 37: (a) Schematics of a tunnel coupled two-level system. (b) The energy
levels of the two-level system, calculated from Eq. (71) with t = 1. The dashed
lines show the energy levels for isolated QDs (t = 0).

ing δ = µ1 − µ2. The Hamiltonian of the system is

H =

[
−δ/2 t

t δ/2

]
. (70)

The eigenvectors of the Hamiltonian in Eq. (70) form the bond-
ing ΨB and antibonding states ΨA of the system. The eigenval-
ues give the energies EB, EA of the two states, with

EB = −
1
2

√
4t2 + δ2, EA =

1
2

√
4t2 + δ2. (71)

The energies are plotted in Fig. 37(b); at zero detuning, the
states anticross due to the coupling energy. For a finite temper-
ature T , the system will be in a statistical mixture of the bonding
and antibonding states. The occupation probabilities pB and pA
of the two states are determined by detailed balance,

pB = 1 −
1

1 + e
EA−EB

kB T

= 1 −
1

1 + e
√

4t2+δ2
kB T

,

pA =
1

1 + e
EA−EB

kB T

=
1

1 + e
√

4t2+δ2
kB T

. (72)

In the measurement, we use the change of the QPC current
(∆IQPC) when one electron enters the DQD to determine the
amount of charge localized in the individual QDs. To evaluate
this quantity from Eqs. (70-72), we take the thermal population
of the bonding and antibonding states and project them onto the
states Ψ1 and Ψ2

p1 = (pBΨB + pAΨA) · Ψ1 =

=
1
2

1 −
δ tanh

( √
4t2+δ2

2kB T

)
√

4t2 + δ2

 ,
p2 = (pBΨB + pAΨA) · Ψ2 =

=
1
2

1 +

δ tanh
( √

4t2+δ2

2kB T

)
√

4t2 + δ2

 . (73)

Next, we compare the results of Eq. (73) with experimen-
tal data. Figure 38 shows the measured electron population on
QD2 versus detuning, extracted from the change in QPC current
∆IQPC. The signal has been normalized to the levels measured
for complete localization in QD1 and QD2. The different data
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Figure 38: Charge population on QD2, evaluated from the change in QPC cur-
rent ∆IQPC for one electron entering the DQD. The different traces were taken at
different gate voltages. The dashed lines are fits to Eq. (73), with T = 100 mK.

sets are taken for different gate voltages, demonstrating the pos-
sibility to tune the tunnel coupling. The dashed lines are fits to
Eq. (73), showing good agreement with the data. It should be
noted that this method for determining the tunneling coupling
can only be used as long as the coupling is larger than the ther-
mal broadening. For a temperature of T = 100 mK, the limit
corresponds to t & 10 µeV.

4.3. Cotunneling

We now focus on the regions of weak tunneling occuring in
regions outside the boundaries expected from sequential trans-
port. In case IV, the electrochemical potential of QD1 is within
the bias window, but the potential of QD2 is shifted below the
Fermi level of the source and not available for transport. We
attribute the non-zero count rate for this configuration to be due
to electrons cotunneling from QD1 to the drain lead. The time-
energy uncertainty principle still allows electrons to tunnel from
QD1 to drain by means of a higher order process. In case V, the
situation is analogous but the roles of the two QDs are reversed;
electrons cotunnel from the source into QD2 and leave sequen-
tially to the drain lead.

To investigate the phenomenon more carefully, we measure
the rates for electrons tunneling into and out of the DQD in a
configuration similar to the configuration along the dashed line
in Fig. 35(a). The line corresponds to keeping the electrochem-
ical potential of QD2 fixed within the bias window and sweep-
ing µ1. The data is presented in Fig. 39. In the region marked
by A in Fig. 39, electrons tunnel sequentially from source into
QD1, relax from QD1 down to QD2 and finally tunnel out from
QD2 to the drain lead. Proceeding from region A to region B,
the electrochemical potential µ1 is lowered so that an electron
eventually gets trapped in QD1. At point B, the electrons lack
an energy δa = µ2 − µ1 to leave to QD2. Still, electron tun-
neling is possible by means of a virtual process [67]. Due to
the energy-time uncertainty principle, there is a time-window
of length ∼ ~/δa within which tunneling from QD1 to QD2
followed by tunneling from the source into QD1 is possible
without violating energy conservation. An analogous process
is possible involving the next unoccupied state of QD1, occur-
ing on timescales ∼ ~/δb, where δb = EC1 − δa and EC1 is the
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Figure 39: Tunneling rates for electrons entering and leaving the DQD, mea-
sured while keeping the potential of QD2 fixed and sweeping the electrochem-
ical potential of QD1. The data is measured in a configuration similar to go-
ing along the dashed line in Fig. 35(a). The dotted lines are tunneling rates
expected from sequential tunneling, while the dashed line is a fit to the cotun-
neling model of Eq. (74). The solid line corresponds to the model involving
molecular states [Eq. (75)]. Parameters are given in the text. (b) Schematic
drawings of the DQD energy levels for three different configurations in (a). At
point A, electrons tunnel sequentially through the structure. Moving to point
B, the energy levels of QD1 are shifted and the electron in QD1 is trapped due
to Coulomb blockade. Electron transport from source to QD2 is still possible
through virtual processes, but the rate for electrons entering the DQD drops
substantially due to the low probability of the virtual processes. At point C, the
next level of QD1 is brought inside the bias window and sequential transport is
again possible. Adapted from Ref. [66].

charging energy of QD1. The two processes correspond to elec-
tron cotunneling from the source lead to QD2. Continuing from
point B to point C, the unoccupied state of QD2 is shifted into
the bias window and electron transport is again sequential.

In the sequential regime (regions A and C), we fit the rate
for electrons entering the DQD to a model involving only se-
quential tunneling [dotted lines in Fig. 39(a)] [19]. The fit
allows us to determine the tunnel couplings between source
and the occupied (ΓSa)/unoccupied (ΓSb) states of QD2, giving
ΓSa = 7.5 kHz, ΓSb = 3.3 kHz and T = 100 mK. Going towards
region B, the rates due to sequential tunneling are expected to
drop exponentially as the energy difference between the levels
in QD1 and QD2 is increased. In the measurement, the rate Γin
initially decreases with detuning, but the decrease is slower than
exponential and flattens out as the detuning gets larger. This is
in strong disagreement with the behavior expected for sequen-
tial tunneling. Instead, in a region around point B we attribute
the measured rate Γin to be due to electrons cotunneling from
source to QD2.

The rate for cotunneling from source to QD2 is given as [68]:

Γcot = ΓSa
t2
a

δ2
a

+ ΓSb
t2
b

δ2
b

+ cos φ
√

ΓSa ΓSb
ta tb
δa δb

. (74)

Here, ta, tb are the tunnel couplings between the occu-
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pied/unoccupied states in QD1 and the state in QD2. The
first term describes cotunneling involving the occupied state of
QD1, the second term describes the cotunneling over the unoc-
cupied state and the third term accounts for possible interfer-
ence between the two. The phase φ defines the phase differ-
ence between the two processes. To determine φ one needs to
be able to tune the phases experimentally, which is not possi-
ble from the measurement shown in Fig. 39(a). In the follow-
ing we therefore assume the two processes to be independent
(φ = π/2). Interference effects between cotunneling processes
have been studied in detail in Ref. [69].

The dashed line in Fig. 39(a) shows the results of Eq. (74),
with fitting parameters ta = 15 µeV and tb = 33 µeV. These
values are in good agreement with values obtained from charge
localization measurements. The values for ΓSa and ΓSb are taken
from measurements in the sequential regimes. We emphasize
that Eq. (74) is valid only if δa, δb � ta, tb and if sequential
transport is sufficiently suppressed. The data points used in the
fitting procedure are marked by filled squares in the figure. It
should be noted that the sequential tunneling in region C pre-
vents investigation of the cotunneling rate at small δb. This can
easily be overcome by inverting the DQD bias. The rate for
electrons tunneling out of the DQD [Γout in Fig. 39(a)] shows
only slight variations over the region of interest. This is ex-
pected since µ2 stays constant over the sweep. The slight decay
of Γout with increased detuning comes from tuning of the tunnel
barrier between QD2 and the drain [28].

The cotunneling may be modified by the existence of a near-
by QPC. If the QPC were able to detect the presence electron in
QD2 during the cotunneling we would expect this to influence
the cotunneling process. For the measurements in Fig. 39(a) the
QPC current was kept below 10 nA. This gives an average time
delay between two electrons passing the QPC of e/IQPC ∼16 ps.
Since this is larger than the typical cotunneling time, it is un-
likely that the electrons in the QPC are capable of detecting the
cotunneling process. The influence of the QPC may become
important for larger QPC currents. However, when the QPC
bias voltage is larger than the detuning (eVQPC > δ), the fluctu-
ations in the QPC current may start to drive inelastic charge
transitions between the QDs [12, 69]. Such transitions will
compete with the cotunneling. For this reason it was not possi-
ble to extract what effect the presence of the QPC may have on
the cotunneling process.

4.4. Molecular states
The overall good agreement between Eq. (74) and the mea-

sured data demonstrates that time-resolved charge detection
techniques provide a direct way of quantitatively using the time-
energy uncertainty principle. However, a difficulty arises as
δ → 0; the cotunneling rate in Eq. (74) diverges, as visualized
for the dashed line in Fig. 39(a). The problem with Eq. (74) is
that it only takes second-order tunneling processes into account.
For small detuning δ the cotunneling described in Eq. (74) must
be extended to include higher order processes [70].

A different approach is to assume the coupling between the
QDs to be fully coherent and describe the DQD in terms of the
bonding and antibonding molecular states [71, 72]. Both the

sequential tunneling and the cotunneling can then be treated as
first-order tunneling processes into the molecular states; what
we in Fig. 39 referred to as cotunneling would be tunneling into
an antibonding state. The model is sketched in Fig. 40(a). The
bonding state is occupied and in Coulomb blockade. Still, an
electron may tunnel from drain into the antibonding state. Due
to the large detuning, the antibonding state is mainly located on
QD2, the overlap with the electrons in the source lead is small
and the tunneling is weak. Changing the detuning will have the
effect of changing the shape of the molecular states and shift
their weights between the two QDs.

To calculate the rate for electrons tunneling from source into
the antibonding molecular state of the DQD as visualized in
Fig. 40(a), we use the formalism from section 4.2 and project
the thermal population pB, pA of the molecular states ΨB and
ΨA onto the unperturbed state of QD1, Ψ1. This gives the prob-
ability p1 of finding an electron in QD1 if making a projective
measurement in the Ψ1-basis. The measured rate Γin is equal
to the probability of finding QD1 being empty (1 − p1) mul-
tiplied with ΓS, the tunneling rate between the source and the
unperturbed state in QD1.

Γin = ΓS (1 − p1) = ΓS (1 − (pBΨB + pAΨA) · Ψ1)

= ΓS
1
2

1 −
δ tanh

( √
4t2+δ2

2kB T

)
√

4t2 + δ2

 (75)

For large detuning, the bonding and antibonding states are well
localized in QD1 and QD2, respectively. Here, we should
recover the results for the cotunneling rate obtained for the
second-order process [Eq. (74)]. First, we assume low temper-
ature kBT � δ, so that the electron only populates the bonding
ground state (pB = 1 and pA = 0):

Γin = ΓS
1
2

(
1 +

δ
√

4t2 + δ2

)
. (76)

In the limit δ � t the relation reduces to Γin ≈ ΓS t2/δ2 and
the rate approaches the result of the second-order cotunneling
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Figure 40: (a) Cotunneling described using molecular states. Due to the large
detuning the empty antibonding state is mainly localized on QD2, but a small
part of the wavefunction is still present in QD1 which allows an electron to enter
from the source. (b) The rate for electrons tunneling into the DQD (Γin) as a
function of DQD detuning δa. The figure shows the same data as in Fig. 39, but
plotted on a log-log scale to enhance the features at small detuning. The dashed
line is the results of the cotunneling model in Eq. (74), the solid line shows the
result of the molecular-state model [Eq. (75)]. Adapted from Ref. [66].
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processes in Eq. (74). The advantage of the molecular-state
model is that it is valid for any detuning, both in the sequential
and in the cotunneling regime.

The solid line in Fig. 39(a) shows the results of Eq. (75).
The equation has been evaluated twice, once for the occupied
[(n,m)] and once for the unoccupied state in QD2 [(n,m+1)];
the curve in Fig. 39(a) is the sum of the two rates. The same
parameters were used as for the cotunneling fit of Eq. (74). The
model shows very good agreement with data over the full range
of the measurement. To compare the results of the molecular-
state and the cotunneling model in the regime of small detuning,
we plot the data in Fig. 39(a) on a log-log scale [Fig. 40(b)]. For
large detuning, the tunneling rate follows the 1/δ2 predicted by
both the molecular-state and the cotunneling model. For small
detuning, the deviations become apparent as the cotunneling
model diverges whereas the molecular-state model still repro-
duces the data well.

4.5. Excited states
So far, we have only considered cotunneling involving the

ground states of the two QDs. The situation is more complex
if we include excited states in the model; the measured rate
may come from a combination of cotunneling processes involv-
ing different QD states. To investigate the influence of excited
states experimentally, we start by extracting the DQD excitation
spectrum using finite bias spectroscopy [65]. If the coupling be-
tween the QDs is weak (tC � ∆E1, ∆E2, with ∆E1,2 being the
mean level spacing in each QD), the DQD spectrum essentially
consists of the combined excitation spectrum of the individual
QDs. For a more strongly coupled DQD the QD states residing
in different dots will hybridize and delocalize over both QDs.
In this section we consider a relatively weakly coupled config-
uration (t ∼ 25 µeV) and assume the excited states to be pre-
dominantly located within the individual QDs.

Figure 41 shows a magnification of two triangles from
Fig. 35(a), measured with both negative and positive bias ap-
plied across the DQD. Excited states are visible within the tri-
angles, especially for the case of positive bias [marked with
arrows in Fig. 41(a)]. Transitions between excited states oc-
cur along parallel lines at which the potential of QD1 is held
constant; this indicates that the excited states are located in
QD1. To investigate the states more carefully, we measure the
separate tunneling rates Γin and Γout along the dashed lines in
Fig. 41. The results are presented in Fig. 42, together with a few
sketches depicting the energy level configuration of the system.

We begin with the results for the positive bias case, which are
plotted in Fig. 42(a). Going along the dashed line in Fig. 41(a)
corresponds to keeping the detuning δ between the QDs fixed
and shifting the total DQD energy. The measurements were
performed with a small detuning (δ ≈ 100 µeV) to ensure that
electron transport is unidirectional. Because of this, the out-
ermost parts of the traces in Fig. 42(a) correspond to regions
where transport is due to cotunneling [compare the dashed line
with the position of the triangle in Fig. 41(a)]; the regions where
transport is sequential are shaded gray in Fig. 42(a).

Starting in the regime marked by I in Fig. 42(a,c), electrons
may tunnel from source into the ground state of QD1, relax

[a] [b]

V G
2 [

mV
]

VG1 [mV]
-11 -10 -9 -8

33

34

35

36

37

VG1 [mV]

 

 

-11 -10 -9 -8

10 100Counts/s

VDQD-SD =
 500 µV

VDQD-SD = 
 -500 µV

[a] [b]

V G
2 [

mV
]

VG1 [mV]
-11 -10 -9 -8

33

34

35

36

37

VG1 [mV]

 

 

-11 -10 -9 -8

10 100
Counts/s

VDQD-SD = 500 µV VDQD-SD = -500 µV

Figure 41: Finite-bias spectroscopy of the DQD, taken with positive (a) and
negative (b) bias. The figures are constructed by counting electrons entering and
leaving the DQD. Excited states are visible, especially for the positive bias data
[marked with arrows in (a)]. The data was taken with VDQD−SD = ±500 µV,
VQPC−SD = 250 µV. Adapted from Ref. [66].

down to QD2 and tunnel out to the drain lead. Assuming the
relaxation process to be much faster than the other processes,
the measured rates Γin and Γout are related to the tunnel cou-
plings of the source and drain Γin ≈ ΓS and Γout = ΓD. Going to
higher gate voltages lowers the overall energy of both QDs. At
the position marked by an arrow in Fig. 42(a), there is a sharp
increase in the rate for tunneling into the DQD. We attribute this
to the existence of an excited state in QD1; as shown in case
II in Fig. 42(c), the electron tunneling from source into QD1
may enter either into the ground (n + 1,m) or the excited state
(n + 1∗,m), giving an increase in Γin. When further lowering
the DQD energy another excited state comes into the bias win-
dow and Γin increases even more [second arrow in Fig. 42(a)].
The rate for tunneling out of the DQD shows only minor varia-
tions within the region of interest. This supports the assumption
that the excited states quickly relax and that the electron tunnels
out of the DQD from the ground state of QD2

Finally, continuing to the edge of the shaded region (VG1 ∼

−9.55 mV), the potential of QD2 goes below the Fermi level of
the drain. Here, electrons get trapped in QD2 and the tunneling-
out rate drops drastically. At the same time, Γin increases; when
the electron in QD2 eventually tunnels out, the DQD may be
refilled from either the source or the drain lead. The picture
described above is repeated in the triangle with hole transport
(−9.25 mV < VG2 < −8.9 mV). This is expected, since the hole
transport cycle involves the same QD states as in the electron
case. An interesting feature is that Γin shows essentially the
same values in both the electron and the hole cycle, while Γout
increases by a factor of three. The presence of the additional
electron in QD1 apparently affects the tunnel barrier between
drain and QD2 more than an additional electron in QD2 affects
the barrier between QD1 and source.

Next, we move over to the case of negative bias [Fig. 42(b)].
Here, the roles of QD1 and QD2 are inverted, meaning that
electrons enter the DQD into QD2 and leave from QD1. Fol-
lowing the data and the arguments presented for the case of
positive bias, one would expect this configuration to be suitable
for detecting excited states in QD2. However, looking at the
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taken with VQPC−SD = 250 mV. (c) Schematics of the DQD energy configura-
tion at three different positions in (a, b). Adapted from Ref. [66].

tunneling rates within the sequential region of Fig. 42(b), the
rate for entering QD2 (Γin) stays fairly constant, while the rate
for tunneling out decreases at the point marked by the arrow.
Again, we attribute the behavior to the existence of an excited
state in QD1.

The situation is described in sketch III of Fig. 42(c). The
electrochemical potential of QD1 is high enough to allow the
electron in the (n + 1,m)-state to tunnel out to the source and
leave the DQD in an excited state (n∗,m). Since the energy
difference E[(n∗,m)]−E[(n + 1,m)] is smaller than E[(n,m)]−
E[(n + 1,m)], the transition involving the excited state appears
below the ground state transition. As the overall DQD potential
is lowered, the transition energy involving the excited state goes
below the Fermi level of the drain, resulting in a drop of Γout as
only the ground state transition is left available. Similar to the
single QD case [20], the tunneling-in rate samples the excitation
spectrum for the (n+1,m)-configuration, while the tunneling-
out rate reflects the excitation spectrum of the (n,m)-DQD.

To conclude the results of Fig. 42, we find two excited states
in QD1 in the (n + 1,m) configuration with ∆Eα

1 = 180 µeV
and ∆Eβ

1 = 340 µeV, and one excited state in QD1 in the (n,m)
configuration, with ∆E1 = 220 µeV. No clear excited state is
visible in QD2. This does not necessarily mean that such states
do not exist; if they are weakly coupled to the lead they will
only have a minor influence on the measured tunneling rates.
Excited states in both QDs have been measured in other config-
urations; there, we find similar spectra of excited states for both
QDs.

4.6. Inelastic cotunneling

Next, we investigate the cotunneling process in the presence
of excited states. Looking carefully at the lower-right regions
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Figure 43: (a) Tunneling rates for electrons entering and leaving the DQD,
extracted from the same set of data as used in Fig. 41(b). The data was measured
with VDQD−SD = −500 µV. The solid lines mark the position of the finite-
bias triangles. The plot region in the right-hand panel has been extended to
include the regime investigated in Fig. 44. (b) Energy-level diagrams for the
two positions marked in (a). In case I, the cotunneling itself is elastic, with
energy relaxation occurring after the cotunneling has taken place. In case II,
inelastic cotunneling processes are possible. Adapted from Ref. [66].

of the negative-bias triangles in Fig. 41(b), we see that the count
rates in the cotunneling regions outside the triangles are not
constant along lines of fixed detuning (corresponds to going in
a direction parallel to the dashed line). Instead, the cotunneling
regions seem to split into three parallel bands.

In Fig. 43(a), we plot the tunneling rates Γin and Γout for elec-
trons entering and leaving the DQD, extracted from the same
set of data as used in Fig. 41(b). The thick solid lines mark the
edges of the finite-bias triangles. Again, the cotunneling rates
outside the triangles are not uniform; parallel bands appear in
Γin for the position marked by I and in Γout for the position
marked by II in the figures.

To understand the data we draw energy level diagrams for
the two configurations [see Fig. 43(b)]. Focusing first on case I,
we see that the electrochemical potential of QD1 is within the
bias window, whereas QD2 is detuned and in Coulomb block-
ade. The cotunneling occurs via QD2 states; electrons cotunnel
from drain into QD1, followed by sequential tunneling from
QD1 to the source lead. The picture is in agreement with what
is measured in Fig. 43(a); the cotunneling rate (Γin) is low and
strongly depends on detuning δ, while the sequential rate Γout is
high and essentially independent of detuning. The three bands
seen in Γin occur because of the excited states in QD1; depend-
ing on the average DQD energy, electrons may cotunnel from
drain into one of the excited states, relax to the ground state and
then leave to the source lead. The state of QD2 remains unaf-
fected by the cotunneling process. For this configuration, we
speak of elastic cotunneling.

The situation is different in case II. Here, cotunneling occurs
in QD1 as electrons tunnel directly from QD2 into the source
lead. This means that Γin is sequential while Γout describe the
cotunneling process. As in case I, the cotunneling rate Γout
splits up into three bands; we attribute this to cotunneling where
the state of QD1 is changed during the process. QD1 ends up
in one of its excited states. The energy of the electron arriv-
ing in the source lead is correspondingly decreased compared
to the electrochemical potential of QD2. Here, the cotunneling
is inelastic.
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The inelastic cotunneling is described in greater detail in
Fig. 44. In Fig. 44(a) we plot the count rate for positive and
negative DQD bias, measured along the dashed line at the right
edge of Fig. 43(a). Figure 44(b) shows energy level diagrams
for negative bias at two positions along this line. The bias
voltage is applied symmetrically to the DQD, meaning that the
Fermi levels in source and drain leads are shifted by ±eV/2 rel-
ative to the Fermi energy at zero bias [dotted line in Fig. 44(b)].
In the measurement of Fig. 44(a) we sweep the average DQD
energy while keeping the detuning δ constant. The average
DQD energy is defined to be zero when µ2 aligns with the zero-
bias Fermi energy in the leads [i.e. when µ2 = (µS + µD)/2].

Starting in the configuration marked by A, cotunneling is
only possible involving the QD2 ground state. Cotunneling is
weak, with count rates being well below 1 count/s. Continuing
to case B, we raise the average DQD energy. When the electro-
chemical potential of QD2 is sufficiently increased compared
to the Fermi level of the source, inelastic cotunneling becomes
possible leading to a sharp increase in count rate. The process
is sketched in Fig. 44(b); it involves the simultaneous tunneling
of an electron from QD2 to the first excited state of QD1 with
an electron in the QD1 ground state leaving to the source. The
process is only possible if

δ − ∆Eα
1 = µ1 − µ2 − ∆Eα

1 > µS − µ1. (77)

Here, ∆Eα
1 is the energy of the first excited state in QD1. The

position of the step in Fig. 44(a) directly gives the energy of the
first excited state, and we find ∆Eα

1 = 180 µeV.
Further increasing the average DQD energy makes an inelas-

tic process involving the second excited state in QD2 possible,
giving ∆Eα

2 = 340 µeV. Finally, as the DQD energy is raised to
become equal to half the applied bias, the electrochemical po-
tential of QD2 aligns with Fermi level of the drain lead. Here
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diagrams for the two configurations marked in (a). Adapted from Ref. [66].

electron tunneling mainly occurs due to equilibrium fluctua-
tions between drain and QD2, giving a sharp peak in the count
rate. The excited states energies extracted from the inelastic
cotunneling give the same values as obtained from finite-bias
spectroscopy within the triangles, as described in the previous
section. The good agreement between the two measurements
demonstrates the consistency of the model.

The dashed line in Fig. 44(a) shows data taken with reversed
DQD bias; for this configuration the Fermi levels of the source
and drain leads are inverted, the electrons cotunnel from source
to QD2 and the peak due to equilibrium tunneling occurs at
µ2 = µD = −300 µeV.

4.7. Noise in the cotunneling regime

Using time-resolved charge detection methods, we can ex-
tract the noise of electron transport in the cotunneling regime.
For a weakly-coupled single QD in the regime of sequential
tunneling, transport in most configurations is well-described by
independent tunneling events for electrons entering and leav-
ing the QD [40]. The Fano factor becomes a function of the
tunneling rates [36]:

F2 =
S I

2eI
=

Γ2
in + Γ2

out

(Γin + Γout)2 =
1
2

(
1 + a2

)
, (78)

with a = (Γin−Γout)/(Γin+Γout). For symmetric barriers (a = 0),
the Fano factor is reduced to 0.5 because of an increase in elec-
tron correlation due to Coulomb blockade. In the case of co-
tunneling, the situation is more complex. As described in the
previous section, cotunneling may involve processes leaving ei-
ther QD in an excited state. The excited state has a finite life-
time τrel; during this time, the tunneling rates may be different
compared to the ground-state configuration [73]. We therefore
expect that the existence of an electron in an excited state may
induce temporal correlations on time scales on the order of τrel
between subsequent cotunneling events. In this way, the noise
of the cotunneling current has been proposed as a tool to probe
excited states and relaxation processes in QDs [74, 75].

In Fig. 45, we plot the Fano factor measured from the same
region as that of Fig. 39. The Fano factor was extracted by mea-
suring the distribution function for transmitted charge through
the system [40]. The solid line shows the result of Eq. (78),
with tunneling rates extracted from the measured traces. In
the outermost regions of the graph, the electrons tunnel sequen-
tially through the DQD. Here, the Fano factor is reduced due to
Coulomb blockade, similar to the single QD case. At the edges
of the cotunneling regions, the Fano factor drops further down
to F = 0.5. This is because the injection rate Γin drops dras-
tically as sequential transport becomes unavailable, while Γout
stays approximately constant. At some point we get Γin = Γout,
which means that the asymmetry a is zero and the Fano fac-
tor of Eq. (78) shows a minimum. Further into the cotunneling
region, the Fano factor approaches one as transport essentially
becomes limited by a single rate; the cotunneling rate (Γin) is
two orders of magnitude smaller than the sequential rate Γout.

We do not see any major deviation from the results of
Eq. (78), which is only valid assuming independent tunneling
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Figure 45: Fano factor for electron transport in the cotunneling regime of
Fig. 39. The data was extracted from traces of length T = 30 s. The solid
line is the result of Eq. (78), which assumes independent tunneling events. The
minima in Fano factor occur at positions where the tunneling rates Γin and Γout
are equal (see Fig. 39). The error bars show standard error, extracted by split-
ting the data into six subsets of length T = 5 s and evaluating the noise for each
subset. Adapted from Ref. [66].

events. We have performed similar measurements in several in-
elastic and elastic cotunneling regimes, without detecting any
clear deviations from Eq. (78). As it turns out, there are two
effects that make it hard to detect correlations due to the in-
ternal QD relaxations. For the first, the correlation time is es-
sentially set by the relaxation time τrel, which typically occurs
on a ∼ 10 ns timescale. This is several orders of magnitude
smaller than a typical tunneling time of ∼ 1/Γin ∼ 100 ms [26].
Secondly, the slow cotunneling rate limits the amount of exper-
imental data available within a reasonable measurement time.
This explains the large spread between the data points in Fig. 45
in the cotunneling regime. We conclude that the measurement
bandwidth currently limits the possibility of examining corre-
lations in the cotunneling regime using time-resolved detection
techniques. A higher-bandwidth detector would solve both the
above mentioned problems. It would allow a general increase
in the tunneling rates in the system, which would both decrease
the difference between τcot and τrel as well as provide faster ac-
quisition of sufficient statistics.

4.8. Spin effects in many-electron dots
So far, we have neglected the spin properties of the elec-

trons by considering them to be spin-less particles. In few-
electron double quantum dots, spin effects have been shown to
lead to Pauli spin blockade [76, 77]; the current is strongly sup-
pressed in configurations where a spin flip is required for elec-
trons to traverse the DQD. The Pauli blockade configuration
has been utilized for performing electron spin resonance exper-
iments [78, 79] as well as for studying interactions between the
electron and nuclei spin systems [80, 77, 81, 82].

In the system investigated here, the DQD contains a rela-
tively large number of electrons; from the energy scales and
from the geometry of the device we estimate each QD to hold
∼ 30 electrons. This makes the observation of spin block-
ade more difficult, since neither the excitation spectrum nor
the exact QD spin configuration is well known. For few-
electron QDs, the first two electrons fill up spin-degenerate
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Figure 46: Charge stability diagram of the DQD, together with a possible spin
configuration extracted from analyzing rates for electrons tunneling into and out
of the QDs. The numbers do not refer to the absolute DQD electron population
but to the excess electron population relative to the configuration marked by
(0,0). Cases I-II shows degeneracies measured when filling QD2, cases III-IV
refer to filling of QD1. The measurements shown in cases I-IV were taken with
zero bias over the DQD in order to minimize the influence of cotunneling.

single-particle states and form a spin-pair [83]. Spin pairing
has also been reported in many-electron chaotic dots [31] and
quantum rings [84]. If spin-pairing occurs, it is possible to get
a spin-zero many-electron ground state and we may neglect the
spin-less core of electrons and only consider the spin of the out-
ermost electrons [81].

To investigate the occurrence of spin pairing and spin block-
ade in our device, we use the methods of section 2.7 to deter-
mine the degeneracy of the QD ground states. Depending on
the occupancy of a spin-degenerate state, the rates for electrons
tunneling into and out of a QD should differ by a factor of two.
By performing such measurements for consecutive electron fill-
ing in the DQDs, we can extract a possible spin configuration
of the DQD. The method is visualized in Fig. 46, together with
a possible spin configuration for the hexagons from Fig. 35(a).
The numbers in the figure do not refer to the absolute DQD
electron population but to the number of excess electrons rela-
tive to the configuration indicated by (0,0).

Starting in the Coulomb-blockaded region marked by (0,0),
we increase the gate voltage VG2 to add an electron into QD2.
At the transition to (0,d) (case I in Fig. 2.7), we find that the tun-
neling rate for electrons entering QD2 is larger than the rate for
electrons tunneling out. Increasing the gate voltage further to
add another electron to QD2 (case II), the relation between Γin
and Γout is reversed. This is in agreement with successive filling
of electrons into a degenerate state; if both degenerate states are
initially unoccupied (case I), an incoming electron may tunnel
into either state with an effective tunneling rate Γin = g × Γ.
Here, g is the degeneracy factor and Γ is the tunnel coupling to
the lead. On the other hand, the rate for electrons leaving the
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QD is determined by the number of occupied degenerate states.
With only one electron in the QD we get Γout = Γ and thus ex-
pect Γin/Γout = g. The situation is reversed if the QD is initially
occupied (case II); here we expect Γin/Γout = 1/g.

If we assume the degeneracy to be due to spin states, the
data indicates that QD2 is successively filled up with one spin-
down and one spin-up electron. The pattern is repeated if we
perform similar measurements for QD1 (cases III-IV). From
these measurements we extract the spin configurations shown
in Fig. 46. It should be noted that the degeneracy factors in
cases I and III are lower than the factor g = 2 expected from
spin-degenerate states. This might be due to changes in the
tunneling coupling Γ within the gate voltage region of interest,
although the coupling normally only changes slightly within the
small voltage range used here (see section 2.6). Therefore, the
spin configurations marked in Fig. 46 should not be considered
as definite; we can not rule out other explanations for the data.

Keeping this reservation in mind but still assuming the spin
configuration of Fig. 46 to be correct, we expect spin blockade
to occur in the transport triangle involving the configurations
(0,d), (d,d) and (0,ud). The principle of the blockade is ex-
plained in Fig. 47(a). We start in the configuration (0,d), where
QD1 is empty and QD2 contains one excess electron. An elec-
tron may tunnel from source into QD1 and since the QD is ini-
tially empty, the incoming electron may be either spin-up or
spin-down. If the spin is opposite to the spin of the electron in
QD2, the electron in QD1 can continue to QD2 to form the spin
singlet ground state (0,ud). Finally, an electron may leave to
the drain which takes the system back to the state (0,d) and the
cycle can be repeated.

However, if the electron tunneling from source into QD1 has
the same spin orientation as the electron in QD2, it cannot con-
tinue from QD1 to QD2. This is because of the singlet-triplet
splitting in QD2; due to the exchange energy the system favors
the formation of a spin singlet and the energy of the spin triplet
is raised by the single-triplet splitting EST. The electron in QD1
is thus blocked until a spin-flip occurs in either QD1 and QD2.
Since spin relaxation is slow, the effect leads to a sharp decrease
in the current through the DQD [76]. In our case, we do not
measure the average current but rather count the electrons as
they pass through the structure. As mentioned in section 4.2,
the tunnel coupling between the QDs is too strong to allow in-
terdot charge transitions to be resolved in time. However, in
the spin-blockade regime interdot charge transition from QD1
to QD2 should be limited by the spin relaxation rate, which for
GaAs QDs has been reported to be several milliseconds or even
seconds for magnetic fields of 1 T [55, 56]. This is within the
bandwidth of the charge detector and we thus expect spin block-
ade to help make the interdot charge transitions resolvable.

Figure 47(b) shows the finite-bias charge stability diagram
measured by counting electrons in the regime located between
the (d,d) and (0,ud)-region of Fig. 46. The data shows two
triangle-shaped regions of electron and hole transport expected
from the applied voltage bias. Figure 47(c) shows examples
of QPC current traces taken at the two positions marked in
Fig. 47(b). Taking a closer look at the data from position I,
we see that the time trace actually contains three levels; starting
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Figure 47: (a) Sketch of a DQD in the regime of Pauli spin blockade. If the elec-
tron entering QD1 has the same spin orientation as the electron sitting in QD2,
transport is blocked until either electron flips its spin to allow a singlet state
to form in QD2. (b) Charge stability diagram measured by counting electrons
entering the DQD. The numbers refer to the assumed excess charge population
relative to a state where both QDs have zero spin. The data was extracted from
QPC conductance traces of length T = 0.5 s, taken with VDQD−SD = 600 µV and
VQPC−SD = 400 µV. (c) QPC conductance traces, taken at the points marked in
(b). For both positions, a third level appears which we attribute to the transition
(1, 1) → (0, 2). (d) Regions of the charge stability diagram of (b) where the
charge detector finds more then two levels in the QPC conductance traces. In
the spin blockade model of (a), the width of regions with three levels corre-
sponds to the singlet-triplet spacing in QD2.

at the QPC current level labeled (0,1), the QPC current drops
to level (1,1) as an electron tunnels into QD1. The electron
relatively quickly continues to QD2 [level (0,2) in Fig. 47(c)],
before tunneling out to the drain and taking the QPC conduc-
tance back to level (0,1). The ability of the QPC to determine if
the electron is sitting in QD1 or QD2 comes directly from the
geometry of the device; the QPC is located closer to QD1.

For case II of Fig. 47(b,c), transport is governed by the hole
process (0, 2) → (1, 2) → (1, 1) → (0, 2). As for the electron
process in case I, the transition that possibly involves spin re-
laxation is the one where the electron hops from QD1 to QD2
[(1, 1) → (0, 2)]. The timescale of the interdot transitions is
marked by t(1,1) in the traces of Fig. 47(c). From the above dis-
cussion, we expect t(1,1) to be long enough to be measurable
as long as the DQD detuning is smaller than the singlet-triplet
spacing, δ < EST. If δ > EST, the electron in QD1 may tun-
nel to QD2 regardless of the spin direction and we expect to
resolve only two levels in the QPC conductance traces. This
is visualized in Fig. 47(d), where we plot the number of cur-
rent levels detected by an automatic level detection algorithm.
Focusing first on the electron transport cycle, there is a region
of three-level traces situated at the base of the triangle. In the
model of spin-blockade, the width of the region in direction of
detuning is equal to the singlet-triplet splitting in QD2, giving
EST ∼ 200 µeV. For the hole cycle, the region showing three
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Figure 48: (a) Average time spent in the (1,1) state, measured vs DQD detuning
and magnetic field. The third level in the QPC conductance traces correspond-
ing to the (1,1) state is only visible in the region 0 < δ < EST ∼ 200 µeV.
The data was taken along the dashed line in Fig. 47(d). (b) Cross-section of the
graph in (a), taken at δ = 170 µeV. The time t(1,1) falls of quickly with increased
B-field and drops below the time resolution of the detector as |B| > 30 mT.

levels is less regular. However, this is actually an artifact due to
imperfections of the level detection algorithm; for the electron
cycle (case I), the third, fast level occurs below the other levels,
which makes it relatively easy to detect. It is much harder to
reliably detect a fast third level if it occurs in-between the two
main levels as in the hole region (case II). Manual inspection of
the traces confirms that the region of three-level traces indeed
has the same extension for the hole as for the electron cycle.

To get more quantitative concerning the time scale of the
(1, 1) → (0, 2) transition and to investigate if it is really re-
lated to spin relaxation, we measure the average of t(1,1) as a
function of detuning [dashed line in Fig. 47(d)] and magnetic
field. The result is presented in Fig. 48(a). As mentioned in the
previous paragraph, the third level is only visible in the region
of 0 < δ < EST ∼ 200 µeV. Figure 48(b) shows a cross sec-
tion taken at δ = 170 µeV. The time spent in the (1,1)-state is
around 400 µs at zero magnetic field, but decays rapidly with
increased B-field and disappears below the time resolution of
the detector as |B| > 30 mT.

The spin blockade can be conveniently expressed using a
model involving two-electron spin singlet (S) and triplet (T)
states distributed over both QDs. In this language, the electron
tunneling into the DQD from the source lead can enter either
the singlet S(1,1) or the triplet T(1,1) state. The singlet S(1,1)
quickly relaxes to S(0,2) followed by an electron leaving the
DQD to the drain. On the other hand, if the electron enters into
the triplet T(1,1), it can not proceed to T(0,2) since this state is
raised by the singlet-triplet splitting in QD2. The triplet T(1,1)
first needs to relax to S(1,1) before proceeding to S(0,2), lead-
ing to spin blockade.

For GaAs quantum dots, the spin blockade has been observed
to be lifted at zero magnetic field because of mixing of the
T(1,1) and S(1,1) states due to hyperfine interactions with the
nuclear spin bath. The mixing energy is given by the magni-
tude of the random magnetic field ~BN generated by the fluctu-
ating nuclear spins, with EN = gµB|~BN| ∼ 0.1 µeV for a typ-
ical quantum dot containing n ∼ 106 nuclei. The mixing can
be removed by applying an external magnetic field so that the
electron Zeeman splitting becomes larger than the mixing en-
ergy EN. This typically occurs on a magnetic field scale of a
few mT [77]. In our case, we observe the opposite behavior;

the relaxation rate Γrel = 1/〈t(1,1)〉 is minimal at zero magnetic
field and increases with external magnetic field. In contrast to
the setup of Ref. [77], we are in the strong coupling regime,
with t ∼ 30 µeV � EN. As discussed in section 4.2, the tunnel
coupling will hybridize the S(1,1) and S(0,2) singlet configura-
tions and thereby keep the energy separation to the T(1,1) triplet
larger than EN over the full range of detuning in Fig. 48(a). This
suppresses the relaxation due to hyperfine mixing, even at zero
external magnetic field [85].

A strong increase in the relaxation rate for small magnetic
field has been seen in InAs DQD [81]. The behavior was at-
tributed to the strong spin-orbit interactions of that material
system. The main spin relaxation mechanism in few-electron
single QDs in GaAs is also due to spin-orbit coupling, with re-
laxation rates increasing with external magnetic field [86, 56].
However, the relaxation times seen in Fig. 48(b) are much
shorter and the B-field dependence much stronger than reported
for few-electron single quantum dots. It is unclear how the ex-
istence of additional electrons in our DQD influences the relax-
ation process and it is uncertain if it is reasonable to assume
electron-electron interactions to be weak enough to allow the
QDs to be modeled using independent single-particle states.
From the measurements presented here, one can not make a
clear statement whether the observed features are due to spin
relaxation or not. It would certainly be interesting to repeat
the time-resolved measurements on a DQD containing only two
electrons.

4.9. Weak interdot coupling
In the last part of this section, we treat the case where the

three barriers of the DQD are tuned so that all tunneling pro-
cesses occur on timescales slower than the bandwidth of the
charge detector. In this regime it is possible to detect electrons
tunneling back and forth between the QDs and thus determine
the direction of the tunneling electrons [22].

It turned out to be difficult to reach this regime for the ring-
shaped DQD of Fig. 33(a). The constrictions between the QDs
were generally much more open than the constrictions to source
and drain leads, which made it hard to pinch off the middle
constriction while at the same time keeping source and drain
open and forming well-defined dots. A measurement from one
of the few cases where we were partly successful is shown in
Fig. 49(a). The plot shows the charge stability diagram mea-
sured with −700 µV bias applied across the DQD. The trans-
port triangles due to electron and hole transport are well visi-
ble. There are a few striking things in this measurement com-
pared to charge stability diagrams shown previously in this sec-
tion. First, the size of the triangle due to hole transport is con-
siderably smaller than the electron triangle. Although this is
not quantitatively understood, we speculate that it is due to a
weakly coupled state in QD2 that blocks transport in parts of
the triangles. Second, there are bands of weak tunneling occur-
ring outside the triangles. We attribute this to photon absorption
processes driven by the current flowing in the QPC; this is the
subject of section 5. Finally, there are stripes occurring parallel
to the base line of the triangles; these are excited states in the
QDs probed by interdot transitions.
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Figure 49: (a) Charge stability diagram of the DQD measured by counting
electrons entering the DQD. The data was taken with VDQD−SD = −700 µV
and VQPC−SD = 300 µV. (b) Number of levels in the QPC conductance traces,
extracted from the same data as in (a). The dashed lines show the extension of
the triangle expected from the applied bias and the capacitive lever arms of the
gates. (c) QPC conductance traces, taken at three positions marked in (a). In
case I, the tunneling is due to equilibrium fluctuations between QD1 and QD2.
In cases II-III, a current flows through the DQD. (d) Energy level diagrams
depicting the DQD configuration for the three position in (a,c).

Figure 49(b) shows the number of QPC current levels found
with the automatic level detection algorithm. Three levels are
found in most of the hole transport triangle as well as in large
parts of the electron transport triangle, showing that tunnel-
ing between the QDs is indeed slow enough to be detected
by the detector. Figure 49(c) shows three QPC conductance
traces taken at the positions marked in Fig. 49(a). Energy level
diagrams for the corresponding configurations are shown in
Fig. 49(d).

Starting at the position marked by I, the two QD levels are
aligned but shifted outside the bias window. Here, equilibrium
fluctuations occur between the QDs. The QPC conductance
trace shows transitions between two levels corresponding to an
electron sitting on QD1 and QD2, respectively. The transitions
occur on a relatively slow timescale of ∼10 ms.

Continuing to case II, we keep the alignment of the levels in
the two QDs but shift them inside the bias window of the hole
transport cycle. Looking at the trace in Fig. 49(c), we see that
the transition of electrons from QD2 to QD1 [(0, 1) → (1, 0)]
still occurs on a timescale comparable to case I. However, be-
fore the electron in QD1 has time to tunnel back to QD2, an
electron is quickly refilled into QD2 from the drain lead and
takes the QPC conductance to the (1,1) level. Afterwards, an
electron may leave from QD1 to source and the system is back
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Figure 50: (a) Same as Fig. 49(a), but with the gate voltages converted to av-
erage energy and detuning of the double quantum dot. The line coming from
tunneling between QD1 and the lead (case I) is considerably broader than the
lines due to interdot transitions (case II). (b) Rate for the interdot transition
(0, 1) → (1, 0), measured along the dashed line in (a). The peaks come from
resonant tunneling through excited states in either QD. The inelastic tunneling
between resonant peaks increases strongly with increased detuning. The dashed
line is a guide to the eye depicting exponential increase.

in the (0,1) state. Each cycle corresponds to one electron being
transferred through the DQD.

The timescale for interdot transition is clearly slower than the
tunneling involving the source or drain lead. The DQD current
is thus limited by the central barrier. This is clearly visualized
if we continue to case III, which corresponds to a slightly low-
ered electrochemical potential of QD1 relative to QD2. Here,
the interdot transition can not occur resonantly; the tunneling
electron needs to lose parts of it energy to the environment.
This makes the tunneling process less probable and reduces the
count rate in the region of case III in Fig. 49(a). The QPC con-
ductance trace Fig. 49(c) shows that the electron indeed spends
most of the time in QD2; once a transition to QD1 occurs it
is immediately followed by tunneling from drain to QD2 and
from QD1 to source, as discussed for case II. Finally, by further
lowering the electrochemical potential of QD1 an excited state
of QD1 lines up with QD2 and tunneling may again occur res-
onantly. This is the reason for the stripes parallel to the triangle
baseline occurring inside the triangles.

The above discussion raises a few interesting questions con-
cerning the interdot tunneling. First, what sets the width of the
regime with resonant interdot tunneling? In case I, the electrons
in the DQD are isolated from the leads and it seems unlikely
that the DQD transitions should be influenced by the thermal
distribution of the electrons in the leads. Second, what are the
relaxation processes leading to the slow but non-zero tunneling
rates in the non-resonant regime? To answer the first question,
we take the data from Fig. 49(a) and use the known capacitive
lever arms to convert the gate voltages into energy of the DQD.
The result is presented in Fig. 50(a), where we plot the count
rate for the hole transport triangle vs average DQD energy and
detuning energy δ. The two axes have the same scaling, which
makes it easier to compare energy scales of different processes.

We first focus on the tilted line with slope 1/2 marked by I in
Fig. 50(a). The line is due to equilibrium fluctuations between
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QD1 and the source lead; the broadening of the line is a di-
rect measure of the electron temperature in the source lead (see
section 2.2). By converting the energy to temperature we find
that the electron temperature in the lead is around T = 100 mK.
However, the width of the thermally-broadened line stands in
sharp contrast to the narrow vertical lines coming from interdot
transitions (case II). The width of these lines is only around
a quarter of the thermal-broadened line, which would corre-
spond to a temperature of 25 mK. This energy scale matches
relatively well to the base temperature of the cryostat. A pos-
sible explanation could therefore be that the broadening occurs
because of scattering with thermally excited acoustic phonons.
A straightforward experimental check of this hypothesis would
be to investigate how the broadening changes when raising the
base temperature of the cryostat. Unfortunately, shortly after
measuring the data in Fig. 49 we had to warm up the cryostat,
and we were not able to reach the same regime in subsequent
cool-downs.

A different energy scale is given by the tunnel coupling be-
tween the two QDs. If we assume the transport between the
QDs to be coherent and convert the measured tunneling rate of
Γ ∼ 100 Hz to a coupling energy, we find

t ∼ h f ∼ 0.4 peV. (79)

This is obviously several orders of magnitudes smaller than the
width measured in the experiment. Still, the discussion raises
some interesting questions concerning coherence and projective
measurements. For a fully coherent system, the electron wave-
functions in the two QDs hybridize and form bonding and anti-
bonding states that delocalize over both dots. At zero detuning
both the bonding and antibonding wavefunctions have the same
spatial extent, which means that a charge detector would not be
able to resolve transitions between the two states independently
of how slowly the transitions occur. The very fact that we de-
tect electrons tunneling back and forth between the QDs even at
zero detuning is an obvious indication that the system is not co-
herent. The decoherence rate is faster than the tunnel coupling,
meaning that the coherent evolution of an electron between the
two QDs is interrupted by a projective measurement taking the
electron back into the states of the individual QDs. The rate
at which we observe transitions between the two QDs thus de-
pends not only on the tunnel coupling but also on the decoher-
ence in the system. It would certainly be interesting to perform
measurements in a regime where the tunnel coupling and the
decoherence rate are comparable, and to investigate how the
measured transition rates are affected by the presence of the
QPC and its ability to perform projective measurements. One
would expect an increased QPC bias to introduce additional ef-
fects compared to the intrinsic decoherence.

Finally, we come back to the question of the relaxation mech-
anism leading to the finite count rate between the lines of res-
onant tunneling in Fig. 49(a) and Fig. 50(a). Figure 50(b)
shows the interdot transition rate Γ(0,1)→(1,0) = 1/〈t(0,1)〉 mea-
sured along the dashed line in Fig. 50(b), extracted from traces
similar to the ones shown in Fig. 49(c). The ground state transi-
tion as well as transitions due to three exited states give rise to
clear peaks in the figure. In between the peaks, the rate of the

non-resonant transition increases strongly as the detuning gets
larger.

Spontaneous energy relaxation in a DQD has been investi-
gated previously using conventional current measurement tech-
niques [87]. In that work, the authors find that the emission
rate decreases with increased detuning and attribute the mech-
anism behind the relaxation to phonon emission. This is in dis-
agreement with the results of Fig. 50(b), where the emission
rate clearly increases with detuning. It would therefore be in-
teresting to perform further experiments in this regime and in-
vestigate the inelastic tunneling of Fig. 50(b) in more detail. In
addition to checking the obvious influence of the temperature
of the phonon bath there could be other explanations for the re-
laxation such as photon emission to the nearby quantum point
contact [88] or to anywhere else in the environment.

5. Detector back-action

In the previous sections, we used quantum point contacts
to measure charge transitions in various mesoscopic structures.
While doing so we assumed the point contact to be an idealized
detector that does not exert any back-action on the measured
object. In reality, this is not true. The scattering of electrons
in the quantum point contact leads to emission of microwave
radiation. In this section, we show that the radiation may drive
transitions in a double quantum dot. Turning the perspectives
around, the double quantum dot can be seen as a frequency-
selective microwave detector. The frequency of the absorbed
radiation is set by the energy separation between the levels in
the dots, which is easily tuned with gate voltages. By com-
bining this with time-resolved charge detection techniques, we
can directly relate the detection of a tunneling electron to the
absorption of a single photon.

5.1. Using the double quantum dot as a frequency-selective de-
tector

The interplay between quantum optics and mesoscopic
physics opens up new horizons for investigating radiation pro-
duced in nanoscale conductors [89, 90]. Microwave photons
emitted from quantum conductors are predicted to show non-
classical behavior such as anti-bunching [91] and entangle-
ment [92]. Experimental investigations of such systems require
sensitive, high-bandwidth detectors operating at microwave-
frequency [93]. On-chip detection schemes, with the device
and detector being strongly capacitively coupled, offer advan-
tages in terms of sensitivity and large bandwidths. In pre-
vious work, the detection mechanism was implemented uti-
lizing photon-assisted tunneling in a superconductor-insulator-
superconductor junction [94, 51] or in a single quantum dot
(QD) [52].

Aguado and Kouwenhoven proposed to use a double quan-
tum dot (DQD) as a frequency-tunable quantum noise detector
[88]. The idea is sketched in Fig. 51(a), showing the energy lev-
els of the DQD together with a quantum point contact acting as
a noise source. The DQD is operated with a fixed detuning δ be-
tween the electrochemical potentials of the left and right QDs.
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Figure 51: Schematic for operating a double quantum dot (DQD) as a high-
frequency noise detector. The tunable level separation δ of the DQD allows
frequency-selective detection. (b) The double quantum dot used in the experi-
ment.

For an isolated system, the DQD is in the Coulomb blockade
regime and there will be no current flowing. However, if the
system absorbs an energy E = δ from the environment, the
electron in QD1 is excited to QD2. This electron may leave to
the drain lead, a new electron enters from the source contact and
the cycle can be repeated. The process induces a current flow
through the system. Since the detuning δ may be varied con-
tinuously by applying appropriate gate voltages, the absorption
energy is tunable.

The scheme is experimentally challenging, due to low cur-
rent levels and fast relaxation processes between the QDs [95].
Here, we show that these problems can be overcome by us-
ing time-resolved charge-detection techniques to detect single
electrons tunneling into and out of the DQD. Apart from giving
higher sensitivity than conventional current measurement tech-
niques, the method also allows us to directly relate a single-
electron tunneling event to the absorption of a single photon.
The system can thus be viewed as a frequency-selective single-
photon detector for microwave energies. This, together with
the fact that the charge-detection methods allow precise deter-
mination of the device parameters, provide major advantages
compared to other setups [90, 93, 94, 51, 52].

The measurements were performed on the structure shown
in Fig. 51(b), which consists of two quantum dots embedded
in a ring, together with a nearby QPC. As described in sec-
tion 4, we tune the surrounding gates so that only the upper
tunnel barrier connecting the two QDs is kept open. The tun-
nel coupling between the QDs was set to t = 32 µeV, as de-
termined using charge localization measurements explained in
section 4.2. The tunneling barriers between the DQD and the
source and drain contacts were tuned to a few kHz to enable
electron counting in real-time. In the following, we present
measurements taken with zero bias across the DQD. Fig. 52(a)
shows count rates close to the triple point where the (n + 1,m),
(n,m + 1) and (n + 1,m + 1) states are degenerate [see in-
set of Fig. 52(a)]. The arguments presented below are appli-
cable also for the triple point between the (n,m), (n + 1,m),
(n,m + 1) states, but for simplicity we consider only the first
case. At the triple point [marked by a white dot in Fig. 52(a)],
the detuning δ is zero and both dots are aligned with the Fermi
level of the leads. The two strong, bright lines emerging from
this point come from resonant tunneling between QD1 and the
source lead (lower-right line) or between QD2 and the drain
lead (upper-left line). The amplitude of the count rate at the
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Figure 52: (a) Count rate for electrons leaving the DQD, measured for a small
region close to a triple point (marked by a white point). The inset shows a
sketch of the surrounding hexagon pattern. The dashed line denotes the detun-
ing axis, with zero detuning occurring at the triple point. The data was taken
with VQPC = −300 µV. (b) Blow-up of the lower-right region of (a), measured
for different QPC bias voltages. (c) Rates for electron tunneling into and out
of the DQD, measured along the dashed line in (a). Γin falls of rapidly with
detuning, while Γout shows only minor variations. Adapted from Ref. [12].

lines gives directly the strength of the tunnel couplings to source
and drain leads [6, 17], and we find the rates to be ΓS = 1.1 kHz
and ΓD = 1.2 kHz.

Along the white dashed line in Fig. 52(a), there are triangle-
shaped regions with low but non-zero count rates where tun-
neling is expected to be strongly suppressed due to Coulomb
blockade. The DQD level arrangements inside the triangles are
shown in the insets. Comparing with the sketch in Fig. 51(a),
we see that both regions have DQD configurations favorable for
noise detection. The dashed line connecting the triangles is the
detuning axis, with zero detuning occuring at the triple point.
We define the detuning as δ = µ1 − µ2, so that the detuning is
negative in the upper-left part of the figure.

In Fig. 52(b), the lower-right part of Fig. 52(a) was measured
for four different QPC bias voltages. The resonant line stays the
same in all four measurements, but the triangle becomes both
larger and more prominent as the QPC bias is increased. This
is a strong indication that the tunneling is due to absorption of
energy from the QPC. The counts observed above the resonance
line for VQPC = −400 µV are due to electrons being excited
from the ground state to the first excited state of the DQD.

The time-resolved measurement technique allows the rates
for electron tunneling into and out of the DQD to be deter-
mined separately [40]. Figure 52(c) shows the rates Γin and
Γout measured along the dashed line of Fig. 52(a). The rate for
tunneling out stays almost constant along the line, but Γin is
maximum close to the triple point and falls of rapidly with in-
creased detuning. This suggests that only the rate for electrons
tunneling into the DQD is related to the absorption process. To
explain the experimental findings we model the system using
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Figure 53: (a) Energy level diagrams for the three states of the DQD. The labels
L, R and 2 denote the excess charge population. The levels are raised by the
intradot charging energy ECi when the DQD holds two excess electrons. (b)
Schematic changes of the detector signal as electrons tunnel into, between and
out of the DQD. Adapted from Ref. [12].

a rate-equation approach. For a configuration around the triple
point, the DQD may hold (n + 1,m), (n,m + 1) or (n + 1,m + 1)
electrons. We label the states L, R and 2 and draw the energy di-
agrams together with possible transitions in Fig. 53(a). The fig-
ure shows the case for negative detuning, with δ � kBT . Note
that when the DQD holds two excess electrons, the energy lev-
els are raised by the mutual charging energy, ECm = 800 µeV.

In Fig 53(b) we sketch the time evolution of the system. The
red curve shows the expected charge detector signal assuming a
detector bandwidth much larger than the transitions rates. Start-
ing in state L, the electron is trapped until it absorbs a photon
and is excited to state R (with rate Γabs.). From here, the electron
may either relax back to state L (rate Γrel.) or a new electron may
enter QD1 from the source lead and put the system into state 2
(rate ΓS). Finally, if the DQD ends up in state 2, the only pos-
sible transition is for the electron in the right dot to leave to the
drain lead.

The relaxation rate for a similar DQD system has been mea-
sured to be 1/Γrel. = 16 ns [96], which is much faster than the
available measurement bandwidth. Therefore, the detector will
not be able to register the transitions where the electron is re-
peatedly excited and relaxed between the dots. Only when a
second electron enters from the source lead [transition marked
by ΓS in Fig. 53(a, b)], the DQD will be trapped in state 2 for a
sufficiently long time (∼ 1/ΓD ∼ 1 ms) to allow detection. The
measured time trace will only show two levels, as indicated by
the dashed line in Fig. 53(b). Such a trace still allows extrac-
tion of the effective rates for electrons entering and leaving the
DQD, Γin = 1/〈τin〉 and Γout = 1/〈τout〉. To relate Γin, Γout to the
internal DQD transitions, we write down the master equation
for the occupation probabilities of the states:

d
dt

 pL

pR

p2

 =

−Γabs. Γrel. ΓD
Γabs. −(ΓS + Γrel.) 0

0 ΓS −ΓD


 pL

pR

p2

 . (80)

Again, we assume negative detuning, with |δ| � kBT . The mea-
sured rates Γin, Γout are calculated from the steady-state solution
of Eq. 80:

Γin = ΓS
pR

pL + pR
=

ΓSΓabs.

ΓS + Γabs. + Γrel.
, (81)

Γout = ΓD. (82)
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Figure 54: Average population of state L, measured for the same region as
shown in Fig. 52(a). The insets show the DQD level configurations for positive
and negative detuning, the dashed line defines the detuning axis.

In the limit Γrel. � ΓS, Γabs., the first expression simplifies to

Γin = ΓS Γabs./Γrel.. (83)

The corresponding expressions for positive detuning are found
by interchanging ΓS and ΓD in Eqs. (80-83). Coming back to
the experimental findings of Fig. 52(c), we note that Γout only
shows small variations within the region of interest. This to-
gether with the result of Eq. (82) suggest that we can take ΓS,
ΓD to be independent of detuning. The rate Γin in Eq. (83) thus
reflects the dependence of Γabs./Γrel. on detuning. Assuming
also Γrel. to be constant, a measurement of Γin gives directly
the absorption spectrum of the DQD. The measurements can-
not exclude that Γrel. also varies with δ, but as we show below
the model assuming Γrel. independent of detuning fits the data
well.

Equation (83) shows that the low-bandwidth detector can be
used to measure the absorption spectrum, even in the presence
of fast relaxation. Moreover, the detection of an electron enter-
ing the DQD implies that a quantum of energy was absorbed
immediately before the electron was detected. The charge de-
tector signal thus relates directly to the detection of a single
photon. The efficiency of the detector is currently limited by
the bandwidth of the charge detector. However, it should be
possible to increase the bandwidth significantly by operating
the QPC in a mode analogous to the radio-frequency single-
electron transistor [97, 98, 11, 99].

To justify the assumption Γrel. � Γabs., we note that even
when the detector is too slow to detect individual transitions be-
tween the states L and R, its dc-response still gives the average
population of the two states. In Fig. 54, we plot the relative pop-
ulation of state L, pL/(pL + pR), for the same gate voltage con-
figuration as in Fig. 52(a). The data was extracted by analyzing
the absolute change in the QPC conductance for one electron
tunneling into DQD (see section 4.2). Looking at the region of
negative detuning (upper-left part of Fig. 54), the average DQD
population within the regions of photon-assisted tunneling is
very close to the pure L-state. The electron spends most of
the time in QD1, which validates the assumption Γrel. � Γabs..
Similar arguments can be applied for the region of positive de-
tuning.

For fixed DQD detuning, the processes described above only
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√

4 t2 + δ2. There are only counts in the region where |eVQPC | > ∆12. (b)
Count rate versus QPC bias for different values of detuning. The solid lines are
guides to the eye. (c) DQD absorption spectrum, measured for different QPC
bias. The dashed lines are the results of Eq. (85), with parameters given in the
text. Adapted from Ref. [12].

pump electrons in one direction. The system may therefore
thought of as a ratchet, giving unidirectional electron flow even
at zero bias [95].

5.2. Measuring the QPC emission spectrum

In the following, we use the DQD to quantitatively inves-
tigate the microwave radiation emitted from the nearby QPC.
Figure 55(a) shows the measured count rate for electrons leav-
ing the DQD versus detuning and QPC bias. The data was
taken along the dashed line of Fig. 52(a), with gate voltages
converted into energy using lever arms extracted from finite
bias measurements. Due to the tunnel coupling t between the
QDs, the energy level separation ∆12 of the DQD is given by
∆12 =

√
4 t2 + δ2. The dashed lines in 55(a) show ∆12, with

t = 32 µeV. A striking feature is that there are no counts
in regions with |eVQPC| < ∆12. This originates from the fact
that the voltage-biased QPC can only emit photons with energy
~ω ≤ eVQPC [88, 52, 93]. The result presents another strong
evidence that the absorbed photons originate from the QPC.

To describe the results quantitatively, we consider the emis-
sion spectrum of a voltage biased QPC with one conducting
channel. In the low-temperature limit kBT � ~ω, the spectral
noise density S I(ω) for the emission side (ω > 0) takes the form
(see [88] for the full expression)

S I(ω) =
4e2

h
D(1 − D)

eVQPC − ~ω
1 − e−(eVQPC−~ω)/kBT

, (84)

where D is the transmission coefficient of the channel. Using
the model of Ref. [88], we find the absorption rate of the DQD
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Figure 56: Noise spectrum of the QPC, extracted from the data in Fig. 55(c).
The dashed lines show spectra expected from Eq. (84). Adapted from Ref. [12].

in the presence of the QPC:

Γabs. =
4πe2k2t2Z2

l

h2

S I(∆12/~)
∆2

12

. (85)

The constant k is the capacitive lever arm of the QPC on the
DQD and Zl is the zero-frequency impedance of the leads con-
necting the QPC to the voltage source. Equation (85) states how
well fluctuations in the QPC couple to the DQD system.

Figure 55(b) shows the measured absorption rates versus
VQPC, taken for three different values of δ. As expected from
Eqs. (84, 85), the absorption rates increase linearly with bias
voltage as soon as |eVQPC| > δ. The different slopes for the
three data sets are due to the 1/∆2

12-dependence in the rela-
tion between the emission spectrum and the absorption rate of
Eq. (85). In Fig. 55(c), we present measurements of the absorp-
tion spectrum for fixed VQPC. The rates decrease with increased
detuning, with sharp cut-offs as |δ| > eVQPC. In the region of
small detuning, the absorption rates saturate as the DQD level
separation ∆12 approaches the limit set by the tunnel coupling.
The dashed lines show the combined results of Eqs. (83-85),
with parameters T = 0.1 K, Zl = 0.7 kΩ, D = 0.5, t = 32 µeV,
k = 0.15, ΓS = 1.1 kHz and ΓD = 1.2 kHz. Using Γrel. as a
fitting parameter, we find 1/Γrel. = 5 ns. This should be seen as
a rough estimate of Γrel. due to uncertainties in Zl, but it shows
reasonable agreement with previously reported measurements
[96]. The overall good agreement between the data and the
electrostatic model of Eq. (85) supports the assumption that the
interchange of energy between the QPC and the DQD is pre-
dominantly mediated by photons instead of phonons or plas-
mons.

The data for VQPC = 400 µV shows some irregularities com-
pared to theory, especially at large positive detuning. We spec-
ulate that the deviations are due to excited states of the individ-
ual QDs, with excitation energies smaller than the detuning. In
Fig. 56, we convert the detuning δ to level separation ∆12 and
use Eq. (85) to extract the noise spectrum S I of the QPC. The
linear dependence of the noise with respect to frequency cor-
responds well to the behavior expected from Eq. (84). Again,
the deviations at ∆12 = 190 µeV are probably due to an ex-
cited state in one of the QDs. The excited states are also vis-
ible in finite-bias spectroscopy, giving a single-level spacing
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Figure 57: (a) Charge stability diagram for the DQD, measured with a bias
voltage VDQD−SD = 300 µV applied over the DQD. Tunneling due thermal fluc-
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are visible. The data was taken with VQPC−SD = 300 µV. (b) DQD energy level
diagram for the upper region of photon-assisted tunneling in (a). The detuning
is opposite to the bias direction. (c) Magnifications of the region marked by the
dashed rectangle in (a), measured for three different QPC bias voltages. The
dashed lines in the leftmost figure show the regions where we expect photon-
assisted tunneling. As the QPC bias voltage is increased, the count rate goes up
inside the PAT regions.

of ∆E ≈ 200 µeV. This sets an upper bound on frequencies
that can be detected with the detector. The frequency-range can
be extended by using DQD in carbon nanotubes [100] or InAs
nanowires [101, 102], where the single-level spacing is signifi-
cantly larger [5].

5.3. Finite DQD bias regime

Finally, we apply a voltage bias over the DQD in order to
compare the tunneling originating from sequential transport
with the tunneling due to photon absorption processes. Fig-
ure 57(a) shows a charge stability diagram measured with DQD
bias VDQD−SD = 300 µV. The two triangles associated with
electron and hole transport cycles are clearly visible. Besides
that, we have regions of cotunneling (see section 4.3) as well as
sharp lines with tunneling due to equilibrium fluctuations when-
ever the electrochemical potential of QD1 or QD2 lines up with
the Fermi levels in the source or drain, respectively. In addition,
there are faint triangles appearing in the detuning direction op-
posite to the transport triangles; we attribute these features to
photon-assisted tunneling (PAT).

The DQD energy level configuration in the upper region with
faint tunneling (next to the hole transport triangle) is depicted
in Fig. 57(a). In this regime the DQD may hold one or two
excess electrons. For this energy level alignment neither se-
quential tunneling nor cotunneling is possible. The DQD can
only change its state if an electron in QD1 absorbs a photon
and is excited to QD2. From this configuration, an electron

may enter QD1 from the source lead followed by the electron
in QD2 leaving to the drain. In Fig. 57(c), we present blow-
ups of the region marked by the dashed rectangle in Fig. 57(a),
measured for different QPC bias voltages. The dashed lines in
the leftmost panel in Fig. 57(c) show the regions where we ex-
pect photon-assisted tunneling. As the QPC bias is increased,
we see that the count rate inside these regions indeed goes up
significantly. For the highest QPC bias voltage, there are extra
features appearing outside the anticipated PAT-region. Again,
we attribute this to an excited state in QD2.

6. Single-electron interference

A central concept of quantum mechanics is the wave-particle
duality; matter exhibits both wave- and particle-like properties
and can not be described by either formalism alone. Up to this
point, we have treated the electrons as particles tunneling back
and forth between quantum dots. In this chapter, we investi-
gate their wave properties by studying interference of individ-
ual electrons taking two different paths in an Aharonov-Bohm
interferometer. The time-resolved charge detection technique
enables us to count electrons one-by-one as they pass the inter-
ferometer. In this way we make a direct measurement of the
self-interference of a single electron. With increased bias volt-
age across the quantum point contact a back-action is exerted
on the interferometer leading to dephasing. We attribute this
to emission of radiation from the quantum point contact, which
drives non-coherent electronic transitions in the quantum dots.

6.1. The Aharonov-Bohm effect

One of the cornerstone concepts of quantum mechanics is
the superposition principle as demonstrated in the double-slit
experiment [103]. The partial waves of individual particles
passing a double slit interfere with each other. The ensem-
ble average of many particles detected on a screen agrees with
the interference pattern calculated using propagating waves
[Fig. 58(a)]. This has been demonstrated for photons, elec-
trons in vacuum [104, 105] as well as for more massive objects
like C60-molecules [106]. The Aharonov-Bohm (AB) geom-
etry provides an analogous experiment in solid-state systems
[107]. Partial waves passing the arms of a ring acquire a phase
difference due to a magnetic flux, enclosed by the two paths
[Fig. 58(b)]. Here, we set out to perform the interference exper-
iment by using a quantum point contact to detect single-electron
tunneling in real-time.

We first discuss the experimental conditions necessary for
observing single-electron AB interference. We make use of
a geometry containing two quantum dots within the AB-ring.
Figure 58(c) shows the structure, with the two QDs (marked
by 1 and 2) tunnel-coupled by two separate barriers. It is the
same structure as investigated in chapters 4 and 5, but this time
tuned to a regime where both barriers connecting the QDs are
kept open. Following the sketch in Fig. 58(b), electrons are pro-
vided from the source lead, tunnel into QD1 and pass on to QD2
through either one of the two arms. Upon arriving in QD2, the
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Figure 58: (a) Setup of a traditional double-slit experiment. Electrons pass-
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screen. (b) Schematic drawing of the setup used for measuring single-electron
Aharonov-Bohm interference. Electrons are injected from the source lead, tun-
nel through QD1 and end up in QD2, where they are detected. The interference
pattern is due to the applied B-field, which introduce a phase difference between
the left and right arm connecting the two quantum dots. (c) Double quantum
dot used in the experiment. The yellow parts are lines written with a scanning
force microscope on top of a semiconductor heterostructure and represent the
potential landscape for the electrons. The QDs (marked by 1 and 2) are con-
nected by two separate arms, allowing partial waves taking different paths to
interfere. The current in the nearby QPC (IQPC) is used to monitor the electron
population in the system. Adapted from Ref. [69].

electrons are detected in real-time by monitoring the conduc-
tance of the nearby QPC [4, 7, 6, 62]. Coulomb blockade pro-
hibits more than one excess electron to populate the structure,
implying that the first electron must leave to the drain before a
new one can enter. This enables time-resolved operation of the
charge detector and ensures that we measure interference due
to individual electrons.

To avoid dephasing, the electrons should spend a time as
short as possible on their way from source to QD2. This is
achieved by raising the electrochemical potential of QD1 so that
electrons in the source lead lack an energy δ required for enter-
ing QD1 [see Fig. 60(b)]. The time-energy uncertainty princi-
ple still allows electrons to tunnel from source to QD2 by means
of second order processes. The tunneling process is then lim-
ited to a short time scale set by the uncertainty relation, with
t = ~/δ.

6.2. Experimental realization
In the experiment, we apply appropriate gate voltages to tune

the tunneling rates between the double quantum dot (DQD) and
the source and drain leads to values below 15 kHz. The tun-
neling coupling between the QDs is set to a few GHz, as deter-
mined from charge localization measurements (see section 4.2).
Figure 59 shows the charge stability diagram of the DQD sys-
tems, measured by counting electrons entering and leaving the
DQD within a fixed period of time. The data was taken with
600 µV bias applied between source and drain. The hexagon
pattern together with the triangles of electron transport appear-
ing due to the applied bias are well-known characteristics of
DQD systems (see chapter 4). Between the triangles, there
are broad, band-shaped regions with low but non-zero count
rates where sequential transport is suppressed due to Coulomb
blockade. The finite count rate in this region is attributed to
electron tunneling involving virtual processes, as described in
section 4.3. In the following paragraph we quickly repeat the
main results from that section.
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Figure 59: Charge stability diagram of the double quantum dot, recorded by
counting electrons entering and leaving the structure. The data was taken at
DQD bias voltage VDQD−SD = 600 µV and B = 0 T. The dashed line marks
the region of cotunneling used for measuring single-electron Aharonov-Bohm
interference.

Figure 60(a) shows the rates for electrons tunneling into and
out of the DQD measured along the dashed line in Fig. 59. Go-
ing along the dashed line corresponds to lowering the electro-
chemical potential of QD1 while keeping the potential of QD2
constant. In the region marked by I, electrons tunnel sequen-
tially from the source into QD1, continue from QD1 to QD2
and finally leave QD2 to the drain lead. Proceeding to point II
in Fig. 60(a), the electrochemical potential of QD1 is lowered
and an electron eventually gets trapped in QD1 [see sketch in
Fig. 60(b)]. At position II, the electron lacks an energy δa to
leave to QD2. Due to the energy-time uncertainty principle,
there is a time-window of length ∼ ~/δa within which tunnel-
ing from QD1 to QD2 followed by tunneling from the source
into QD1 is possible without violating energy conservation. An
analogous process is possible involving the next unoccupied
state of QD1, occuring on timescales ∼~/δb. This corresponds
to electron cotunneling from the source lead to QD2. By con-
tinuing to point III, the unoccupied state of QD1 is shifted into
the bias window and electron transport is again sequential. The
rate for electrons tunneling out of the DQD [Γout, blue trace in
Fig. 60(a)] shows only slight variations over the region of inter-
est. This is expected, since the potential of QD2 stays constant
along the dashed line in Fig. 59.

Coming back to the sketch of Fig. 58(b), we note that the co-
tunneling configuration of case II in Fig. 60(a,b) is ideal for in-
vestigating the Aharonov-Bohm effect for single electrons. Due
to the low probability of the cotunneling process, the source
lead provides low-frequency injection of single electrons into
the DQD. The injected electrons cotunnel through QD1 into
QD2 on a timescale t ∼ ~/δ ∼ 1 ps much shorter than the de-
coherence time of the system, which is on the order of a few
nanoseconds [108, 109]. This ensures that phase coherence is
preserved. Finally, the electron stays in QD2 for a time long
enough to be registered by the finite-bandwidth charge detec-
tor. The tunneling processes are sketched in Fig. 60(c).

Next, we tune the system to case II of Fig. 60(a) and count
electrons as a function of magnetic field. Figure 60(d) shows
snapshots taken at three different times. The electrons arriving
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in QD2 build up a well-pronounced interference pattern with
period 130 mT. This corresponds well to one flux quantum
Φ = h/e penetrating the area enclosed by the two paths. The
visibility of the AB-oscillations is higher than 90%, which is
a remarkably large number demonstrating the high degree of
phase coherence in the system. We attribute the high visibility
to the short time available for the cotunneling process [110] and
to strong suppression of electrons being backscattered in the re-
verse direction, which is otherwise present in AB-experiments.
Another requirement for the high visibility is that the two tun-
nel barriers connecting the QDs are carefully symmetrized. The
overall decay of the maxima of the AB-oscillation with increas-
ing B is probably due to magnetic field effects on the orbital
wavefunctions in QD1 and QD2.

In Fig. 61(a), we investigate the separate rates for electrons
tunneling into and out of the DQD as a function of magnetic
field. The y-axis corresponds to the dashed line in Fig. 59, i.e.,
to the energy of the states in QD1. The measurement shows
a general shift of the DQD energy with the applied B-field,
which we attribute to changes of the orbital wavefunctions in
the individual QDs. Within the cotunneling region, Γin shows
well-defined B-periodic oscillations. At the same time, Γout is
essentially independent of the applied field. This is expected
since Γout measures the rate at which electrons leave QD2 to the
drain, which occurs independently of the magnetic flux passing
through the AB-ring [see Fig. 60(a,c)]. In Fig. 61(b), the bias
over the DQD is reversed. This inverts the roles of Γin and Γout
so that Γout corresponds to the cotunneling process. Here Γout

shows B-periodic oscillations while Γin remains unaffected. In
the black regions seen in Fig. 61(b), no counts were registered
within the measurement time of three seconds due to strong de-
structive interference for the tunneling-out process. As a con-
sequence, it was not possible to determine Γin in these regions.

In the sequential regime (upper and lower parts of the color
maps in Fig. 61), one would also expect AB-oscillations to oc-
cur. However, the effect would show up as a modulation of the
coupling between the QDs (ΓC), which involves timescales of
the order ∼ 1/ΓC ∼ 1 ns. The detection of single electron mo-
tion on such timescales is presently out of reach due to limited
bandwidth of the detector.

6.3. Noise in the Aharonov-Bohm regime

In this section we investigate the noise of the current in the
Aharonov-Bohm regime. Using the methods of chapter 3, we
can extract the noise and the higher moments of the current
distribution directly from the QPC conductance traces. Fig-
ure 62(a) shows a measurement of the current flowing through
the DQD, measured in a regime close to the upper region of
sequential tunneling in Fig. 61(a) [VG1 = 49 mV at B = 0 mT,
dashed line in Fig. 61(a)]. When sweeping the magnetic field,
we tune the voltages on gates G1 and G2 to compensate for
the shift of the cotunneling region occurring due to orbital ef-
fects in the QDs. We chose to measure the AB-oscillation at
relatively low DQD detuning; this enhances the cotunneling
rates and allows us to collect more statistics within reasonable
measurement times. On the other hand, it also increases the
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contribution of sequential tunneling and photon-assisted tunnel-
ing processes, giving the slightly lower visibility compared to
Fig. 60(d). The small spikes seen at B = ±120 mT in Fig. 62(a)
(marked by arrows) are attributed to single-QD excitations.

In Fig. 62(b), we plot the shot noise (second moment µ2) of
the current distribution, extracted from the same set of data as
used in Fig. 62(a). The noise curve shows strong similarities to
the current trace in (a), with the AB-oscillations clearly visible.
This is reasonable, since we expect the noise to scale with the
magnitude of the current. In Fig. 62(c), we plot the Fano factor
µ2/µ, extracted from the traces in Fig. 62(a,b). Also the Fano
factor displays AB-oscillations, with a minimum occurring at
B = 0 mT (with µ2/µ = 0.55). We can understand this by con-
sidering the noise calculated for a single QD [see Eq. (39) in
chapter 3]. There, we saw a reduction of the Fano factor due to
Coulomb blockade, with the lowest noise given in a configura-
tion where the tunneling rates for entering and leaving the QD
were equal.

In the AB-regime, we also measure a current due to two tun-
neling rates; one is the cotunneling rate showing strong AB-
oscillations (in this case Γin), while the other (Γout) is a sequen-
tial rate being independent of external magnetic field [compare
the rates Γin and Γout in Fig. 61(a)]. At zero magnetic field, the
cotunneling rate Γin has a maximum and at this point it becomes
comparable to the sequential rate Γout. The two tunneling rates
are relatively symmetric, giving a reduction of the Fano factor.
For higher magnetic fields, the cotunneling rate Γin drops dras-
tically while Γout stays constant. This results in a more asym-
metric configuration and a Fano factor close to one.

In the region of higher magnetic fields the experimental pre-
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Figure 62: (a) DQD current in the Aharonov-Bohm regime. (b) Noise µ2 of
the DQD current. The curve strongly resembles the average current shown
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region as the traces shown in (a, b). All quantities were extracted from a QPC
conductance traces of length T = 40 s, measured with VDQD−SD = 600 µV and
VQPC−SD = 300 µV.

cision of the measurement decreases. This is because of the
low average count rate, giving less statistical data for extracting
the moments compared to the region around B = 0 mT. Fi-
nally, in Fig. 62(d) we plot µ3/µ, the generalized Fano factor
for the third moment. This quantity also shows indications of
AB-oscillations, but the experimental uncertainty in the high B-
field range becomes even larger than for the conventional Fano
factor.

6.4. Temperature effects
In Fig. 60(a), we investigate how the AB-oscillations are in-

fluenced by elevated temperatures. The dephasing of open QD
systems is thought to be due to electron-electron interaction
[111], giving dephasing rates that depend strongly on tempera-
ture [112]. Figure 63(a) shows the temperature dependence of
the AB oscillations in our system. The amplitude of the oscilla-
tions remains almost unaffected up to ∼400 mK, indicating that
the coherence is not affected by temperature until the thermal
energy becomes comparable to the single-level spacing of the
QDs.

Figure 63(b) shows measurements of the electron count rate
vs magnetic field and the average potential of the DQD, taken
at T = 100 mK and T = 300 mK. Contrary to the measure-
ments presented in Fig. 60 and Fig. 61, the potential difference
between QD1 and QD2 is kept constant at δ = 350 µeV while
the overall DQD energy ε is shifted relative to the leads. The
energy ε is taken to be zero when the level in QD2 is aligned
with the Fermi level of the drain [case III in Fig. 63(b-c)]. Here,
thermal population fluctuations tunneling between QD2 and the
drain lead gives rise to a high count rate [strong red line in the
lower part of Fig. 63(b)]. The width of the resonant line is set
by the temperature of the electrons in the lead. Indeed, this line
is clearly broader for the T = 300 mK data.

Going to point I in Fig. 63(b,c), the energy of the DQD is
raised compared to the leads and thermal fluctuation are no
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Figure 63: (a) Aharonov-Bohm (AB) oscillations measured at different temper-
atures. At ∼ 400 mK, the visibility of the oscillations drops drastically. The
data was taken along the dashed line in (b). (b) Rate of electrons entering QD2,
measured versus B-field and total energy of the DQD, ε. The two images show
data taken at two different temperatures, T = 100 mK and T = 300 mK. The
DQD energy ε is taken to be zero when QD2 is aligned with Fermi level of the
drain. Here, tunneling due to thermal fluctuations between QD2 and the lead
gives rise to a high count rate (point III). This feature is visibly broadened when
the temperature is increased. In the cotunneling region (point I), the count rate
shows clear AB oscillations. The elevated temperature only has a slight im-
pact on the AB-visibility. In case II, the cotunneling rate goes up compared to
case I. We attribute the increase to tunneling into an excited state in QD2. (c)
Diagrams depicting DQD energy levels for the three configurations marked in
(b).

longer relevant. Here, electrons can only enter QD2 by cotun-
neling from the source lead. The data shows clear Aharanov-
Bohm oscillations at both T = 100 mK and T = 300 mK, with
comparable visibility. At the same time, the effect of the in-
creased temperature is visible in the regime around ε = 0. As
the temperature is further increased, the line of thermal fluctu-
ations becomes broader and eventually reaches the dashed line
where the AB-oscillations of Fig. 63(a) were measured. This
leads to the sharp decrease of the AB-visibility demonstrated in
Fig. 63(a). We conclude that the decreased visibility at higher
temperatures is due to an increase in thermal fluctuations of the
DQD population.

6.5. Phase shifts for tunneling involving excited states

In the following, we investigate the phase of the AB-
oscillations for different states in QD2. Previous experi-
ments have shown phase shifts of π occurring between con-
secutive Coulomb resonances in many-electron quantum dots
[113, 114]. To measure AB-oscillations for consecutive elec-
tron fillings requires a relatively large shift of the gate volt-
ages. Such measurements are difficult to perform in our setup,
since large changes of gate voltages also affect the symmetry
of the left and right arm connecting QD1 and QD2, which may
strongly reduce the visibility of the AB-oscillations. Instead,
we look at excited states of QD2 at fixed electron population
[115].
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Figure 64: (a) Electron count rate, measured versus magnetic field and total
DQD energy relative to the leads, ε. The data was measured with VDQD−SD =

−600 µV applied to the DQD. (b) Count rates measured at the positions marked
by the dashed lines in (a). There is a phase shift of ∼ 0.7π between the two
curves. The trace for ε = −580 µeV has been magnified by a factor of ten for
better visibility. (c) Energy diagrams of the DQD for the positions marked by I,
II and III in (a). At point I, the potential of QD2 is lined up with the Fermi level
in the right lead and the tunneling is mainly due to equilibrium fluctuations be-
tween QD2 and the lead. At point II, the DQD potential is shifted downwards,
so that electrons in QD2 may only leave by cotunneling to the source lead. The
energy level arrangement allows a process involving an excited states of QD2
to contribute to the cotunneling. Finally, at point III only cotunneling involving
the ground state of QD2 is possible. Adapted from Ref. [116].

In addition to highlighting temperature effects, the color map
in Fig. 63(b) also shows the existence of excited states in the
QDs. At point II in Fig. 63(b,c), the count rate is increased
compared to case I. We attribute the increase to cotunneling into
an excited state in QD2 (see section 4.6). Measuring the AB-
oscillations at various DQD energy thus provides a way to in-
vestigate relative phases of the excited states in the QDs. From
the data in Fig. 63(b), we see that the AB-oscillations persist
in regions involving several excited states and that the phase of
the oscillations seems to remain the same in all regions.

Depending on the direction of the applied bias, we can probe
different excited states (see section 4.5). For positive bias, elec-
trons cotunnel from source into QD2 and may thereby put QD2
into either the (m, n + 1)-electron ground state or an (m, n + 1∗)-
electron excited state [see case II in Fig. 63(c)]. For nega-
tive DQD bias, the cotunneling involves an electron leaving
from QD2 to the source contact. This involves transitions
taking the QD2 into either its (m, n)-electron ground state or
into an (m, n∗)-electron excited state. Since the energy dif-
ference E[(n,m∗)] − E[(n,m + 1)] is smaller than E[(n,m)] −
E[(n,m + 1)], the transition involving the excited state [(m, n∗)]
occurs at an energy ∆E below the ground state transition [see
case II in Fig. 64(c)].

Figure 64(a) shows a measurement of the electron count rate
versus magnetic field and DQD energy ε for negative DQD bias.
Again, we define ε = 0 when the electrochemical potential of
QD2 is aligned with the Fermi level of the drain lead [see case I
in Fig. 64(c)]. Here, the tunneling is mainly due to equilibrium
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fluctuations between QD2 and the drain. As ε is reduced, the
equilibrium fluctuations between QD2 and drain are no longer
possible and electrons can only leave QD2 by cotunneling to
the source. The cotunneling region shows AB-oscillations, but
the oscillations are less uniform compared to the results for
positive bias [Fig. 63(b)]. Between the position marked by II
and III in Fig. 64(a), both the intensity and the behavior of the
count rate changes drastically. In Fig. 64(b), we plot two cross
sections from Fig. 64(a), taken at the positions of the dashed
lines. Both traces show AB-oscillations, and both curves are
symmetric around B = 0 T as expected from the Onsager rela-
tions. However, by comparing the positions of the maxima for
B > 0 T we see that the phase is shifted by 0.7π between the
two curves. The reason for the apparent lack of phase rigidity
is not understood, further measurements are needed for a more
complete understanding of the phenomena.

Starting at point III in Fig. 64(a,c), the transition involving
the [(m, n∗)]-electron excited state is below the Fermi level of
the source so that only cotunneling through the ground state is
possible. The trace in Fig. 64(b) belonging to point III is quali-
tatively similar to the data shown in Fig. 63(a), with both curves
having a maximum appearing at B = 0 T. The similarity is ex-
pected, since both measurements involve cotunneling through
the ground state of QD2. Moving to point II, the energy of the
DQD is raised and the transition involving the excited state may
also contribute to transport. The cotunneling rate measured in
this regime is a sum of the processes involving the ground state
and the excited state. However, since the rates at point II are
almost an order of magnitude larger compared to point III, the
behavior is to a large extent dominated by cotunneling from the
excited state.

From this, we conclude that there is a phase shift occurring
in the Aharonov-Bohm signal between tunneling involving the
(m, n)-electron ground state and a (m, n∗)-electron excited state
of QD2. Our findings are in agreement with previously reported
results [113, 114, 115], but more measurements are needed to
map out the complete phase behavior of the QD spectrum.

6.6. Decoherence due to the quantum point contact

In the experiment, we use the current in the QPC to detect
the charge distribution in the DQD. In principle, the QPC could
also determine whether an electron passed through the left or
the right arm of the ring, thus acting as a which-path detector
[117, 118]. If the QPC were to detect the electron passing in
one of the arms, the interference pattern should disappear. In
Fig. 65(a), we show the visibility of the AB-oscillations as a
function of bias on the QPC. The visibility remains unaffected
up to VQPC ∼250 µeV, but drops for higher bias voltages.

We argue that the reduced visibility is not due to which-path
detection. At VQPC = 400 µV, the current through the QPC
is ∼ 10 nA. This gives an average time delay between two
electrons passing the QPC of e/IQPC ∼ 16 ps. Since this time
is larger than the typical cotunneling time, it is unlikely that
the electrons in the QPC are capable of performing an effective
which-path measurement. Instead, we attribute the decrease of
the AB-visibility to processes where the DQD absorbs photons
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Figure 65: (a) Visibility of the AB-oscillations measured at different QPC bias.
The visibility stays roughly constant up to VQPC = 300 µV and then decreases
drastically with increasing bias voltage. We attribute the reduction in visibility
to an increase in photon-assisted tunneling. (b) Energy level diagram of the
DQD in the cotunneling configuration. At high QPC bias, both intradot and
interdot photon absorption processes become possible. Adapted from Ref. [69].

emitted from the QPC. As described in chapter 5, such pro-
cesses may indeed excite an electron from one QD to the other,
as long as the energy of the excited state is lower than the energy
provided by the QPC bias [12]. The radiation of the QPC may
also drive transitions inside the individual QDs, thus putting one
of the dots into an excited state [52]. A few possible absorption
processes are sketched in Fig. 60(b).

As long as the QPC bias is lower than both the DQD detun-
ing (δ = 400 µeV) and the single-level spacing of the individual
QDs (∆E ∼ 200 µeV), the AB visibility in Fig. 60(b) is close
to unity. When raising the QPC bias above ∆E, we start excit-
ing the individual QDs. With increased QPC bias, more states
become available and the absorption process becomes more ef-
ficient. This introduces new virtual paths for the cotunneling
process. Since the different paths may interfere destructively,
the interference pattern is eventually washed out. In this way,
the QPC has a physical back-action on the measurement which
is different from informational back-action [119] and which-
path detection previously investigated [117, 118].

7. Conclusions

In conclusion, we have measured current fluctuations in a
semiconductor quantum dot, using a quantum point contact to
detect single electron tunneling through the dot. We show ex-
perimentally the reduction of the second and third moment of
the distribution when the quantum dot is symmetrically coupled
to the leads. The setup can be used as a high-precision current
meter for measuring ultra-low currents, with resolution several
orders of magnitude better than that of conventional current me-
ters.

The quantum point contact does not only serve as a charge
detector, but also causes a back-action onto the measured de-
vice. Electron scattering in the quantum point contact leads to
emission of microwave radiation, which may drive charge tran-
sitions in the quantum dot. Turning the perspective around, we
show that a double quantum dot can be used as a frequency-
selective detector for microwave radiation emitted from meso-
scopic structures.
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In addition, we demonstrate interference of single electrons
in a solid state environment. Such experiments have previ-
ously been limited to photons or massive particles in a high-
vacuum environment in order to decouple the degrees of free-
dom as much as possible from the environment. Our exper-
iments demonstrate the exquisite control of modern semicon-
ductor nanostructures which enables interference experiment at
the level of single quasi-particles in a solid state environment.
Once extended to include spin degrees of freedom [46] such
experiments have the potential to facilitate entanglement detec-
tion [120, 47] or investigate the interference of particles [121]
originating from different sources.

Financial support from the Swiss Science Foundation
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from the EU Human Potential Program financed via the Bun-
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A. Cumulants or central moments of a distribution

The full distribution function Pt0 (N) or the complete set of
central moments µi give a complete description of the current
in a system. The moments and the distribution function contain
the same information, making the two equivalent. Another way
to represent the same information is in terms of the cumulants
Ck and the cumulant generating function F (χ). The cumulants
are defined as [122]

Ck = −(−i)k ∂
k

∂χk F (χ)
∣∣∣
χ=0, (86)

with the cumulant generating function given by

e−F (χ) =
∑

N

Pt0 (N)eiNχ. (87)

In terms of the central moments, we have for the first few cu-
mulants

C1 = µ1, C2 = µ2, C3 = µ3,

C4 = µ4 − 3µ2
2, C5 = µ5 − 10µ3µ2. (88)

The cumulants can be seen as an irreducible representation of
the moments. Again, this means that the knowledge of either
the moments µi, the cumulants Ck or the distribution function
Pt0 (N) provide the same information.
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