
HAL Id: hal-00473072
https://hal.science/hal-00473072v1

Submitted on 9 Aug 2011 (v1), last revised 9 Aug 2011 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A General Lock-Free Algorithm for Parallel State Space
Construction

Rodrigo Tacla Saad, Silvano Dal Zilio, Bernard Berthomieu

To cite this version:
Rodrigo Tacla Saad, Silvano Dal Zilio, Bernard Berthomieu. A General Lock-Free Algorithm for
Parallel State Space Construction. Parallel and Distributed Methods in Verification, 2010 Ninth
International Workshop on, and High Performance Computational Systems Biology, Second Inter-
national Workshop on, Sep 2011, Enschede, Netherlands. pp.8-16, �10.1109/PDMC-HiBi.2010.10�.
�hal-00473072v1�

https://hal.science/hal-00473072v1
https://hal.archives-ouvertes.fr

Parallel State Space Construction

for NUMA architecture ⋆

Rodrigo T. Saad, Silvano Dal Zilio, Bernard Berthomieu and François Vernadat

CNRS; LAAS;
7, avenue du Colonel Roche, F-31077 Toulouse – France

Université de Toulouse;
UPS, INSA, INP, ISAE; LAAS; F-31077 Toulouse, France

{rsaad, dalzilio, bernard, francois}@laas.fr

Abstract. Verification via model-checking is a very demanding activity
in terms of computational resources. While there are still gains to be
expected from algorithmic methods, it is necessary to take advantage
of the advances in computer hardware to tackle bigger models. Recent
improvements in this area take the form of multiprocessor and multicore
architectures with access to large memory space.
We address the problem of generating the state space of finite-state tran-
sition systems; often a preliminary step for model-checking. We propose
a novel algorithm for enumerative state space construction targeted at
Non-Uniform Memory Access (NUMA), that is multiprocessor architec-
tures where the latency and bandwidth characteristics of memory actions
depend on the processor or memory region being accessed. Our approach
relies on the use of a shared Bloom filter to coordinate the state space
exploration distributed among several processors. The goal is to limit
undesired synchronizations and increase the locality of memory access.
Bloom filters have already been applied for the probabilistic verification
of system; they are compact data structure used to encode sets, but in
a way that false positive are possible, while false negative are not. We
circumvent this limitation and propose an original multiphase algorithm
to perform exhaustive, deterministic, state space generations.

1 Introduction

Verification via model-checking is a very demanding activity in terms of compu-
tational resources. While there are still gains to be expected from algorithmic
methods, it is necessary to take advantage of the advances in computer hardware
to tackle bigger models. Obviously, the use of a parallel architecture is helpful to
cut the time needed to check a model because it divides the computation over
several processing units instead of one. What is even more important, though,
is the possibility to access a large amount of fast-access memory. Indeed, model-
checking is very space-consuming and cannot realistically make use of disk-based
memory storage.

⋆ This work has been supported by the French AESE project Topcased and by region
Midi-Pyrénées

We address the problem of generating the state space of finite-state transition
systems, often a preliminary step for model-checking. We propose a novel algo-
rithm for enumerative state space construction targeted at Non-Uniform Mem-
ory Access (NUMA), that is multiprocessor architectures where the latency and
bandwidth characteristics of memory actions depend on the processor or mem-
ory region being accessed. Practically, this means that the shared, addressable
memory space is divided into several regions, reachable through physically dif-
ferent buses. To give actual figures regarding our algorithm, we have tested our
approach on a high-end server configured with 8 dual core opteron processors,
equipped with 208GB of RAM memory. (It is unlikely that commercially vi-
able, single processor computers with that amount of RAM could be available
in the close future.) For the experiments detailed in this paper, where we work
with an explicit representation of the state space, this configuration allows us
to work with models generating more than 500 millions states and to divide the
computation time by a factor of about 6 to 8.

The basic idea behind a state space construction algorithm is pretty simple:
take a state that has not been explored (a fresh state); compute its successors
and check if they have already been found before; iterate. A key point is to use
an efficient data structure for storing the set of generated states and for testing
membership in this set. Our approach relies on the use of a shared Bloom Filter
to implement this membership test and to coordinate the exploration distributed
among several processors. We take advantage of the fast response time and space
efficiency of Bloom filter in order to limit undesired synchronizations and increase
the locality of memory access. Bloom filters have already been applied for the
probabilistic verification of systems; they are compact data structure used to
encode sets, but in a way that false positive are possible, while false negative are
not. We circumvent this limitation and propose an original multiphase algorithm
to perform exhaustive, deterministic, state space generations. In the first phase
(exploration), the algorithm is guided by the Bloom filter until we run out of
states to explore. During this phase, states found by a processor are stored locally
in two AVL trees: one for states that, according to the Bloom filter, have already
been generated by another processor; another for fresh states. Since the Bloom
filter may, in rare cases, falsely report that a state has already been visited (what
is called a false positive), we need to give a special treatments to these collision

states. This is done in the consecutive phase (collision resolution) that takes
care of collisions among possible false positive. The algorithm concludes with a
termination detection phase when there are no more states to explore and no
collisions.

The rest of this paper is organized as follows. In Section 2 we review related
work and give a brief introduction on Bloom Filters. Section 3 give the details
of our algorithms. In Section 4, we examine experiments performed on a set of
typical benchmarks. We conclude with ideas for future extensions of our work.

2 Related Work

There is already a large body of work addressing the problem of parallelizing and
distributing state space construction. Several solutions have been proposed that
are each tailored to a particular type of parallel and distributed architecture.
The vast majority of these solutions adopt a common approach, that could be
labeled as “homogeneous” parallelism, which follows a Single Program Multiple
Data (SPMD) programming style, such that each processor performs the same
steps concurrently. (To the best of our knowledge, the only work following the
Single Instruction Multiple Data(SIMD) model is [5].) A drawback of the SPMD
model, which is commonly used to accomplish coarse-grained parallelism, is that
data and computations should be explicitly assigned to each processor. It is
therefore necessary to set up an efficient load-balancing mechanism to improve
the speedup of the implementation.

Slicing Functions and the Work Stealing Paradigm. A common approach
to assign work and data is to partition the state space into several chunks, one
for each processor available, through a slicing function. This scheme is more
generally applied on distributed memory systems, where solutions mostly differ
by the nature of the slicing function, i.e. static or dynamic. Several of the mech-
anisms proposed for distributed architectures [1, 6, 8, 9, 13, 14] rely on slicing
functions and differ basically by the nature of this function in order to provide
both locality and balance. Balance can be measured as spatial or temporal bal-
ance: spatial balance means that each processor will receive an equal amount
of states; temporal balance means that each processor will be busy most of the
time. Locality measures the fact that states which are “related” during the com-
putation should be assigned to nearby processes (typically, the successors of a
state should be handled by the same processor). Locality is desired to reduce
communication overheads.

In contrast with distributed memory systems, shared memory systems ab-
stract away from the need to explicitly pass messages between processors. As
a consequence, mechanisms proposed for these systems do not require a slicing
function to assign states to processors, since they can be all shared. However,
for ensuring data consistency, shared memory systems incur synchronization
overheads on operations that perform concurrent access to the memory. Con-
sequently, solutions developed for shared memory systems often rely on a pool
of “local memory”, assigned to each processor, along with customized synchro-
nization mechanisms to guarantee a consistent access to a shared data structure
that stores the bulk of the state space. In this context, to achieve high degree
of parallelism, the goal is to keep to a minimum the part of global data that is
locked for mutual exclusion. Allmaier et al. [1] were among the first to imple-
ment a parallel state space construction algorithm for shared memory systems.
In their design, states are stored in a balanced-tree and the data consistency
problem is solved by using locks together with a “splitting-in-advance” scheme
to reduce the contention on data locks. In [10], the authors propose a parallel

algorithm for state exploration based on a work stealing scheduling paradigm
to provide dynamic load balancing without a blocking phase. The idea is that
underemployed processors attempt to “steal” work from other processors. In this
paper, processing nodes store pending states (states that have potentially un-
processed successors) in two local queues: a private queues for states they will
process; a shared queue for states that can be appropriated by other nodes. A
global hash table is used to store already visited states. Every time the private
queue of a process is empty, it has to acquire a lock to check over its own shared
queue for a pending state. If no state is found, the processor starts searching
through all other shared queues until it finds a nonempty queue or finds that
all shared queues are empty. With reference to the storage data, unlike [1], this
work implements a hash table without any mutual exclusions locks to synchro-
nize access. The authors emphasize that the duplication caused by the lack of
a locking strategy is not relevant compared to the parallel computation power
available.

Bloom Filter in Model Checking Applications. Explicit (or enumerative)
model checking suffers from the well known state explosion problem. This prob-
lem has direct implication on the choice of the data structure to store the state
space since the amount of memory required depends on the number of reachable
states. When the state space is too large, it may be interesting to store states in
a probabilistic data structure in order to spare memory space. In this context,
probabilistic means that testing the data structure for membership returns the
“correct result” with some (hopefully high) probability. Obviously, the drawback
of this approach is that it is not possible to have full confidence on the outcome
of model checking, since the actual state space may not be completely explored.
Nonetheless, a “probabilistic verification result” may still be helpful to find er-
rors in a model and some model-checking tools provide this facility. Usually,
probabilistic model checkers use one of two data structures, compacted hash and
Bloom Filter. Choosing the right data structure depends on a priori knowledge
on the state space [7]: when the state space size is known, the best choice is the
compact hash, otherwise a Bloom filter may result in a better coverage of the
state space.

A Bloom filter is a space-efficient data structure for encoding set membership
that is very popular in database and network applications. General theoretical
results on Bloom filters are given in [3], while [7] focus more on their use for
probabilistic verification. Bloom filters support two operations: insertion of an
element in the set and test that an element is in the set. A filter B of size
n is implemented as a vector of n bits and is associated with a series of k

independent hash function (hi)i∈1..k with image in the interval 1..n. An empty
set is represented by a vector with all bits set to 0. Insertion of the element
x in B is performed by setting the bits hi(x) of the vector to 1 for all i in
1..k. Reciprocally, to query wether an element y is in B, we test that the bits
(hi(y))i∈1..k are all set to 1 in the vector. If it is not the case, then we are sure
that y is not in the set encoded by B. If all these bits are set to 1, then we

Fig. 1. Illustration of some operations on a Bloom filter.

only have a probabilistic result: in the case where y is actually not in the set,
we say we have a false positive. The probability of false positive is a function of
the size, n, number of hash functions, k, and number of elements inserted so far.
Hence the parameters n and k should be carefully chosen in an implementation.
Figure 1 illustrates insertion and query operations on a Bloom filter with size
n = 16 and k = 3. Starting from an empty set (above), we show the result after
the insertion of two elements, x and y. Element z is an example of false positive.

3 Description of the Parallel Algorithm

Our algorithm elaborates on the work-stealing paradigm and the “homogeneous”
parallelization approach introduced in the previous section. Work is distributed
homogeneously between processors and each processor handles its own local view
of the state space. This allows us to take into account the locality constraint
imposed by the NUMA architecture.

Coordination between the processors is based on a shared Bloom filter used
to test wether a state has (potentially) already been visited by some of the
processors. All states are stored locally in two AVL trees; more details about
these data structures are given in Section 3.1. In Section 3.2, we discuss the work-
sharing techniques used in our algorithm. Indeed, the processors may share work
in two manners, either a passive or an active way. The active way is the work-
stealing paradigm we already mentioned, that is triggered when a processor runs
out of work. We add a passive way of sharing, that is when a given processor
explicitly wakes up a sleeping processor in order to share some work. We use
these two techniques alternately according to the amount of work in the system.
To conclude the section, we discuss the three phases of our algorithm.

In the remainder of the text, we assume that there are N processors and that
each processor is given a unique id, which is an integer in the interval 0..N − 1.

3.1 Shared and Local Data

Our objective is to design a solution adapted to NUMA architectures. Hence,
in addition to the common difficulties related to shared memory architecture,
like ensuring data consistency and reducing contention on shared data access, we
should also consider the variations in latency between access to different memory
regions. To improve locality, states generated by a processor are stored in one of
two possible local AVL trees, the state tree or the collision tree. This corresponds
to one of the two following cases. Assume that processor i generates a new state
s. If a query on the Bloom filter answers that s has not been visited before, the
processor may continue generating new states from s. In this case we add s to
the state tree of processor i. If the query is negative, we add s to the collision
tree. States in the collision tree will undergo a special treatment to take into
account possible false positives.

Each processor also manages two stacks of unexplored states for work-sharing:
one for local work; the other for sharing work with idle processors. Finally, in
order to detect termination, we also manage a shared vector that stores the cur-
rent state of processors (either idle or busy). Figure 2 illustrates the shared and
local data structures used in the algorithm.

Fig. 2. Shared and Private Data Model Scheme.

3.2 Work-Sharing Techniques

Our algorithm relies on two different work-sharing techniques to balance the
working load between processors. We use these mechanisms alternately during
the exploration phase in accordance with the processor occupancy. First, we
use an active technique very similar to the work-stealing paradigm of [10]. This
mechanism uses two stacks: a private stack that holds all states that should be
worked upon; a shared stack for states that can be borrowed by idle processors.
The shared stack is protected by a lock to take care of concurrent access. The
second technique can be described as passive and has the benefit to avoid useless
synchronization and contention caused by the active technique. In the passive
mode, an idle processor waits for a wake-up signal from another processor willing

to give away some work instead of polling other shared stacks. The shift between
the passive and active modes is governed by two parameters:

– the private minimum workload (pr work load), which defines the minimal
charge of work that should be kept private. The processor will share work
only if the charge in its private stack is larger than pr work load ;

– the share workload (sh work load), which defines the ratio of work that
should be added in the shared stack if the load in the private stack is larger
than pr work load.

Our implementation of the work-stealing paradigm differs from [10] by its
use of unbounded shared stacks and the sh work load parameter.

3.3 Different Phases of the Algorithm

As mentioned before, our solution makes use of a shared Bloom filter to test
whether a state may have already been discovered before. To overcome the prob-
lem with false positives, our algorithm iterates between an exploration phase and
a collision resolution phase before concluding with a termination detection phase.

The exploration phase takes great advantage of the strong points of a mul-
tiprocessor architecture because the shared space is small and all work is done
locally. On the opposite, the collision resolution phase put a lot of stress on the
architecture: each processor has to compare the elements in its collision tree with
the state tree of all the other processors. As a consequence, the goal is to favor
the exploration phase and to reduce the number of iterations. Figure 3 shows
the characteristic timeline of phase alternations that we are aiming at. Since
iterations are directly related to the probability of false positive, it is important
to correctly dimension the Bloom filter. In our experiments, we typically observe
less than 3 iterations.

Fig. 3. Timeline of states alternation.

In the remaining of this section, we define each phase of our algorithm using
pseudo-code. Variable SS indicates the current phase of the algorithm. The data
structures used in the algorithm is composed of shared and local elements. Shared
variables are: (1) the Bloom Filter BF, used to test whether a state had already
been discovered or not; (2) the bitvector V, that stores the state of the proces-
sor (0 for idle and 1 for busy); and (3) the shared stacks Shared Stack [0], . . . ,

Shared Stack [N-1]. Processor-local variables are the private stack, private stack,
of unexplored states and the two local AVL: state tree, to store states discovered
by this processor; and collision tree, to store potential false positive.

Exploration. The exploration phase proceeds until no new states can be added
to the Bloom filer BF. During the exploration, all states appointed by BF as
already discovered are stored locally in the collision tree . On the opposite, all
newly discovered states are stored locally in the state tree. Computation switches
to the collision resolution phase when all processors are idle and there is at
least one non-empty local collision tree. After a complete iteration, not resolved
collisions (false positive) are marked with a special tag because they bypass
the BF membership test at this phase. More information about not resolved
collisions is presented later.

while SS == Exploration and at least one process is busy do

while private_stack is not empty do

s := pop(private_stack) ;

if s is not in BF or s is marked with a special tag then

search_and_insert s into state_tree ;

let s1, .. , sj, ..., sn = successors(s) where

j = shared_work_load x n

if size(private_stack) > private_work_load then

// Share a percentage of new work

if some processor is sleeping then wake him up endif

// Protected action by locks

insert s1, ..., sj in my shared_stack

insert sj+1, ..., sn in my private_stack

else

insert s1, ..., sn in my private_state

endif

endlet

else search_and_insert s into collision_tree

endif

endwhile

// private stack empty
if my shared stack is not empty then

transfer work from my shared stack to private_stack

else

look for a non empty shared_stack to transfer work ;

if all shared_stacks empty and at least one processor busy

then enter into sleep mode

endif

endif

endwhile

// Everybody is idle
// Protected action by locks
SS := Collision Resolution ;

wake up all processors and enter Collision Resolution phase

Collision Resolution. The search for collisions (the same state generated in
two distinct processors) is done concurrently by each processor through the syn-
chronization of its collision tree with every non-empty state tree. Since states
are already sorted (states can be lexicographically sorted and are stored in an
AVL), collisions can be efficiently resolved by comparing all trees as lexicographic
ordered lists starting by the leftmost state of each tree. The advantage of this
approach is that if a colliding state s is smaller than a given state of a state tree,
no more states of this state tree need to be compared with s. During this syn-
chronization, a state from the collision tree that is in the state tree of another
processor, say Pi, can be safely omitted: it is a ”real” collision and it will be
eventually processed by Pi. If the state does not appear in any state trees then
its presence in the collision tree is the result of a false positive in the Bloom
filter. As a consequence, it will be directly inserted into the private stack of the
processor to be expanded during the following exploration phase. We will also
mark this state with a special tag to avoid testing him against the Bloom filter
a second time. For this reason, if more than one processor find the same false
positive, it will result in duplicated states in state space.

leftmost[0..N] := leftmost states from state_tree [0..N] ;

not_larger[0..N] := {true,...,true} ;

found := false ;

collision := leftmost state from collision_tree ;

while collision is not empty do

forall i in 0..N do

if not_larger[i] then

if collision is smaller than leftmost[i] then

// No more comparisons for this collision
not_larger[i]:=false

elsif collision is larger than leftmost[i] then

leftmost[i] := next ordered element from state_tree[i]

else // collision == leftmost[i]
found := true

endif

endif

endfor

if found is false then

insert collision into private_stack and marked as an special state

endif

collision := next ordered element from collision_tree

endwhile

// No more collision to resolve
if private_stack is not empty then

// Protected action by locks
SS := Exploration

endif

if one processor is still busy then

enter into sleep mode

else

wake up every processor ;

if SS == Exploration then enter Exploration phase

else enter Termination Detection phase endif

endif

Termination Detection. This phase is responsible for checking if the state
space construction should end. Termination detection performs a simple test
on the states of the processor and consumes no resources. Assume we arrive
in the termination detection phase from the exploration phase. We can finish
the construction if the collision tree in all processors are empty. In the case we
arrive in this phase from the collision resolution phase. Then we can finish the
construction if the private stack of all processors are empty.

4 Experiments

We implemented our algorithm using the C language with Pthreads [4] for con-
currency and the Hoard Library [2] for parallel memory allocation. We used
an off-the-shelf implementation for Bloom Filter, namely the Bob Jenkins hash
function [11]. Experimental results presented in this section were obtained on a
Sun Fire x4600 M2 Server, configured with 8 dual core opteron processors and
208GB of RAM memory, running the Solaris 10 operating system. When not
specified, we worked with a 512MB Bloom filter (n = 4.109 bits) and 6 chained
hash-functions (k = 6).

The finite state systems chosen for our benchmarks are classical examples of
Petri Nets taken from [12]. Together with the perennial Dining Philosophers, we
also study the examples of the Flexible Manufacturing System (FMS) and the
Kanban System, where the first one is parameterized by the number of subnets
and the two following ones by the weights in their initial marking. We give several
results detailing the performance of our implementation. While speedup is the
obvious criteria when dealing with parallel algorithm, we also study the memory
tradeoff of our approach and report on experiments carried out to choose the
dimension of the Bloom filter.

Speedup. The speedup achieved by a parallel algorithm is measured by divid-
ing the time spent using only one processor (the sequential time, Ts) by the time
spent using N processors (TN). Figure 4 gives the observed speedup of our algo-
rithm when generating the state space for 12 philosophers, FMS 8 and Kanban
8 with different number of processors. Clearly, the algorithm is very dependent
on the “degree of concurrency” of the model: it is not necessary to use lots of
processors for a model with few concurrent actions. This is an inherent limita-
tion of parallel state space construction algorithm.

Memory tradeoff. A parallel algorithm often trades additional memory space
for better execution time. Figure 5 gives results on the memory used for 10

speedup

philosopher 12 FMS 8 Kanban 8
proc. (3.107 states) (6.107 states) (13.107 states)

2 1.5 1.9 2

4 2.7 3.6 3.7

6 3.6 5 5.3

8 4.6 6.6 7.1

10 4.9 6.9 7.9

12 5 7.21 8.7

14 4.8 7.03 8.7

Fig. 4. Speedup analysis for 12 philosophers, FMS 8 and Kanban 8.

philosophers, FMS 5 and Kanban 5. The graph shows the ratio between the
memory actually used and the memory needed by the sequential algorithm. The
table concentrates on the FMS 5 example and shows that the increase in the
memory footprint is related to the increased number of collision nodes (see Sec-
tion 3.1). The intuition behind these numbers is quite simple: due to the strong
symmetry of the example, if we add more processors, we increase the probability
of different processors finding the same state, that is the probability of creating
a collision node. As seen in the experiments, our algorithm may require twice as
much memory than the sequential algorithm in the worst case (14 processors on
an example with lot of symmetries). This illustrates the necessity to tune the
parameters of our algorithm. The outcome of the experiments presented here
were achieved choosing a 512MB Bloom filter and a value of 70% for the share
work load, which seems to give consistently good results on many examples. The
following sections illustrates the tuning of these two parameters.

Flexible Manufacture System 5
(29.105 states)

proc. # collision total memory
tree nodes (MB)

1 – 906

2 24.105 1148

4 50.105 1425

6 63.105 1559

8 72.105 1653

10 79.105 1716

12 85.105 1777

14 89.105 1820

Fig. 5. Memory tradeoff analysis for 10 philosophers, FMS 5 and Kanban 5.

Work Sharing Policy. The sharing of work between processors in our algo-
rithm is parameterized by the value of sh work load, the share work load (see
Section 3.2), that defines the ratio of work that should be inserted inside the
shared stack. In all the experiments that we have performed, the best results
(speedup) were achieved using a value between 50% and 70%. Figure 6 presents
the speedup obtained for different values of this parameter when running on the
Kanban 7 system with 14 processors.

sh work load time speedup # duplicated
(ratio) (s) states

10% 2058 1 0

30% 331 6.2 42

50% 246 8.3 62

70% 252 8.1 76

90% 326 6.3 69

Fig. 6. Impact of the sh work load parameter on the Kanban 7 example with 14 pro-
cessors (41.106 states, 450.107 transitions).

Size of the Bloom Filter. The exploration phase of our algorithm ends when,
according to the Bloom filter, there is no more state to be explored. Hence,
depending on the size of the Bloom filter, our algorithm may prematurely start
its collision resolution phase due to the high rate of false positives. Consequently,
it will result in a higher number of duplicated states. Figure 7 shows the results
obtained by executing the Kanban 7 model with three different sizes for the
Bloom filter. The table also shows the ratio of time spent in the exploration and
collision resolution phases. We can observe that the speedup degrades when the
ratio of time spent in the collision resolution phase increases.

5 Conclusions and Future Work

We propose a new algorithm for parallel state space construction targeted at
NUMA architecture. We use a Bloom filter for the shared data structure and
define a multiphase algorithm to obtain an exhaustive, deterministic result.

In the context of our experiments, we worked more specifically with system
described by Petri Nets. Nonetheless, our algorithm is quite general and could be
applied to different formalisms for describing finite transition systems (or finite
abstractions of infinite-state models): we only require a simple way to represent
states and a function to generate successors. While we provide an implementation
that work with an explicit representation of states, our algorithm can be applied
alongside traditional optimisations for reducing the state space size, such as

Bloom size time speedup # duplicated exploration collision
proc. (MB) (s) states ratio ratio

2
128 973 2.1 12031 97% 3%
256 1005 2 331 96% 4%
512 986 2.1 12 97% 3%

4
128 564 3.6 20067 93% 7%
256 582 3.5 521 92% 8%
512 566 3.6 23 93% 7%

6
128 394 5.2 23308 89% 11%
256 395 5.2 686 90% 10%
512 385 5.3 30 89% 11%

8
128 311 6.6 26177 84% 16%
256 315 6.5 765 82% 18%
512 313 6.5 38 84% 16%

10
128 267 7 31217 87% 13%
256 271 7 795 79% 21%
512 264 7 63 77% 23%

12
128 249 8.2 29604 71% 29%
256 253 8.1 896 68% 32%
512 254 8.1 66 69% 31%

14
128 257 8 32535 59% 41%
256 243 8.4 902 63% 37%
512 247 8.3 88 63% 37%

Fig. 7. Impact of the Bloom filter size on the Kanban 7 example.

symbolic approaches or partial-order techniques. Our algorithm takes a black-
box approach and is orthogonal to the representation details of the state space.

The experiments conducted with the preliminary implementation of our al-
gorithm shows promising speedups on a set of typical benchmarks. While the
performance of the algorithm depends on the “geometry” of its input, e.g. its
concurrency degree, we have consistently obtained good results. For example, we
have routinely observed speedup of 8 using 10 processors while using less than
the double of the memory footprint required by a straightforward sequential
implementation.

Experiments carried out to find the appropriate size for the Bloom filter have
shown that the performance of our approach is also impacted by the time spent
in the the collision resolution phase of our algorithm, that is by the number of
duplicated states. We have shown empirically that the best results are achieved
when at least two thirds of the computation time is spent in the exploration
phase. As a consequence, for the examples studied in this paper, it is impractical
to scale our solution to more than 16 processors. For this reason, we are currently
studying an asynchronous version of our algorithm in which each processor would
asynchronously alternate between exploration and collision resolution phases
without blocking each other.

References

[1] Allmaier, S., Kowarschik, M., Horton, G.: State space construction and steady-
state solution of GSPNs on a shared-memory multiprocessor. In: Workshop on
Petri Nets and Performance Models (1997)

[2] Berger, E., McKinley, K., Blumofe, R., Wilson, P.: Hoard: A scalable memory
allocator for multithreaded applications. ACM SIGPLAN Notices 35(11) (2000)

[3] Broder, A., Mitzenmacher, M.: Network applications of bloom filters: A survey.
Internet Mathematics 1(4) (2004)

[4] Butenhof, D.: Programming with POSIX threads. Addison-Wesley (1997)
[5] Caselli, S., Conte, G., Bonardi, F., Fontanesi, M.: Experiences on SIMD mas-

sively parallel GSPN analysis. In: Computer Performance Evaluation Modelling
Techniques and Tools. LNCS, vol. 794. Springer (1994)

[6] Ciardo, G., Gluckman, J., Nicol, D.: Distributed state space generation of discrete-
state stochastic models. INFORMS Journal on Computing 10(1) (1998)

[7] Dillinger, P., Manolios, P.: Bloom filters in probabilistic verification. In: Formal
Methods in Computer-Aided Design. LNCS, vol. 3312. Springer (2004)

[8] Flavio Lerda, R.S.: Distributed-memory model checking with spin. In: Theoretical
and Practical Aspects of SPIN Model Checking. Springer (1999)

[9] Garavel, H., Mateescu, R., Smarandache, I.: Parallel State Space Construction for
Model-Checking. In: SPIN workshop on Model checking of software. LNCS, vol.
2057 (2001)

[10] Inggs, C.P., Barringer, H.: Effective state exploration for model checking on
a shared memory architecture. In: Parallel and Distributed Model Checking.
ENTCS, vol. 68(4) (2002)

[11] Jenkins, B.: Hash Functions. ”Algorithm Alley”. Dr Dobb’s Journal (1997)
[12] Miner, A., Ciardo, G.: Efficient reachability set generation and storage using deci-

sion diagrams. In: Application and Theory of Petri Nets. LNCS, vol. 1639. Springer
(1999)

[13] Petcu, D.: Parallel explicit state reachability analysis and state space construction.
In: Symposium on Parallel and Distributed Computing. IEEE (2003)

[14] Stern, U., Dill, D.: Parallelizing the Murφ verifier. In: Computer Aided Verifica-
tion. LNCS, vol. 1254. Springer (1997)

