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Grenoble. He is now the head of the department. He has worked in the field of speech communication for more
than 25 years. He supervised 20 PhD Thesis and authored 32 journal papers and more than 200 book chapters
and papers in major international conferences. He coedited “Talking Machines: Theories, Models and Designs”
(Elsevier, 1992) and “Improvements in Speech Synthesis” (Wiley, 2002). He is associate editor for the Journal of
Acoustics, Speech & Music Processing and reviewer for many international journals. He is a founder member of
the ISCA SynSIG and SproSIG special-interest groups. His current interest is multimodal and situated
interaction with conversational agents using speech, facial expressions, head movements and eye gaze.

Pierre Badin is a senior CNRS Research Director at the Speech and Cognition Department, GIPSA-lab,
Grenoble. Head of the ‘Vocal Tract Acoustics” team from 1990 to 2002, associate director of the Grenoble ICP
from 2003 to 2006, he is adjunct to the Department head since 2007. He has worked in the field of speech
communication for more than 30 years. He gained international experience through extended research periods in
Sweden, Japan and UK, and is involved in a number of national and international projects. He is associate editor
for speech at Acta Acustica, and reviewer for many international journals. His current interest is speech
production and articulatory modelling, with an emphasis on data acquisition (MRI,
ElectroMagnetoArticulograph, Aerodynamics, etc.), development of virtual talking heads for augmented speech,
and speech inversion.

Frédéric Elisei is a CNRS Research Engineer at the Speech and Cognition Department, GIPSA-lab, Grenoble.
He is responsible for the development and exploitation of the MICAL experimentation platform, designed to
study face-to-face speech communication either between two humans or between a human and a virtual
conversational agent, involving speech, eye gaze, facial expression and gestures. He works on audiovisual
speech i.e. modelling and synthesis of 3D talking heads, addressing several speakers and target languages. His
current interest is multimodal and situated interaction with conversational agents, in particular giving agents
adaptive skills such as varying speech styles (whisper, hyper-articulation...),displaying various facial expressions
or adapting the language or the phonological repertoire to the human interlocutor.

1 Introduction

Speech is very likely the most natural communication mean for humans. However, there are various situations in
which audio speech cannot be used because of disabilities or adverse environmental conditions. Resorting to
alternative methods such as augmented speech is a therefore an interesting approach. This chapter presents
computer-mediated communication technologies that allow such an approach (see Figure 1). Speech of the
emitter may in fact:

e not be captured by available hardware communication channels — camera, microphone

e Dbe impoverished by the quality of the hardware or the communication channel

e Dbe impoverished because of environmental conditions or because of motor impairments of the

interlocutor.

On the reception side, Augmented Speech Communication (ASC) may also compensate for perceptual deficits of
the user by enhancing the captured signals or adding multimodal redundancy by synthesizing new perceptual
channels or adding new features to existing channels. In order to improve human-human communication ASC
can make use of a priori knowledge on multimodal coherence of speech signals, user/listener voice
characteristics or more general linguistic and phonological structure on the spoken language or vocabulary being
exchanged. The nature of this a priori knowledge, the quantitative models that implement it and their capabilities
to enhance the available communication signals influence the precision and robustness of the communication.
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Figure 1 : Computer-mediated communication consists in driving an artificial agent from signals captured
on the source speaker. The embodiment of the agent may be quite diverse: from pure audio through
audiovisual rendering of speech by avatars to a more videorealistic animations by means of of virtual
clones of the source speaker or anthropoid robots - here the animatronic talking head Anton developed at
U. of Sheffield (Hofe & Moore, 2008). The control signals of these agents can encompass not only audible
and visible consequences of articulation but also control posture, gaze, facial expressions or head/hand
movements. Signals captured on the source speaker provide partial information on speech activity such as
brain or muscular activity, articulatory movements, speech or even scripts produced by the source
speaker. Such systems exploit a priori knowledge on the mapping between captured and synthesized
signals labelled here as “virtual human” and “phonological representation”: these resources that know
about the coherence between observed and generated signals can be either statistical or procedural.

The chapter will first present:

o the signals that can characterise the speech production activity i.e. from electromagnetic signals from
brain activity, through articulatory movements, to their audiovisual traces

e devices that can capture these signals with various impact on articulation and constraints on usage

e available technologies that have been proposed for mapping these various speech representations
between each other i.e. virtual human, direct statistical mapping or speech technologies using a phonetic
pivot obtained by speech recognition techniques

Three ASC systems developed in the MPACIF Team at GIPSA-Lab will then be described in detail:

a) a system that converts non audible murmur into audiovisual speech for silent speech communication
(Tran, Bailly, & Loevenbruck, submitted; Tran, Bailly, Loevenbruck, & Toda, 2008)

b) a system that converts silent cued speech (Cornett, 1967) into audiovisual speech and vice-versa. This
system aims at computer-assisted audiovisual telephony for deaf users (Aboutabit, Beautemps, &
Besacier, Accepted; Beautemps et al., 2007)

c) a system that computes and displays virtual tongue movements from audiovisual input for
pronunciation training (Badin, Elisei, Bailly, & Tarabalka, 2008; Badin, Tarabalka, Elisei, & Bailly,
2008).

Preliminary results of the evaluation of these three systems will be given and commented. A discussion on both
scientific and technological challenges and limitations will conclude the chapter.
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Figure 2 : The speech production chain. The intended message is decoded by the listener.on the basis of

audible and visible traces of speech articulation combined with a priori knowledge on the speaker, the
language spoken and the message content given the history of the dialog and the situation.

2 Characterizing speech production

The speech production chain sketched in Figure 2 consists of several signal transformations: the electrical
activity of neural circuitry drives the contraction of several dozen of muscles that further shape the geometry of
the vocal tract. The air flow generated by the pressure induced by the respiratory muscles interacts with the vocal
tract walls in relation with the biomechanical properties of the speech articulators and generates various acoustic
sources, such as pseudo-period signals at the glottis or noise signals at constrictions. These acoustic sources
excite the vocal tract resonators and are finally radiated as speech sound through the mouth, the nose and skin.
Speech production can be thus characterized by:

e Neural activity. Several brain areas are activated in motor control of speech. Nota and Honda (Nota &
Honda, 2004) found for example that the bilateral motor cortex and the inferior cerebellum hemisphere
were activated after the subtraction for breathing, non speech vocalization, and hearing. They asked
subjects to plan speech in four different conditions: A) normal speech (spoken aloud), B) mouthed
speech (mouthing silently with normal breathing), C) unarticulated speech (voicing ‘‘ah...”” without
articulation), and D) internal speech. Activations were also found in the superior temporal gyrus and
inferior parietal lobule of the left hemisphere. Activations are also found in Broca’s area, the
supplementary motor area (SMA), or the insula, especially in case of difficult or unusual speech
production task. Note also that most areas dedicated to speech perception are also activated during
speech production and vice versa (Wilson, Saygin, Sereno, & Iacoboni, 2004).

e  Muscular activities. Speech production involves the activation of the respiratory muscles (inhalation
and exhalation), of muscles controlling the mandible, the lips, the soft palate, the pharynx and the
larynx. Note also that the control of speech articulation involves the displacement of intermediate
structures such as the hyoid bone. Speech production is thus accompanied by active and passive
(resistive) action of both agonist and antagonist muscles.

e  Vocal tract geometry. Contractions of muscles displace the above-mentioned speech articulators that
shape the vocal tract. The dynamic range of this change of geometry depends on the interaction between
the air flow and the articulatory movement: vocal folds typically oscillate in the range [50-400Hz], lips
tongue tip or uvula oscillate at [20-30Hz] in trills, whereas the slowest articulator, the jaw, cycles at [5-
6 Hz].

e Audible signals. Changes of vocal tract geometry are made audible as they change the acoustic
resonances of the vocal tract and thus shape the spectrum of the speech signal that is finally radiated.
The phonological structure of world’s languages is strongly conditioned by the maximal acoustic
dispersion of spectral characteristics of sounds (Schwartz, Bo€, & Abry, 2007; Schwartz, Bog, Vallée,
& Abry, 1997)

e Visible signals. Changes of vocal tract geometry are not all visible but movements of the jaw, the lips,
parts of the movement of the larynx and the tongue are available to the interlocutor in face-to-face
conversation. The benefit of audiovisual integration for speech detection, binding and comprehension
has been clearly evaluated since many years (Summerfield, MacLeod, McGrath, & Brooke, 1989).
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Figure 3. Capturing signatures of speech-production. Lefto-right: ultrasound imaging (from (Hueber,
Chollet, Denby, Dreyfus, & Stone, 2007)), electromagnetoarticulography (EMA), electromyography
(EMG).

3 Capturing speech

Various devices (see Figure 3) can capture dynamic representations of the current state of the speech production
system. The aim of this section is to sketch the spectrum of available technology that can be used to record
useful signals characterizing articulation and phonation.

The capture of sound vibration is usually performed by distant or head-mounted microphone. An alternative has
been proposed to capture sound vibration

e The stethoscopic microphone developed by Nakajima (Nakajima, Kashioka, Shikano, & Campbell,
2003) receives sound vibration through body tissue. This device is attached to the skin of the user, for
instance behind the ear. The spectral bandwidth is reduced to 0-3 kHz.

The observation of visible speech is typically done using two kinds of devices:

e Surface deformation. 3D range data scanners deliver very precise surface geometry together with
texture information (e.g. structured light, time of flight or laser-based scanner technology). Further
processing is required to compensate for head movement and to parameterize this surface with a
constant number of parameters.

e Movement of fleshpoints. Motion capture devices (photogrammetric methods with optical flow
calculation or active/passive markers) deliver movement of fleshpoints. They directly parameterize the
surface with a constant number of parameters.

The observation of the internal organs does not really differ from the observation of facial movements. Three
kinds of characteristics are typically monitored: density maps, positions of measurement points (“fleshpoints™)
and biological signals. Articulatory instrumentation includes:

e  Magnetic Resonance Imaging (MRI), computerised tomography (CT), cineradiography as well as Ultra
Sound Imaging (Whalen et al., 2005) provide information on the density of particular atoms or
molecules within a specific volume. Some systems exploit directly the density maps as direct input. A
further processing stage often retrieves surface information: if a simple threshold is often sufficient to
identify the geometry of vocal tract walls in MRI or CT scan images, the determination of the tongue
surface in X-ray images or ultrasound images is far more complicated. The ideal simultaneous
resolution in time and space needed to observe speech movements is not available yet: the relaxation
time of free hydrogen nuclei in MRI does not allow temporal sampling frequencies of more than 10-20
images per second, while noise increases drastically when acquisition rate of X-ray or ultrasound
imaging are increased. Note that a further processing stage is required to determine the individual
outline of the various organs in the vocal tract.

e ElectroMagnetic Articulography (EMA), ElectroPalatoGraphy (EPG) or X-ray MicroBeam (XRMB)
(Kiritani, 1986) provide movement or contact information for a few measurement points attached to a
speech organ. Note that EMA coils and thin wires going out of the mouth as well as the EPG artificial
palate may interfere with speech movements (Recasens, 2002)

e Surface or needle ElectroMyoGraphy (EMG), ElectroGlottoGraphy (EGG) or photoglotography and the
various invasive systems for measuring oral or nasal airflows deliver signals that can be directly
exploited for characterizing speech activity. They are however very noisy and must be cleaned via both
signal processing and a priori knowledge

Finally neuroprosthetics and brain-to-computer interfaces (BCI) exploit devices sensitive to the electromagnetic
waves created by the neurons. Invasive (brain implants), partially-invasive (Electrocorticography or ECoG) and
non-invasive (electroencephalography or EEG) devices that deliver signals related to speech planning as well as
loud, silent or even simulated articulation.

4 Mapping signals
ASC systems aim at restoring or even augmenting the signals characterizing articulation based on the signals that
have been captured by some of the devices mentioned above. Most of these signals are noisy and deliver
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incomplete information on the articulation process. The many-to-one/one-to-many mapping between these
signals is underspecified and both a priori knowledge and regularization techniques should be used to recover
the necessary information on the articulation. A priori knowledge can be extracted from multiple sources:

e speech maps (Abry, Badin, & Scully, 1994) that are trained off-line and memorize the possible links
between these signals that represent the coherence of the speech production process. Such a system
builds a kind of speech homunculus that combines all kinaesthetic and sensory-motor information
collected during speech production

e the phonetic and phonological structure of the language being spoken

e ... as well as higher-level information on the linguistic content of the message.

Various technological tools (Guenther, Ghosh, & Tourville, 2006; Kroger, Birkholz, Kannampuzha, &
Neuschaefer-Rube, 2006; Ouni & Laprie, 2005) have been proposed to model this a priori knowledge. We
present here two solutions: Gaussian Mixture modelling (GMM; see Toda et al. (Toda, Ohtani, & Shikano, 2006)
for its application to voice conversion) and Hidden Markov modelling (HMM; see Rabiner (Rabiner, 1989) for
its application to speech recognition) that have been using in the applications of ASC presented below.

4.1 Direct statistical mapping

Speech mapping consists in building a model of the sensory-motor links based on a collection of parallel
recordings of multiple characteristic signals. Though in some instances signals can actually be recorded
simultaneously (see for example the combination between EMA and US in (Aron, Berger, & Kerrien, 2008)), the
same speech items are usually recorded in different experimental setups; resulting signals must be then post-
aligned, often using the acoustic signal as common reference.

Voice conversion techniques (Toda, Black, & Tokuda, 2004; Toda & Shikano, 2005) can then be used to capture
statistically significant correlations between pairs of input-output signals.

Characterizing input signals. Input feature vectors X, are constructed by appending feature vectors from several
frames around the current frame t. Data reduction techniques (principal component analysis in (Toda & Shikano,
2005) or linear Discriminant analysis in (Tran, Bailly, Loevenbruck, & Jutten, 2008)) are often used to limit the
number of model parameters to determine when the training material is too limited.

Characterizing output signals. Output feature vectors Y, = [y, Ay,] consist of static and dynamic features at
frame t.

A GMM (Toda, Black, & Tokuda, 2005) is then trained for representing the joint probability density p(X;, Y{0),
where @ denotes a set of GMM parameters. The generation of the time sequence of the target static feature
vector y from that of the source feature X = [X;, X,...Xt] is performed so that a likelihood L =p(Y/X,0) is
maximized. Note that the likelihood is represented as a function of y: the vector Y =[Y}, Y,...Yr] is represented
as Wy, where W denotes a conversion matrix from the static feature sequence to the static and dynamic feature
sequence, respectively y and Ay (Tokuda, Yoshimura, Masuko, Kobayashi, & Kitamura, 2000). Toda et al (Toda
et al., 2005) have proposed an improved ML-based conversion method considering global variance (GV) of converted
feature vectors that adds another term in the optimized likelihood.

The direct statistical mapping does not require any information on the phonetic content of the training data.
Alignment of input and output feature vectors — if necessary — can be performed using an iterative procedure that
combines Dynamic Time Warping with conversion so that prediction error diminishes as alignment and
conversion improve.

The main advantage of direct statistical mapping resides in its ability to implicitly capture fine speaker-specific
characteristics.

4.2 Mapping via phoneme recognition

In direct statistical mapping, the temporal structure of speech is implicitly modelled by considering (a) a sliding time
window over the input frames and (b) both static and dynamic output features are combined to produce smooth and
continuous parameter trajectories. Another way to account for the special temporal structure of speech is to consider
that speech encodes phonological structures: in such an approach, a pivot phonetic representation that links all
measurable signals is introduced.

The mapping process proceeds in two steps: a phonetic decoding using speech recognition techniques and an
output trajectory formation using speech synthesis techniques. Both steps may use different mapping techniques
between signals and phonemes such as classical HMM-based speech recognition combined with corpus-based
synthesis.

But the recent success of HMM-based synthesis (Yamagishi, Zen, Wu, Toda, & Tokuda, 2008) opens the route
to more integrated statistical approaches to “phonetic-aware” mapping systems.

The main advantage of phonetic-based mapping resides in its ability to explicitly introduce linguistic information
as additional constraints in the underdetermined mapping problem. Both in the recognition and synthesis
process, linguistic or even information structure may be exploited to enrich the constructed phonological
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structure and restore information that could not be predicted on the sole basis of input signals e.g. melodic
patterns from silent articulation as required for silent communication interfaces (Hueber et al., 2007).

S5 Applications

Applications of ASC systems are numerous. Three main areas can be found in the literature: communication
enhancement, aids to communication for speech impaired people, and language training.

5.1 Communication enhancement

ASC systems, when addressing communication enhancement, aim either at fusing multimodal input in order to
enhance input signals or at adding extra multimodal signals for the interlocutor so as to compensate for noisy
channel or noisy perceptual conditions due to the environment. Silent speech interfaces (SSI) fall into this
category: SSI should enable speech communication to take place without emitting an audible acoustic signal. By
acquiring sensor data from the human speech production process, an SSI computes audible — and potentially
visible — signals. Both mapping approaches have been explored:

e Bu et al (Bu, Tsuji, Arita, & Ohga, 2005) generate speech signals from EMG signals recorded during
silent speech articulation via an intermediate recognition of 5 vowels and the nasal sound /n/ by a
hybrid ANN-HMM speech recognition system. The linguistic model has the hard job of restoring
missing consonants based on phonotactic constraints of Japanese phonology. Similarly Hueber et al
(Hueber et al., 2007) combine HMM-based speech recognition with corpus-based speech synthesis to
generate an audible speech signal from silent articulatory gestures captured by US imaging and video.

e Conversely Toda et al (Toda & Shikano, 2005) use direct statistical mapping for converting non audible
murmur captured by a stethoscopic microphone to audible speech signal.

We have recently shown that direct statistical mapping outperforms phonetic-aware HMM-based mapping and
that multimodal input improves significantly the prediction (Tran, Bailly, Loevenbruck, & Jutten, 2008). A
perceptual identification task performed on a very difficult vocabulary of Japanese VCV stimuli (see Figure 4)
shows that listeners can retrieve from converted speech more than 70% of the phonetic contrasts whereas
amplified input NAM is unintelligible.

(a) (b) v .

Figure 4. NAM-to-speech conversion (from (Tran, Bailly, Loevenbruck, & Jutten, 2008)). (a) 3D facial
articulation tracked using an active appearance model; the position of the NAM device is indicated by an
arrow; (b) non audible murmur as captured by the NAM microphone is characterized by a strong low
frequency noise and a band-limited signal; (c) a target sample of the same utterance pronounced loudly in
a head-set microphone; (d) the loud signal generated using GMM-based mapping from input signals (a)
and (b).

5.2 Aids to communication for speech impaired people

ASC systems, when addressing communication impairment, aim to compensate for motor or perceptual deficits
of one or both interlocutors. BCI can for example be exploited to offer people suffering from myopathy the
ability to communicate with other people. Nakamura et al (Nakamura, Toda, Saruwatari, & Shikano, 2006) have
used voice conversion of body-transmitted artificial speech to predict the structure of speech recorded before
laryngectomy from speech produced after the surgery. This computer-assisted recovery of speech (Verma &
Kumar, 2003) can also be performed by adapting voice fonts (Verma & Kumar, 2003) to the speaker’s
characteristics.
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In our group, Beautemps et al (Beautemps et al., 2007) are working on a system that will enable deaf people
using cued speech (CS) to have visiophonic conversations with normal hearing interlocutors. CS recognition
(Aboutabit, Beautemps, Clarke, & Besacier, 2007) and synthesis (Gibert, Bailly, Beautemps, Elisei, & Brun,
2005) systems have been developed to allow conversion between speech movements and hand and lips
movements. The CS-to-speech system either drives the movement of a virtual hand superposed on the video of
the normal hearing speaker that produces audio speech (Bailly, Fang, Elisei, & Beautemps, 2008) or controls the
movements of the face, head and hand of a virtual talking head. CS synthesis may restore more than 95% of the
phonetic contrasts that could not be solved on the basis of lip reading alone (Gibert, Bailly, & Elisei, 2006).
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Figure S. Cued speech processing. Left: impressive recognition scores (Aboutabit et al., 2007) are obtained
by fusing lip and hand movements. Motion capture is simplified here by make-up. Right: text-to-cued
speech synthesis (Gibert et al., 2005) is performed by concatenating elementary gestural units gathered by
motion capture on a human speech cuer.

5.3 Language training

Some ASC systems can also be used as tools for helping learners of a second language to master the articulation
of foreign sounds. ASC systems thus perform acoustic-to-articulatory inversion: they compute the articulatory
sequence that has most likely produced the sound sequence uttered by the learner. This articulation can be then
displayed by means of a talking head in an augmented reality manner (see Figure 6), and compared to the
required articulation so that proper corrective strategies are elicited. Several projects of virtual tutors have been
launched (Engwall & Bilter, 2007; Massaro, 20006).

We have shown that despite the fact that such displays of internal articulation appear very unusual to them,
listeners / viewers possess, to a certain extent, native tongue reading capabilities without intensive training (some
subjects gain up to 40% recognition rate when watching the tongue display in absence of sound) (Pierre Badin et
al., 2008). Such technologies may thus help people in pronunciation training.

=

Figure 6. Artificial tongue displays that can be usd as feedback for pronunciation training (from (Pierre
Badin et al., 2008)).

6 Conclusions

Augmented speech communication is a very challenging research theme that requires better understanding and
modelling of the speech production and perception processes. ASC systems require a priori knowledge to be
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injected in the underdetermined inversion process so as to restore the coherence of multimodal signals that
deliver incomplete information on the speech articulation or that are corrupted by noise.

A number of open issues need to be dealt with before this technology can be deployed in everyday life
applications:

e The problem of speaker normalization is a hot topic: Pairs of input/output training data are only
available for a limited number of subjects that have accepted to be monitored with quite invasive
recording devices. To be practically acceptable, ASC systems should be able to adapt to a specific user
quickly using a limited quantity of input/output data;

e Similar to speech recognition systems, ASC systems rely a lot on top-down information that constraints
the mapping or inverse mapping problem. ASC should be able to benefit from language-specific
constraints to gain robustness;

e Real-time issues are also very important. Guéguin et al (Guéguin, Le Bouquin-Jeannés, Gautier-Turbin,
Faucon, & Barriac, 2008) have shown that full-duplex conversation is possible as long as one-way
transmission delays are below 400ms. ASC systems should thus exploit limited contextual information
to estimate output features. This imposes notably important constraints on speech recognition
techniques;

Such technologies that connect two human brains benefit from cortical plasticity: people can learn to cope with
imperfect mappings and noisy signals. Technologies that combine multimodal input and output are likely to
enable computer-mediated conversation with minimum cognitive load. Evaluation issues are critical: people can
cope with very crude communication channels but at the expense of the recruitment of intensive cognitive
resources that may forbid any parallel activity.
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