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David Monniaux
CNRS / VERIMAG †
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Abstract

We propose a quantifier elimination scheme based on nested lazy
model enumeration through SMT-solving, and projections. This scheme
may be applied to any logic that fulfills certain conditions; we illus-
trate it for linear real arithmetic. The quantifier elimination problem
for linear real arithmetic is doubly exponential in the worst case, and
so is our method. We have implemented it and benchmarked it against
other methods from the literature.

1 Introduction

Quantifier elimination consists in transforming a quantified formula into
an equivalent quantifier-free formula. For instance, the formulas ∀y (y −
z ≥ x ⇒ x + z ≥ 1) and x ≥ 1 − z are equivalent (they have the same
models for (x, z)), whether considered over the reals or integers. Quantifier
elimination subsumes both satisfiability testing for quantifier-free formulas,
and the decision of quantified formulas without free variables. In program
analysis, quantifier elimination has been applied to obtain optimal invariants
and optimal abstract transformers [21, 20], and to obtain preconditions for
modular assertion checking [22].

Unfortunately, quantifier elimination tends to be slow; as recalled in §4,
worst-case complexities for useful theories tend to be towers of exponentials.
Yet, high worst-case complexity does not preclude exploring procedures that
perform fast on most examples, as shown by the high success of SAT solving.
This motivates our work on new quantifier elimination algorithms.

Many interesting mathematical theories admit quantifier elimination. In
order to introduce better elimination schemes, we shall first describe a naive,
but inefficient algorithm (§2.2) which works by calling a projection opera-
tor, that is, an algorithm taking as an input a conjunction C of literals
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of the theory, and a list of variables x1, . . . , xn, and outputting a formula
equivalent to ∃x1, . . . , xn C. Examples of theories with projection operators
include nonlinear complex arithmetic (also known as the theory of alge-
braically closed fields), using Gröbner bases [9]; linear real arithmetic, using
Fourier-Motzkin elimination [15, §5.4] or more advanced polyhedral projec-
tion techniques; and linear integer arithmetic, also known as Presburger
arithmetic, using the Omega test [23].

Nonlinear integer arithmetic, also known as Peano arithmetic, is unde-
cidable. However, nonlinear (polynomial) real arithmetic1 admits quantifier
elimination. The best known general algorithms construct a cylindrical alge-
braic decomposition of the polynomials present in the atoms of the formula;
once this costly decomposition is obtained, the quantifier elimination is triv-
ial [6, 2]. We therefore exclude these two theories from our study.

This article provides two contributions. First, it describe an algorithm
that uses both projection and satisfiability testing modulo the chosen theory,
and illustrate it with linear real arithmetic. This algorithm performs nested
satisfiability tests, with lazy generation of constraints. Second, we improve
on the worst case complexity bounds for an earlier algorithm [19], which are
also valid for the new one.

In §2, we give a short introduction to quantifier elimination techniques
over linear real arithmetic, and the idea of lazy constraint generation. In
§3, we describe our algorithm, and we prove that its complexity is at most
doubly exponential in §4. Finally, in §5 we provide benchmarks.

2 Previous State of the Art

Let us first recall some vocabulary on formulas. We shall then summa-
rize previous work on quantifier elimination on linear real arithmetic, most
notably our eager projection method (§2.2). We propose a lazy projection
method using ideas of lazy constraint generation; §2.3 gives examples of such
techniques in other applications.

2.1 Formulas

We consider quantifier-free formulas written using ∧, ∨ and ¬ connectors,
as well as literals (atoms or negation thereof). A formula written without ¬
except just around an atom is said to be in negation normal form (NNF), a
formula consisting in a disjunction of conjunctions of literals is in disjunctive
normal form (DNF), a formula consisting in a conjunction of disjunctions
of literals is in conjunctive normal form (CNF).

We shall mostly focus on the case where the atoms are of the form
∑

i aixi ≤ b where the ai and b are constant rational numbers and the

1Also known as the theory of real closed fields.
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xi are real variables. A model of a formula F is an assignment to the xi
such that the formula is satisfied; we then note (x1, . . . , xn) � F . We say
that two formulas F and G are equivalent, noted F ≡ G, if they have the
same models. We say that F implies G, noted F ⇛ G, if all models of F
are models of G. Formulas without free variables are equivalent to true or
false. A decision procedure provides this truth value given such a formula.
Obviously, a quantifier elimination procedure may be used as a decision
procedure, since it will turn any formula into an equivalent formula without
quantifiers or variables, thus trivially checkable.

We add to this language the ∀ and ∃ quantifiers. The definitions for
models, equivalence and implication are the same as above, except that
models only assign values to the free variables of the formula. Quantifier
elimination consists in obtaining an equivalent quantifier-free formula from
a quantified formula.

There exist two major classes of algorithms for quantifier elimination
over arithmetic. One is based on substitution: an infinite disjunction ∃x F
is shown to be equivalent to a finite disjunction F [x1/x]∨· · ·∨F [xn/x] where
the xi are functions of the free variables in F constructed by examination of
the atoms in F . For linear real arithmetic, Ferrante and Rackoff’s method
[12] and Loos and Weispfenning’s method [16] belong to this class, and so
does Cooper’s method for Presburger arithmetic [7]. Other methods, more
geometrical in kind, project conjunctions of atoms and thus need some form
of conversion to DNF; such is the case of Fourier-Mozkin elimination for lin-
ear real arithmetic, and of Pugh’s Omega test for Presburger arithmetic [23].
Our methods belong to that latter class.

2.2 Eager Model Enumeration Algorithm

It is easy to see that if there is an algorithm π for eliminating quantifiers from
formulas of the form ∃x1, . . . , xn F where C is a quantifier-free conjunction
of literals, then there is an algorithm, albeit an inefficient one, for eliminating
quantifiers from any formula.

We reduce ourselves to the case of eliminating the existential quantifier
from ∃x1, . . . , xn F where F is quantifier-free. We handle an existentially
quantified formula ∃x1, . . . , xn F as follows: convert F to DNF F1∨· · ·∨Fm;
the formula is then equivalent to (∃x1, . . . , xn F1) ∨ · · · ∨ (∃x1, . . . , xn Fm),
and thus to π(∃x1, . . . , xn F1) ∨ · · · ∨ π(∃x1, . . . , xn Fm). In the simplest
form, π can be performed by the Fourier-Motzkin algorithm, and conversion
to DNF by repeat application of the distributivity of ∧ over ∨.

Can we do better? A more efficient way to convert to DNF is to use
an “all-SAT” approach within a satisfiability modulo theory (SMT) solver.
Given a quantifier-free formula F over linear real arithmetic, an SMT-solver
will either answer “unsat”, in which case F is unsatisfiable, or provide a
model for F — that is, a valuation for all the free variables such that F
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is satisfied. Equivalently, an SMT-solver may provide truth values for all
atoms in F such that all valuations of the free variables of F for which the
atoms in F have these truth values are models; in other words, it provides
a conjunction C of literals from the atoms of F such that C implies F .

In order to convert a formula F to DNF, we run an SMT-solver over
it. If it answers “unsat”, we are done. Otherwise, it provides a conjunction
of literals C1 such that C1 ⇒ F . Run the SMT-solver over F ∧ ¬C1. If
it answers “unsat”, we are done. Otherwise, it provides a conjunction of
literals C2 such that C2 ⇒ F . Run the SMT-solver over F ∧ ¬C1 ∧ ¬C2,
etc. This algorithm terminates, because there is a finite number of atoms
and thus a finite number of conjunctions Ci that can be built out of them,
and the same conjunction cannot occur twice. At the end C1 ∨ C2 ∨ . . . is
a DNF form for F .

There is still room for improvement. Consider the formula defining the

vertices of a n-dimensional hypercube F
△
= (x1 = 0 ∨ x1 = 1) ∧ · · · ∧ (xn =

0 ∨ xn = 1) and compare with the result of the quantifier elimination
∃x2, . . . , xn F ≡ x1 = 0 ∨ x1 = 1. Certainly it seems excessive to enu-
merate the 2n−1 disjuncts of the DNF of F whereas the final result only has
2 disjuncts.

We therefore suggested another improvement [19]. Instead of adding
¬Ci to the constraints of the system, we add ¬π(Ci). With this method,
the number of calls to the SMT-solver is not the size of the DNF of F , but
the size of the DNF for the eliminated form of ∃v1, . . . , vm F .

This algorithm has a weakness: when applied to nested quantifiers, for
instance, ∃x1∀x2∃x3 F , it will compute a full DNF for ∃x3 F , then a full
CNF for ∀x2∃x3 F , prior to computing the DNF for the full formula, and it
will do so even if most conjuncts or disjuncts are actually useless. Consider
for instance the following example:

F
△
= ∃x∀y∃z z ≥ 0 ∧ (x ≥ z ∧ y ≥ z ∨ y ≤ 1− z) (1)

This formula was produced by adding an extra z to (x ≥ 0∧ y ≥ 0)∨ y ≤ 1,
which is equivalent to x ≥ 0 ∨ y ≤ 1.

Let us see how the eager algorithm performs on F . First, ∃z z ≥ 0(x ≥

z∧y ≥ z∨x ≥ z−1∧y ≥ 1−z) is turned to DNF: F2
△
= (x ≥ 0∧y ≥ 0)∨y ≤ 1

or, perhaps with some better algorithm, x ≥ 0 ∨ y ≤ 1. Then, ∀y F2 is

turned to CNF, that is, F1
△
= x ≥ 0, and then ∃x F1 is turned into true.

Now consider that instead of F2, we had taken F ′
2

△
= x ≥ 0; clearly F ′

2 ⇛ F2.
∀y F ′

2 is then x ≥ 0. In short, instead of computing a full DNF for F ′
2

we could have simply computed one term of it. This motivates our lazy
algorithm.
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2.3 Lazy Constraint Generation in Other Contexts

In short, when looking for a model for variable x of ∀y∃z F , each disjunct
in the DNF of ∃z F is an additional constraint over x, but we do not wish
to generate the full list of these constraints because some of them may not
be actually needed. The idea of our algorithm is to try to solve the already
known constraints, find a tentative solution, and find if this solution violates
some yet unknown constraint; if so, we add this constraint to the system
and resume our search for a solution. Before describing a formal version of
the algorithm, we wish to note that lazy constraint generation approaches
are already used in other contexts, in order to better convey the intuition
of the method.

In operational research, it is not uncommon for constrained optimization
problems to be specified using a very large number of constraints, so large
that explicitly taking them all into account at once would be impractical.
New constraints are “discovered” when the proposed solution violates them.
In linear programming, such technique is known as delayed column gener-
ation. As early as 1954, it was observed that it was possible to solve large
instances of the traveling salesman problem by dynamically generating the
inequalities that a solution should satisfy, the full set of inequalities being
“astronomically” large [10].

Almost all SMT-solving systems proceed by Boolean relaxation: in or-
der to decide whether a formula F is satisfiable, they first replace all non-
propositional atoms by propositional variables, using a dictionary, then solve
the resulting system using SAT. If the resulting propositional system is un-
satisfiable, then so is the original problem. If it is satisfiable, it is possible
that the Boolean solution is absurd with respect to the theory: for instance,
if it assigns true to the propositional variables corresponding to the atoms
x > 1, y > 3, and x + y < 0. If this is the case, an additional Boolean
constraint is added to the problem, excluding this inconsistent assignment
(or, for better efficiency, an inconsistent generalization of this assignment).
In short, we generate on demand, or lazily, the theory of the atoms of F
(the absurd conjunctions of atoms of F ), because an eager approach would
generate an exponential number of Boolean constraints [15, §11.2].

Some recent proposals for SMT-solving over linear real arithmetic [17, 8]
do not use Boolean relaxation. Instead, they try solving the formula directly
for the real variables: for a problem over x, y and z, if they realize that
after choosing x = x0 and y = y0, there is no suitable z (once x and y
are chosen, the solution set for z can be computed as a intervals), they
deduce a constraint on x and y that excludes (x0, y0). When solving for
x, y, constraints on x may be obtained. This approach has similarities to
what we would obtain by applying the ideas of §3 to a ∃x1∃x2 . . . ∃xn F
formula.

In quantified Boolean solving for formulas of the form ∀b1, . . . , bm∃c1, . . . , cn F

5



(2QBF), some proposed approaches [24, Alg. I] use two successive layers of
SAT solvers, with the inner solver solving for b1, . . . , bm, c1, . . . , cn, initially
for formula F , and the outer solver for c1, . . . , cn, initially for formula true,
with new constraints being lazily generated and accumulated into the outer
solver. The algorithm we present in §3 can be understood as a generalization
of this algorithm to arbitrary theories and arbitrary quantification depths.

3 Lazy Model Enumeration Algorithm

We shall now describe our lazy algorithm, instantiated on linear real arith-
metic (first, the generalization sub-algorithm, then the main algorithm),
and prove its correctness. Then we shall briefly investigate possibilities of
extension.

3.1 Generalization Algorithm

Algorithm 1 Generalize(C0, test): given a set S0 and a monotonic
Boolean function test such that test(S0) is true, return S ⊆ S0 such that
test(S) is true and S is minimal.

Require: (S0, test)
Require: test is a function that takes as input a set S of literals and answers

true or false. It is required to be monotonic: if S1 ⊆ S2, and test(S1) is
true, then so is test(S2).

Require: S0 is a set of literals such that test(S0) is true.
S := S0

while S 6= ∅ do

Choose a literal c in S
if test(S \ {c}) is true then

S := S \ {c}
end if

end while

Ensure: test(S) is true
Ensure: S ⊆ S0

This description intentionally omits a precise criterion for the choice of c,
since the algorithm is correct regardless.

At some point during the course of the main algorithm, we shall generate
a conjunction C1 ∧ · · · ∧ Cn that implies a formula F , but for efficiency we
would prefer a conjunction of fewer terms Ci1 ∧· · ·∧Cin that still implies F .
In other words, we wish to generalize the conjunction C1∧· · ·∧Cn under the
condition that C1∧· · · ∧Cn ⇛ F . Ideally, we wish the subset {Ci1 , . . . , Cin}
to be minimal.
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Our condition is equivalent to C1 ∧ · · · ∧ Cn ∧ ¬F being a contradic-
tion; thus, from a set of constraints {C1, . . . , Cn,¬F} we wish to extract
a minimal contradictory set, or, in the terminology of operation research,
a irreducible infeasible subset. The simplest algorithm for doing so is the
deletion filter [4, 5]. A difference is that in operation research contexts,
all constraints are inequalities, while in our case, formula F is in general
complex, with disjunctions. In fact, we do not even want to explicitly write
formula F — this is the difference with our earlier eager algorithm. Instead,

we use a function test that takes as input a set S
△
= {C1, . . . , Cn} of literals,

and answers “true” if and only if ¬F ∧ C1 ∧ · · · ∧ Cn is unsatisfiable, thus
leading to Alg. 1. This procedure merely relies on test being monotonic as
a function from the sets of literals, ordered by inclusion, to the Booleans.

Procedure Generalize can be replaced by a more clever, “divide-and-
conquer” approach, as in the min function in [3] (or the equivalent QuickX-
Plain from [14]). While this procedure is theoretically better, making fewer
calls to test, it performs worse in practice (§5). In our case, test is a complex
procedure, possibly making use of multiple layers of quantifier elimination
and SMT-solving, all of which use caches; thus, the cost of multiple calls
does not depend solely on the number of calls but also on the relationships
between the calls.

3.2 Main Algorithm

IfB is a set {v1, . . . , vn} of variables, we denote by ∀BF the formula ∀v1 . . . ∀vn F
(and respectively for ∃BF ). In all our algorithms and reasoning, the order
of the bound variables inside these “block quantifiers” will not matter, thus
the notation is justified. For technical reasons, we allow empty quantifier
blocks (∀∅ and ∃∅). We note ¬nF the formula F if n is even, ¬F if n is odd.
We note FV(F ) the set of free variables of formula F .

We consider a formula F0 in prenex form, with alternating quantifier
blocks: ∀B0

∃B1
∀B2

. . .¬nFn. Without loss of generality, we can suppose
that the Bi have pairwise empty intersection. Any quantified formula can
be converted to this form with ∀i > 0 Bi 6= ∅, but possibly with B0 = ∅.
More precisely, we note, for 0 ≤ i < n, Fi = ∀Bi

¬Fi+1.
πi is a quantifier elimination procedure for conjunctions: from a con-

junction C it returns another conjunction C ′ such that C ′ ≡ ∃Bi
C; for

linear real arithmetic, Fourier-Motzkin elimination or more clever methods
of polyhedral projection are suitable.2 It is not necessary that C ′ be a con-

2Fourier-Motzkin elimination directly obtains a set of inequalities defining the projected
polyhedron, but it may create many unnecessary ones and it is thus often necessary
to run tests for removing useless ones. Such tests are emptyness tests for polyhedra
defined by constraints; these can be performed using the simplex algorithm implemented
in exact rational arithmetic. Alternatively, methods based on the “double representation”
of polyhedra first compute the set of vertices of the polyhedron (which may be exponential,
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junction for most of our algorithm, except for the Generalize procedure
(this restriction will be lifted in §3.5).

The main algorithm is the functionQ-Test(i, C). It tests whether Fi∧C
is satisfiable, and if it is, it proposes a conjunction C ′ of literals such that
FV(C ′) ⊆ FV(Fi), C ′ ⇛ Fi, and C ∧ C ′ is satisfiable. It is defined by
induction over n− i for 0 ≤ i ≤ n.

The case i = n corresponds to is merely SMT-solving and generalization.
We note SMT-Test(C,F ) the SMT-solver function, which takes as inputs
two formulas C and F and returns a couple (b, C ′). b is a Boolean, which
states whether C ∧ F is satisfiable. If b is true, C ′ is an “extended model”:
a conjunction of literals of F such that C ′ ⇛ F and C ∧ C ′ is satisfiable.
Such a function can be obtained from an ordinary SMT-solver providing
satisfiability models as follows: get a model M � C ∧ F , then set C ′ as the
conjunction of all the atoms a of F such that M � a and of the negation
of all the atoms a of F such that M 2 a; alternatively, some SMT-solvers
directly output such a conjunction.

The recursive case for i < n is defined by calling the recursive case for i+
1. Let us begin by some intuition of the workings of the algorithm. Recall

that Fi
△
= ∀Bi

¬Fi+1; thus, if we had a DNF D1 ∨ · · · ∨Dl of Fi+1, we could
turn it immediately into a CNF of Fi: (¬πi(D1))∧· · ·∧ (¬π1(Dl)). Our goal
is to test whether C∧Fi is satisfiable, which is equivalent to testing whether
the set of constraints {C,¬πi(D1), . . . ,¬π1(Dl)} is satisfiable. Instead of
computing all these constraints, then solving them, which is what our eager
algorithm does, we wish to compute them “as needed”.

The constraints that have already been computed at level i are stored as
a current formula Mi (in practice, the current constraint state of an SMT-
solver), initialized to true. Each of these formulas, for 0 < i < n, satisfies
two invariants: FV(Mi) ⊆ FV(Fi) and Fi ⇛ Mi. Intuitively, if the output
of πi is always a conjunction, Mi is a “partial CNF” for Fi. At worst, the
algorithm completes it into a full CNF for Fi.

The algorithm at level i < n works as follows. It first tests satisfiability
with respect to the already computed constraints: whether C ∧Mi is satis-
fiable; if it is not, then a fortiori C ∧Fi is not and the answer is immediate.
Otherwise, we obtain an extended model C ′ of C ∧ Mi. We however do
not know yet whether it is an extended model of C ∧ Fi; this is the case if
and only if C ′ ∧ Fi+1 is unsatisfiable. We thus perform a recursive call to
Q-Test at level i+ 1:

• If this call answers that C ′∧Fi+1 is unsatisfiable, we could immediately
return C ′ as a correct generalized model. Yet, C ′ might not be general

for instance for a hypercube [0, 1]n), project them (a trivial operation) then compute the
facets of the resulting polyhedron. See [1] for a bibliography on polyhedral algorithms. Our
implementation uses an off-the-shelf polyhedron library based on double representation;
profiling has shown that the choice of the projection algorithm did not matter much [19].
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Algorithm 2 Q-Test(i, C): satisfiability testing for Fi ∧C

Require: (i, C) such that 0 ≤ i ≤ n, FV(C) ⊆ FV(Fi)
if i = n then

(b′, C ′) := SMT-Test(C,Fn)
if b′ is false then

return (false, false)
else

return (true,Generalize(C ′,K 7→ ¬first(SMT-Test(K,Fn))))
end if

else

while true do

(b′, C ′) := SMT-Test(C,Mi)
if b′ is false then

return (false, false) {Since Fi ⇛ Mi, then C ∧ Fi is unsatisfiable
too}

else

(b′′, C ′′) := Q-Test(i+ 1, C ′)
if b′′ is false then

{C ′ ∧ Fi+1 is unsatisfiable}
return (true,Generalize(C ′,K 7→ ¬first(Q-Test(i+1,K))))

else

{C ′′ is such that FV(C ′′) ⊆ FV(Fi+1), C
′′ ⇛ Fi+1 and C ′ ∧ C ′′

satisfiable. Thus ∃Bi
C ′′ ⇛ ∃Bi

Fi+1, whence Fi = ∀Bi
¬Fi+1 ⇛

¬∃Bi
C ′′ ≡ ¬πi(C

′′)}
Mi := Mi ∧ ¬πi(C

′′)
end if

end if

end while

end if

Ensure: The return value is a pair (b, C ′). b is a Boolean stating whether
Fi ∧ C is satisfiable. If b is true, then C ′ is a conjunction of literals such
that FV(C ′) ⊆ FV(Fi), C

′ ⇛ Fi, and C ∧ C ′ is satisfiable.

x 7→ v denotes the function mapping x to v; first denotes the function
mapping a couple to its first element.
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enough: we would prefer to extract from it a minimal conjunction C ′
min

such that C ′
min∧Fi+1 is still unsatisfiable; thus the call toGeneralize.

Generalize has to test the satisfiability of various formulas of the
form C ′

s∧Fi+1; we therefore supply it with theK 7→ ¬first(Q-Test(i+
1,K)) function, which answers whether K ∧ Fi+1 is unsatisfiable.

• If C ′∧Fi+1 is satisfiable, we obtain an extended model C ′′: C ′′ ⇛ Fi+1.
We therefore add ¬πi(C

′′) as a new constraint in Mi and retry solving.

3.3 Correctness

The correctness of Generalize is obvious. The partial correctness of
Q-Test algorithm is proved by induction over n − i: we show it is cor-
rect for levels i = n down to i = 0. For i = n, its correctness reduces to that
of SMT-solving and Generalize. The interesting case is i < n.

As noted in the algorithm description, we maintain the invariant Fi ⇛

Mi. If C ∧ Mi is unsatisfiable, then a fortiori C ∧ Fi is unsatisfiable and
the (false, false) answer is correct. Assume now the induction hypothesis:
the correctness of Q-Test(i + 1, C), which answers whether C ′ ∧ Fi+1 is
unsatisfiable. If it is so, then C ′ ⇛ ∀Bi

¬Fi+1; we then generalize C ′ and
answer the generalized version. Otherwise, we obtain C ′′ ⇛ Fi+1; therefore
Fi ⇛ ¬πi(C

′′) and we can add ¬πi(C
′′) as a constraint in Mi.

Total correctness is ensured by the fact that the number of C ′ that
can be generated at a given level i is finite, which is proved, again, by
induction from i = n − 1 down to i = 0. At level n − 1, all the C ′ that
we obtain are conjunctions of literals built from atoms of Mi. Mi is a
conjunction of negations of projections of conjunctions of atoms of Mi+1.
By the induction hypothesis, only a finite number of atoms can accumulate
into Mi+1, thus only a finite number of constraints can accumulate into Mi,
and the induction is proved. §4.2 provides complexity bounds.

3.4 Example

Recall the formula from Eq. 1: ∃x∀y∃z z ≥ 0 ∧ (x ≥ z ∧ y ≥ z ∨ y ≤ 1− z).
Its truth value is equivalent to the satisfiability of F0: We therefore have

F0
△
= ∀y∃z z ≥ 0 ∧ (x ≥ z ∧ y ≥ z ∨ y ≤ 1− z) (2)

F1
△
= ∀z ¬(z ≥ 0 ∧ (x ≥ z ∧ y ≥ z ∨ y ≤ 1− z)) (3)

F2
△
= z ≥ 0 ∧ (x ≥ z ∧ y ≥ z ∨ y ≤ 1− z) (4)

We initialize M0 = M1 = true. Consider the call Q-Test(0, true).
SMT-Test(true,M0) returns (true, true). Q-Test(1, true) is then called.

SMT-Test(true,M1) returns (true, true). Q-Test(2, true) is then called.
This results in SMT-Test(F2, true) being called. SMT-solving of F2 results
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in a “satisfiable” answer with a solution, for instance, (x = 0, y = 0, z = 0);
thus SMT-Test(F2, true) is (true, z ≥ 0 ∧ x ≥ z ∧ y ≥ z ∧ y ≤ 1 − z).
Generalize yields the simpler conjunction z ≥ 0 ∧ x ≥ z ∧ y ≥ z, which
still implies F2. The projection of this conjunction parallel to z is x ≥
0 ∧ y ≥ 0; we add its negation x < 0 ∨ y < 0 to M1. We again run
SMT-Test(true,M1), which returns (true, x < 0). Q-Test(2, x < 0) is then
called. This results in SMT-Test(F2, x < 0) being called. SMT-solving of
F2 ∧ x < 0 results in a “satisfiable” answer with a solution, for instance,
(x = −1, y = 0, z = 0); thus SMT-Test(F2, x < 0) is (true, z ≥ 0 ∧ y ≤
1 − z). Generalize does not simplify this conjunction. The projection of
this conjunction parallel to z is y ≤ 1; we add its negation y > 1 to M1,
which is then y > 1 ∧ (x < 0 ∨ y < 0). We again run SMT-Test(true,M1),
which returns (true, x < 0∧ y > 1). Q-Test(2, x < 0∧ y > 1) is then called.
This results in SMT-Test(F2, x < 0 ∧ y > 1) being called, with answer
(false, false). We then know that x < 0 ∧ y > 1 ⇛ F1. Q-Test(1, true) then
returns (true, x < 0 ∧ y > 1).

The projection of this conjunction parallel to y is x < 0; we add its nega-
tion x ≥ 0 toM0. SMT-Test(true,M0) returns (true, x ≥ 0). Q-Test(1, x ≥
0) is then called. SMT-Test(x ≥ 0,M1) then returns (false, false). Q-Test(0, true)
then returns (true, x ≥ 0).

3.5 Generalizations

The above algorithm tests the satisfiability of a quantified formula and pro-
vides a generalized model if there is one. It can be turned into a quan-
tifier elimination procedure by model enumeration: run Q-Test(0, true),
obtain a model C1 ⇛ F , run Q-Test(0,¬C1), obtain a model C2 ⇛ F , run
Q-Test(0,¬V1 ∧¬C2) etc. until Q-Test returns (false, false), then C1 ∨C2

is a DNF for F . This loop terminates for the same reason as Q-Test: the
number of C that can be generated is less than the 2a where a is the number
of possible atoms for M0.

The algorithm can be generalized to any theory for which there are an
SMT-solving algorithm and a projection operator. Obviously, propositional
logic is suitable, though specialized QBF solvers are likely to be more effi-
cient. Suitable theories include Presburger arithmetic: current SMT solvers
implement integer arithmetic by relaxation to real numbers and branch’n’cut
or Gomory cuts, and projection can be done using Omega [23].

One problem is that Omega outputs a disjunction: the results from
the “dark shadow”, plus a finite number of results from the “gray shadow”.
The simple generalization scheme in Generalize is then unsuitable. Recall
that this algorithm attempts generalizing a conjunction C by removing each
conjunct and checking whether the resulting conjunction is still suitable
(using the test oracle for suitability). Alternatively, one may see this method
as replacing atoms by true inside the formula and checking whether the
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resulting formula is still suitable — which is a correct method for generalizing
any formula in negation normal form.

For the sake of simplicity, we have required that the formula be in prenex
form. It is possible to generalize the algorithm as follows: given F and
C, answer whether C ∧ F is satisfiable and, if so, provide C ′ such that
C ∧ C ′ is satisfiable and C ′ ⇛ F . Such an algorithm can be defined by
induction over F : our Q-Test algorithm implements the case where F
contains no quantifier, or is of the form ∀¬F . The case for ∃F is just the
case for F followed by projection. The case for F1 ∨ F2 first tests F1 then,
if unsuccessful, F2. The case for F1 ∨ F2: first run a recursive query for F1

and C and either answer “unsatisfiable”, or obtain C1 such that C1 ⇛ F1

and C ∧ C1 satisfiable. Then run a recursive query for F1 and C ∧ C1

and either answer “unsatisfiable”, or obtain C2 such that C2 ⇛ F2 and
C ∧C1 ∧C2 satisfiable. C ′ = C1 ∧C2 is such that C ∧C1 ∧C2 is satisfiable,
and C ′ ⇛ F1 ∧ F2.

4 Complexity

We shall now prove that the algorithms of §2.2 and §3.2 are at most doubly
exponential.

4.1 Number of Faces in Projected Polyhedra

A polytope in dimension d is the convex hull of a finite number of points of
R
d. We recall the usual definitions of faces [18, §2.1, p. 39]: a vertex is a

0-face, an edge a 1-face,a facet a (d− 1)-face. If one considers conventional
tridimensional geometry, then these definitions fit the usual ones for vertices,
edges and sides respectively.

The number of k-faces of a polytope with v vertices in a d-dimensional
space can be bounded [18, ch. 4, 5]:

Theorem 1 (McMullen). The maximal number of k-faces for a polytope
with v vertices in a d-dimensional space is obtained for cyclic polytopes and
thus is fk(v, d).

The number of k-faces in a cyclic polytope (a particular kind of polytope
whose definition [18, p. 82] is unimportant for our purposes) can be explicitly
computed [18, Prop. 19, p. 86]:

Proposition 2. The number fk(v, d) of k-faces of a cyclic polytope with v
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vertices in a d-dimensional space (k < d) is given by:

fk(v, 2n) =

n
∑

j=1

v

v − j

(

v − j

j

)(

j

k + 1− j

)

(5)

fk(v, 2n + 1) =
n
∑

j=0

k + 2

v − j

(

v − j

j + 1

)(

j + 1

k + 1− j

)

(6)

Observe that fk(v, 2n), as a polynomial in v, has at most degree n, and
that its coefficient of degree n, if k+1 ≥ n, is

(

n
k+1−n

)

. 1n! =
1

(k+1−n)!(2n−k−1)! ≤

1. fk(v, 2n+1), as a polynomial in v, also has at most degree n, and its coef-
ficient of degree n, if k+1 ≥ n, is k+2

(n+1)!

( n+1
k+1−n

)

= k+2
(k−n+1)!(2n−k)! ≤ 3. It fol-

lows that when v → ∞, fk(v, d) = O
(

v⌊d/2⌋
)

. Furthermore, if k+1 < ⌊d/2⌋,
then fk(v, d) has leading monomial vk+1/(k + 1)!.

Note that a facet of the projection of a polytope P along p coordinates
necessarily corresponds to a (d− 1− p)-face of P (as an example, the edges
of a polygon obtained by projecting a tridimensional polyhedron correspond
to some of the edges of the original polyhedron). By polytope duality [18,
§2.2, p. 61], they correspond to p-faces of the dual polytope of P , whose
vertices are the facets of P . Therefore:

Lemma 3. The number of facets of the projection of a polytope with f facets
in R

d into R
d−p, along p coordinates, is at most fp(f, d).

The results above are valid for bounded polytopes, whereas our algo-
rithms operate on unbounded polyhedra. By adding at most 2n constraints
of the form xi ≤ ±C with C a large enough constant, we can obtain a
bounded polytope P ′ out of an unbounded polyhedron P . The facets of the
projection of P are found among the facets of the projection of P ′. From
the above results we deduce:

Lemma 4. The number of facets of the projection of a polyhedron with
f facets in R

d into R
d−p, along p coordinates, is O(f ⌊d/2⌋) as f → ∞.

Furthermore, if p+ 1 < ⌊d⌋2, then it is O(fp+1).

4.2 Application to our Algorithms

Consider a formula F in prenex form with n atoms and m variables, from
which p are quantified. We can immediately exclude trivial atoms (those
equivalent to true or false) and simplify the formula accordingly. In the
remaining formula, each atom delimits a half-space. The number of distinct
polyhedra that can be constructed from these half-space is at most 2n. At
all levels of our algorithms, we work with facets from projections of these
polyhedra. Applying Lemma 4, the number of projections along p given
coordinates of these facets is O(2n(p+1)) as n → ∞. The model enumeration
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algorithm, at a given level, can enumerate at most 2a choices of truth values
for a = O(2n(m+1)) atoms. Each choice represents one run of SMT-solving,
whose cost is O(2a+m). To summarize, the overall costs are in O

(

22
cnm)

for

some constant c, thus O
(

22
c|F |2

)

where |F | is the size of the formula.

In comparison, the substitution-based elimination procedures have com-
plexity 22

c|F |
[12, 16], and this is a lower bound for real quantifier elimi-

nation [11]. Also, any nondeterministic decision procedure for quantified
real arithmetic has at least exponential complexity in the worst case [13]; so
restricting ourselves to decision problems in lieu of quantifier elimination in
general is not likely to help much.

However, when it comes to doubly exponential complexities, all that
matters from practical purposes is practical complexity: an algorithm that
performs well in practice is preferrable to an algorithm with better theoret-
ical bounds, but that tends to reach its theoretical complexity. This is why
we implemented the various methods and performed benchmarks, as seen in
the next section.

5 Implementation and Benchmarks

We implemented the algorithms of Ferrante and Rackoff [12], Loos and
Weispfenning [16], our eager algorithm [19], and our lazy algorithm for linear
real arithmetic (§3.2) into our Mjollnir tool.3

Since algorithmic costs are sensitive to the kind of formula output (CNF,
DNF or unconstrained), we preferred to test these procedures only on deci-
sion problems — those without free variables, for which the output is true or
false. We generated random benchmarks in blocks of 300, of various kinds:

1. B1 consists in formulas with 10 variables, with sparse atoms, of the
form ∀v9∃v8∀v7∃v6∀v5∃v4∀v3∃v2∀v1∃v0 F .

2. B2 consists in formulas with 12 variables, with sparse atoms, of the
form ∀v11∃v10∀v9∃v8∀v7∃v6∀v5∃v4∀v3∃v2∀v1∃v0 F .

3. B3 consists in formulas with 12 variables, with sparse atoms, of the
form ∀v11, v10, v9, v8∃v7, v6, v5, v4∀v3, v2, v1, v0 F .

4. B4 consists in formula of the same form as B3 but with a more complex
Boolean structure in F .

5. B5 consists in formulas with 18 variables, with sparse atoms, of the
form ∀v17, v16, v15, v14, v13, v12∃v11, v10, v9, v8, v7, v6∀v5, v4, v3, v2, v1, v0 F .

3The current version of Mjollnir is available from
http://www-verimag.imag.fr/~monniaux/download/, as well as the benchmarks
formulas.
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B1 B2 B3 B4 B5 B6

True formulas 115 80 220 285 219 230
False formulas 159 134 23 0 32 4

Ferrante-Rackoff (FR) solves 199 150 203 53 178 185
Loos-Weispfenning (LW) solves 250 220 244 80 247 249
Monniaux eager (M1) solves 241 128 218 260 231 112
Monniaux lazy (M2) solves 276 187 238 285 248 143
M2 solves but LW does not 32 9 26 209 28 1
LW solves but M2 does not 6 42 32 4 27 107
M2 solves but M1 does not 35 59 26 25 23 33
M1 solves but M2 does not 0 0 6 0 6 2
FR solves but LW does not 11 11 8 34 7 6
LW solves but FR does not 62 81 49 61 76 70

Table 1: Number of decision problems solved. Each block of 300 formulas
B1, . . . , B6 was randomly generated; we provide the number of formulas that
at least one of the methods proved to be true or false. Maximal memory
allowed was 1 GiB and maximal time 300 s.

6. B6 consists in formula of the same form as B5 but with a more complex
Boolean structure in F and denser atoms.

Results are provided in Tab.1. Generally speaking, our model enumer-
ation algorithms fail due to timeout (set at 300 s) while the substitution
methods fail to out-of-memory (maximal memory 1 GiB); also, the lazy
model enumeration algorithm tends to perform better than the eager al-
gorithm, and Loos and Weispfenning’s algorithm better than Ferrante and
Rackoff’s. Comparing the substitution methods to the model enumeration
algorithms is difficult: depending on how the benchmarks are generated, one
class of algorithms may perform significantly better than the other.

On some ∀∃ formulas produced by the minimization step of [20], the
lazy procedure performs somewhat more slowly (10–40%) than the eager
procedure. This seems to indicate that on examples where it is actually
necessary to enumerate all items of the eliminated form of the subformulas,
it is faster to do it eagerly rather than do it lazily — which tends to apply
to any comparison of eager and lazy approaches.

In the model enumeration algorithms, most of the time is spent in the
SMT-solver, not in the polyhedral projection.

We investigated alternatives to the Generalize function: the min func-
tion from [3], and variants of the order that Generalize and min follow
when considering atoms (randomly shuffled, atoms with the variables quan-
tified at the innermost level first, same with outermost level). Surprisingly,
min tended to perform worse.
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6 Conclusion

We have described a quantifier elimination algorithm for linear real arith-
metic that uses nested SMT-solver calls and polyhedral projection, in order
to lazily enumerate models. This algorithm is different from those commonly
applied for this problem, which are based on replacing existential quantifica-
tion by a finite disjunction, substituting well-chosen witnesses for the value
of the quantified variable. Both kinds of algorithms have doubly exponential
complexity in the worst case, which is unavoidable for this problem.

For practical purposes, these two kinds of algorithms behave differently:
substitution methods occasionally attempt to construct very large intermedi-
ate formulas and finish with out-of-memory, while model enumeration meth-
ods occasionally run into high computation times. We have experimented
both kinds of methods on various classes of formulas, and, depending on
the quantification and Boolean structures of the formulas, one method is
favored over the other. There is therefore no clear winner.
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