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Abstract: We study the convergence of Markov decision processes, composed of a large number
of objects, to optimization problems on ordinary differential equations. We show that the optimal
reward of such a Markov decision process, which satisfies a Bellman equation, converges to
the solution of a continuous Hamilton-Jacobi-Bellman (HJB) equation based on the mean field
approximation of the Markov decision process. We give bounds on the difference of the rewards
and an algorithm for deriving an approximating solution to the Markov decision process from a
solution of the HJB equations. We illustrate the method on three examples pertaining, respectively,
to investment strategies, population dynamics control and scheduling in queues. They are used to
illustrate and justify the construction of the controlled ODE and to show the advantage of solving
a continuous HJB equation rather than a large discrete Bellman equation.

Key-words: Mean Field, Hamilton-Jacobi-Bellman, Optimal Control, Markov Decision Process



Modèles Champ Moyen et Processus de Décision
Markovien: de l’optimisation discrète à l’optimisation

continue.

Résumé : Ce document étudie la convergence de processus de décision markoviens composés d’un
grand nombre d’objets vers des problèmes d’optimisation sur des équations différentielles. Nous
montrons que le gain optimal du processus de décision converge vers la solution d’une équation
continue de type “Hamilton-Jacobi-Bellman”. La preuve utilise à la fois des outils classiques des
modèles champs moyens et différents nouveaux couplages entre les modèles discrets et continus qui
permettent de donner des bornes explicites. La méthode est ensuite illustrée par trois exemples
concernant des stratégies d’investissement, du contrôle de dynamiques de population et un problème
d’allocation de ressources.

Mots-clés : Champ Moyen, Hamilton-Jacobi-Bellman, Contrôle Optimal, Processus de Décision
Markovien
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1 Introduction

In this paper we study dynamic optimization problems on Markov decision processes composed of
a large number of interacting objects.

Consider a system of N objects evolving in a common environment. At each time step, objects
change their state randomly according to some probability kernel ΓN . This kernel depends on the
number of objects in each state, as well as on the decisions of a centralized controller. Our goal is
to study the behavior of the controlled system when N becomes large.

Several papers investigate the asymptotic behavior of such systems, but without controllers.
For example, in [2, 19], the authors show that under mild conditions, as N grows, the system
converges to a deterministic limit. The limiting system can be of two types, depending on the
intensity I(N) (the intensity is the probability than an object changes its state between two time
steps). If I(N) = ON→∞(1), the system converges to a dynamical system in discrete time [19]. If
I(N) goes to 0 as N grows, the limiting system is a continuous time dynamical system and can be
described by ordinary differential equations (ODEs).

Contributions

Here, we consider a Markov decision process where at each time step, a central controller chooses
an action from a predefined set that will modify the dynamics of the system the controller receives
a reward depending on the current state of the system and on the action. The goal of the controller
is to maximize the expected reward over a finite time horizon. We show that when N becomes
large this problem converges to an optimization problem on an ordinary differential equation.

More precisely, we focus on the case where the Markov decision process is such that its empirical
occupancy measure is also Markov; this occurs when the system consists of many interacting
objects, the objects can be observed only through their state and the system evolution depends
only on the collection of all states. We show that the optimal reward converges to the optimal
reward of the mean field approximation of the system, which is given by the solution of an HJB
equation. Furthermore, the optimal policy of the mean field approximation is also asymptotically
optimal in N , for the original discrete system. Our method relies on bounding techniques used
in stochastic approximation and learning [4, 1]. We also introduce an original coupling method,
where, to each sample path of the Markov decision process, we associate a random trajectory that
is obtained as a solution of the ODE, i.e. the mean field limit, controlled by random actions.

This convergence result has an algorithmic by-product. Roughly speaking, when confronted
with a large Markov decision problem, we can first solve the HJB equation for the associated mean
field limit and then build a decision policy for the initial system that is asymptotically optimal in
N .

Our results have two main implications. The first is to justify the construction of controlled
ODEs as good approximations of large discrete controlled systems. This construction is given
done without rigorous proofs. In Section 4.3.2 we illustrate this point with an example of malware
infection in computer systems.

The second implication concerns the effective computation of an optimal control policy. In the
discrete case, this is usually done by using dynamic programming for the finite horizon case or by
computing a fixed point of the Bellman equation in the discounted case. Both approaches suffer
from the curse of dimensionality, which makes them impractical when the state space is too large.
In our context, the size of the state space is exponential in N , making the problem even more
acute. In practice, modern supercomputers only allow us to tackle such optimal control problems
when N is no larger than a few tens [20].

The mean field approach offers an alternative to brute force computations. By letting N go
to infinity, the discrete problem is replaced by a limit Hamilton-Jacobi-Bellman equation that is
deterministic where the dimensionality of the original system has been hidden in the occupancy
measure. Solving the HJB equation numerically is sometimes rather easy, as in the examples in
Sections 4.3.1 and 4.3.2. It provides a deterministic optimal policy whose reward with a finite (but
large) number of objects is remarkably close to the optimal reward.

RR n° 7239



4 N.Gast & B. Gaujal & J.-Y. Le Boudec

Related Work

Several papers in the literature are concerned with the problem of mixing the limiting behavior of
a large number of objects with optimization.

In [6], the value function of the Markov decision process is approximated by a linearly
parametrized class of functions and a fluid approximation of the MDP is used. It is shown
that a solution of the HJB equation is a value function for a modification of the original MDP
problem. In [25, 8], the curse of dimensionality of dynamic programming is circumvented by
approximating the value function by linear regression. Here, we use instead a mean field limit
approximation and prove asymptotic optimality in N of limit policy.

In [9], the authors also consider Markov decision processes with a growing number of objects,
but when the intensity is O(1). In their case, the optimization problem of the system of size N
converges to a deterministic optimization problem in discrete time. In this paper however, we focus
on the o(1) case, which is substantially different from the discrete time case because the limiting
system does not evolve in discrete time anymore.

Actually, most of the papers dealing with mean field limits of optimization problems over
large systems are set in a game theory framework, leading to the concept of mean field games
introduced in [18]. The objects composing the system are seen as N players of a game with
distributed information, cost and control; their actions lead to a Nash equilibrium. To the best
of our knowledge, the classic case with global information and centralized control has not yet
been considered. Our work focuses precisely on classic Markov decision problems, where a central
controller (our objects are passive), aims at minimizing a global cost function.

For example, a series of papers by M. Huang, P.E. Caines and P. Malhamé such as [11, 12, 13, 14]
investigate the behavior of systems made of a large number of objects under distributed control.
They mostly investigate Linear-Quadratic- Gaussian (LQG) dynamics and use the fact that, here,
the solution can be given in closed form as a Riccati equation to show that the limit satisfies a
Nash fixed point equation. Their more general approach uses the Nash Equivalence Certainty
principle introduced in [11]. The limit equilibrium could or could not be a global optimal. Here,
we consider the general case where the dynamics and the cost may be arbitrary (we do not assume
LQG Dynamics) so that the optimal policy is not given in closed form. The main difference with
their approach comes from the fact that we focus instead on centralized control to achieve a global
optimum. The techniques to prove convergence are rather different. Our proofs are more in line
with classic mean field arguments and use stochastic approximation techniques.

Another example is the work of Tembiné and others [23, 24], on the limits of games with
many players. The authors provide conditions under which the limit when the number of players
grows to infinity commutes with the fixed point equation satisfied by a Nash equilibrium. Again,
our investigation solves a different problem and focuses on the centralized case. In addition, our
approach is more algorithmic; we construct two intermediate systems: one with a finite number of
objects controlled by a limit policy and one with a limit system controlled by a stochastic policy
induced by the finite system.

Structure of the paper

The rest of the paper is structured as follows. In Section 2 we give definitions, some notation and
hypotheses. In Section 3 we describe our main theoretical. In Section 4 we describe our resulting
algorithm and illustrate the application of our method with a few examples. The details of all
proofs are in Section 5 and Section 6 concludes the paper.

2 Notations and Definitions

2.1 System with N Objects

We consider a system composed ofN objects. Each object has a state from the finite set S = {1 . . . S}.
Time is discrete and the state of the object n at step k ∈ N is denoted XN

n (k). The state of

INRIA



Mean field for Markov Decision Processes 5

the system at time k is XN (k)
def
=
(

XN
1 (k) . . . XN

N (k)
)

. For all i ∈ S, we denote by MN (k) the

empirical measure of the objects
(

XN
1 (k) . . . XN

N (k)
)

at time k:

MN (k)
def
=

1

N

N
∑

n=1

δXN
n
(k), (1)

where δx denotes the Dirac measure in x. MN (k) is a probability measure on S and its
ith component MN (k)[i] denotes the proportions of objects in state i at time k (also called the

occupancy measure): MN (k)[i] = 1
N

∑N
n=1 1XN

n
(k)=i.

The system
(

XN (k)
)

k∈N
is a Markov process once the sequence of the actions taken by the

controller is fixed. Let ΓN be the transition kernel, namely ΓN is a mapping SN ×SN ×A → [0, 1],
where A is the set of possible actions, such that for every x ∈ SN and a ∈ A, ΓN (x, ., a) is a
probability distribution on SN and further, if the controller takes the action AN (k) at time t and
the system is in state XN (k), then:

P
(

XN (k + 1) = y1 . . . yN |XN (k) = x1 . . . xN , A
N (k) = a

)

= ΓN (x1 . . . xN , y1 . . . yN , a) (2)

We assume that

(A0) Objects are observable only through their states

in particular, the controller can observe the collection of all states XN
1 , X

N
2 , ..., but not the identities

n = 1, 2, .... This assumption is required for mean field convergence to occur. In practice, it means
that we need to put into the object state any information that is relevant to the description of the
system.

Assumption (A0) translates into the requirement that the kernel be invariant by object re-
labeling. Formally, let S

N be the set of permutations of {1, 2, ..., N}. By a slight abuse of
notation, for σ ∈ S

N and x ∈ SN we also denote with σ(x) the collection of object states after the

permutation, i.e. σ(x)
def
=
(

xσ−1(1)...xσ−1(N)

)

. The requirement is that

ΓN (σ(x), σ(y), a) = ΓN (x, y, a) (3)

for all x, y ∈ SN , σ ∈ S
N and a ∈ A. A direct consequence, shown in Section 5, is:

Theorem 1. For any given sequence of actions, the process MN (t) is a Markov chain

2.2 Action, Reward and Policy

At every time k, a centralized controller chooses an action AN (k) ∈ A where A is called the action
set. (A, d) is a compact metric space for some distance d. The purpose of Markov decision control
is to compute optimal policies. A policy π = (π0, π1, . . . , πk, . . . ) is a sequence of decision rules
that specify the action at every time instant. The policy πk might depend on the sequence of past
and present states of the process XN , however, it it known that when the state space is finite,
the action set compact and the kernel and the reward are continuous, there exists a deterministic
Markovian policy which is optimal (see Theorem 4.4.3 in [21]). This implies that we can limit
ourselves to policies that depend only on the current state XN (k).

Further, we assume that the controller can only observe object states. Therefore she cannot
make a difference between states that result from object relabeling, i.e. the policy depends on
XN (k) in a way that is invariant by permutation. By Lemma 2 in Section 5.2, it depends on
MN (k) only. Thus, we may assume that, for every k, πk is a function P(S) → A. Let MN

π (k)
denotes the occupancy measure of the system at time k when the controller applies policy π.

If the system has occupancy measure MN (k) at time k and if the controller chooses the action
AN (k), she gets an instantaneous reward rN (MN (k), AN (k)). The expected value over a finite-time
horizon [0;HN ] starting from m0 when applying the policy π is defined by

V N
π (m)

def
= E





⌊HN⌋
∑

k=0

rN
(

MN
π (k), π(MN

π (k))
)

∣

∣

∣

∣

∣

∣

MN
π (0) = m



 (4)
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6 N.Gast & B. Gaujal & J.-Y. Le Boudec

The goal of the controller is to find an optimal policy that maximizes the expected value. We
denote by V N

∗ (m) the optimal value when starting from m:

V N
∗ (m) = sup

π
V N
π (m) (5)

2.3 Scaling Assumptions

If at some time k, the system has occupancy measure MN (k) = m and the controller chooses
action AN (k) = a, the system goes into state MN (k + 1) with probabilities given by the kernel
QN (MN (k), AN (k)). The expectation of the difference between MN (k + 1) and MN (k) is called
the drift and is denoted by FN (m, a):

FN (m, a)
def
= E

[

MN (k + 1)−MN (k)|MN (k) = m,AN (k) = a
]

. (6)

In order to study the limit with N , we assume that FN goes to 0 at speed I(N) when N goes to
infinity and that FN/I(N) converges to a Lipschitz continuous function f . More precisely, we
assume that there exists a sequence I(N) ∈ (0; 1), N = 1, 2, 3..., called the intensity of the model
with limN→∞ I(N) = 0 and a sequence I0(N), N = 1, 2, 3..., also with limN→∞ I0(N) = 0 such

that for all m ∈ P(S) and a ∈ A:
∣

∣

∣

1
I(N)F

N (m, a)− f(m, a)
∣

∣

∣ ≤ I0(N). In a sense, I(N) represents

the order of magnitude of the number of objects that change their state within one unit of time.
The change of MN (k) during a time step is of order I(N). This suggests a rescaling of time by

I(N) to obtain an asymptotic result. We define the continuous time process
(

M̂N (t)
)

t∈R+
as the

affine interpolation of MN (k), rescaled by the intensity function, i.e. M̂N is affine on the intervals
[kI(N), (k + 1)I(N)], k ∈ N and

M̂N (kI(N)) =MN (k).

Similarly, M̂N
π denotes the affine interpolation of the occupancy measure under policy π. Thus,

I(N) can also be interpreted as the duration of the time slot for the system with N objects.
We assume that the time horizon and the reward per time slot scale accordingly, i.e. we impose

HN =

⌊

T

I(N)

⌋

rN (m, a) = I(N)r(m, a)

for every m ∈ P(S) and a ∈ A (where ⌊x⌋ denotes the largest integer ≤ x).

2.4 Limiting System (Mean Field Limit)

We will see in Section 3 that as N grows, the stochastic system M̂N
π converges to a deterministic

limit mπ, the mean field limit. For more clarity, all the stochastic variables (i.e., when N is finite)
are in uppercase and their limiting deterministic values are in lowercase.

An action function α : [0;T ] → A is a piecewise Lipschitz continuous function that associates
to each time t an action α(t). Note that action functions and policies are different in the sense that
action functions do not take into account the state to determine the next action. For an action
function α and an initial condition m0, we consider the following ordinary integral equation for
m(t), t ∈ R

+:

m(t)−m(0) =

∫ t

0

f(m(s), α(s))ds. (7)

(This equation is equivalent to an ODE, but is easier to manipulate in integral form. In the rest of
the paper, we make a slight abuse of language and refer to it as an ODE). Under the foregoing
assumptions on f and α, this equation satisfies the Cauchy Lipschitz condition and therefore has a
unique solution once the initial condition m(0) = m0 is fixed. We call φt, t ∈ R

+, the corresponding
semi-flow, i.e.

m(t) = φt(m0, α) (8)

INRIA



Mean field for Markov Decision Processes 7

is the unique solution of Eq.(7).
As for the system with N objects, we define vα(m0) as the value of the limiting system over a

finite horizon [0;T ] when applying the action function α and starting from m(0) = m0:

vα(m0)
def
=

∫ T

0

r (φs(m0, α), α(s)) ds. (9)

This equation looks similar to the stochastic case (4) although there are two main differences. The
first is that the system is deterministic. The second is that it is defined for action functions and
not for policies. We also define the optimal value of the deterministic limit v∗(m0):

v∗(m0) = sup
α
vα(m0), (10)

where the supremum is taken over all possible action functions from [0;T ] → A.

2.5 Table of Notations

We recall here a list of the main notations used throughout the paper.
MN

π (k) . . . . . . .Empirical measure of the system with N objects, under π, at time k, (Section 2.2)
FN (m, a) . . . . Drift of the system with N objects when the state is m and the action is a, Eq.(6)
f(m, a) . . . . . . . . . . . . Drift of the limiting system (limit of rescaled FN (m, a) as N → ∞), Eq.(11)

Φt(m0, α) . . . . . . . State of the limiting system: Φt(m0, α) = m0 +
∫ t

0
f(Φs(m0, α), α(s))ds., Eq.(8)

πN . . . . . . . . . . Policy for the system with N objects: associates an action a ∈ A to each k,MN (k)
α . . . . . . . . . Action function for the limiting system: associates an action to each t: α : [0;T ] → A
πN
∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Optimal policy for the system with N objects
α∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Optimal action function for the limiting system (if it exists)
V N
π (m) . .Expected reward for the system with N objects starting from m under policy π, Eq.(4)
V N
∗ (m) . . . . . Optimal expected value for the system N : V N

∗ (m) = supπ V
N
π (m) = V N

π∗ (m), Eq.(5)
V N
α (m) . . . . . . . . . . Expected value for the system N when applying the action function α, Eq.(12)
vα(m) . . . . . . . . . . . . . Value of the limiting system starting from m under action function α, Eq.(9)
v∗(m) . . . . . . . . . . . . .Optimal value of the limiting system: v∗(m) = supα vα(m) = vα∗(m), Eq.(10)

2.6 Summary of Assumptions

In Section 3 we establish theorems for the convergence of the discrete stochastic optimization problem
to a continuous deterministic one. These theorems are based on several technical assumptions,
which are given next. Since S is finite, the set P(S) is the simplex in R

S and for m,m′ ∈ P(S) we
define ‖m‖ as the ℓ2-norm of m and 〈m,m′〉 =∑S

i=1mim
′
i as the usual inner product.

(A1) (Transition probabilities) Objects can be observed only through their state, i.e., the
transition probability matrix (or transition kernel) ΓN , defined by Eq.(2), is invariant under
permutations of 1 . . . N .

There exist some non-random functions I1(N) and I2(N) such that limN→∞ I1(N) = limN→∞ I2(N) =
0 and such that for all m and any policy π, the number of objects that perform a transition between
time slot k and k + 1 per time slot ∆N

π (k) satisfies

E
(

∆N
π (k)

∣

∣MN
π (k) = m

)

≤ NI1(N)

E
(

∆N
π (k)2

∣

∣MN
π (k) = m

)

≤ N2I(N)I2(N)

where I(N) is the intensity function of the model, defined in the following assumption A2.

RR n° 7239



8 N.Gast & B. Gaujal & J.-Y. Le Boudec

(A2) (Convergence of the Drift) There exist some non-random functions I(N) and I0(N)
and a function f(m, a) such that limN→∞ I(N) = limN→∞ I0(N) = 0 and

∥

∥

∥

∥

1

I(N)
FN (m, a)− f(m, a)

∥

∥

∥

∥

≤ I0(N) (11)

f is defined on P(S)×A and there exists L2 such that |f(m, a)| ≤ L2.

(A3) (Lipschitz Continuity) There exist constants L1, K and Kr such that for all m,m′ ∈
P(S), a, a′ ∈ A:

∥

∥FN (m, a)− FN (m′, a)
∥

∥ ≤ L1 ‖m−m′‖ I(N)

‖f(m, a)− f(m′, a′)‖ ≤ K(‖m−m′‖+ d(a, a′))

|r(m, a)− r(m′, a)| ≤ Kr ‖m−m′‖

We also assume that the reward is bounded: supm,a∈A |r(m, a)| def= ‖r‖∞ <∞.
To make things more concrete, here is a simple but useful case where all assumptions are true.

• There are constants c1 and c2 such that the expectation of the number of objects that perform
a transition in one time slot is ≤ c1 and its standard deviation is ≤ c2,

• and FN (m, a) can be written under the form 1
Nϕ (m, a, 1/N) where ϕ is a continuous

function on ∆S ×A× [0, ǫ) for some neighborhood ∆S of P(S) and some ǫ > 0, continuously
differentiable with respect to m.

In this case we can choose I(N) = 1/N , I0(N) = c0/N (where c0 is an upper bound to the norm
of the differential ∂ϕ

∂m ), I1(N) = c1/N and I2(N) = (c21 + c22)/N .

3 Mean Field Convergence

In Section 3.1 we establish the main results, then, in Section 3.2, we provide the details of the
method used to derive them.

3.1 Main Results

The first result establishes convergence of the optimization problem for the system with N objects
to the optimization problem of the mean field limit:

Theorem 2 (Optimal System Convergence). Assume (A0) to (A3). If limN→∞MN (0) = m0

almost surely [resp. in probability] then:

lim
N→∞

V N
∗
(

MN (0)
)

= v∗ (m0)

almost surely [resp. in probability], where V N
∗ and v∗ are the optimal values for the system with N

objects and the mean field limit, defined in Section 2.

The proof is given in Section 5.6.
The second result states that an optimal action function for the mean field limit provides an

asymptotically optimal strategy for the system with N objects. We need, at this point, to introduce
a first auxiliary system, which is a system with N objects controlled by an action function borrowed
from the mean field limit. More precisely, let α be an action function that specifies the action to
be taken at time t. Although α has been defined for the limiting system, it can also be used in the
system with N objects. In this case, the action function α can be seen as a policy that does not
depend on the state of the system. At step k, the controller applies action α(kI(N)). By abuse of
notation, we denote by MN

α , the state of the system when applying the action function α (it will

INRIA



Mean field for Markov Decision Processes 9

be clear from the notation whether the subscript is an action function or a policy). The value for
this system is defined by

V N
α (m0)

def
= E





HN

∑

k=0

r
(

MN
α (k), α(kI(N))

)

∣

∣

∣

∣

∣

∣

MN
α (0) = m0



 (12)

Our next result is the convergence of convergence of MN
α and of the value:

Theorem 3. Assume (A0) to (A3); α is a piecewise Lipschitz continuous action function on [0;T ],
of constant Kα, and with at most p discontinuity points. Let M̂N

α (t) be the linear interpolation of
the discrete time process MN

α . Then for all ǫ > 0:

P

{

sup
0≤t≤T

∥

∥

∥M̂N
α (t)− φt(m0, α)

∥

∥

∥
>
[∥

∥MN (0)−m0

∥

∥+ I ′0(N,α)T + ǫ
]

eL1T

}

≤ J(N,T )

ǫ2
(13)

and
∣

∣V N
α

(

MN (0)
)

− vα(m0)
∣

∣ ≤ B′ (N,
∥

∥MN (0)−m0

∥

∥

)

(14)

where J, I ′0 and B′ are defined in Section 5.1 and satisfy limN→∞ I ′0(N,α) = limN→∞ J(N,T ) = 0
and limN→∞,δ→0B

′(N, δ) = 0.
In particular, if limN→∞MN

π (0) = m0 almost surely [resp. in probability] then limN→∞ V N
α

(

MN (0)
)

=
vα(m0) almost surely [resp. in probability].

The proof is given in Section 5.5.
As the reward function r(m, a) is bounded and the time-horizon [0;T ] is finite, the set of values

when starting from the initial condition m, {vα(m) : α action function}, is bounded. This set is
not necessarily compact because the set of action functions may not be closed (a limit of Lipschitz
continuous functions is not necessarily Lipschitz continuous). However, as it is bounded, for all
ǫ > 0, there exists an action function αǫ such that v∗(m) = supα vα(m) ≤ vαǫ + ǫ. Theorem 2
shows that αǫ is optimal up to 2ǫ for N large enough. This shows the following corollary:

Corollary 4 (Asymptotically Optimal Policy). Let α∗ be an optimal action function for the
limiting system. Then

lim
N→∞

∣

∣V N
α∗ − V N

∗
∣

∣ = 0

In other words, an optimal action function for the limiting system is asymptotically optimal for the
system with N objects.

In particular, this shows that as N grows, policies that do not take into account the state of
the system (i.e., action functions) are asymptotically as good as adaptive policies. In practice
however, adaptive policies might perform better, especially for very small values of N . However, it
is in general impossible to prove convergence for adaptive policies.

3.2 Derivation of Main Results

3.2.1 Second Auxiliary System

The method of proof uses a second auxiliary system, the process φt(m0, A
N
π ) defined below. It is a

limiting system controlled by an action function derived from the policy of the original system
with N objects.

Consider the system with N objects under policy π. The process MN
π is defined on some

probability space Ω. To each ω ∈ Ω corresponds a trajectory MN
π (ω), and for each ω ∈ Ω, we

define an action function AN
π (ω). This random function is piecewise constant on each interval

[kI(N), (k + 1)I(N)) (k ∈ N) and is such that AN
π (ω)(kI(N))

def
= πk(M

N (k)) is the action taken
by the controller of the system with N objects at time slot k, under policy π.
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10 N.Gast & B. Gaujal & J.-Y. Le Boudec

Recall that for any m0 ∈ P(S) and any action function α, φt(m0, α) is the solution of the
ODE (7). For every ω, φt(m0, A

N
π (ω)) is the solution of the limiting system with action function

AN
π (ω), i.e.

φt(m0, A
N
π (ω))−m0 =

∫ t

0

f(φs(m0, A
N
π (ω)), AN

π (ω)(s))ds.

When ω is fixed, φt(m0, A
N
π (ω)) is a continuous time deterministic process corresponding to

one trajectory MN
π (ω). When considering all possible realizations of MN

π , φt(m0, A
N
π ) is a random,

continuous time function “coupled” to MN
π . Its randomness comes only from the action term AN

π ,
in the ODE. In the following, we omit to write the dependence in ω. AN

π and MN
π will always

designate the processes corresponding to the same ω.

3.2.2 Convergence of Controlled System

The following result is the main technical result; it shows the convergence of the controlled system
in probability, with explicit bounds. Notice that it does not require any regularity assumption on
the policy π.

Theorem 5. Under Assumptions (A0) to (A3), for any ǫ > 0, N ≥ 1 and any policy π:

P

{

sup
0≤t≤T

∥

∥

∥
M̂N

π (t)− φt(m0, A
N
π )
∥

∥

∥ >
[∥

∥MN (0)−m0

∥

∥+ I0(N)T + ǫ
]

eL1T

}

≤ J(N,T )

ǫ2
(15)

where M̂N
π is the linear interpolation of the discrete time system with N objects) and J is defined

in Section 5.1.

Recall that I0(N) and J(N,T ) for a fixed T go to 0 as N → ∞. The proof is given in Section 5.3.

3.2.3 Convergence of Value

Let π be a policy and AN
π the sequence of actions corresponding to a trajectory MN

π as we just
defined. Eq.(9) defines the value for the deterministic limit when applying a sequence of actions.
This defines a random variable vAN

π
(m0) that corresponds to the value over the limit system when

using AN
π as action function. The random part comes from AN

π . E
[

vAN
π
(m0)

]

designates the

expectation of this value over all possible AN
π . A first consequence of Theorem 5 is the convergence

of V N
π

(

MN (0)
)

to E
[

vAN
π
(m0)

]

with an error that can be uniformly bounded.

Theorem 6 (Uniform convergence of the value). Let AN
π be the random action function associated

with MN
π , as defined earlier. Under Assumptions (A0) to (A3),

∣

∣V N
π

(

MN (0)
)

− E
[

vAN
π
(m0)

]∣

∣ ≤ B
(

N,
∥

∥MN (0)−m0

∥

∥

)

where B is defined in Section 5.1.
Note that limN→∞,δ→0B(N, δ) = 0; in particular, if limN→∞MN

π (0) = m0 almost surely [resp.
in probability] then

∣

∣V N
π

(

MN (0)
)

− E
[

vAN
π
(m0)

]∣

∣→ 0 almost surely [resp. in probability].

The proof is given in Section 5.4.

3.2.4 Putting Things Together

The proof of the main result uses the two auxiliary systems. The first auxiliary system provides a
strategy for the system with N objects derived from an action function of the mean field limit; it
cannot do better than the optimal value for the system with N objects, and is close to the optimal
value of the mean field limit. Therefore, the optimal value for the system with N objects is lower
bounded by the optimal value for the mean field limit. The second auxiliary system is used in the
opposite direction, which shows that, roughly speaking, for large N the two optimal values are the
same. We give the details of the derivation in Section 5.6.
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4 Applications

4.1 Hamilton-Jacobi-Bellman Equation and Dynamic Programming

Let us now consider the finite time optimization problem for the stochastic system and its limit from
a constructive point of view. As the state space is finite, we can compute the optimal value by using
a dynamic programming algorithm. If UN (m, t) denotes the optimal value for the stochastic system

starting from m at time t/I(N), then UN (m, t) = supπ E
[

∑T/I(N)
k=t/I(N) r

N (MN
π (k)) :MN (t) = m

]

.

The optimal value can be computed by a discrete dynamic programming algorithm [21] by setting
UN (m,T ) = rN (m) and

UN (m, t) = sup
a∈A

E
(

rN (m, a) + UN (MN (t+ I(N)), t+ I(N))
∣

∣ M̄N (t) = m,AN (t) = a
)

. (16)

Then, the optimal cost over horizon [0;T/I(N)] is V N
∗ (m) = U(m, 0).

Similarly, if we denote by u(m, t) the optimal cost over horizon [t;T ] for the limiting system,
u(m, t) satisfies the classical Hamilton-Jacobi-Bellman equation:

u̇(m, t) + max
a

{∇u(m, t).f(m, a) + r(m, a)} = 0. (17)

This provides a way to compute the optimal value, as well as the optimal policy, by solving the
partial differential equation above.

4.2 Algorithms

Theorem 2 above can be used to design an effective construction of an asymptotically optimal
policy for the system with N objects over the horizon [0, H] by using the procedure described in
Algorithm 1.

Algorithm 1: Static algorithm constructing a policy for the system with N objects, over the
finite horizon.

begin
From the original system with N objects, construct the occupancy measure MN and its
kernel ΓN and let MN (0) be the initial occupancy measure;
Compute the limit of the drift of ΓN , namely the function f ;
Solve the HJB equation (17) on the interval [0, HI(N)]. This provides an optimal control
function α(MN

0 , t);
Construct a discrete control π(MN (k), k) for the discrete system, that gives the action to
be taken under state MN (k) at step k:

π(MN (k), k)
def
= α(φkI(N)(M

N (0), α)).

return π;
end

Theorem 2 says that under policy π, the total value V N
π is asymptotically optimal:

lim
N→∞

V N
π (MN (0)) = lim inf

N→∞
V N
∗ (MN (0)).

The policy π constructed by Algorithm 1 is static in the sense that it does not depend on
the state MN (k) but only on the initial state MN (0), and the deterministic estimation of MN (k)
provided by the differential equation. One can construct a more adaptive policy by updating
the starting point of the differential equation at each step. This new procedure, constructing an
adaptive policy π′ from 0 to the final horizon H is given in Algorithm 2.

In practice, the total value of the adaptive policy π′ is larger than the value of the static policy
π because it uses on-line corrections at each step, before taking a new action. However Theorem 2
does not provide a proof of its asymptotic optimality.
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12 N.Gast & B. Gaujal & J.-Y. Le Boudec

Algorithm 2: Adaptive algorithm constructing a policy π′ for the system with N objects,
over the finite horizon H.

begin
M :=MN (0); k := 0;
repeat

αk(M, ·) := solution of (17) over [kI(N), HI(N)] starting in M ;
π′(M,k) := αk(φkI(N)(M,αk));
M is changed by applying kernel ΓN

π′ ;
k:= k+1;

until k=H ;
return π′;

end

4.3 Examples

In this section, we develop three examples. The first one can be seen as a simple illustration of
optimal mean field. The limiting ODE is quite simple and can be optimized in closed analytical
form.

The second example considers a classic virus problem. Although virus propagations concern
discrete objects (individuals or devices), most work in the literature study a continuous approx-
imation of the problem under the form of an ODE. The justification of passing from a discrete
to a continuous model is barely mentioned in most papers (they mainly focus on the study of
the ODE). Here we present a discrete dynamical system based on a simple stochastic mobility
model for the individuals whose behavior converges to a classic continuous model. We show on a
numerical example that the limiting problem provides a policy that is close to optimal, even for a
system with a relatively small numbers of nodes.

Finally, the last example comes from routing optimization in a queueing network model of
volunteer computing platforms. The purpose of this last example is to show that a discrete
optimal control problem suffering from the curse of dimensionality can be replaced by a continuous
optimization problem where an HJB equation must be solved over a much smaller state space.

4.3.1 Utility Provider Pricing

This is a simplified discrete Merton’s problem. This example shows a case where the optimization
problem in the infinite system can be solved in closed form. This can be seen as an ideal case for
the mean field approach: although the original system is difficult to solve even numerically when
N is large, taking the limit when N goes to infinity makes it simple to solve, in an analytical form.

We consider a system made of a utility and N users; users can be either in state S (subscribed)
or U (unsubscribed). The utility fixes their price α ∈ [0, 1]. At every time step, one randomly
chosen customer revises her status: if she is in state U [resp. S], with probability s(α) [resp.
a(α)] she moves to the other state; s(α) is the probability of a new subscription, and a(α) is the
probability of attrition. We assume s(·) decreases with α and a(·) increases. If the price is large,
the instant gain is large, but the utility loses customers, which eventually reduces the gain.

Within our framework, this problem can be seen as a Markovian system made of N objects
(users) and one controller (the provider). The intensity of the model is I(N) = 1/N . Moreover, if
the immediate profit is divided by N (this does not alter the optimal pricing policy) and if x(t) is
the fraction of objects in state S at time t and α(t) ∈ [0; 1] is the action taken by the provider at
time t, the mean field limit of the system is:

∂x

∂t
= −x(t)a(α(t)) + (1− x(t))s(α(t)) = s(α(t))− x(s(α(t)) + a(α(t)) (18)

and the rescaled profit over a time horizon T is
∫ T

0
x(t)α(t)dt. Call u∗(t, x) the optimal benefit over

the interval [t, T ] if there is a proportion x of subscribers at time t. The Hamilton-Jaccobi-Bellman
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Mean field for Markov Decision Processes 13

equation is

∂

∂t
u∗(t, x) +H

(

x,
∂

∂x
u∗(t, x)

)

= 0

with H(x, p) = max
α∈[0,1]

[p(s(α)− x(s(α) + a(α)) + αx]

H can be computed under reasonable assumptions on the rates of subscription and attrition s()
and a(), which can then be used to show that there exists an optimal policy that is threshold based.
To continue the rest of this illustration, we consider the radically simplified case where α can take
only the values 0 and 1 and under the conditions s(0) = a(1) = 1 and s(1) = a(0) = 0, in which
case the ODE becomes

∂x

∂t
= −x(t)α(t) + (1− x(t))(1− α(t)) = 1− x(t)− α(t), (19)

and H(x, p) = max (x(1− p), (1− x)p). The solution of the HJB equation can be given in closed
form. The optimal policy is to chose action α = 1 if x > 1/2 or x > 1 − exp(−(T − t)), and 0
otherwise. Figure 1 shows the evolution of the proportion of subscribers x(t) when the optimal
policy is used. The coloured area corresponds to all the points (t, x) where the optimal policy is
α = 1 (fix a high price) and the white area is where the optimal policy is to choose α = 0 (low
price).
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Figure 1: Evolution of the proportion of subscribers (y-axis) under the optimal pricing policy.

To show that this policy is indeed optimal, one has to compute the corresponding value of the
benefit u(t, x) and show that it satisfies the HJB equation. This can be done using a case analysis,
by computing explicitly the value of u(t, x) in the zones Z1, Z2, Z3 and Z4 displayed in Figure 1,
and check that u(t, x) satisfies Eq.(19) in each case.

4.3.2 Infection Strategy of a Viral Worm

This second example has two purposes. The first one is to provide a rigorous justification of the
use of a continuous optimization approach for this classic problem in population dynamics and to
show that the continuous limit provides insights on the structure of the optimal behavior for the
discrete system. Here, the optimal action function can be shown to be of the bang-bang type for
the limit problem, by using tools from continuous optimization such as the Pontryagin maximum
principle. Theorem 2 shows that a bang-bang policy should also be asymptotically optimal in the
discrete case.
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14 N.Gast & B. Gaujal & J.-Y. Le Boudec

The second purpose is to compare numerically the performance of the optimal policy of the
deterministic limit α∗ and the performance of other policies for the stochastic system for small
values of N . We show that α∗ is close to optimal even for N = 10 and that it outperforms another
classic heuristic.

This example is taken from [15] and considers the propagation of infection by a viral worm.
Actually, similar epidemic models have been validated through experiments, as well as simulations
as a realistic representation of the spread of a virus in mobile wireless networks (see [7, 22]). A
susceptible node is a mobile wireless device, not contaminated by the worm but prone to infection.
A node is infective if it is contaminated by the worm. An infective node spreads the worm to a
susceptible node whenever they meet, with probability β. The worm can also choose to kill an
infective node, i.e., render it completely dysfunctional - such nodes are denoted dead. A functional
node that is immune to the worm is referred to as recovered. Although the network operator
uses security patches to immunize susceptibles (they become recovered) and heals infectives to
the recovered state, the goal of the worm is to maximize the damages done to the network. Let
the total number of nodes in the network be N . Let the proportion of susceptible, infective,
recovered and dead nodes at time t be denoted by S(t), I(t), R(t) and D(t), respectively. Under a
uniform mobility model, the probability that a susceptible node becomes infected is βI/N . The
immunization of susceptibles (resp. infectives) happens at a fixed rate q (resp. b). This means that
a susceptible (resp. infective) node is immunized with probability q/N (resp. b/N) at every time
step.

At this point, authors of [15] invoke the classic results of Kurtz [17] to show that the dynamics
of this population process converges to the solution of the following differential equations.

∂S
∂t = −βIS − qS
∂I
∂t = βIS − bI − v(t)I
∂D
∂t = v(t)I
∂R
∂t = bI + qS.

(20)

This system actually satisfies assumptions (A1, A2, A3), which allows us not only to obtain the
mean field limit, but also to say more about the optimization problem. The objective of the

worm is to find v(·) such that the damage function D(T ) +
∫ T

0
f(I(t))dt is maximized under the

constraint 0 ≤ v ≤ vmax (where f is convex). In [15], this problem is shown to have a solution and
the Pontryagin maximum principle is used to show that the optimal solution v∗(·) is of bang-bang
type:

∃t1 ∈ [0 . . . T ) s. t. v∗(t) = 0 for 0 < t < t1 and v∗(t) = vmax for t1 < t < T. (21)

Theorem 2 makes the formal link between the optimization of the model on an individual level
and the previous resolution of the optimization problem on the differential equations, done in [15].
It allows us to formally claim that the policy α∗ of the worm is indeed asymptotically optimal
when the number of objects goes to infinity.

We investigated numerically the performance of α∗ against various infection policies for small
values of the number of nodes in the system N . These results are reported on Figure 2, where we
compare four values:

• v∗ – the optimal value of the limiting system.

• V N
∗ – the optimal expected damage for the system with N objects (MDP problem);

• V N
α∗

– the expected value of the system with N objects when applying the action function α∗
that is optimal for the limiting system; Performance of algorithm 1

• the performance of a heuristic where, instead of choosing a threshold as suggested by the
limiting system (21), the killing probability ν if fixed for the whole time. The curve on the
figure is drawn for the optimal ν (recomputed for each parameter N).

We implemented a simulator that follows strictly the model of infection described earlier in this part.
We chose parameters similar to those used in [15]: the parameter for the evolution of the system are
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Mean field for Markov Decision Processes 15

β = .6, q = .1, b = .1, vmax = 1 and the damage function to be optimized is D(T ) + 1
T

∫ T

0
I2(t)dt

with T = 10. However, it should be noted that the choice of thess parameters does not influence
qualitatively the results. Thanks to the relatively small size of the system, these four quantities can
be computed numerically using a backward induction. The optimal policies for the deterministic
limit consists in not killing machines until t1 = 4.9 and in killing machines at a maximum rate
after that time: α∗(t) = 1{t>4.9}.
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Figure 2: Damage caused by the worm for various infection policies as a function of the size of
the system N . The goal of the worm is to maximize the damage (higher means better). Panel (a)
shows the optimal value v∗ for the limiting system (mean field limit), the optimal value V N

∗ for the
system with N objects, the value vNα∗

of the asymptotically optimal policy given in Corollary 4
and the value of a classic heuristic. Panel (b) zooms the y−axis around the values of the optimal
policies.

Theorem 2 shows that α∗ is asymptotically optimal (limN→∞ V N
∗ = limN→∞ V N

α∗
= v∗), but

Figure 2(a) shows that, already for low values of N , these three quantities are very close. A
classic heuristic for this maximal infection problem is to kill a node with a constant probability ν,
regardless of the time horizon. Our numerical study shows that α∗ outperforms this heuristic by
more than 20%. The performance of this heuristic does not increase with the size of the system N .

In order to illustrate the convergence of the values V N
∗ and V N

α∗
to v∗, Figure 2(b) is a detailed

view of Figure 2(a) where we show the two quantities V N
∗ , V N

α∗
and their common limit v∗. This

figure shows that the convergence is indeed very fast. Other numerical experiments indicate
that this is true for a large panel of parameters. Although this figures seems to indicate that
V N
α∗

≤ v∗ ≤ V N
∗ , this is not true in general, for example adding 5D(t) to the damage function leads

to V N
α∗

≤ V N
∗ ≤ v∗ (V N

α∗
is always less than V N

∗ by definition of V N
∗ ).

4.3.3 Brokering Problem

Finally, let us consider a model of a volunteer computing system such as BOINC http://boinc.

berkeley.edu/. Volunteer computing means that people make their personal computer available for
a computing system. When they do not use their computer, it is available for the computing system.
However, as soon as they start using their computer, it becomes unavailable for the computing
system. These systems are becoming more and more popular and provide large computing power
at a very low cost [16].

The Markovian model with N objects is defined as follows. The N objects represent the users
that can submit jobs to the system and the resources that can run the jobs. The resources are
grouped into a small number of clusters and all resources in the same cluster share the same
characteristics in terms of speed and availability. Users send jobs to a central broker whose role is
to balance the load among the clusters.
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broker

UN users

AN
1

B1 Cluster 1 :

QN
1 proc.

Figure 3: The brokering problem in a desktop grid system, such as Boinc

The model is a discrete time model of a queuing system. Actually, a more natural continuous-
time Markov model could also be handled similarly, by using uniformization.

There are UN users. Each user has a state x ∈ {on, off}. At each time step, an active user
sends one job with probability pNs and becomes inactive with probability pi/N . An inactive user
sends no jobs to the system and becomes on with probability po/N .

There are C clusters in the system. Each cluster c contains QN
c computing resources. Each

resource has a buffer of bounded size Jc. A resource can either be valid or broken. If it is valid
and if it has one or more job in its queue, it completes one job with probability µc/N at this time
slot. A resource gets broken with probability pb/N . In that case, it discards all the packets of its
buffer. A broken resource becomes valid with probability pv/N .

At each time step, the broker takes an action a ∈ P({1 . . . C}) and sends the packets it received
to the clusters according to the distribution a. A packet sent to cluster c joins the queue of one
of the resources, sqy k; according to a local rule (for example chosen uniformly among the QN

c

resources composing the cluster). If the queue of resource k is full, the packet is lost. The goal of
the broker is to minimize the number of losses plus the total size of the queues over a finite horizon
(and hence the response time of accepted packets).

This model is represented in Figure 3.

The system has an intensity I(N)
def
= 1/N . The number C of clusters is fixed and does not

depend on N , as well as the sizes Jc of the buffers. However, both the number of users UN , and
the number of resources in the clusters QN

c , are linear in N . Finally, by construction, all the state
changes occur with probabilities that scale with 1/N .

The limiting system is described by the variable mo(t), that represents the fraction of users
who are on, and the variables qc,j(t) and bc(t) that, respectively, represent the fraction of resources
in cluster c having j jobs in their buffer and the fraction of resources in cluster c that are broken.
For an action function α(·), we denote by αc(·) the fraction of packets sent to cluster c. Finally, let
us denote by m the fraction of users (both active or inactive) and qc the fraction of processors in
cluster c. These fractions are constant (independent of time) and satisfy m+ q1 + · · ·+ qC = 1.

INRIA



Mean field for Markov Decision Processes 17

We get the following equations:

∂mo(t)

∂t
= −pimo(t) + po(m−mo(t)) (22)

∂qc,0(t)

∂t
= pabc(t)−

αc(t)psmo(t)

qc
qc,0(t) + µcqc,1 − pbqc,0(t) (23)

∂qc,j(t)

∂t
=

αc(t)psmo(t)

qc
(qc,j−1(t)− qc,i(t)) + µc(qc,j+1 − qc,j)− pbqc,j(t) (24)

∂qc,Jc
(t)

∂t
=

αc(t)psma(t)

qc
qc,Jc−1(t)− µcqc,Jc

− pbqc,Jc
(t) (25)

∂bc(t)

∂t
= −pvbc(t) + pb

Jc
∑

j=0

qc,j(t). (26)

where (23) and (25) hold for each cluster c and (24) holds for each cluster c and for all j ≤ Jc. The
cost associated to the action function α is:

∫ T

0

C
∑

c=1

Jc
∑

j=1

jqc,j(t) + γ





C
∑

c=1

αc(t)psmo(t)

qc
(qc,Jc

(t) + bc(t)) +

C
∑

c=1

pb

Jc
∑

j=1

jqc,j(t)



 dt (27)

The first part of (27) represents the cost induced by the number of jobs in the system. The second
part of (27) represents the cost induced by the losses. The parameter γ gives weight on the cost
induced by the losses.

The HJB problem becomes minimizing (27) subject to the variables ua, qk,i, bk satisfying
Equations (22) to (26). This system is made of (J + 2)C ODEs. Solving the HJB equation
numerically in this case can be challenging but remains more tractable than solving the original
Bellman equation over JN states. The curse of dimensionality is so acute for the discrete system
that it cannot be solved numerically with more than 10 processors [5].

5 Proofs

5.1 Details of Scaling Constants

I ′0(N,α)
def
= I0(N) + I(N)Ke(K−L1)T

(

Kα

2
+ 2 (1 + min(1/I(N), p)) ‖α‖∞

)

J(N,T )
def
= 8T

{

L2
1

[

I2(N)I(N)2 + I1(N)2 (T + I(N))
]

+ S2
[

2I2(N) + I(N) (I0(N) + L2)
2
]}

B(N, δ)
def
= I(N) ‖r‖∞ +Kr (δ + I0(N)T )

eL1T − 1

L1

+
3

2
1
3

[

Kr

L1

(

eL1T − 1 +
I(N)

2

)]
2
3

‖r‖
1
3
∞ J(N,T )

1
3

B′(N, δ)
def
= I(N) ‖r‖∞ +Kr [δ + I ′0(N,α)T ]

eL1T − 1

L1

+
3

2
1
3

[

Kr

L1

(

eL1T − 1 +
I(N)

2

)]
2
3

‖r‖
1
3
∞ J(N,T )

1
3

5.2 Proof of Theorem 1

We begin with a few general statements. Let P be the set of probabilities on S and µN : SN → P
defined by µN (x)i =

1
N

∑N
n=1 1xn=i for all i ∈ S. Also let PN be the image set of µN , i.e the

set of all occupancy measures that are possible when the number of objects is N . The following
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establishes that if two global states have the same occupancy measure, then they differ by a
permutation.

Lemma 1. For all x, x′ ∈ SN , if µN (x) = µN (x′) there exists some σ ∈ S
N such that x′ = σ(x).

Proof. By induction on N . Its is obvious for N = 1. Assume the lemma holds for N − 1 and
let x, x′ ∈ SN , with µN (x) = µN (x′). There is at least one coordinate, say i, such that x′i = x1,
because there is the same number of occurrences of s = x1 in both x and x′. Let y = x2...xN and
y′ = x′1...x

′
i−1x

′
i+1...x

′
N . Then µN−1(y) = µN−1(y′), therefore there exists some τ ∈ S

N−1 such
that y′ = τ(y). Define σ by σ(1) = i, σ(j) = τ(j) + 1τ(j)>i, for j ≥ 2, so that x′ = σ(x). Clearly σ
is a permutation of {1, ..., N}.

Let f : SN → E where E is some arbitrary set. We say that f is invariant under SN if f ◦σ = f
for all σ ∈ S

N . The following results states that if a function of the global state is invariant under
permutations, it is a function of the occupancy measure.

Lemma 2. If f : SN → E is invariant under S then there exists f̄ : PN → E such that f̄ ◦µN = f .

Proof. Define f̄ as follows. For every m ∈ PN pick some arbitrary x0 ∈ (µN )−1(m) and let
f̄(m) = f(x0). Now let x, perhaps different from x0, such that µN (x) = m. By Lemma 1, there
exists some σ ∈ S

N such that x = σ(x0) therefore f(x) = f(x0) = f̄(µN (x)). This is true for every
m ∈ PN thus f(x) = f̄(µN (x)) for every x ∈ SN .

The sequence of actions ak is given and N is fixed. We are thus given a time-inhomogeneous
Markov chain XN on SN , with transition kernel Gk, k ∈ N, given by Gk(x, y) = ΓN (x, y, ak), such
that for any permutation σ ∈ S

N and any states x, y we have

Gk(σ(x), σ(y)) = Gk(x, y) (28)

Let F(k) be the σ− field generated by XN (s) for s ≤ k and G(k) be the σ− field generated by
MN (s) for s ≤ k. Note that because MN = µN ◦XN , G(k) ⊂ F(k).

Pick some arbitrary test function ϕ : SN → R and fix some time k ≥ 1; we will now
compute E

(

ϕ(MN (k))
∣

∣F(k − 1)
)

. Because MN is a function of XN and XN is a Markov chain,

E
(

ϕ(MN (k))
∣

∣F(k − 1)
)

is a function, say ψ, of XN (k − 1). We have, for any fixed σ ∈ S
N :

ψ(x)
def
=

∑

y∈SN

Gk(x, y)ϕ
(

µN (y)
)

=
∑

y∈SN

Gk(x, σ(y))ϕ
(

µN (σ(y))
)

=
∑

y∈SN

Gk(x, σ(y))ϕ
(

µN (y)
)

ψ(σ(x)) =
∑

y∈SN

Gk(σ(x), σ(y))ϕ
(

µN (y)
)

=
∑

y∈SN

Gk(x, y))ϕ
(

µN (y)
)

where the last equality is by Eq.(28). Thus ψ(σ(x)) = ψ(x) and by Lemma 2 there exists some
function ψ̄ such that ψ(x) = ψ̄

(

µN (x)
)

, i.e.

E
(

ϕ(MN (k))
∣

∣F(k − 1)
)

= ψ̄
(

MN (k − 1)
)

(29)

In particular, E
(

ϕ(MN (k))
∣

∣F(k − 1)
)

is G(k − 1)−measurable. Now

E
(

ϕ(MN (k))
∣

∣G(k − 1)
)

= E
(

E
(

ϕ(MN (k))
∣

∣F(k − 1)
)∣

∣G(k − 1)
)

= E
(

ψ̄
(

MN (k − 1)
)∣

∣G(k − 1)
)

= ψ̄
(

MN (k − 1)
)

which expresses that MN is a Markov chain.
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5.3 Proof of Theorem 5

The proof is inspired by the method in [3]. The main idea of the proof is to write

∥

∥MN
π (k)− φkI(N)(m0, A

N
π )
∥

∥ ≤

∥

∥

∥

∥

∥

∥

MN
π (k)−MN (0)−

k−1
∑

j=0

fN (j)

∥

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∥

MN (0) +

k−1
∑

j=0

fN (j)− φkI(N)(m0, A
N
π )

∥

∥

∥

∥

∥

∥

where fN (k)
def
= FN

(

MN
π (k), πk(M

N
π (k))

]

is the drift at time k if the empirical measure is MN
π (k).

The first part is bounded with high probability using a Martingale argument (Lemma 4) and the
second part is bounded using an integral formula.

Recall that M̄N
π (t)

def
= MN

π

(⌊

t
I(N)

⌋)

, i.e. M̄N
π (kI(N)) = MN

π (k) for k ∈ N and M̄N
π is

piecewise constant and right-continuous. Let ∆N
π (k) be the number of objects that change state

between time slots k and k + 1. Thus,

∥

∥MN
π (k + 1)−MN

π (k)
∥

∥ ≤ N−1
√
2∆N

π (k) (30)

and thus ∥

∥

∥
M̂N

π (t)− M̄N
π (t)

∥

∥

∥ ≤ N−1
√
2∆N

π (k) (31)

as well, with k =
⌊

t
I(N)

⌋

. Define

ZN
π (k) = MN

π (k)−MN (0)−
k−1
∑

j=0

FN
(

MN
π (j), πj(M

N
π (j))

)

(32)

and let ẐN
π (t) be the continuous, piecewise linear interpolation such that ẐN

π (kI(N)) = ZN
π (k)

for k ∈ N. Recall that AN
π (t)

def
= π⌊t/I(N)⌋(M

N (⌊t/I(N)⌋)) – AN
π (t) is the action taken by the

controller at time t/I(N). It follows from these definitions that:

M̂N
π (t) = MN

π (0) +

∫ t

0

1

I(N)
FN

(

M̄N
π (s), AN

π (s)
)

ds+ ẐN
π (t)

= MN
π (0) +

∫ t

0

1

I(N)
FN

(

M̂N
π (s), AN

π (s)
)

ds+ ẐN
π (t)

+

∫ t

0

1

I(N)

[

FN
(

M̄N
π (s), AN

π (s)
)

− FN
(

M̂N
π (s), AN

π (s)
)]

ds

Using the definition of the semi-flow φt(m0, A
N
π ) = m0 +

∫ t

0
f(φs(m0, A

N
π ), AN

π (s))ds, we get:

M̂N
π (t)− φt(m0, A

N
π ) = MN

π (0)−m0 + ẐN
π (t)

+

∫ t

0

1

I(N)

[

FN
(

M̂N
π (s), AN

π (s)
)

− FN
(

φs(m0, A
N
π ), AN

π (s)
)

]

ds

+

∫ t

0

[

1

I(N)
FN

(

φs(m0, A
N
π ), AN

π (s)
)

− f
(

φs(m0, A
N
π ), AN

π (s)
)

]

ds

+

∫ t

0

1

I(N)

[

FN
(

M̄N
π (s), AN

π (s)
)

− FN
(

M̂N
π (s), AN

π (s)
)]

ds
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Applying Assumption (A2) to the third line, (A3) to the second and fourth lines, and Equation (31)
to the fourth line leads to:

∥

∥

∥M̂N
π (t)− φt(m0, A

N
π )
∥

∥

∥
≤

∥

∥MN
π (0)−m0

∥

∥+
∥

∥

∥
ẐN
π (t)

∥

∥

∥+ L1

∫ t

0

∥

∥

∥M̂N
π (s)− φs(m0, A

N
π )
∥

∥

∥ ds

+I0(N)t+

√
2L1I(N)

N

⌊ t

I(N)⌋
∑

k=0

∆N
π (k)

For all N , π, T , b1 > 0 and b2 > 0, define

Ω1 =







ω ∈ Ω : sup
0≤k≤ T

I(N)

k
∑

j=0

∆N
π (j) > b1







, Ω2 =







ω ∈ Ω : sup
0≤k≤ T

I(N)

∥

∥ZN
π (k)

∥

∥ > b2







(33)

Assumption (A1) implies conditions on the first and second order moment of ∆N
π (k). Therefore by

Lemma 3, this shows that for any b1 > 0:

P (Ω1) ≤ TN2

b21

[

I2(N) +
I1(N)2

I(N)2
(T + I(N))

]

(34)

Moreover, we show in Lemma 4 that:

P (Ω2) ≤ 2S2 T

b22

[

2I2(N) + I(N) [(I0(N) + L2)]
2
]

(35)

Now fix some ǫ > 0 and let b1 = Nǫ
2
√
2L1I(N)

, b2 = ǫ/2. For ω ∈ Ω \ (Ω1 ∪ Ω2) and for 0 ≤ t ≤ T :

∥

∥

∥M̂N
π (t)− φt(m0, A

N
π )
∥

∥

∥ ≤
∥

∥MN
π (0)−m0

∥

∥+ ǫ+ I0(N)T

+L1

∫ t

0

∥

∥

∥
M̂N

π (s)− φs(m0, A
N
π )
∥

∥

∥
ds

By Grönwall’s lemma:
∥

∥

∥M̂N
π (t)− φt(m0, A

N
π )
∥

∥

∥ ≤
[∥

∥MN
π (0)−m0

∥

∥+ ǫ+ I0(N)T
]

eL1t (36)

and this is true for all ω ∈ Ω \ (Ω1 ∪ Ω2). We apply the union bound P (Ω1 ∪ Ω2) ≤ P (Ω1)+P (Ω2)
which, with Eq.(34) and Eq.(35), concludes the proof.

The proof of Theorem 5 uses the following lemmas.

Lemma 3. Let (Wk)k∈N
be a sequence of square integrable, non-negative random variables, adapted

to a filtration (Fk)k∈N
, such that W0 = 0 a.s. and for all k ∈ N: E (Wk+1| Fk) ≤ α and

E
(

W 2
k+1

∣

∣Fk

)

≤ β. Then for all n ∈ N and b > 0:

P

(

sup
0≤k≤n

(W0 + ...+Wk) > b

)

≤ nβ + n(n+ 1)α2

b2
(37)

Proof. Let Yn =
∑n

k=0Wk. It follows that E (Yn) ≤ αn and

E
(

Y 2
n+1

)

≤ β + 2nα2 + E
(

Y 2
n

)

from where we derive that
E
(

Y 2
n

)

≤ nβ + n(n+ 1)α2 (38)

Now, because Wn+1 ≥ 0:

E
(

Y 2
n+1

∣

∣Fn

)

≥ (E (Yn+1| Fn))
2
= (Yn + E (Wn+1| Fn))

2 ≥ Y 2
n
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thus Y 2
n is a non-negative sub-martingale and by Kolmogorov’s inequality:

P

(

sup
0≤k≤n

Yk > b

)

= P

(

sup
0≤k≤n

Y 2
k > b2

)

≤ E
(

Y 2
n

)

b2

Together with Eq.(38) this concludes the proof.

Lemma 4. Define ZN
π as in Eq.(32). For all N ≥ 2, b > 0, T > 0 and all policy π:

P



 sup
0≤k≤⌊ T

I(N)⌋

∥

∥ZN
π (k)

∥

∥ > b



 ≤ 2S2 T

b2

[

2I2(N) + I(N) [(I0(N) + L2)]
2
]

Proof. The proof is inspired by the methods in [1]. For fixed N and h ∈ R
S , let

Lk = 〈h, ZN
π (k)〉

By the definition of ZN , Lk is a martingale w.r. to the filtration (Fk)k∈N
generated by MN

π . Thus

E

(

(Lk+1 − Lk)
2
∣

∣

∣Fk

)

= E
(

〈h,MN
π (k + 1)−MN

π (k)〉2
∣

∣Fk

)

+ 〈h, FN
(

MN
π (k), πk(M

N
π (k))

)

〉2

By Assumption (A2):

∣

∣〈h, FN
(

MN
π (k), π(MN

π (k))
)

〉
∣

∣ ≤ (I0(N) + L2) I(N) ‖h‖

Thus, using Eq.(30) and Assumption (A1):

E

(

(Lk+1 − Lk)
2
∣

∣

∣Fk

)

≤ ‖h‖2
[

N−22E
(

∆N
π (k)2

∣

∣Fk

)

+ [(I0(N) + L2) I(N)]
2
]

≤ ‖h‖2
[

2I(N)I2(N) + [(I0(N) + L2) I(N)]
2
]

We now apply Kolmogorov’s inequality for martingales and obtain

P

(

sup
0≤k≤n

Lk > b

)

≤ n

b2
‖h‖2

[

2I(N)I2(N) + [(I0(N) + L2) I(N)]
2
]

Let Ξh be the set of ω ∈ Ω such that sup0≤k≤n〈h, ZN
π (k)〉 ≤ b and let Ξ :=

⋂

h=±~ei,i=1...S Ξh

where ~ei is the ith vector of the canonical basis of RS . It follows that, for all ω ∈ Ξ and 0 ≤ k ≤ n
and i = 1 . . . S:

∣

∣〈ZN
π (k), ~ei〉

∣

∣ ≤ b. This means that for all ω ∈ Ξ:
∥

∥ZN
π (k)

∥

∥ ≤
√
Sb. By the union

bound applied to the complement of Ξ, we have

1− P(Ξ) ≤ 2S
n

b2

[

I(N)I2(N) + [(I0(N) + L2) I(N)]
2
]

Thus we have shown that, for all b > 0:

P

(

sup
0≤k≤n

∥

∥ZN
π (k)

∥

∥ >
√
Sb

)

≤ 2S
nI(N)

b2

[

I2(N) + I(N) [(I0(N) + L2)]
2
]

which, by changing b to b/
√
S, shows the result.
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5.4 Proof of Theorem 6

We use the same notation as in the proof of Theorem 5. By definition of V N , v and the time
horizons:

V N
π (MN (0))− E

(

vAN
π
(m0)

)

= E

(

∫ HNI(N)

0

r(M̄N
π (s), AN

π (s))− r(mAN
π
(s), AN

π (s))ds

)

−E

(

∫ T

HNI(N)

r(mAN
π
(s), AN

π (s))ds

)

The latter term is bounded by I(N) ‖r‖∞. Let ǫ > 0 and Ω0 = Ω1 ∪ Ω2 where Ω1,Ω2 are as in

the proof of Theorem 5. Thus P(Ω0) ≤ J(N,T )
ǫ2 and, using the Lipschitz continuity of r in m (with

constant Kr):

∣

∣V N
π (MN (0))− E

[

vAN
π
(m0)

]∣

∣ ≤ I(N) ‖r‖∞ +
2 ‖r‖∞ J(N,T )

ǫ2
+

KrE

[

1ω 6∈Ω0

∫ T

0

∥

∥M̄N
π (s)−mAN

π
(s)
∥

∥ ds

]

For ω 6∈ Ω0 and s ∈ [0, T ]:
∫ T

0

∥

∥

∥
M̄N

π (s)− M̂N
π (s)

∥

∥

∥
ds ≤ ǫI(N)

2L1
and, by Eq.(36),

∫ T

0

∥

∥

∥M̂N
π (s)−mAN

π
(s)
∥

∥

∥ ds ≤
(∥

∥MN (0)−m0

∥

∥+ I0(N)T + ǫ
)

eL1T−1
L1

thus

∣

∣V N
π (MN (0))− E

[

vAN
π
(m0)

]∣

∣ ≤ Bǫ(N,
∥

∥MN (0)−m0

∥

∥) (39)

where

Bǫ(N, δ)
def
= I(N) ‖r‖∞ +Kr (δ + I0(N)T + ǫ)

eL1T − 1

L1
+
KrI(N)

2L1
ǫ+

2 ‖r‖∞ J(N,T )

ǫ2

This holds for every ǫ > 0, thus
∣

∣V N
π (MN (0))− E

[

vAN
π
(m0)

]∣

∣ ≤ B(N,
∥

∥MN (0)−m0

∥

∥) (40)

where B(N, δ)
def
= infǫ>0Bǫ(N, δ). By direct calculus, one finds that infǫ>0

(

aǫ+ b/ǫ2
)

= 3/2
2
3 a

2
3 b

1
3

for a > 0, b > 0, which gives the required formula for B(N, δ).

5.5 Proof of Theorem 3

Let ᾱN be the right-continuous function constant on the intervals [kI(N); (k + 1)I(N)) such that
ᾱN (s) = α(s). ᾱN can be viewed as a policy independent of m. Therefore, by Theorem 5, on the
set Ω \ (Ω1 ∪ Ω2), for every t ∈ [0;T ]:

∥

∥

∥
M̂α(t)− φt(m0, α)

∥

∥

∥
≤

[∥

∥MN (0)−m0

∥

∥+ I0(N)T + ǫ
]

eL1T + u(t)

with u(t)
def
=
∣

∣φt(m0, ᾱ
N )− φt(m0, α)

∣

∣. We have

u(t) ≤
∫ t

0

∣

∣f(φs(m0, α), α(s))− f(φs(m0, ᾱ
N ), ᾱN (s))

∣

∣ ds

≤
∫ t

0

K
(∥

∥φs(m0, α)− φs(m0, ᾱ
N )
∥

∥+ d(α(s), ᾱN (s)
)

ds

≤ K

∫ t

0

u(s)ds+Kd1

where d1
def
=
∫ T

0

∥

∥α(t)− ᾱN (t)
∥

∥ dt. Therefore, using Grönwall’s inequality, we have u(t) ≤ Kd1e
KT .

By Lemma 5, this shows Eq.(13). The rest of the proof is as for Theorem 6.
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Lemma 5. If α is a piecewise Lipschitz continuous action function on [0;T ], of constant Kα, and
with at most p discontinuity points, then

∫ T

0

d(α(t), ᾱN (t))dt ≤ TI(N)

(

Kα

2
+ 2 (1 + min(1/I(N), p)) ‖α‖∞

)

.

Proof of lemma 5. Let first assume that T = kI(N). The left handside d1 =
∫ T

0
d(α(t), ᾱN (t))dt

can be decomposed on all intervals [iI(N), (i+ 1)I(N)):

d1 =

⌊T/I(N)⌋
∑

i=0

∫ (i+1)I(N)

iI(N)

∥

∥α(s)− ᾱN (s)
∥

∥ ds ≤
⌊T/I(N)⌋
∑

i=0

∫ (i+1)I(N)

iI(N)

‖α(s)− α(iI(N))‖ ds

If α has no discontinuity point on [iI(N), (i+ 1)I(N)), then

∫ (i+1)I(N)

iI(N)

d(α(s), α(iI(N)))ds ≤
∫ I(N)

0

Kαsds ≤ Kα2I(N)2

If α has one or more discontinuity points on [iI(N), (i+ 1)I(N)), then

∫ (i+1)I(N)

iI(N)

d(α(s)α(iI(N)))ds ≤
∫ (i+1)I(N)

iI(N)

2 ‖α‖∞ ds ≤ 2 ‖α‖∞ I(N)

There are at most min(1/I(N), p) intervals [iI(N), (i + 1)I(N)] that have discontinuity points
which shows that

d1 ≤ TI(N)(
Kα

2
+ min(1/I(N), p)2 ‖α‖∞).

If T 6= kI(N), then T = kI(N) + t with 0 < t < I(N). Therefore, there is an additional term

of
∫ kI(N)+t

kI(N)
d(α(s), ᾱN (s))ds ≤ 2 ‖α‖∞ I(N).

5.6 Proof of Theorem 2

This theorem is a direct consequence of Theorem 3 and Theorem 6. We do the proof for almost
sure convergence, the proof for convergence in probability is similar. To prove the theorem we
prove

lim sup
N→∞

V N
∗ (MN (0)) ≤ v∗(m0) ≤ lim inf

N→∞
V N
∗ (MN (0)) (41)

• Let ǫ > 0 and α(.) be an action function such that vα(m0) ≥ v∗(m0)− ǫ (such an action is
called ǫ−optimal). Theorem 3 shows that limN→∞ V N

α (MN (0)) = vα(m0) ≥ v∗(m0)− ǫ a.s.
This shows that lim infN→∞ V N

∗ (MN (0)) ≥ limN→∞ V N
α (MN (0)) ≥ v∗(m0)− ǫ; this holds

for every ǫ > 0 thus lim infN→∞ V N
∗ (MN (0)) ≥ v∗(m0) a.s., which establishes the second

inequality in Eq.(41), on a set of probability 1.

• Let B(N, δ) be as in Theorem 6, ǫ > 0 and πN such that V N
∗ (MN (0)) ≤ V N

πN (M
N (0)) + ǫ.

By Theorem 6, V N
πN (M

N (0)) ≤ E

(

vAN

πN

(m0)
)

+ B(N, δN ) ≤ v∗(m0) + B(N, δN ) where

δN
def
=
∥

∥MN (0)−m0

∥

∥. Thus V N
∗ (MN (0)) ≤ v∗(m0) + B(N, δN ) + ǫ. If further δN → 0

a.s. it follows that lim supN→∞ V N
∗ (MN (0)) ≤ v∗(m0) + ǫ a.s. for every ǫ > 0, thus

lim supN→∞ V N
∗ (MN (0)) ≤ v∗(m0) a.s.

6 Conclusion and Perspectives

There are several natural questions arising from this work. One concerns the convergence of optimal
policies. Optimal policies πN

∗ of a stochastic systems with N objects may not be unique, they may
also exhibit thresholds and therefore be discontinuous. This implies that MN

πN
∗

and V N
πN
∗

will not
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converge in general. In some particular cases, such as the best response dynamics studied in [10],
limit theorems can nevertheless be obtained, at the cost of a much greater complexity. In full
generality however, this problem is still open and definitely deserves further investigations.

The second question concerns the time horizon. In this paper we have focused on the finite
horizon case. Actually, most results and in particular theorems 2 and 3, remain valid with an
infinite horizon with discount. The main argument that makes everything work in the discounted
case is the following. When the rewards r(s, a) are bounded, for a given discount β < 1 and a
given ε > 0, it is possible to find a finite time horizon T such that the expected discounted value of
a policy π can be decomposed into the value over time T plus a term less than ε:

E

∑

t>0

βtr(MN (t), π(MN (t)) ≤ E

T
∑

t=0

βtr(MN (t), π(MN (t)) + ε.

Therefore, the main result of this paper, which states that a policy π that is optimal in the mean
field limit is near-optimal for the finite system with N objects, also holds in the infinite horizon
discounted case.

As for the infinite horizon without discount or average reward cases, convergence of the value
when N goes to infinity is not guaranteed in general. Finding natural assumptions under which
convergence holds is also one of our goals for the future.
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