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This contribution describes a bio-inspired image filtering method using spiking neurons. Bio-inspired approaches aim at identifying key properties of biological systems or models and proposing efficient implementations of these properties. The neural image filtering method takes advantage of the temporal integration behavior of spiking neurons. Two experimental validations are conducted to demonstrate the interests of this neural-based method. The first set of experiments compares the noise resistance of a classical DOG filtering method and the neuronal DOG method on a synthetic image. The other experiment explores the edges recovery ability on a natural image. The results show that the neural-based DOG filtering method is more resistant to noise and provides a better edge preservation than classical DOG filtering method.

INTRODUCTION

The term bio-inspired usually refers to the process of identifying key mechanisms of biological systems and proposing their efficient implementation in an artificial system.

In vision, it has been identified that an essential mechanism of the biological visual system is visual attention. This mechanism allows biological organisms to select only small regions of their visual environment and to iteratively process these regions.

The interest of this type of phenomenon for computer vision is obvious. From a computational point of view, visual attention is a process which allows to reduce the complexity required to process a visual scene [START_REF] Tsotsos | The complexity of perceptual search tasks[END_REF][START_REF] Tsotsos | A distributed model of spatial visual attention[END_REF][START_REF] Itti | Neurobiology of Attention[END_REF] which leads to better and sometimes faster results than classical imaging algorithms.

Artificial attention-based systems could be found in various applications, such as driver assistance systems [START_REF] Michalke | Enhancing robustness of a saliency-based attention system for driver assistance[END_REF], medical image computing [START_REF] Fouquier | Incorporating a pre-attention mechanism in fuzzy attribute graphs for sequential image segmentation[END_REF] or robotics [START_REF] Frintrop | Attentional landmark selection for visual slam[END_REF]. All those type of applications are based on the identification of salient regions. Those type of regions are the ones selected by the attention-based systems as being of interest, i.e. the ones carrying a sufficient amount of information of various types. To identify salient regions, a well known method [START_REF] Itti | A model of saliency-based visual attention for rapid scene analysis[END_REF] is to combine different types of visual information (e.g. edges, orientations or color opponency) and to select regions carrying the most amount of combined information. Several saliency-based systems based on neural networks already exist. They rely on neural networks to combine information on a higher level [START_REF] Ahrns | Space-variant dynamic neural fields for visual attention[END_REF]Vitay et al., 2005;[START_REF] Maillard | Perception as a dynamical sensori-motor attraction basin[END_REF][START_REF] De Brecht | A neural network implementation of a saliency map model[END_REF][START_REF] Fix | A distributed computational model of spatial memory anticipation during a visual search task[END_REF]. However, none of them has investigate the interest of using neural networks for low-level processing such as image filtering.

The described neural-based image filtering method is implemented with spiking neurons, which are known as the "third generation" of neuron models [START_REF] Maass | Networks of spiking neurons: the third generation of neural network models[END_REF]. Spiking neuron models can exhibit a rich set of behaviors, such as temporal integrator or synchrony detector [START_REF] König | Integrator or coincidence detector? the role of the cortical neuron revisited[END_REF], whereas the underlying equations are relatively simple, as in Leaky Integrate-and-Fire models (Gerstner and Kistler, 2002, Section 4.1.1).

As in saliency-based systems edges information are often obtained by filtering an input image with a difference of Gaussians (DOG) filter, this paper compares DOG convolutional filtering and DOG neural filtering methods. Moreover, DOG algorithm is said to mimic the way details are extracted from images by the neural process in the retina [START_REF] Enroth-Cugell | The contrast sensitivity of retinal ganglion cells of the cat[END_REF] and so seems to be perfectly adapted to a comparison with a bio-inspired attention filtering algorithm.

The spiking neuron network and the neural filtering method are detailed in Section 2. To demonstrate the interests of the neural-based method, two experimental validations are conducted on synthetic and natural images in Section 3. The first validation compares the noise resistance for both algorithms by using artificially corrupted images and the second one explores the edges recovery ability on natural images. Conclusions are given in Section 4.

SPIKING NEURAL NETWORK

The neural image filtering method is implemented with a network of Leaky Integrate-and-Fire (LIF) neuron units [START_REF] Abbott | Lapicque's introduction of the integrateand-fire model neuron[END_REF]. The LIF model describes the evolution of the membrane potential V and when V exceed a threshold ϑ, the neuron emits a spike. The LIF model is characterized by the following differential equation:

dV dt = -λV (t) + u(t), if V < ϑ else emit spike and V is set to V reset (1)
where λ is the membrane relaxation term and u(t) is a command function, which represents the influence of inputs on the membrane potential. The network is a set of two 2D neural layers, called neural maps, as shown on Figure 1. These neural maps have the same size as the input image, i.e. for an image of NxM pixels the size of the neural maps is also NxM [START_REF] Chevallier | Saliency extraction with a distributed spiking neural network[END_REF][START_REF] Chevallier | Covert attention with a spiking neural network[END_REF].

Each neural map implements a specific operation: the first one a transduction and the second one a temporal integration. The transduction operation takes place on the Input map (Figure 1) and transforms pixel values in spike trains. The temporal integration is done by neurons of the Filter map and they produce the result of neural image filtering.

From Pixels to Spikes

The membrane potential V i of an Input map neuron i is given by the following equation:

dV i dt = -λ i V i (t) + KL(x, y,t) (2)
where K is a constant and L(x, y,t) is the luminance variation of the pixel at the location (x, y), ∀x ∈ Assuming that V (t 0 ) = 0 and V reset = 0, for L i > λ i ϑ/K the neuron i spikes with a regular inter-spike interval ti defined by: ti = -

1 λ i ln 1 - λ i ϑ KL i (3)
This neuron produces a periodic spikes train s i (t):

s i (t) = ∞ ∑ f =1 δ(t -f ti ) (4) 
where δ(.) is the Dirac distribution, with δ(x) = 0 for x = 0 and

R +∞ -∞ δ(x)dx = 1.

Neural Filtering

The neurons of Filter map integrate spike trains sent by Input map neurons. For a given neuron j of Filter map, the membrane potential V j is determined by:

dV j dt = -λ j V j (t) + ∑ i∈P j w i j s i (t) (5) 
where P j is the set of Input map neurons connected to the neuron j and w i j is the connection weight between neurons i and j. The influence of Input map spikes described in Equation ( 5) is known as instantaneous synaptic interaction. Thus, the evolution of the membrane potential V j can be express as:

V j (t) = P j ∑ i=1 w i j ∞ ∑ f =1 e -λ j (t-f ti ) H(t, f ti ) (6)
where H(t, f ti ) is the Heaviside function, with H(t, f ti ) = 1 if t f ti and 0 otherwise. Neurons of Filter map are connected to Input map neurons through a connection mask [START_REF] Wolff | ParSPIKE-a parallel DSP-accelerator for dynamic simulation of large spiking neural networks[END_REF], which explicits the weight value of each connection. A connection mask defines a type of generic receptive field (see Figure 1) and the same connection mask is shared by all the Filter map neurons.

The spikes produced by Filter map neurons are interpreted to construct the resulting image filtering. A gray level value l is associated to each Filter map neuron, which represent the normalized discharge rate, and this value is computed as:

l(x, y) = NS(x, y) MAX x,y (NS) × depth (7)
where NS(x, y) is the number of spikes emitted by the neuron at the location (x, y) and depth is the output image depth. The resulting image displays a gray level value l = 0 for neurons that have not emitted a spike. For the other neurons, gray values code for the number of spike emitted.

Computational Cost

The computational cost of a simulation of this spiking neuron network is implementation-dependent. The network described in this study is implemented with an asynchronous approach: a simulated time step ∆t is defined and for each ∆t the active neurons (i.e. neurons which receive inputs) are updated. The parameter ∆t must be carefully set as it has a direct influence on the precision of simulation and the computational cost of the algorithm: increasing the precision is made at the expense of the computational cost.

Here, the chosen value of ∆t (0.1 millisecond) is very small compared to the highest discharge rate observed during simulations (≈10 Hz) ensuring that results are precises and reproducibles.

The overall computation cost can be expressed as the sum of the cost of updates and the cost of spikes propagation:

c u × A ∆t + c p × F × (NxM) × P j (8)
The cost of updates depends on c u (the cost of updating one neuron), the average number A of active neurons (only neurons which receive spike are process) and ∆t. The cost of propagating spikes is a function of c p (the cost of propagating one spike), the mean discharge rate F, the number of neurons (here, it is the image size, NxM) and P j the number of output connections.

In the proposed network, the cost of updates for Input map neurons can be discarded as the inter-spike interval is constant: it can be computed off-line and stored in a LUT. The propagation cost of spikes emitted by Filter map neurons is also negligible: they are only stored for building the resulting image. Hence, the computational cost is strongly related to the number of spikes emitted by Input map neurons and this number is data-dependent. In the worst case, the computational cost of neural filtering is in O(NxM), which is comparable to the cost of image convolution (in the case of non-separable filter).

RESULTS

In order to explore the boundaries recovery ability of the neural filtering method, we propose to compare it to the performances made by the DOG convolution in the same conditions. The DOG impulse response is defined as:

DOG(x, y) = 1 2πσ 2 1 e -x 2 +y 2 2σ 2 1 - 1 2πσ 2 2 e -x 2 +y 2 2σ 2 2 (9)
For the convolutional DOG method, the value of σ 1 is set to 1 and the value of σ 2 is set to 3.

For the neural filtering method, the weight values of the connection mask are computed with the DOG impulse response defined in Equation ( 9) (with the same value as above : σ 1 = 1 and σ 2 = 3) and are normalized between -w max and w max . The value of the spiking neuron network parameters are w max = 0.4, λ i = 0.005 and λ j = 0.001.

Methodology of the Validation

The validation of the neural-based method is divided in two main phases. First, a validation on synthetic images is done in order to compare the noise resistance ability of this algorithm versus the convolutional one. Then, a study on natural images is performed to study the edges retrieval ability of the neural method on images corrupted by "natural" noise.

In the first phase, three different kind of noises were used to corrupt the original image: the Gaussian noise, the Poisson noise and the salt and pepper. For each type, various levels of noise are applied. As the goal of this validation is to study edges preservation ability of both methods, the Sobel filtered original image is compared to image resulting from the following process: the original image is corrupted with a given noise, it is then filtered with the neural method, eventually a Sobel filter is applied and finally a thresholding. The same comparison is done for the convolutional filtering. An example of each step of the pro- cess can be seen on Figure 2, which present the result on Gaussian noise.

It is important to remind that the Sobel operator computes an approximation of the gradient of image intensity function and thus gives edges with various gray levels depending on gradient values. One can thus consider that the higher the gray value is, the stronger the edge is. But as the information encoding is different for neural and convolutional methods, a direct comparison is not possible. In order to compare fairly both methods, it has been decided to do a binarization of the image resulting of the Sobel filter and to consider that all the edges had the same importance. This approach allowed to study details preservation, resistance to artifacts created by noise and it is independent from the information coding used in neural method or in convolutional one. Therefore, a threshold was applied on resulting Sobel filtered images: all values strictly higher than 0 were preserved in giving them the value 255. The calculation of the performance of both algorithms was done using the Mean Squared Error estimator, considering that the ground truth is the binary result of the Sobel applied on original image.

It has to be noticed that we deliberately decided not to calculate SNR (Signal to Noise Ratio) on resulting images since the aim here is edges determination and preservation and both convolutional and neural algorithms do not process a good filtering in term of original image retrieval.

On a second time, we decided to perform the validation of our method on natural images. Knowing that natural images are usually corrupted by noise, edges attenuation, blur in some cases, the aim here was to study the behaviour of the neural method on this kind of images and to compare it to convolutional filtering. Due to the difficulty of finding realistic estimators in such cases, a visual estimation of the preservation and enhancement of edges was performed.

Experimental Results on Synthetic Images

The experimental validation process explained in the previous section is done on a 256x256 pixels synthetic 8-bit grayscale image (presented on the top of the Figure 2). The chosen parameter values for convolutional and neural filtering are described in Sect. 3. Figure 4 shows the results obtained for the different noise type (Gaussian, Poisson and salt and pepper).

The quality of the results produced by the neuralbased method are dependent from the spiking neuron network simulation time. The number of simulated time step ∆t is a parameter of this method. Figure 3 shows the evolution of the measured MSE for simulated time step ∆t ∈ [0; 1000]. One can notice that the curve seems to reach its minimum in few steps (generally between 80 and 120 time steps). After that the process seems to degrade the image in term of edges preservation. Hence, for each experiment (i.e. each noise level) the MSE is computed for each simulated time step ∆t. The worst and the best score are then determined and these values are referred on the Figure 4 as "worst neuronal" and "best neuronal". On these figures, an MSE score is represented for an empiri-cally determined stopping criteria (∆t = 115), which is called "neuronal". As one can see in Figure 4 neural filtering is always better in term of MSE measure for contour preservation, even for "worst neuron".

A visual validation has also been made to check that even visually the results were better for neuralbased filtering. For an example of such denoised images, see Figure 2. These data are processed to determine the "worst" and "best" values for neural filtering.

Experimental Results on Natural Images

As mentioned before, the evaluation were also performed on natural image. A Sobel filter is applied on a natural image and is compared to the natural image filtered with DOG convolution or neural filter and a Sobel filter.

This visual method is used to study the edges preservation and enhancement. An example of such a process is given in Figure 5.

It has to be noticed that due to differences in information coding and so as to compare fairly both methods, a threshold has been applied on DOG and neural filtered images for visual inspection. The same threshold is applied on images for visual inspection after the application of the Sobel operator as explained in the previous section.

As we can see here, neural filter seems to be less influenced by noise level in the original image than the DOG filter and seems to retrieve better the principal edges of the image. 

CONCLUSIONS

In this paper we detailed a novel filtering algorithm based on an spiking neurons network. The pixel values of the input image are transformed into spike trains on an Input map. The generated spike train are processed by a Filter map which realize a temporal integration of these spike trains. The result of this integration is the neural filtered result.

For DOG filtering, the neural-based method is tested on synthetic and natural images and outperform the classical DOG convolution in terms of edges preservation and retrieval in noisy images. It has been shown that for other filtering algorithms based on an iterative process, the question of the stopping criteria determination is crucial. Therefore the presented results always mentioned the worst and the best obtained results. 
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 1 Figure 1: Pixel values of an input image are transformed into spike trains (transduction operation) by Input map neurons. Filter map neurons are connected to Input map neurons through their receptive field (called connection mask). Neurons of the Filter map realize a temporal integration of spikes sent by Input map neurons to produce the neural filtering result.

Figure 2 :

 2 Figure 2: This figure represents the whole process of validation made on a synthetic image.

Figure 3 :

 3 Figure 3: The MSE is computed for each time step during a neural simulation (here for Gaussian noise with σ = 85).These data are processed to determine the "worst" and "best" values for neural filtering.
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  This figure represents an example of the validation process made on natural images. A Sobel filter is first applied to the natural image and is compared to the result of the filtering of the original image with a Neural (or DOG) filter and a Sobel one.
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 4 Figure 4: Evaluation of contour preservation for Gaussian (left), Poisson (center) and salt and pepper noises (right). The neural-based algorithm outperform the convolution one.