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The number of absorbed individuals in branching Brownian

motion with a barrier

Pascal Maillard∗

December 1, 2011

Summary. We study supercritical branching Brownian motion on the real
line starting at the origin and with constant drift c. At the point x > 0, we
add an absorbing barrier, i.e. individuals touching the barrier are instantly
killed without producing offspring. It is known that there is a critical drift
c0, such that this process becomes extinct almost surely if and only if c ≥ c0.
In this case, if Zx denotes the number of individuals absorbed at the barrier,
we give an asymptotic for P (Zx = n) as n goes to infinity. If c = c0 and the
reproduction is deterministic, this improves upon results of L. Addario-Berry
and N. Broutin [1] and E. Aı̈dékon [2] on a conjecture by David Aldous about
the total progeny of a branching random walk. The main technique used in
the proofs is analysis of the generating function of Zx near its singular point
1, based on classical results on some complex differential equations.

Keywords. Branching Brownian motion, Galton–Watson process, Briot–
Bouquet equation, FKPP equation, travelling wave, singularity analysis of
generating functions.

MSC2010. Primary: 60J80. Secondary: 34M35.

1 Introduction

We define branching Brownian motion as follows. Starting with an initial individual sitting
at the origin of the real line, this individual moves according to a 1-dimensional Brownian
motion with drift c until an independent exponentially distributed time with rate 1. At that
moment it dies and produces L (identical) offspring, L being a random variable taking values
in the non-negative integers with P (L = 1) = 0. Starting from the position at which its
parent has died, each child repeats this process, all independently of one another and of their
parent. For a rigorous definition, see for example [10].

We assume that m = E[L]− 1 ∈ (0,∞), which means that the process is supercritical. At
position x > 0, we add an absorbing barrier, i.e. individuals hitting the barrier are instantly
killed without producing offspring. Kesten proved [19] that this process becomes extinct
almost surely if and only if the drift c ≥ c0 =

√
2m (he actually needed E[L2] < ∞ for the

“only if” part, but we are going to prove that the statement holds in general). A conjecture
of David Aldous [3], originally stated for the branching random walk, says that the number
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Nx of individuals that have lived during the lifetime of the process satisfies E[Nx] < ∞ and
E[Nx log

+Nx] = ∞ in the critical speed area (c = c0), and P (Nx > n) ∼ Kn−γ in the
subcritical speed area (c > c0), with some K > 0, γ > 1. For the branching random walk,
the conjecture of the critical case was proven by Addario-Berry and Broutin [1] for general
reproduction laws satisfying a mild integrability assumption. Aı̈dékon [2] refined the results
for constant L by showing that there are positive constants ρ,C1, C2, such that for every
x > 0, we have

C1xe
ρx

n(log n)2
≤ P (Nx > n) ≤ C2xe

ρx

n(log n)2
for large n.

Assuming L constant has the advantage that Nx is directly related to the number Zx of
individuals absorbed at the barrier by Nx − 1 = (Zx − 1)(L/(L − 1)), hence it is possible to
study Nx through Zx. In this sense, Neveu [23] had already proven the critical case conjecture
for branching Brownian motion since he showed that the process Z = (Zx)x≥0 is actually a
continuous-time Galton–Watson process of finite expectation, but with E[Zx log

+ Zx] = ∞
for every x > 0, if c = c0.

Let N = {1, 2, 3, . . .} and N0 = {0} ∪ N. Define the infinitesimal transition rates (see [4],
p. 104, Equation (6) or [14], p. 95)

qn = lim
x↓0

1

x
P (Zx = n), n ∈ N0\{1}.

We propose a refinement of Neveu’s result:

Theorem 1.1. Assume c = c0. Assume that E[L(logL)2+ε] < ∞ for some ε > 0. Then we
have as n→ ∞,

∞∑

k=n

qk ∼ c0
n(log n)2

and P (Zx > n) ∼ c0xe
c0x

n(log n)2
for each x > 0.

The heavy tail of Zx suggests that its generating function is amenable to singularity
analysis in the sense of [12]. This is in fact the case in both the critical and subcritical cases if
we impose a stronger condition upon the offspring distribution and leads to the next theorem.

Define f(s) = E[sL] the generating function of the offspring distribution. Denote by δ the
span of L − 1, i.e. the greatest positive integer, such that L − 1 is concentrated on δZ. Let

λc ≤ λc be the two roots of the quadratic equation λ2 − 2cλ + c20 = 0 and denote by d = λc

λc

the ratio of the two roots. Note that c = c0 if and only if λc = λc if and only if d = 1.

Theorem 1.2. Assume that the law of L admits exponential moments, i.e. that the radius
of convergence of the power series E[sL] is greater than 1.

− In the critical speed area (c = c0), as n→ ∞,

qδn+1 ∼
c0

δn2(log n)2
and P (Zx = δn+ 1) ∼ c0xe

c0x

δn2(log n)2
for each x > 0.

− In the subcritical speed area (c > c0) there exists a constant K = K(c, f) > 0, such that,
as n→ ∞,

qδn+1 ∼
K

nd+1
and P (Zx = δn+ 1) ∼ eλcx − eλcx

λc − λc

K

nd+1
for each x > 0.
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Furthermore, qδn+k = P (Zx = δn + k) = 0 for all n ∈ Z and k ∈ {2, . . . , δ}.

Remark 1.3. The idea of using singularity analysis for the study of Zx comes from Robin
Pemantle’s (unfinished) manuscript [24] about branching random walks with Bernoulli repro-
duction.

Remark 1.4. Since the coefficients of the power series E[sL] are real and non-negative, Pring-
sheim’s theorem (see e.g. [13], Theorem IV.6, p. 240) entails that the assumption in Theorem
1.2 is verified if and only if f(s) is analytic at 1.

Remark 1.5. Let β > 0 and σ > 0. We consider a more general branching Brownian motion
with branching rate given by β and the drift and variance of the Brownian motion given by
c and σ2, respectively. Call this process the (β, c, σ)-BBM (the reproduction is still governed
by the law of L, which is fixed). In this terminology, the process described at the beginning
of this section is the (1, c, 1)-BBM. The (β, c, σ)-BBM can be obtained from (1, c/(σ

√
β), 1)-

BBM by rescaling time by a factor β and space by a factor σ/
√
β. Therefore, if we add

an absorbing barrier at the point x > 0, the (β, c, σ)-BBM gets extinct a.s. if and only if

c ≥ c0 = σ
√
2βm. Moreover, if we denote by Z

(β,c,σ)
x the number of particles absorbed at x,

we obtain that

(Z(β,c,σ)
x )x≥0 and (Z

(1,c/(σ
√
β),1)

x
√
β/σ

)x≥0 are equal in law.

In particular, if we denote the infinitesimal transition rates of (Z
(β,c,σ)
x )x≥0 by q

(β,c,σ)
n , for

n ∈ N0\{1}, then we have

q(β,c,σ)n = lim
x↓0

1

x
P
(
Z(β,c,σ)
x = n

)
=

√
β

σ
lim
x↓0

σ

x
√
β
P
(
Z

(1,c/(σ
√
β),1)

x
√
β/σ

= n
)
=

√
β

σ
q(1,c/(σ

√
β),1)

n .

One therefore easily checks that the statements of Theorems 1.1 and 1.2 are still valid for
arbitrary β > 0 and σ > 0, provided that one replaces the constants c0, λc, λc,K by c0/σ

2,

λc/σ
2, λc/σ

2,
√
β
σ K(c/(σ

√
β), f), respectively.

Remark 1.6. After submission of this article, Yang and Ren published an article [25] which
permits to weaken the hypothesis in Theorem 1.1: It is enough to assume that E[L(logL)2] <
∞. In our proof, one needs to replace the reference [20] by [25] and use Theorem B of [7]
instead of our Lemma 4.1, in order to obtain (4.6).

The content of the paper is organised as follows: In Section 2 we derive some preliminary
results by probabilistic means. In Section 3, we recall a known relation between Zx and the
so-called Fisher–Kolmogorov–Petrovskii–Piskounov (FKPP) equation. Section 4 is devoted
to the proof of Theorem 1.1, which draws on a Tauberian theorem and known asymptotics
of travelling wave solutions to the FKPP equation. In Section 5 we review results about
complex differential equations, singularity analysis of generating functions and continuous-
time Galton–Watson processes. Those are needed for the proof of Theorem 1.2, which is done
in Section 6.

2 First results by probabilistic methods

The goal of this section is to prove

3



Proposition 2.1. Assume c > c0 and E[L2] <∞. There exists a constant C = C(x, c, L) >
0, such that

P (Zx > n) ≥ C

nd
for large n.

This result is needed to assure that the constant K in Theorem 1.2 is non-zero. It is
independent from Sections 3 and 4 and in particular from Theorem 1.1. Its proof is entirely
probabilistic and follows closely [2].

2.1 Notation and preliminary remarks

Our notation borrows from [20]. An individual is an element in the space of Ulam–Harris
labels

U =
⋃

n∈N0

Nn,

which is endowed with the ordering relations � and ≺ defined by

u � v ⇐⇒ ∃w ∈ U : v = uw and u ≺ v ⇐⇒ u � v and u 6= v.

The space of Galton–Watson trees is the space of subsets t ⊂ U , such that ∅ ∈ t, v ∈ t if
v ≺ u and u ∈ t and for every u there is a number Lu ∈ N0, such that for all j ∈ N, uj ∈ t if
and only if j ≤ Lu. Thus, Lu is the number of children of the individual u.

Branching Brownian motion is defined on the filtered probability space (T ,F , (Ft), P ).
Here, T is the space of Galton–Watson trees with each individual u ∈ t having a mark
(ζu,Xu) ∈ R+×D(R+,R∪{∆}), where ∆ is a cemetery symbol and D(R+,R∪{∆}) denotes
the Skorokhod space of cadlag functions from R+ to R∪{∆}. Here, ζu denotes the life length
andXu(t) the position of u at time t, or of its ancestor that was alive at time t. More precisely,
for v ∈ t, let dv =

∑
w�v ζw denote the time of death and bv = dv − ζv the time of birth of v.

Then Xu(t) = ∆ for t ≥ du and if v � u is such that t ∈ [bv, dv), then Xu(t) = Xv(t).

The sigma-field Ft contains all the information up to time t, and F = σ
(⋃

t≥0 Ft

)
.

Let y, c ∈ R and L be some random variable taking values in N0\{1}. P = P y,c,L is the
unique probability measure, such that, starting with a single individual at the point y,

− each individual moves according to a Brownian motion with drift c until an independent
time ζu following an exponential distribution with parameter 1.

− At the time ζu the individual dies and leaves Lu offspring at the position where it has
died, with Lu being an independent copy of L.

− Each child of u repeats this process, all independently of one another and of the past of
the process.

Note that often c and L are regarded as fixed and y as variable. In this case, the notation P y

is used. In the same way, expectation with respect to P is denoted by E or Ey.
A common technique in branching processes since [21] is to enhance the space T by

selecting an infinite genealogical line of descent from the ancestor ∅, called the spine. More
precisely, if T ∈ T and t its underlying Galton–Watson tree, then ξ = (ξ0, ξ1, ξ2, . . .) ∈ UN0 is
a spine of T if ξ0 = ∅ and for every n ∈ N0, ξn+1 is a child of ξn in t. This gives the space

T̃ = {(T, ξ) ∈ T × UN0 : ξ is a spine of T}

of marked trees with spine and the sigma-fields F̃ and F̃t. Note that if (T, ξ) ∈ T̃ , then T is
necessarily infinite.
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Assume from now on that m = E[L] − 1 ∈ (0,∞). Let Nt be the set of individuals alive
at time t. Note that every F̃t-measurable function f : T̃ → R admits a representation

f(T, ξ) =
∑

u∈Nt

fu(T )1u∈ξ,
where fu is an Ft-measurable function for every u ∈ U . We can therefore define a measure P̃
on (T̃ , F̃ , (F̃t)) by ∫

T̃
f dP̃ = e−mt

∫

T

∑

u∈Nt

fu(T )P (dT ). (2.1)

It is known [20] that this definition is sound and that P̃ is actually a probability measure
with the following properties:

− Under P̃ , the individuals on the spine move according to Brownian motion with drift c
and die at an accelerated rate m+ 1, independent of the motion.

− When an individual on the spine dies, it leaves a random number of offspring at the
point where it has died, this number following the size-biased distribution of L. In other
words, let L̃ be a random variable with E[f(L̃)] = E[f(L)L/(m+ 1)] for every positive
measurable function f . Then the number of offspring is an independent copy of L̃.

− Amongst those offspring, the next individual on the spine is chosen uniformly. This
individual repeats the behaviour of its parent.

− The other offspring initiate branching Brownian motions according to the law P .

Seen as an equation rather than a definition, (2.1) also goes by the name of “many-to-one
lemma”.

2.2 Branching Brownian motion with two barriers

We recall the notation P y from the previous subsection for the law of branching Brownian
motion started at y ∈ R and Ey the expectation with respect to P y. Recall the definition of
P̃ and define P̃ y and Ẽy analogously.

Let a, b ∈ R such that y ∈ (a, b). Let τ = τa,b be the (random) set of those individuals
whose paths enter (−∞, a]∪ [b,∞) and all of whose ancestors’ paths have stayed inside (a, b).
For u ∈ τ we denote by τ(u) the first exit time from (a, b) by u’s path, i.e.

τ(u) = inf{t ≥ 0 : Xu(t) /∈ (a, b)} = min{t ≥ 0 : Xu(t) ∈ {a, b}},

and set τ(u) = ∞ for u /∈ τ . The random set τ is an (optional) stopping line in the sense of
[10].

For u ∈ τ , define Xu(τ) = Xu(τ(u)). Denote by Za,b the number of individuals leaving
the interval (a, b) at the point a, i.e.

Za,b =
∑

u∈τ
1Xu(τ)=a.

Lemma 2.2. Assume |c| > c0 and define ρ =
√
c2 − c20. Then

Ey[Za,b] = ec(a−y) sinh((b− y)ρ)

sinh((b− a)ρ)
.
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If, furthermore, V = E[L(L− 1)] <∞, then

Ey[Z2
a,b] =

2V ec(a−y)

ρ sinh3((b− a)ρ)

[
sinh((b− y)ρ)

∫ y

a
ec(a−r) sinh2((b− r)ρ) sinh((r − a)ρ) dr

+sinh((y − a)ρ)

∫ b

y
ec(a−r) sinh3((b− r)ρ) dr

]
+ Ey[Za,b].

Proof. On the space T̃ of marked trees with spine, define the random variable I by I = i if
ξi ∈ τ and I = ∞ otherwise. For an event A and a random variable Y write E[Y,A] instead
of E[Y 1A]. Then

Ey[Za,b] = Ey
[∑

u∈τ
1Xu(τ)=a

]
= Ẽy[emτ(ξI ), I <∞,XξI (τ) = a]

by the many-to-one lemma extended to optional stopping lines (see [6], Lemma 14.1 for a
discrete version). But since the spine follows Brownian motion with drift c, we have I < ∞,
P̃ -a.s. and the above quantity is therefore equal to

W y,c[emT , BT = a],

where W y,c is the law of standard Brownian motion with drift c started at y, (Bt)t≥0 the
canonical process and T = Ta,b the first exit time from (a, b) of Bt. By Girsanov’s theorem,
and recalling that m = c20/2, this is equal to

W y[ec(BT−y)− 1
2
(c2−c20)T , BT = a],

where W y = W y,0. Evaluating this expression ([8], p. 212, Formula 1.3.0.5) gives the first
equality.

For u ∈ U , let Θu be the operator that maps a tree in T to its sub-tree rooted in u.
Denote further by Cu the set of u’s children, i.e. Cu = {uk : 1 ≤ k ≤ Lu}. Then note that for
each u ∈ τ we have

Za,b = 1 +
∑

v≺u

∑

w∈Cv

w�u

Za,b ◦Θw,

hence

Ey[Z2
a,b] = Ey

[∑

u∈τ
1Xu(τ)=aZa,b

]

= Ey[Za,b] + P̃ y

[
emτ(ξI )

∑

v≺ξI

∑

w∈Lv

w�ξI

Za,b ◦Θw, XξI (τ) = a

]
.

(2.2)

Define the σ-algebras

G = σ(XξI (t); t ≥ 0),

H = G ∨ σ(ζv; v ≺ ξI),

I = H ∨ σ(ξ, I, (Lv ; v ≺ ξI)),
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such that G contains the information about the path of the spine up to the individual that
quits (a, b) first, H adds to G the information about the fission times on the spine and I adds
to H the information about the individuals of the spine and the number of their children.
Now, conditioning on I and using the strong branching property, the second term in the last
line of (2.2) is equal to

P̃ y

[
emτ(ξI )

∑

v≺ξI

(Lv − 1)EXv(dv−)[Za,b], XξI (τ) = a

]

(recall that dv is the time of death of v). Conditioning on H and noting the fact that Lv

follows the size-biased law of L for an individual v on the spine, yields

P̃ y

[
emτ(ξI )

∑

v≺ξI

V

m+ 1
EXξI

(dv)[Za,b], XξI (τ) = a

]
.

Finally, since under P̃ the fission times on the spine form a Poisson process of intensity m+1,
conditioning on G and applying Girsanov’s theorem yields

W y

[
ec(BT−y)− 1

2
ρ2T

∫ T

0
V EBt [Za,b] dt, BT = a

]

= V ec(a−y)

∫ b

a
Er[Za,b]W

y
[
e−

1
2
ρ2TLr

T , BT = a
]
dr,

where Lr
T is the local time of (Bt) at the time T and the point r. The last expression can be

evaluated explicitly ([8], p. 215, Formula 1.3.3.8) and gives the desired equality.

Corollary 2.3. Under the assumptions of Lemma 2.2, for each b > 0 there are positive

constants C
(1)
b , C

(2)
b , such that as a→ −∞,

a) E0[Za,b] ∼ C
(1)
b e(c+ρ)a,

b) if c > c0, E
0[Z2

a,b] ∼ C
(2)
b e(c+ρ)a and

c) if c < −c0, E0[Z2
a,b] ∼ C

(2)
b e2(c+ρ)a.

The following result is well known and is only included for completeness. We emphasize
that the only moment assumption here is m = E[L]− 1 ∈ (0,∞). Recall that Zx denotes the
number of particles absorbed at x of a BBM started at the origin. For |c| ≥ c0, define λc to
be the smaller root of λ2 − 2c+ c20, thus λc = c−

√
c2 − c20.

Lemma 2.4. Let x > 0.
− If |c| ≥ c0, then E[Zx] = eλcx.
− If |c| < c0, then E[Zx] = +∞.

Proof. We proceed similarly to the first part of Lemma 2.2. Define the (optional) stopping
line τ of the individuals whose paths enter [x,∞) and all of whose ancestors’ paths have
stayed inside (−∞, x). Define I as in the proof of Lemma 2.2. By the stopping line version
of the many-to-one lemma we have

E[Zx] = E[
∑

u∈τ
1] = Ẽ[emτ(ξI ), I <∞].
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By Girsanov’s theorem, this equals

W [ecx−
1
2
(c2−c20)Tx , Tx <∞],

where W is the law of standard Brownian motion started at 0 and Tx is the first hitting time
of x. The result now follows from [8], p. 198, Formula 1.2.0.1.

2.3 Proof of Proposition 2.1

By hypothesis, c > c0, E[L2] <∞ and the BBM starts at the origin. Let x > 0 and let τ = τx
be the stopping line of those individuals hitting the point x for the first time. Then Zx = |τx|.

Let a < 0 and n ∈ N. By the strong branching property,

P 0(Zx > n) ≥ P 0(Zx > n | Za,x ≥ 1)P 0(Za,x ≥ 1) ≥ P a(Zx > n)P 0(Za,x ≥ 1).

If P 0
− denotes the law of branching Brownian motion started at the point 0 with drift −c,

then

P a(Zx > n) = P 0
−(Za−x > n) ≥ P 0

−(Za−x,1 > n).

In order to bound this quantity, we choose a = an in such a way that n = 1
2E

0
−[Zan−x,1]. By

Corollary 2.3 a), c) (applied with drift −c) and the Paley–Zygmund inequality, there is then
a constant C1 > 0, such that

P 0
−(Zan−x,1 > n) ≥ 1

4

E0
−[Zan−x,1]

2

E0
−[Z

2
an−x,1]

≥ C1 for large n.

Furthermore, by Corollary 2.3 a) (applied with drift −c), we have

1

2
C

(1)
1 e−λc(an−x) ∼ n, as n→ ∞,

and therefore an = −(1/λc) log n+O(1). Again by the Paley–Zygmund inequality and Corol-
lary 2.3 a), b) (applied with drift c), there exists C2 > 0, such that for large n,

P 0(Zan,x ≥ 1) = P 0(Zan,x > 0) ≥ E0[Zan,x]
2

E0[Z2
an,x]

≥ (C
(1)
x )2

2C
(2)
x

eλcan ≥ C2

nd
.

This proves the proposition with C = C1C2.

3 The FKPP equation

As was already observed by Neveu [23], the translational invariance of Brownian motion
and the strong branching property immediately imply that Z = (Zx)x≥0 is a homogeneous
continuous-time Galton–Watson process (for an overview to these processes, see [4], Chap-
ter III or [14], Chapter V). There is therefore an infinitesimal generating function

a(s) = α

( ∞∑

n=0

pns
n − s

)
, α > 0, p1 = 0, (3.1)
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associated to it. It is a strictly convex function on [0, 1], with a(0) ≥ 0 and a(1) ≤ 0. Its
probabilistic interpretation is

α = lim
x→0

1
xP (Zx 6= 1) and pn = lim

x→0
P (Zx = n|Zx 6= 1),

hence qn = αpn for n ∈ N0\{1}. Note that with no further conditions on c and L, the sum∑
n≥0 pn need not necessarily be 1, i.e. the rate αp∞, where p∞ = 1 −∑n≥0 pn, with which

the process jumps to +∞, may be positive.
We further define Fx(s) = E[sZx ], which is linked to a(s) by Kolmogorov’s forward and

backward equations ([4], p. 106 or [14], p. 102):

∂

∂x
Fx(s) = a(s)

∂

∂s
Fx(s) (forward equation) (3.2)

∂

∂x
Fx(s) = a[Fx(s)] (backward equation) (3.3)

The forward equation implies that if a(1) = 0 and φ(x) = E[Zx] =
∂
∂sFx(1−), then φ′(x) =

a′(1)φ(x), whence E[Zx] = ea
′(1)x. On the other hand, if a(1) < 0, then the process jumps to

∞ with positive rate, hence E[Zx] = ∞ for all x > 0.
The next lemma is an extension of a result which is stated, but not proven, in [23],

Equation (1.1). According to Neveu, it is due to A. Joffe. To the knowledge of the author,
no proof of this result exists in the current literature, which is why we prove it here.

Lemma 3.1. Let (Yt)t≥0 be a homogeneous Galton–Watson process started at 1, which may
explode and may jump to +∞ with positive rate. Let u(s) be its infinitesimal generating
function and Ft(s) = E[sYt ]. Let q be the smallest zero of u(s) in [0, 1].

1. If q < 1, then there exists t− ∈ R ∪ {−∞} and a strictly decreasing smooth function
ψ− : (t−,+∞) → (q, 1) with limt→t− ψ−(t) = 1 and limt→∞ ψ−(t) = q, such that on
(q, 1) we have u = ψ′

− ◦ ψ−1
− , Ft(s) = ψ−(ψ

−1
− (s) + t).

2. If q > 0, then there exists t+ ∈ R ∪ {−∞} and a strictly increasing smooth function
ψ+ : (t+,+∞) → (0, q) with limt→t+ ψ+(t) = 0 and limt→∞ ψ+(t) = q, such that on
(0, q) we have u = ψ′

+ ◦ ψ−1
+ , Ft(s) = ψ+(ψ

−1
+ (s) + t).

The functions ψ− and ψ+ are unique up to translation.
Moreover, the following statements are equivalent:
− For all t > 0, Yt <∞ a.s.
− q = 1 or t− = −∞.

Proof. We first note that u(s) > 0 on (0, q) and u(s) < 0 on (q, 1), since u(s) is strictly
convex, u(0) ≥ 0 and u(1) ≤ 0. Since F0(s) = s, Kolmogorov’s forward equation (3.2) implies
that Ft(s) is strictly increasing in t for s ∈ (0, q) and strictly decreasing in t for s ∈ (q, 1).
The backward equation (3.3) implies that Ft(s) converges to q as t→ ∞ for every s ∈ [0, 1).
Repeated application of (3.3) yields that Ft(s) is a smooth function of t for every s ∈ [0, 1].

Now assume that q < 1. For n ∈ N set sn = 1 − 2−n(1 − q), such that q < s1 < 1,
sn < sn+1 and sn → 1 as n→ ∞. Set t1 = 0 and define tn recursively by

tn+1 = tn − t′, where t′ > 0 is such that Ft′(sn+1) = sn.

Then (tn)n∈N is a decreasing sequence and thus has a limit t− ∈ R ∪ {−∞}. We now define
for t ∈ (t−,+∞),

ψ−(t) = Ft−tn(sn), if t ≥ tn.
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The function ψ− is well defined, since for every n ∈ N and t ≥ tn,

Ft−tn(sn) = Ft−tn(Ftn−tn+1
(sn+1)) = Ft−tn+1

(sn+1),

by the branching property. The same argument shows us that if s ∈ (q, 1), sn > s and t′ > 0
such that Ft′(sn) = s, then Ft(s) = Ft+t′(sn) = ψ−(t + t′ + tn) for all t ≥ 0. In particular,
ψ−(t′ + tn) = s, hence Ft(s) = ψ−(ψ

−1
− (s) + t). The backward equation (3.3) now gives

u(s) =
∂

∂t
Ft(s)

∣∣t=0
= ψ′

−(ψ
−1
− (s)).

The second part concerning ψ+ is proven completely analogously. Uniqueness up to transla-
tion of ψ− and ψ+ is obvious from the requirement ψ(ψ−1(s) + t) = Ft(s), where ψ is either
ψ− or ψ+.

For the last statement, note that P (Yt < ∞) = 1 for all t > 0 if and only if Ft(1−) = 1
for all t > 0. But this is the case exactly if q = 1 or t− = −∞.

The following proposition shows that the functions ψ− and ψ+ corresponding to (Zx)x≥0

are so-called travelling wave solutions of a reaction-diffusion equation called the Fisher–
Kolmogorov–Petrovskii–Piskounov (FKPP) equation. This should not be regarded as a new
result, since Neveu ([23], Proposition 3) proved it already for the case c ≥ c0 and L = 2 a.s.
(dyadic branching). However, his proof relied on a path decomposition result for Brownian
motion, whereas we show that it follows from simple renewal argument valid for branching
diffusions in general.

Recall that f(s) = E[sL] denotes the generating function of L. Let q′ be the unique fixed
point of f in [0, 1) (which exists, since f ′(1) = m+ 1 > 1), and let q be the smallest zero of
a(s) in [0, 1].

Proposition 3.2. Assume c ∈ R. The functions ψ− and ψ+ from Lemma 3.1 corresponding
to (Zx)x≥0 are solutions to the following differential equation on (t−,+∞) and (t+,+∞),
respectively.

1

2
ψ′′ − cψ′ = ψ − f ◦ ψ. (3.4)

Moreover, we have the following three cases:

1. If c ≥ c0, then q = q′, t− = −∞, a(1) = 0, a′(1) = λc, E[Zx] = eλcx for all x > 0.
2. If |c| < c0, then q = q′, t− ∈ R, a(1) < 0, a′(1) = 2c, P (Zx = ∞) > 0 for all x > 0.
3. If c ≤ −c0, then q = 1, a(1) = 0, a′(1) = λc, E[Zx] = eλcx for all x > 0.

Proof. Let s ∈ (0, 1) and define the function ψs(x) = Fx(s) = E[sZx ] for x ≥ 0. By sym-
metry, Zx has the same law as the number of individuals N absorbed at the origin in a
branching Brownian motion started at x and with drift −c. By a standard renewal argument
(Lemma A.1), the function ψs is therefore a solution of (3.4) on (0,∞) with ψs(0+) = s. This
proves the first statement, in view of the representation of Fx in terms of ψ− and ψ+ given
by Lemma 3.1.

Let s ∈ (0, 1)\{q} and let ψ(s) = ψ−(s) if s > q and ψ(s) = ψ+(s) otherwise. By (3.4),

a′(s) =
ψ′′ ◦ ψ−1(s)

ψ′ ◦ ψ−1(s)
= 2c+ 2

ψ ◦ ψ−1(s)− f ◦ ψ ◦ ψ−1(s)

ψ′ ◦ ψ−1(s)
= 2c+ 2

s− f(s)

a(s)
,
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whence, by convexity,

a′(s)a(s) = 2ca(s) + 2(s − f(s)), s ∈ [0, 1]. (3.5)

Assume |c| ≥ c0. By Lemma 2.4, E[Zx] = eλcx, hence a(1) = 0 and a′(1) = λc, in
particular, a′(1) > 0 for c ≥ c0 and a′(1) < 0 for c ≤ −c0. By convexity, q < 1 for c ≥ c0 and
q = 1 for c ≤ −c0. The last statement of Lemma 3.1 now implies that t− = −∞ if c ≥ c0.

Now assume |c| < c0. By Lemma 2.4, E[Zx] = +∞ for all x > 0, hence either a(1) < 0
or a(1) = 0 and a′(1) = +∞, in particular, q < 1 by convexity. However, if a(1) = 0, then
by (3.5), a′(1) = 2c − 2m/a′(1), whence the second case cannot occur. Thus, a(1) < 0 and
a′(1) = 2c by (3.5).

It remains to show that q = q′ if q < 1. Assume q 6= q′. Then a(q′) 6= 0 by the (strict)
convexity of a and a′(q′) = 2c by (3.5). In particular, a′(q′) ≥ a′(1), which is a contradiction
to a being strictly convex.

4 Proof of Theorem 1.1

We start with the following Abelian-type lemma:

Lemma 4.1. Let X be a random variable concentrated on N0 and let ϕ(s) = E[sX ] be its
generating function. Assume that E[X(log+X)γ ] <∞ for some γ > 0. Then, as s→ 0,

ϕ′(1)− ϕ′(1− s) = O((log 1
s )

−γ) and ϕ′(1)s + ϕ(1− s)− 1 = O(s(log 1
s )

−γ).

Proof. Let s0 > 0 be such that the function s 7→ s(log 1
s )

γ is increasing on [0, s0]. Let
s ∈ (0, s0). Then, with pk = P (X = k),

(ϕ′(1) − ϕ′(1− s))(log 1
s )

γ =
∞∑

k=1

kpk(1− (1− s)k−1)(log 1
s )

γ .

If k ≥ s−1, then (1 − (1 − s)k−1)(log 1
s )

γ ≤ (log k)γ . If ⌈s−1
0 ⌉ ≤ k < s−1, then s(log 1

s )
γ <

1
k (log k)

γ and thus (1− (1− s)k−1)(log 1
s )

γ < ks(log 1
s )

γ ≤ (log k)γ . Hence,

∞∑

k=⌈s−1
0 ⌉

kpk(1− (1− s)k−1)(log 1
s )

γ ≤
∞∑

k=⌈s−1
0 ⌉

pkk(log k)
γ ≤ E[X(log+X)γ ].

Furthermore, we have for s ∈ (0, 1),

⌈s−1
0 ⌉∑

k=1

kpk(1− (1− s)k−1)(log 1
s )

γ ≤ (s(log 1
s )

γ)

⌈s−1
0 ⌉∑

k=1

k2pk ≤ C,

for some C > 0. Collecting these results, we have, for every s ∈ (0, 1),

(ϕ′(1)− ϕ′(1− s))(log 1
s )

γ ≤ C + E[X(log+X)γ ] <∞,

by hypothesis. This yields the first equality. Setting g(s) = ϕ′(1)s + ϕ(1 − s) − 1, we note
that g(0) = 0 and

g′(s) = ϕ′(1)− ϕ′(1− s) = O((log 1
s )

−γ),
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by the first equality. Since (log 1
s )

−γ is slowly varying,

g(s) =

∫ s

0
g′(r) dr = O(s(log 1

s )
−γ),

by standard theorems on the integration of slowly varying functions (see e.g. [11], Section
VIII.9, Theorem 1).

Proof of Theorem 1.1. We have c = c0 by hypothesis. Let ψ− be the travelling wave from
Proposition 3.2, which is defined on R, since t− = −∞. Let φ(x) = 1 − ψ−(−x), such that
φ(−∞) = 1− q, φ(+∞) = 0 and

1
2φ

′′(x) + c0φ
′(x) = f(1− φ(x)) − (1− φ(x)), (4.1)

by (3.4). Furthermore, a(1− s) = φ′(φ−1(s)) and Fx(1− s) = 1− φ(φ−1(s)− x).
Under the hypothesis E[L(log L)2+ε] < ∞, it is known [20] that there exists K ∈ (0,∞),

such that φ(x) ∼ Kxe−c0x as x→ ∞. Since a(1) = 0 and a′(1) = c0 by Proposition 3.2, this
entails that φ′(x) = a(1− φ(x)) ∼ −c0Kxe−c0x, as x→ ∞.

Set ϕ1 = φ′ and ϕ2 = φ. By (4.1),

d

dx

(
ϕ1(x)
ϕ2(x)

)
=

(
φ′′(x)
φ′(x)

)
=

(
−2c0φ

′(x) + 2[f(1− φ(x))− (1− φ(x))]
φ′(x)

)
.

Setting g(s) = c20s+ 2[f(1− s)− (1− s)] = 2[f ′(1)s + f(1− s)− 1], this gives

d

dx

(
ϕ1(x)
ϕ2(x)

)
=M

(
ϕ1(x)
ϕ2(x)

)
+

(
g(ϕ2(x))

0

)
, with M =

(
−2c0 −c20
1 0

)
. (4.2)

The Jordan decomposition of M is given by

J = A−1MA =

(
−c0 1
0 −c0

)
, A =

(
−c0 1− c0
1 1

)
. (4.3)

Setting

(
ϕ1

ϕ2

)
= A

(
ξ1
ξ2

)
, we get with ξ =

(
ξ1
ξ2

)
:

ξ′(x) = Jξ(x) +

(
−g(φ(x))
g(φ(x))

)
,

which, in integrated form, becomes

ξ(x) = exJξ(0) + exJ
∫ x

0
e−yJ

(
−g(φ(y))
g(φ(y))

)
dy. (4.4)

Note that

exJ =

(
e−c0x xe−c0x

0 e−c0x

)
. (4.5)

By the definition of ξ and the above asymptotic of φ, we have g(φ(x)) = O(e−c0x/x1+ε),
as x→ ∞, by Lemma 4.1 and the hypothesis on L. Equations (4.4) and (4.5) now imply that

ξ2(x) ∼ e−c0x
(
ξ2(0) +

∫ ∞

0
ec0yg(φ(y)) dy

)
,
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and

(ξ1 + ξ2)(x) ∼ xe−c0x
(
ξ2(0) +

∫ ∞

0
ec0yg(φ(y)) dy

)
,

and since φ = ξ1 + ξ2 and ξ2 = φ′ + c0φ, this gives

(φ′ + c0φ)(x) ∼ φ(x)/x ∼ Ke−c0x. (4.6)

With this information, one can now show by elementary calculus (see Section A.2), that

a′′(1 − s) ∼ c0

s(log 1
s )

2
, and (4.7)

F ′′
x (1 − s) ∼ c0xe

−c0x

s(log 1
s )

2
, as s→ 0. (4.8)

By standard Tauberian theorems ([11], Section XIII.5, Theorem 5), (4.7) implies that

U(n) =
n∑

k=1

k2qk ∼ c0
n

(log n)2
, as n→ ∞.

By integration by parts, this entails that

∞∑

k=n

qk =

∫ ∞

n−
x−2U(dx) ∼ c0

(
2

∫ ∞

n

1

x2(log x)2
dx− 1

n(log n)2

)
.

But the last integral is equivalent to 1/(n(log n)2) ([11], Section VIII.9, Theorem 1), which
proves the first part of the theorem. The second part is proven analogously, using (4.8)
instead.

5 Preliminaries for the proof of Theorem 1.2

In light of Proposition 2.1, one may suggest that under suitable conditions on L one may
extend the proof of Theorem 1.1 to the subcritical case c > c0 and prove that as n → ∞,
P (Zx > n) ∼ C ′n−d for some constant C ′. In order to apply Tauberian theorems, one would
then have to establish asymptotics for the (⌊d⌋+1)-th derivatives of a(s) and Fx(s) as s→ 1.
In trying to do this, one quickly sees that the known asymptotics for the travelling wave
(1 − ψ(x) ∼ const × e−λcx as x → −∞, see [20]) are not precise enough for this method to
work. However, instead of relying on Tauberian theorems, one can analyse the behaviour
of the holomorphic function a(s) near its singular point 1. This method is widely used in
combinatorics at least since the seminal paper by Flajolet and Odlyzko [12] and is the basis
for our proof of Theorem 1.2. Not only does it work in both the critical and subcritical cases,
it even yields asymptotics for the density instead of the tail only.

In the rest of this section, we will define our notation for the complex analytic part of the
proof and review some necessary general complex analytic results.

5.1 Notation

In the course of the paper, we will work in the spaces C and C2, endowed with the Euclidean
topology. An open connected set is called a region, a simply connected region containing a
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point z0 is also called a neighbourhood of z0. The closure of a set D is denoted by D, its
border by ∂D. The disk of radius r around z0 is denoted by D(z0, r) = {z ∈ C : |z− z0| < r},
its closure and border by D(z0, r) and ∂D(z0, r), respectively. We further use the abbreviation
D = D(0, 1) for the unit disk. For 0 ≤ ϕ ≤ π, r > 0 and x ∈ R, we define

G(ϕ, r) = {z ∈ D(1, r)\{1} : | arg(1− z)| < π − ϕ}, S+(ϕ, x) = [x,∞)× (−ϕ,ϕ),
∆(ϕ, r) = {z ∈ D(0, 1 + r)\{1} : | arg(1− z)| < π − ϕ}, S−(ϕ, x) = (−∞, x]× (−ϕ,ϕ),
H(ϕ, r) = {z ∈ D(0, r)\{0} : | arg z| < ϕ}.

Note that H(ϕ, r) = 1−G(π−ϕ, r). Here and during the rest of the paper, arg(z) and log(z)
are the principal values of argument and logarithm, respectively.

Let G be a region in C, z0 ∈ G and f and g analytic functions in G with g(z) 6= 0 for all
z ∈ G. We write

f(z) = o(g(z)) ⇐⇒ ∀ε > 0 ∃δ > 0 ∀z ∈ G ∩ D(z0, δ) : |f(z)| ≤ ε|g(z)|,
f(z) = O(g(z)) ⇐⇒ ∃C ≥ 0 ∃δ > 0 ∀z ∈ G ∩ D(z0, δ) : |f(z)| ≤ C|g(z)|,
f(z) = Õ(g(z)) ⇐⇒ ∃K ∈ C : f(z) = Kg(z) + o(g(z)),

f(z) ∼ g(z) ⇐⇒ f(z) = g(z) + o(g(z)),

specifying that the relations hold as z → z0.

5.2 Complex differential equations

In this section, we review some basics about complex differential equations. We start with
the fundamental existence and uniqueness theorem ([5], p. 1, [15], Theorem 2.2.1, p. 45 or
[18], Section 12.1, p. 281).

Fact 5.1. Let G be a region in C2 and (w0, z0) a point in G. Let f : G→ C be analytic in G,
i.e. f is continuous and both partial derivatives exist and are continuous. Then there exists a
neighbourhood U of z0 and a unique analytic function w : U → C, such that

1. w(z0) = w0,
2. (w(z), z) ∈ G for all z ∈ U and
3. w′(z) = f(w(z), z) for all z ∈ U .

In other words, the differential equation w′ = f(w, z) with initial condition w(z0) = w0 has
exactly one solution w(z) which is analytic at z0.

The following standard result is a special case of a theorem by Painlevé ([5], p. 11, [15],
Theorem 3.2.1, p. 82 or [18], Section 12.3, p. 286f).

Fact 5.2. Let H be a region in C and w(z) analytic in H. Let G be a region in C2, such that
(w(z), z) ∈ G for each z ∈ H and suppose that there exists an analytic function f : G → C,
such that w′(z) = f(w(z), z) for each z ∈ H. Let z0 ∈ ∂H. Suppose that w(z) is continuous
at z0 and that (w(z0), z0) ∈ G. Then z0 is a regular point of w(z), i.e. w(z) admits an analytic
extension at z0.

Let [z1, . . . , zk]n denote a power series of the variables z1, . . . , zk, converging in a neigh-
bourhood of (0, . . . , 0) and which contains only terms of order n or higher. The complex
differential equation

zw′ = λw + pz + [w, z]2, λ, p ∈ C, (5.1)
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was introduced in 1856 by Briot and Bouquet [9] as an example of a complex differential
equation admitting analytic solutions at a singular point of the equation. More precisely,
they obtained ([15], Theorem 11.1.1, p. 402):

Fact 5.3. If λ is not a positive integer, then there exists a unique function w(z) which is
analytic in a neighbourhood of z = 0 and which satisfies (5.1). Furthermore, w(0) = 0.

The singular solutions to this equation were later investigated by Poincaré, Picard and
others (for a full bibliography, see [17]). We are going to need the following result (see [17],
Paragraph III.9.2o or [15], Theorem 11.1.3, p. 405, but note that the latter reference is without
proof and the statement is slightly incomplete).

Fact 5.4. Assume λ > 0. There exists a function ψ(z, u) =
∑

jk≥0 pjkz
juk, converging in a

neighbourhood of (0, 0) and such that p00 = 0 and p01 = 1, such that the general solution of
(5.1) which vanishes at the origin is w = ψ(z, u), with

− u = Czλ, if λ /∈ N,
− u = zλ(C +K log z), if λ ∈ N.

Here, C ∈ C is an arbitrary constant and K ∈ C is a fixed constant depending only on the
right-hand side of (5.1).

Remark 5.5. The above statement is slightly imprecise, in that the term solution is not
defined, i.e. what a priori knowledge of w(z) (regarding its domain of analyticity, smoothness,
behaviour at z = 0, . . . ) is required in order to guarantee that it admits the representation
stated in Fact 5.4? Inspecting the proof (as in [17], for example) shows that it is actually
enough to know that w(z) satisfies (5.1) on an interval (0, ε) of the real line and that w(0+) =
0. We briefly explain why:

In order to prove Fact 5.4, one shows that there exists a function ψ of the form stated
above, such that when changing variables by w = ψ(z, u), the function u(z) formally satisfies
one of the equations

zu′ = λu or zu′ = λu+Kzλ,

according to whether λ /∈ N or λ ∈ N.
Now suppose that w(z) satisfies the above conditions. By the implicit function theorem

([16], Theorem 2.1.2), we can invert ψ to obtain a function ϕ(w, z) = w + qz + [w, z]2,
q ∈ C, such that ψ(z, ϕ(w, z)) = w in a neighbourhood of (0, 0). We may thus define
u(z) = ϕ(w(z), z) for all z ∈ (0, ε1) for some ε1 > 0. Moreover, u(z) now truly satisfies the
above equations on (0, ε1) and u(0+) = 0. Standard theory of ordinary differential equations
on the real line now yields that u is necessarily of the form stated in Fact 5.4.

We further remark that since u(z) is analytic in the slit plane C\(−∞, 0] and goes to 0 as
z → 0 in C\(−∞, 0], there exists an r > 0, such that (z, u(z)) is in the domain of convergence
of ψ(z, u) for every z ∈ H(π, r). Hence, every solution w(z) can be analytically extended to
H(π, r).

5.3 Singularity analysis

We now summarise results about the singularity analysis of generating functions. The basic
references are [12] and [13], Chapter VI. The results are of two types: those that establish an
asymptotic for the coefficients of functions that are explicitly known, and those that estimate
the coefficients of functions which are dominated by another function. We start with the
results of the first type:
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Fact 5.6. Let d ∈ (1,∞)\N, k ∈ N, γ ∈ Z\{0}, δ ∈ Z and the functions f1, f2 defined by

f1(z) = (1− z)d and f2(z) = (1− z)k
(
log

1

1− z

)γ (
log log

1

1− z

)δ

,

for z ∈ C\[1,+∞). Let (p
(i)
n ) be the coefficients of the Taylor expansion of fi around the

origin, i = 1, 2. Then (p
(i)
n ) satisfy the following asymptotics as n→ ∞:

p(1)n ∼ K1

nd+1
and p(2)n ∼ K2(log n)

γ−1(log log n)δ

nk+1
,

for some non-zero constants K1 = K1(d),K2 = K2(k, γ, δ). We have K2(1,−1, 0) = 1.

Proof. For f1, this is Proposition 1 from [12]. For f2 this is Remark 3 at the end of Chapter
3 in the same paper. Note that the additional factors 1

z do not change the nature of the
singularities, since 1

z is analytic at 1 (see the footnote on p. 385 in [13]). The last statement
follows from Remark 3 as well.

The results of the second type are contained in the next theorem. It is identical to
Corollary 4 in [12]. Note that a potential difficulty here is that it requires analytical extension
outside the unit disk.

Fact 5.7. Let 0 < ϕ < π/2, r > 0 and f(z) be analytic in ∆(ϕ, r). Assume that as z → 1 in
∆(ϕ, r),

f(z) = o

(
(1− z)αL

(
1

1− z

))
, where L(u) = (log u)γ(log log u)δ , α, γ, δ ∈ R.

Then the coefficients (pn) of the Taylor expansion of f around 0 satisfy

pn = o

(
L(n)

nα+1

)
, as n→ ∞.

5.4 An equation for continuous-time Galton–Watson processes

In this section, let (Yt)t≥0 be a homogeneous continuous-time Galton–Watson process starting
at 1. Let a(s) be its infinitesimal generating function and Ft(s) = E[sYt ]. Assume a(1) = 0
and a′(1) = λ ∈ (0,∞), such that a(s) = 0 has a unique root q in [0, 1).

The following proposition establishes a relation between the infinitesimal generating func-
tion of a Galton–Watson process and its generating function at time t. For real s, the formulae
stated in the proposition are well known, but we will need to use them for complex s, which
is why we have to include some (complicated) hypotheses to be sure that the functions and
integrals appearing in the formulae are well defined.

Proposition 5.8. Suppose that a and Ft have analytic extensions to some regions Da and
DF . Let Za = {s ∈ Da : a(s) = 0}. Let there be simply connected regions G ⊂ Da\Za and
D ⊂ G ∩DF with Ft(D) ⊂ G and D ∩ (0, 1) 6= ∅. Then the following equations hold for all
s ∈ D: ∫ Ft(s)

s

1

a(r)
dr = t, (5.2)
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and

1− Ft(s) = eλt(1− s) exp

(
−
∫ Ft(s)

s
f∗(r) dr

)
, (5.3)

where f∗(s) is defined for all s ∈ Da\Za as

f∗(s) =
λ

a(s)
+

1

1− s
, (5.4)

and the integrals may be evaluated along any path from s to Ft(s) in G.

Proof. For s ∈ (0, 1)\{q}, equation (5.2) follows readily from Kolmogorov’s backward equation
(3.3), when the integral is interpreted as the usual Riemann integral ([4], p. 106). Now note
that by definition of G, both 1

a(s) and f∗ are analytic in the simply connected region G and
therefore possess antiderivatives g and h in G. Thus, the functions

s 7→
∫ Ft(s)

s

1

a(r)
dr = g(Ft(s))− g(s) and s 7→

∫ Ft(s)

s
f∗(r) dr = h(Ft(s))− h(s)

are analytic in D. By the analytic continuation principle, (5.2) then holds for every s ∈ D,
since D ∩ (0, 1) 6= ∅ by hypothesis. This proves the first equation. For the second equation,
note that − log(1 − s) is an antiderivative of 1

1−s in G, whence the right-hand side of (5.3)
equals

eλt(1− s) exp

(
log(1− Ft(s))− log(1− s)− λ

∫ Ft(s)

s

1

a(r)
dr

)
= 1− Ft(s),

for all s ∈ D, by (5.2). This gives (5.3).

Corollary 5.9. If 1 is a regular point of a(s), then it is a regular point for Ft(s) for every
t ≥ 0.

Proof. Define G = {s ∈ D : Re s > q}. Then G ∩ Za = ∅, since q is the only zero of a in D
(every probability generating function g with g′(1) > 1 has exactly one fixed point q in D;
this can easily be seen by applying Schwarz’s lemma to τ−1 ◦ g ◦ τ , where τ is the Möbius
transformation of the unit disk that maps 0 to q). Let s1 ∈ (q, 1) be such that Ft(s) ∈ G for
every s ∈ H = {s ∈ D : Re s > s1}. We can then apply Proposition 5.8 to conclude that (5.3)
holds for every s ∈ H.

Since a(s) is analytic in a neighbourhood U of 1 by hypothesis, it is easy to show that f∗

is analytic in U as well. Thus, f∗ has an antiderivative F ∗ in H ∪ U . We define the function
g(s) = (1 − s) exp(F ∗(s)) on H ∪ U . Since g′(1) = − exp(F ∗(1)) 6= 0, there exists an inverse
g−1 of g in a neighbourhood U1 of g(1) = 0. Let U2 ⊂ U be a neighbourhood of 1, such that
eλtg(s) ∈ U1 for every s ∈ U2. Define the analytic function F̃t(s) = g−1(eλtg(s)) for s ∈ U2.
Then by (5.3), we have Ft(s) = F̃t(s) for every s ∈ H ∩ U2, hence F̃t is an analytic extension
of Ft at 1.

Corollary 5.10. Suppose that a(s) has an analytic extension to G(ϕ0, r0) for some 0 <
ϕ0 < π and r0 > 0. Suppose further that there exist c ∈ R, γ > 1, such that a(1 − s) =
−λs + λcs/ log s + O(s/| log s|γ) as s → 0. Then for every ϕ0 < ϕ < π there exists r > 0,
such that Ft(s) can be analytically extended to G(ϕ, r), mapping G(ϕ, r) into G(ϕ0, r0).
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Proof. Recall that λ > 0. By hypothesis, we can then assume that a(s) 6= 0 in G(ϕ0, r0) by
choosing r0 small enough. Then λ/a has an antiderivative A on G(ϕ0, r0). Define B(s) =
A(1− s) for s ∈ H(π − ϕ0, r0), such that

B′(s) =
1

s(1− c/ log s+O(| log s|−γ))
=

1

s
+

c

s log s
+O

(
1

s| log s|−min(γ,2)

)
.

We can therefore apply Lemma A.7 to B and deduce that there exist ϕ1 ∈ (ϕ0, ϕ) and
r1, r ∈ (0, r0), such that A is injective on G(ϕ1, r1) and such that A(s) + λt ∈ A(G(ϕ1, r1))
for every s ∈ G(ϕ, r). Hence, F̃t(s) = A−1(A(s) + λt) is defined and analytic on G(ϕ, r). By
(5.2), F̃t(s) = Ft(s) on G(ϕ, r) ∩ D, hence F̃t is an analytic extension of Ft, mapping G(ϕ, r)
into G(ϕ1, r1) ⊂ G(ϕ0, r0) by definition.

6 Proof of Theorem 1.2

We turn back to branching Brownian motion and to our Galton–Watson process Z = (Zx)x≥0

of the number of individuals absorbed at the point x. Throughout this section, we place
ourselves under the hypotheses of Theorem 1.2, i.e. we assume that c ≥ c0 =

√
2m and that

the radius of convergence of f(s) = E[sL] is greater than 1. The equation λ2 − 2cλ+ c20 = 0
then has the solutions λc = c−

√
c2 − c20 and λc = c+

√
c2 − c20, hence λc = λc = c0 if c = c0

and λc < c0 < λc otherwise. The ratio d = λc/λc is therefore greater than or equal to one,
according to whether c > c0 or c = c0, respectively. Recall further that δ ∈ N denotes the
span of L− 1.

Let a(s) = α(
∑

k≥0 pks
k−s) be the infinitesimal generating function of Z and let Fx(s) =

E[sZx ]. We recall the equation (3.5) from Section 3: For s ∈ [0, 1],

a′(s)a(s) = 2ca(s) + 2(s − f(s)). (6.1)

By the analytic continuation principle, this equation is satisfied on the domain of analyticity
of a(s), in particular, on D.

We now give a quick overview of the proof. Starting point is the equation (6.1). We are
going to see that this equation is closely related to the Briot–Bouquet equation (5.1) with
λ = d. The representation of the solution to this equation given by Fact 5.4 will therefore
enable us to derive asymptotics for a(s) near its singular point s = 1 (Theorem 6.4). Via the
results in Section 5.4, we will be able to transfer these to the functions Fx(s) (Corollary 6.6).
Finally, the theorems of Flajolet and Odlyzko in Section 5.3 yield the asymptotics for qn and
P (Zx = n).

More specifically, we will see that the main singular term in the expansion of a(1 − s)
or Fx(1 − s) near s = 0 is sd, if d /∈ N and sd log s, if d ∈ N. At first sight, this dichotomy
might seem strange, but it becomes evident if one remembers that we expect the coefficients
of Fx(s) (i.e. the probabilities P (Zx = n), assume δ = 1) to behave like 1/nd+1, if d > 1 (see
Proposition 2.1). In light of Fact 5.6, a logarithmic factor must therefore appear if d is a
natural number, otherwise Fx(s) would be analytic at 1, in which case its coefficients would
decrease at least exponentially.

We start by determining the singular points of a(s) and Fx(s) on the boundary of the unit
disk, which is the content of the next three lemmas.

Lemma 6.1. Let X be a random variable with law (pk)k∈N0
and let x > 0. Then the spans

of X − 1 and of Zx − 1 are equal to δ.
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Proof. This follows from the fact that the BBM starts with one individual and the number
of individuals increases by l − 1 when an individual gives birth to l children.

Lemma 6.2. If δ = 1, then a(s) and (Fx(s))x>0 are analytic at every s0 ∈ ∂D\{1}. If δ ≥ 2,
then there exist a function h(s) and a family of functions (hx(s))x>0, all analytic on D, such
that

a(s) = sh(sδ) and Fx(s) = shx(s
δ),

for every s ∈ D. Furthermore, h and (hx)x>0 are analytic at every s0 ∈ ∂D\{1}.

Proof. Assume first that δ ≥ 2. Define

h(s) = α(
∑

n

p1+δns
n − 1) and hx(s) =

∑

n

P (Zx = 1 + δn)sn.

By Lemma 6.1, pk+δn = P (Zx = k + δn) = 0 for every k ∈ {2, . . . , δ} and n ∈ Z, whence
a(s) = sh(sδ) and Fx(s) = shx(s

δ) for every s ∈ D.
We now claim that a and Fx are analytic at every s0 ∈ ∂D with sδ0 6= 1. Note that if

δ ≥ 2, this implies that h and hx are analytic at every s0 ∈ ∂D\{1}, since the function s 7→ sδ

has an analytic inverse in a neighbourhood of any s 6= 0.
First note that by [11], Lemma XV.2.3, p. 475, we have |∑n pns

n
0 | < 1 for every s0 ∈ ∂D,

such that sδ0 6= 1, whence a(s0) 6= 0. Now write the differential equation (6.1) in the form

a′ =
2ca+ 2(s − f(s))

a
=: g(a, s).

Since the radius of convergence of f is greater than 1 by hypothesis, g is analytic at (a(s0), s0).
Furthermore, a is continuous at s0, since

∑
n pns

n converges absolutely for every s ∈ D.
Fact 5.2 now shows that a is analytic at s0.

It remains to show that Fx is analytic at s0. Kolmogorov’s forward and backward equations
(3.2) and (3.3) imply that a(s)F ′

x(s) = a(Fx(s)) on [0, 1], and the analytic continuation
principle implies that this holds on D. Now, let s0 ∈ ∂D, such that sδ0 6= 1. Then we have
just shown that a is analytic and non-zero at s0. Furthermore, |Fx(s0)| < 1, by the above
stated lemma in [11] and Lemma 6.1. Thus, the function f(w, s) = a(w)/a(s) is analytic
at (Fx(s0), s0), hence we can apply Fact 5.2 again to conclude that Fx is analytic at s0 as
well.

The next lemma ensures that we can ignore certain degenerate cases appearing in the
course of the analysis of (3.5). It is the analytic interpretation of the probabilistic results in
Section 2.

Lemma 6.3. 1 is a singular point of a(s). If c = c0, then a
′′(1) = +∞.

Proof. If c = c0, the second assertion follows from Theorem 1.1 or from Neveu’s result that
E[Zx log

+ Zx] = ∞ for x > 0 (see the remark before Theorem 1.1). This implies that 1
is a singular point of a(s). If c > c0, Proposition 2.1 implies that E[sZx ] = ∞ for every
s > 1, whence 1 is a singular point of the generating function Fx(s) by Pringsheim’s theorem
([13], Theorem IV.6, p. 240). By Corollary 5.9, it follows that 1 is a singular point of a(s) as
well.

The next theorem is the core of the proof of Theorem 1.2.
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Theorem 6.4. Under the assumptions of Theorem 1.2, for every ϕ ∈ (0, π) there exists
r > 0, such that a(s) possesses an analytical extension (denoted by a(s) as well) to G(ϕ, r).
Moreover, as 1− s→ 1 in G(ϕ, r), the following holds.

− If d = 1, then

a(1− s) = −c0s+ c0
s

log 1
s

− c0s
log log 1

s

(log 1
s )

2
+ Õ

(
s

(log 1
s )

2

)
. (6.2)

− If d > 1, then there is a K = K(c, f) ∈ C\{0} and a polynomial P (s) =
∑⌊d⌋

n=2 cns
n,

such that

if d /∈ N : a(1− s) = −λcs+ P (s) +Ksd + o(sd), (6.3)

if d ∈ N : a(1− s) = −λcs+ P (s) +Ksd log s+ o(sd). (6.4)

Proof of Theorem 6.4. We set b(s) = a(1− s). By (6.1),

− b′(s)b(s) = 2cb(s) + 2(1 − s− f(1− s)) on D(1, 1). (6.5)

Since f is analytic at 1 by hypothesis, there exists 0 < ε1 < 1 − q and a function g analytic
on D(0, ε1) with g(0) = g′(0) = 0, such that f(1− s) = 1− (m+ 1)s + g(s) for s ∈ D(0, ε1).

As a first step, we analyse (6.5) for real non-negative s. Since ε1 < 1 − q, b(s) < 0 on
(0, ε1), whence we can divide both sides by b(s) to obtain

db

ds
=

−2cb− c20s+ 2g(s)

b
on (0, ε1). (6.6)

Introduce the parameter t(s) =
∫ ε1
s

dr
−b(r) , s ∈ (0, ε1], such that t(ε1) = 0, t(0+) = +∞

and t(s) is strictly decreasing on (0, ε1]. There exists then an inverse s(t) on [0,∞), which
satisfies s′(t) = b(s(t)). Hence, we have

db

dt
=

db

ds

ds

dt
= −2cb(t) − c20s(t) + 2g(s(t)) on (0,∞),

In matrix form, this becomes

d

dt

(
b
s

)
=M

(
b
s

)
+

(
2g(s)
0

)
, M =

(
−2c −c20
1 0

)
, (6.7)

for t ∈ (0,∞). Note that this extends (4.2) to the subcritical case. This time, the Jordan
decomposition of M is given by

A−1MA =

(
−λc 0
0 −λc

)
, A =

(
−λc −λc
1 1

)
, if c > c0, (6.8)

and by (4.3), if c = c0. Setting (
b
s

)
= A

(
B
S

)
, (6.9)
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transforms (6.7) into

dB

dt
= −λcB + [B,S]2,

dS

dt
= −λcS + [B,S]2, if c > c0, (6.10)

dB

dt
= −c0B + S + [B,S]2,

dS

dt
= −c0S + [B,S]2, if c = c0, (6.11)

for t ∈ (0,∞). Furthermore, by (6.9), we have

s = B + S, (6.12)

S =

{
(λc − λc)

−1(b+ λcs), if d > 1,

b+ c0s, if d = 1,
(6.13)

B =

{
(λc − λc)

−1(b+ λcs), if d > 1,

−b+ (1− c0)s, if d = 1.
(6.14)

From now on, let ε2, ε3, . . . be positive numbers that are as small as necessary. By the strict
convexity of b and the fact that b′(0) = −λc by Lemma 2.4, equation (6.13) implies that S is
a strictly convex non-negative function of s on [0, ε2). This implies that the inverse s = s(S)
exists and is non-negative and strictly concave on [0, ε3). It follows that t(S) = t(s(S)) exists
on [0, ε4). Equations (6.10) and (6.11) then yield for S ∈ (0, ε4),

dB

dS
=
dB + [B,S]2
S + [B,S]2

, if c > c0, (6.15)

dB

dS
=
B − c−1

0 S + [B,S]2
S + [B,S]2

, if c = c0. (6.16)

By (6.12) and the fact that s(S) is strictly concave, B is a strictly concave function of S
as well, hence strictly monotone on (0, ε5). We claim that B(S)2 = o(S) as S → 0. For d > 1,
one checks by (6.13) that S(s) ∼ s, as s → 0, whence B(S) = o(S), as S → 0, by (6.12).
If d = 1, then b′(0) = −c0 by Lemma 2.4 and b′′(0) = +∞ by Lemma 6.3. Equation (6.13)
then implies that S(s)/s2 → +∞ as s→ 0, whence s(S) = o(

√
S). The claim now follows by

(6.12).

Proposition A.4 now tells us that there exists a function h(z) = [z]2, such that the function
s(S) = S − h(B(S)) has an inverse S(s) on (0, ε6) and b(s) = B(S(s)) satisfies the Briot–
Bouquet equation

sb′ =

{
db+ [b, s]2, if d > 1,

b− c−1
0 s+ [b, s]2, if d = 1,

(6.17)

on (0, ε6). By Fact 5.4 and Remark 5.5, there exists then a function ψ(z, u) = u+ rz+[z, u]2,
r ∈ C, such that b(s) = ψ(s, u(s)), where

u(z) = Czd, if d /∈ N and u(z) = Czd log z, if d ∈ N,

for some constant C = C(c, f) ∈ C (the form of u in the case d ∈ N can be obtained from the
one in Fact 5.4 by changing ψ, C and K). Moreover, comparing the coefficient of s on both
sides of (6.17), we get, if d > 1, r = dr, whence r = 0 and if d = 1: r + C = r − c−1

0 , whence
C = −c−1

0 .
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Assume now d > 1. Then b = u(s) + [s, u(s)]2. Recall that B = b and S = s + h(b). By
(6.12),

s = B + S = b+ s+ h(b) = s+ u(s) + [s, u(s)]2,

such that s′(s) = 1 + o(1) and s(s) = s + [s]2 + o(sγ), as s → 0, where γ = (d + ⌊d⌋)/2, if
d /∈ N and γ = d− 1/2, if d ∈ N. By Lemmas A.6 and A.8, for every ϕ0 ∈ (0, π) there exists
r0 > 0, such that the inverse s(s) exists and is analytic on H(ϕ0, r0) and satisfies

s(s) = s+ [s]2 + o(sγ), as s→ 0.

This entails that

u(s) = Csd = C(s+ o(s))d = Csd + o(sd), if d /∈ N,

u(s) = Csd log s = C(s+ o(s3/2))d log(s+ o(s)) = Csd log s+ o(sd), if d ∈ N\{1},
sn = [s]2 + o(sγ+1) + o(sγ

2

) = [s]2 + o(sd), for all n ≥ 2.

It follows that

b(s) = b(s(s)) = u(s) + [s]2 + o(sd), as s→ 0.

We finally get by (6.9),

b = −λcB − λcS = −λcs+ (λc − λc)b = −λcs+ (λc − λc)u(s) + [s]2 + o(sd),

which proves (6.3) and (6.4).

If d = 1, recall that u(z) = c−1
0 z log 1

z and b = u(s) + rs + [s, u(s)]2 for some r ∈ C. By
(6.12),

s = B + S = b+ s+ h(b) = u(s) + (r + 1)s + [s, u(s)]2,

such that s′(s) = c−1
0 log(1

s
) +O(1) and s(s) = c−1

0 s log 1
s
+ (r + 1)s + o(s). Lemma A.6 now

implies that for every ϕ0 ∈ (0, π) there exists r0 > 0, such that the inverse s(s) exists and is
analytic on H(ϕ0, r0). Now, by (6.9),

b = −c0s+ S = −c0s+ s+ h(b) = −c0s+ s+O(s3/2).

Lemma A.9 now yields (6.2).

Remark 6.5. The reason why we cannot explicitly determine the constant K in Theorem 6.4
is that we are analysing (3.5) only locally around the point 1. Since the solution of (3.5)
with boundary conditions a(q) = a(1) = 0 is unique (this follows from the uniqueness of the
travelling wave solutions to the FKPP equation), a global analysis of this equation should be
able to exhibit the value of K. But it is probably easier to refine the probabilistic arguments
of Section 2, which already give a lower bound that can be easily made explicit.

The asymptotics established in Theorem 6.4 for the infinitesimal generating function can
now be readily transferred to the generating functions Fx(s).

Corollary 6.6. Under the assumptions of Theorem 1.2, for every x > 0 and ϕ ∈ (0, π) there
exists r > 0, such that Fx(s) = E[sZx ] can be analytically extended to G(ϕ, r). Furthermore,
the following holds as 1− s→ 1 in G(ϕ, r).
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− If d = 1, then

Fx(1 − s) = 1− ec0xs+ c0xe
c0x

(
s

log 1
s

− s log log 1
s

(log 1
s )

2

)
+ Õ

(
s

(log 1
s )

2

)
. (6.18)

− If d > 1, then there is a polynomial Px(s) =
∑⌊d⌋

n=2 cns
n, such that

if d /∈ N : Fx(1− s) = 1− eλcxs+ Px(s) +Kxds
d + o(sd), (6.19)

if d ∈ N : Fx(1− s) = 1− eλcxs+ Px(s) +Kxs
d log s+ o(sd), (6.20)

where Kx = K(eλcx − eλcx)/(λc − λc), with K being the constant from Theorem 6.4.

Proof. Let 0 < ϕ0 < ϕ. By Theorem 6.4, there exists r0 > 0, such that a(s) can be analytically
extended to G(ϕ0, r0) and satisfies the hypothesis of Corollary 5.10. It follows that there
exists r > 0, such that Fx(s) can be analytically extended to G(ϕ, r) and maps G(ϕ, r) into
G(ϕ0, r0). Hence, the functions

w(s) = 1− Fx(1− s) and I(s) =

∫ w(s)

s
f∗(1− r) dr,

where f∗(s) is defined as in (5.4), are analytic in H(π − ϕ, r). In what follows, we always
assume that s ∈ H(π − ϕ, r). Appearance of the symbols ∼, O, Õ, o means that we let s go
to 0 in H(π − ϕ, r).

First of all, we note that by Proposition 5.8, we have

w(s) = seλcx exp(I(s)) = seλcx
(
1 + I(s) +

∞∑

k=2

I(s)k

k!

)
. (6.21)

Now assume d > 1. By Theorem 6.4, a(1− s) = −λcs+[s]2+u(s)+ o(s
d), where u(s) = Ksd

or u(s) = Ksd log s, according to whether d /∈ N or d ∈ N, respectively. It follows that

f∗(1− s) =
λc

a(1− s)
+

1

s
= −1

s

(
1− [s]1 − u(s)

λcs
+ o(sd−1)

)−1
+

1

s

= [s]0 − u(s)
λcs2

+ o(sd−2).

Now,
∫ w(s)
s o(rd−2) dr = o(sd−1), since w(s) ∼ seλcx by Lemma 2.4. Thus,

I(s) =

∫ w(s)

s
f∗(1− r) dr = [w(s), s]1 −

∫ w(s)

s

u(r)

λcr2
dr + o(sd−1). (6.22)

Since
∫ w(s)
s r−2u(r) dr = O(sd−1 log s), equations (6.21) and (6.22) now give

w(s) = seλcx

(
1 + [w(s), s]1 −

∫ w(s)

s

u(r)

λcr2
dr + o(sd−1)

)
. (6.23)

If d ≥ 2, we deduce that w(s) = seλcx + o(s3/2). Straightforward calculus now shows that

∫ w(s)

s

u(r)

λcr2
dr =

Kx

eλcx

u(s)

s
+ [w(s), s]1 + o(sd−1), (6.24)
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and (6.23) and (6.24) now yield

w(s) = seλcx + [w(s), s]2 −Kxu(s) + o(sd).

Repeated application of this equation shows that w(s) = seλcx+ [s]2 −Kxu(s)+ o(sd), which
yields (6.19) and (6.20).

In the critical case d = 1, Theorem 6.4 tells us that

f∗(1− s) =
1

s

(
− 1

log 1
s

+
log log 1

s

(log 1
s )

2
+ Õ

(
1

(log 1
s )

2

))
. (6.25)

Write λ = λc = c0. For our first approximation of w(s), we note that

I(s) ∼ −
∫ seλx

s

1

r log 1
r

dr ∼ − 1

log 1
s

∫ seλx

s

1

r
dr = − λx

log 1
s

,

hence, by (6.21),

w(s) = seλx

(
1− λx

log 1
s

+ o

(
1

log 1
s

))
. (6.26)

To obtain a finer approximation, we decompose I(s) into

I(s) =

∫ seλx

s
f∗(1− r) dr +

∫ w(s)

seλx
f∗(1− r) dr =: I1(s) + I2(s).

We then have

I1(s) = − λx

log 1
s

+ λx
log log 1

s

(log 1
s )

2
+ Õ

(
1

(log 1
s )

2

)
,

and, because of (6.26),

−I2(s) ∼
∫ seλx(1+ λx

log s
)

seλx

1

r log 1
r

dr ∼ λx

(log 1
s )

2
.

Plugging this back into (6.21) finishes the proof.

Proof of Theorem 1.2. Let x > 0. We want to apply the methods from singularity analysis
reviewed in Section 5.3 to the functions a and Fx, if δ = 1, or the functions h and hx from
Lemma 6.2, if δ ≥ 2. Let ϕ ∈ (0, π/2). By Theorem 6.4 and Corollary 6.6, there exists
r0 > 0, such that a and Fx can be analytically extended to G(ϕ, r0), which implies that
for some ϕ1 ∈ (ϕ, π/2) and r1 ∈ (0, r), h and hx can be extended to G(ϕ1, r1), as well.
Moreover, by Lemma 6.2, each of these functions is analytic in a neighbourhood of every
point of C = {s ∈ ∂D : |1 − s| ≥ r1/2}, which is a compact set. Hence, there exists a finite
number of neighbourhoods which cover C. It is then easy to show that there exists r > 0,
such that the functions are analytic in ∆(ϕ1, r).

If δ = 1, we can then immediately apply Facts 5.6 and 5.7, together with the asymptotics
on a and Fx established in Theorem 6.4 and Corollary 6.6, to prove Theorem 1.2.

If δ ≥ 2, let q(s) be the inverse of s 7→ sδ in a neighbourhood of 1, then h(s) = a(q(s))/q(s)
near 1, by Lemma 6.2. But since q′(1) = 1/δ, we have

h(1 − s) = a(1− (
1

δ
s+ c2s

2 + c3s
3 + · · · ))(1 + c′1s+ c′2s+ · · · ),
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for some constants cn, c
′
n, and so equations (6.2), (6.3) and (6.4) transfer to h with the

coefficient of the main singular term divided by δd. We can therefore use Facts 5.6 and 5.7
for the function h to obtain the asymptotic for (pδn+1)n∈N in Theorem 1.2. In the same way,
equations (6.18), (6.19) and (6.20) yield asymptotics for hx, such that we can use again Facts
5.6 and 5.7 to prove the second part of Theorem 1.2.

A Appendix

A.1 A renewal argument for branching diffusions

Let W = (Wt)t≥0 be a diffusion on an interval with endpoints a′ ≤ 0 < a, such that
limx↓0 Px[T0 < t] = 1 for every t > 0, where T0 = inf{t ≥ 0 : Wt = 0} and W0 = x,
Px-almost surely. For x ∈ (0, a), and only in the scope of this section, we define P x to be the
law of the branching diffusion starting with a single particle at position x where the particles
move according to the diffusion W and branch with rate β according to the reproduction law
with generating function f(s). Moreover, particles hitting the point 0 are absorbed at that
point. Denote by Z the number of particles absorbed during the lifetime of the process and
define us(x) = P x[sZ ] for s ∈ [0, 1) and x ∈ (0, a).

Lemma A.1. Let s ∈ [0, 1) and G be the generator of the diffusion W . Then

Gus = β(us − f ◦ us) on (0, a), with us(0+) = s.

Proof. The proof proceeds by a renewal argument similar to the one in [22]. As for the BBM,
for an individual u, we denote by ζu its time of death, Xu(t) its position at time t and Lu the
number of u’s children. Define the event A = {∃t ∈ [0, ζ∅) : X∅(t) = 0}. For s ∈ [0, 1) we
have by the strong branching property

us(x) = Ex[sZ ] = sP x(A) +Ex

[(
EX∅(ζ∅−)[sZ ]

)L∅

, Ac

]

= sPx(T0 < ξ) + Ex[f(us(Wξ)), ξ ≤ T0],

where W = (Wt)t≥0 is a diffusion with generator G starting at x under Px, T0 = inf{t ≥ 0 :
Wt = 0} and the random variable ξ is exponentially distributed with rate β and independent
from W . Setting v(x) = Px(T0 < ξ) we get by integration by parts

v(x) =

∫ ∞

0
βe−βtPx(T0 < t) dt =

∫ ∞

0
e−βtPx(T0 ∈ dt) = Ex

[
e−βT0

]
,

and therefore Gv = βv on (0, a) ([8], Paragraph II.1.10, p. 18).
Denote the β-resolvent of the diffusion by Rβ. By the strong Markov property,

Ex[f(us(Wξ)), ξ ≤ T0] = Ex
[ ∫ ∞

0
βe−βtf(us(Wt)) dt

]
− Ex

[ ∫ ∞

T0

βe−βtf(us(Wt)) dt
]

= βRβ(f ◦ us)(x)− βEx[e−βT0 ]Rβ(f ◦ us)(0),

hence us = Cs,βv + βRβ(f ◦ us), with Cs,β = s− βRβ(f ◦ us)(0). It follows that

Gus = βCs,βv + β2Rβ(f ◦ us)− β(f ◦ us) = β(us − f ◦ us) on (0, a).

By the above hypothesis on W , Px(T0 < ξ) → 1 as x ↓ 0, whence us(0+) = s.
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A.2 Addendum to the proof of Theorem 1.1

With the notation used in the proof of Theorem 1.1, recall that for some constant K > 0 we
have

(φ′ + c0φ)(x) ∼ φ(x)/x ∼ Ke−c0x, as x→ ∞.

In what follows, formulae containing the symbols ∼ and o() are meant to hold as s ↓ 0. The
above equation yields

a(1− s) = φ′(φ−1(s)) = −c0s+ (φ′ + c0φ)(φ
−1(s)) = −c0s+

(c0 + o(1))s

log 1
s

. (A.1)

Now, by (3.5), we have

a′(1− s)a(1− s) = 2c0a(1− s) + c20s− g(s),

where we recall that g(s) was defined as g(s) = 2(f(1 − s) − 1 + f ′(1)s). From the above
equation, one gets

a′′(1− s) = −(a(1− s))−3
((
c0a(1− s) + c20s− g(s)

)2 − g′(s)a(1 − s)2
)
,

and an application of Lemma 4.1 and (A.1) yields (4.7).
Kolmogorov’s forward and backward equations (3.2) and (3.3) give

F ′
x(s) =

a(Fx(s))

a(s)
,

and taking the derivative on both sides of this equation gives

F ′′
x (s) =

a(Fx(s))

a(s)2
(
a′(Fx(s))− a′(s)

)
. (A.2)

By (4.7) and F ′
x(1) = E[Zx] = ec0x, we get

a′(Fx(1− s))− a′(1− s) = −
∫ 1−Fx(1−s)

s
a′′(1− r) dr ∼ − c20x

(log s)2
.

This equation, together with (A.2) now yields

F ′′
x (1− s) ∼ −c0ec0xs

c20s
2

(
− c20x

(log s)2

)
,

which is (4.8).

A.3 Reduction to Briot–Bouquet equations

In this section, we show how one can reduce differential equations as those obtained in the
proof of Theorem 1.2 to the canonical form (5.1). It is mostly based on pp. 64 and 65 of [5].

Lemma A.2. Let λ ∈ (0, 1] and p ∈ C. Then the equation

w′ =
λw + [w, z]2

z + pw + [w, z]2
. (A.3)

has an analytic solution w(z) = [z]2 in a neighbourhood of the origin.

26



Proof. We choose the ansatz w = z · w1. This transforms (A.3) into

zw′
1 +w1 =

λzw1 + z2[w1, z]0
z + pzw1 + z2[w1, z]0

=
λw1 + z[w1, z]0
1 + [w1, z]1

.

Writing the inverse of the denominator as a power series in w1 and z, this equals

(λw1 + z[w1, z]0)(1 + [w1, z]1) = λw1 + rz + [w1, z]2,

for some r ∈ C. This finally yields

zw′
1 = (λ− 1)w1 + rz + [w1, z]2.

Since λ− 1 is not a positive integer, this equation now has an analytic solution w1(z) = [z]1
by Fact 5.3, whence w(z) = zw1(z) = [z]2 solves (A.3).

Remark A.3. The important point in Lemma A.2 is that the coefficient of z in the numerator
of (A.3) is 0, which is why w′(z) = 0.

Proposition A.4. Let λ ≥ 1 and p ∈ R. Suppose w(z) is a strictly monotone real-valued
function on (0, ε), ε > 0, with w(z)2 = o(z) as z → 0 and satisfying

w′ =
λw + pz + [w, z]2

z + [w, z]2
on (0, ε). (A.4)

Then there exists h(z) = [z]2 and ε1 > 0, such that z = z − h(w) has an inverse z = z(z) on
(0, ε1) and such that

z
dw

dz
= λw + pz+ [w, z]2 on (0, ε1). (A.5)

Proof. By hypothesis, w(z) is monotone on (0, ε) and therefore possesses an inverse z = z(w)
on (0, δ), δ > 0, which satisfies

dz

dw
=

λ−1z + [w, z]2
w + pλ−1z + [w, z]2

. (A.6)

By Lemma A.2, there exists then an analytic solution z = g(w) = [w]2 to (A.6), since
λ−1 ∈ (0, 1] by hypothesis. Setting z = z− g(w) transforms (A.6) into a differential equation,
which has z = 0 as a solution, hence it is of the form

dz

dw
=

λ−1z+ z[w, z]1
w + pλ−1z+ [w, z]2

.

We have dz/dz = 1 + g′(w(z))w′(z) = 1 +O(w(z)w′(z)). By (A.4),

w(z)w′(z) = O(w(z)2/z + w(z)) = o(1),

by hypothesis. Hence, there exists ε1 > 0, such that z(z) is strictly increasing on (0, ε1) and
therefore has an inverse. Thus, w(z) = w(z(z)) satisfies

dw

dz
=
w + pλ−1z+ [w, z]2
λ−1z(1 + [w, z]1)

on (0, ε2),

for some ε2 > 0. Expanding (1+ [w, z]1)
−1 as a power series at (w, z) = (0, 0) gives (A.5).
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A.4 Inversion of some analytic functions

The results in this section are needed in the proofs of Corollary 5.10 and Theorem 1.2.

Lemma A.5. Let ϕ ∈ (0, π), r > 0 and h be an analytic function on H(ϕ, r) with h(z) = o(z)
as z → 0. Then there exists r1 > 0, such that for all z1, z2 ∈ H(ϕ, r1),

log z1 − log z2 +

∫ z1

z2

h(z) dz 6= 0.

Proof. Let z1, z2 ∈ H(ϕ, r). Write zi = aie
iϕi , with ai > 0, ϕi ∈ (−ϕ,ϕ), i = 1, 2. Define the

paths

γ1(t) = a2e
i(tϕ1+(1−t)ϕ2) and γ2(t) = (ta1 + (1− t)a2)e

iϕ1 , t ∈ [0, 1],

such that their concatenation forms a path from z2 to z1 in H(ϕ, r). Then
∫

γ1

h(s) ds = |ϕ1 − ϕ2| · a2o(1/a2) and

∫

γ2

h(s) ds = | log a1 − log a2|o(1).

As a consequence,
∣∣∣∣
∫ z1

z2

h(s) ds

∣∣∣∣ = (|ϕ1 − ϕ2|+ | log a1 − log a2|)o(1) ≤
√
2| log z1 − log z2|o(1).

This proves the statement.

Lemma A.6. Let r > 0 and ϕ ∈ (0, π]. Let g and h be analytic functions on H(ϕ, r) with
g′(z) = 1 + o(1), h′(z) = log 1

z + O(1), g(z) → 0 and h(z) → 0 as z → 0 in H(ϕ, r). Then
for each ϕ0 ∈ (0, ϕ) and ϕ1 ∈ (ϕ0, ϕ) there exist r0, r1 > 0, such that g and h are injective on
H(ϕ1, r1) and the images of H(ϕ1, r1) by g and h contain H(ϕ0, r0).

Proof. By hypothesis, g(z) = z + o(z) as z → 0 in H(ϕ, r), whence arg g(z) = arg z + o(1).
Thus, there exists r1 > 0, such that g(H(ϕ1, r1)) ⊂ C\(−∞, 0].

Suppose that there exist z1, z2 ∈ H(ϕ1, r1), such that g(z1) = g(z2). Let γ be a path from
z2 to z1 in H(ϕ1, r1). Then g ◦ γ is a loop in C\(−∞, 0], whence

0 =

∫

g◦γ

1

z
dz =

∫

γ

g′(z)
g(z)

dz = log z1 − log z2 +

∫

γ
o(1z ) dz.

By Lemma A.5, we can choose r1 so small, that this equality cannot hold, whence g is injective
on H(ϕ1, r1).

Since g(z) → 0 and arg g(z) = arg z + o(1) as z → 0, there exists r0 > 0, such that
g(∂H(ϕ1, r1)) encloses H(ϕ0, r0). Now, since g is injective on H(ϕ1, r1), H(ϕ1, r1) and
g(H(ϕ1, r1)) are conformally equivalent, whence g(H(ϕ1, r1)) is simply connected. It follows
that g(H(ϕ1, r1)) ⊃ H(ϕ0, r0).

Exactly the same arguments hold for h, since h(z) = z(log 1
z+O(1)) by hypothesis, whence

arg h(z) = arg z + o(1) and h′(z)/h(z) = 1/z + o(1/z) as z → 0.

Lemma A.7. Let r > 0, ϕ ∈ (0, π] and t ∈ R. Let g be an analytic function on H(ϕ, r) with

g′(z) =
1

z
+

c

z log z
+O

(
1

z| log z|γ
)
, as z → 0 in H(ϕ, r),

for some c ∈ R and γ > 1. Then for each 0 < ϕ0 < ϕ1 < ϕ there exist r0, r1 > 0, such that g
is injective on H(ϕ1, r1) and g(z) + t ∈ g(H(ϕ1, r1)) for every z ∈ H(ϕ0, r0).
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Proof. By the hypothesis on g, we have for z1, z2 ∈ H(ϕ, r),

g(z1)− g(z2) = log z1 − log z2 +

∫ z1

z2

o(1/z) dz.

By Lemma A.5, there exists therefore r1 > 0, such that g is injective on H(ϕ1, r1).
Since 1/(x| log x|γ) is integrable near 0, we have

g(z) = log z + c log(log 1
z ) + o(1), as z → 0,

where we assume without loss of generalisation that the constant of integration is 0. It follows
that Re g(z) → −∞ and Im g(z) = arg z + o(1) as z → 0, since c ∈ R. Hence, there exists an
R ∈ R, such that g(∂H(ϕ1, r1)) encloses the strip S = S−(R,ϕ1). As in the proof of Lemma
A.6, it follows that S ⊂ g(H(ϕ1, r1)). Furthermore, again by the asymptotics of Re g and
Im g, there exists r0 > 0, such that g(s) + t ∈ S for every s ∈ G(ϕ0, r0). This concludes the
proof.

Lemma A.8. Let w(z) be an analytic function on an open subset of C\(−∞, 0], such that
w(z) → 0 as z → 0 and

z = w + a2w
2 + · · ·+ anw

n + o(wγ), as z → 0,

for some n ∈ N, γ > n and a2, . . . , an ∈ C. Then there exist b2, . . . , bn ∈ C, such that

w(z) = z + b2z
2 + · · ·+ bnz

n + o(zγ), as z → 0.

Proof. For every i ∈ N, we have by hypothesis

zi = wi + ai,i+1w
i+1 + · · ·+ ai,nw

n + o(wγ),

for some ai,i+1, . . . , ai,n ∈ C. For 2 ≤ k ≤ n, define recursively (with b1 = 1)

bk = −(a1,k + b2a2,k + · · ·+ bk−1ak−1,k).

Then, z + b2z
2 + · · · + bnzn = w + o(wγ). The statement now follows from the fact that

w(z) ∼ z as z → 0 by hypothesis, whence o(wγ) = o(zγ).

Lemma A.9. Let w(z) be an analytic function on an open subset of C\(−∞, 0], such that
w(z) → 0 as z → 0 and

cz = w log 1
w + Cw + o(w), as z → 0,

for some constants c > 0, C ∈ C. Then

w =
cz

log 1
z

(
1− log log 1

z + C − log c+ o(1)

log 1
z

)
, as z → 0.

Proof. Set f(z) = w(z)/z. By hypothesis, log z ∼ logw = log z + log f(z), whence log f(z) =
o(log z). Now define g(z) by

w(z) =
cz

log 1
z

g(z),
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such that log g(z) = log f(z)− log log 1
z = o(log z). By hypothesis,

cz ∼ w log 1
w =

cz

log 1
z

g(z)
(
log log 1

z + log 1
z − log c− log g(z)

)
∼ czg(z),

whence g(z) ∼ 1, which implies log g(z) = o(1). It now follows from the hypothesis that

cz =
cz

log 1
z

g(z)
(
log log 1

z − log cz + C + o(1)
)
,

whence

g(z) =

(
1 +

log log 1
z + C − log c+ o(1)

log 1
z

)−1

.

The statement now follows from the series representation of (1 + z)−1 at z = 0.

Acknowledgements
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