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1 Introduction

The reader should see [K] for the standard descriptive sefréitic notation used in this paper.
We study a definable coloring problem. We will need some motation:

Notation. The lettersX, Y will refer to some sets. We set(X):={(z,r1)€ X? | xo=m1}.

Definition 1.1 (1) LetAC X2. We say thatl is adigraph if AN A(X)=0.
(2) Let A be a digraph. Acountable coloring of (X, A) is a mapc: X — w such thatA does not
meet(cxc) 1 (A(w)).

In [K-S-T], the authors characterize the analytic digraphlaving a Borel countable coloring.
The characterization is given in terms of the following patof comparison between relations.

Notation. Let X, Y be Polish spaces] (resp.,B) a relation onX (resp.,Y’), andI' a class of sets.
(X,A) <r (Y,B) < 3f:X =Y T-measurable withd C (f x f)"'(B).

In this case, we say thdtis al'-measurable homomorphism from (X, A) into (Y, B). This notion
essentially makes sense for digraphs (we can fakebe constant if3 is not a digraph).

We also have to introduce a minimum digraph without Borelntahle coloring:

e Let ) : w — 2<% be the natural bijection. More specifically(0) := ) is the sequence of length
¥(1):=0, 1»(2):=1 are the sequences of lendthand so on. Note that)(n)|<nif ncw. Letncw.
As [1p(n)| < n, we can define,, := v (n)0" 1Y, The crucial properties of the sequer(eg),c.
are the following:

- For eachs € 2<%, there isn € w such thats C s,, (we say tha(s,,),c., iS dense in 2<¥).
- |sp| =n.

e We putGo:={(s,07v,s,17) | n€w andy € 2¥} C2¥ x 2¥. Note thatG is analytic since the map
(n,y) > (sn0v, sp17) is continuous.

The previous definitions were given, whEr= Al in [K-S-T], where the following is proved:

Theorem 1.2 (Kechris, Solecki, Todéevt) Let X be a Polish space, and an analytic relation on
X. Then exactly one of the following holds:

(@) There is a Borel countable coloring (K, A), i.e.,(X, 4) <a1 (w,7A(w)),
(b) (2°,Go) =5 (X, A).

This result had several developments during the last years:

- We can characterize the potentially closed sets via a Harelike test, and in finite dimension it
is a consequence of the previous result. Let us specify Tis.following definition can be found in
[Lo2] (see Definition 3.3).



Definition 1.3 (Louveau) LetX, Y be Polish spaces4 a Borel subset oK xY, andI" a Borel class.
We say thatd is potentially in T (denotedA € pot(I‘)) iff we can find a finer Polish topology
(resp.,7) on X (resp.,Y) such thatAeT'((X, o) x (Y, 7)).

In particular, the potentially open sets are exactly thentaiie unions of Borel rectangles. A
consequence of this is that the Borel hierarchy build on theeBrectangles is exactly the hierarchy
of the classes of the sets potentially in some Borel class.

The good notion of comparison to study the ([t sets is as follows. LeK, X, Yy, Y: be
Polish spaces, andj, A] disjoint analytic subsets of. x Y.. Then we set

(XO,}/E]aAgaA?) S (Xl,Yl,A(l),A%) ~
3f:Xo— X1 Jg:Yo—Y; continuous withve €2 A2 C (f xg)~1(AL),

The following theorem is proved in [L1], and is a consequenicEheorem 1.2:

Theorem 1.4 Let X, Y be Polish spaces, andy, A; disjoint analytic subsets of xY. Then exactly
one of the following holds:

(a) The set4, can be separated from; by a potx?) set,
(b) (2w’ 20.)’ A(2w)’ GO) < (Xa K AO, Al)
In [L1], itis also proved that we cannot hayene-to-one in Theorem 1.2.(b) in general. Itis easy

to check that Theorem 1.2 is also an easy consequence oféfhdod. This means that the study of
the Borel countable colorings is highly related to the staflgountable unions of Borel rectangles.

- We can extend Theorem 1.2 to any finite dimension, and alsdiitite dimension if we change the
space in which lives the infinite dimensional versiorGhf (see [L2]).

- B. Miller recently developped some techniques to recovanyrdichotomy results of descriptive
set theory, but without using effective descriptive sebtlie He replaces it with some versions of
Theorem 1.2. In particular, he can prove Theorem 1.2 witkffettive descriptive set theory.

WhenA is Borel, it is natural to ask about the relation between theeBclass ofd and that of the
coloring f when Theorem 1.2.(a) holds. This leads to consiﬁ%rmeasurable countable colorings
(or equivalentlyzg—measurable countable colorings). We have the followingemiure:

Conjecture 1Let1 <¢ <wj. Then there are
- a0-dimensional Polish spack,,
- an analytic relationA¢ on X,
such that for any-dimensional Polish spac¥, and for any analytic relatiord on X, exactly one of
the following holds:
(8) (X, 4) a1 (w0, ~AW)),
(b) (X, Ag) 250 (X, A).
We will prove it whenl < ¢ <2, and in these cases we do not have to assumedtimbanalytic.

A sequences € 3<“ will be said to besuitable if s=0 or s(|s|—1)=2. We will haveXs:=3* and
Ay:= {(sOa, s1p) | s suitablen «, S € 2‘*’}.



We saw that the study of the Borel countable colorings is lifighlated to the study of count-
able unions of Borel rectangles, and gave some motivatiostiaying Zg-measurable countable
colorings. This motivates the study of countable unionE@frectangIes. Another motivation is that
(X, A) =0 (w, 7A(w)) is equivalent to the fact that (X) can be separated fromby a(Z2x%7),

set, by the generalized reduction property for the cﬁga‘zsee 22.16 in [K]).

Conjecture 2Let1 <& <wi. Then there are

- 0-dimensional Polish spacésg, X%,

- disjoint analytic subseta, A; of X x X;

such that for any Polish spacé$, Y, and for any pairAy, A; of disjoint analytic subsets of x Y,
exactly one of the following holds:

(a) The setd, can be separated from, by a(X¢x 22), set,

(b) (XgaX%aAg’A%) < (X’ Y, AOa Al)

It is easy to prove this whefi=1. Our main result is that Conjecture 2 holds whes 2. We
now describe our minimum exampl&$, X3, A9, Al).

Notation. We putX3 := 3\ {s13 | s suitabler 8 € 2*}, X} := 3%\ {s0c | s suitableA o € 2},
AY:=AX§NX3) andAj:=Ay:={(s0a,s1p) | s suitabler o, f€2}.

We use effective descriptive set theory, and give effecsivengthenings of our results. The
reader should see [M] for basic notions of effective desipset theory. In particular, we will see
that to test whether an analytic relation haE%cmeasurable countable coloring, it is enough to test
countably many partitions instead of continuum many. Wé wgé the topologyl, generated by the
X1 N 119 subsets of a recursively presented Polish space (intrddadé&o1]). Our main result can
be strengthened as follows (see [L3]).

Theorem 1.5 Let X, Y be recursively presented Polish spaces, ald A; disjoint X! subsets of
X xY. The following are equivalent:

(a) The set4, cannot be separated from; by a(X)x X9), set.
(b) The set4, cannot be separated from; by a Al N () x 29),, set.

(c) The setd, cannot be separated from; by aX{ (T, x T3) set.

(d) Ag N A 2" 0.

(e) (Xg’xéaAgaA%) < (Xa K AOaAl)-



2 Some general effective facts

One can hope for an effective strengthening of Conjecture 1:
Effective conjecture 1Let1 <¢{ <w;. Then there are
- a 0-dimensional Polish spack;,
- an analytic relationA¢ on X,
such that(X, A¢) 2y (w, ~A(w)) and for anya € w* with 1 < ¢ < wf, for any 0-dimensional

recursively ina presented Polish spac, and for anyX («) relation A on X, one of the following
holds:

(a) (Xv A) jA%(a)ﬂAg (w7 _\A(w))’
(b) (X, Ag) 250 (X, A).

We will see that this effective conjecture is true whieg £ < 2. The following statement is a
corollary of this effective conjecture, and is in fact a trezo:

Theorem 2.1 Let1 <¢(< wPK, X a0-dimensional recursively presented Polish space, dAral %}
relation onX. We assume thafx, A) =N, (w,~A(w)). Then(X, A) =Alnag (w, ~A(w)).

A consequence of this is that to test whether an analytitioeléas azg-measurable countable
coloring, it is enough to test countably many partitiongeas of continuum many. Another con-
sequence is the equivalence between Conjecture 1 and tbetizf conjecture 1. We have in fact
preliminary results that will help us to prove also the eglénce between (a)-(d) in Theorem 1.5, in
the general case.

Lemma2.2letl <¢ < w1CK, X,Y recursively presented Polish spaces, aficc X (X) N 22,
BeZH(Y)NnXandC e X} (X xY) disjoint from Ax B. Then there arel’, B’ € A} N % such that
A’ x B’ separatesd x B from C.

Proof. Note thatA and{z € X | 3y € B (z,y) € C} are disjointX| sets, separable byﬁg subset
of X. By Theorems 1.A and 1.B in [Lo1], there i € A} N 3 separating these two sets. Similarly,
Band{yeY | Ixc A" (z,y)€C} are disjointX} sets, and there iB’ € Al N 22 separating these
two sets. O

Theorem 2.3 Let1 <& < wPK, X,Y recursively presented Polish spaces, atg A; disjoint X!
subsets off xY". We assume that, is separable fromi, by a(X¢xX7) set. Thend, is separable

from A; by aAj N ((A7NZP)x (A7 NxY)), set.

Proof. By Example 2 of Chapter 3 in [Lo2], the familyV (n, X)), _ is regular without parameter.
By Corollary 2.10 in [Lo2], IT¢(X), as well as®(X) = (U, .. II)(X)),, are regular without
parameter. By Theorem 2.12 in [LOEQ(X)XEQ(Y) is also regular without parameter. By Theorem
2.81in [Lo2], the family® := (32(X)xX2(Y"))  is separating which imply the existenceg AjNd
separatingd, from A;.



With the notation of [Lo2], let: be an integer witli0>°, n) e W andCy , = S. Then(0>°,n) is
in Wg, which by Theorem 2.8.(ii) in [Lo2] is

{(a,n) ewW |3pe A%(a) Vmew (a,ﬁ(m)) EWzg( X)x20(Y ) A Con= U C, B(m)}

mew
This implies thatS € A1 N (A} N (22 xXY))_ . It remains to check that\] N (X x X)) = (A} N
3¢) x (A7 N XP). The second set is clearly a subset of the first one. So ashanB & Ax B €
ATN(ZZxXY). We may assume thét is not empty. Then the projectiont B areX| sinceRc Aj.
Lemma 2.2 gives!’, B’ Al 0 22 with Ax BCA'xB'C R=AxB. O

Recall that ifA is a relation onX and D C X, thenD is A-discrete if AN D?=/).
Proof of Theorem 2.1.We apply Theorem 2.3 t5 :=X, Ag:=A(X) andA4; :=A. As
(X,A) jAg (w,ﬂA(w)),

A(X) is separable fromd by a (2 x 32), set. Theorem 2.3 giveS,,, D,, € A; N ¢ such that

S :=Upew Cnx Dy € Aj separated)(X) from A. As the set of codes fad] N X subsets ofX

is I (see Proposition 1.4 in [Lo1]), thdl-selection theorem and the separation theorem imply that
we may assume that the sequen@€s) and (D,,) are Al. Note that(C,, N D,,) is a Al covering

of X into A-discreteA; N 3 sets. AsX is 0-dimensional we can reduce this covering intaa
covering(A,,) of X into A} N X sets, which are in facA?. This gives the desired partition. [J

Notation. Following [Lol], we define the following topologies ondadimensional recursively in
presented Polish spacg, for anya € w®. Let T («) be the usual topology of, and for2 <¢ <wy,
T¢(«) be the topology generated by thg (a) N Hgg subsets ofX. The next proposition gives a
reformulation of the inequality.X, A) = Al(@)nAY (w, ~A(w)) of the Effective conjecture 1.

Proposition 2.4 Let1 <¢ < wCK X a 0-dimensional recursively presented Polish space, dral
i relation onX. Then(X, A) jA%ﬂAg (w, ~A(w)) is equivalent taA (X) N AT _g

Proof. Assume first that X, A) RPTN. (w, 7A(w)). Then there is a partitiofB,) of X into A-
discreteAl N AO sets. In particular, Theorem 1.A in [Lol] implies th&}, is a countable union of
A} NI, sets if¢ > 2. In particular,B,, is Te-open andA(X) is disjoint fromA ¢ <¢.

Conversely, assume that(X) N A" _ . Then each element of X is contained in ai-

discreteX! N HO set (basic clopen set§f=1). Lemma 2.2 implies that each elementf X is in
fact contained in a4 discreteA] N TI2 <¢ setif{>2. It remains to apply Proposition 1.4 in [Lo1] and
the Al-selection theorem to get the desired partition. O



One can also hope for an effective strengthening of Conje@weneralizing Theorem 1.5:

Effective conjecture 2Let1 <¢ <w;. Then there are
- 0-dimensional Polish spacé, X{,
- disjoint analytic subseta?, A} of the space&Xy x X{, not separable by §2¢ x ), set,

such that for anyv € w® such thatl <¢ <w§, for any recursively inv presented Polish spaces, Y,
and for any pairAy, A; of disjoint X} (o) subsets of{ x Y, the following are equivalent:

(a) The setd, cannot be separated front; by a (X x 329), set.

(b) The setd, cannot be separated from; by aAj(a) N (B x XP), set.
(c) The set4, cannot be separated from; by aX{ (T¢(a) x T¢(c)) set.
(d) Ap N A, e Tel) g

(€) (X0, X}, AL AL) < (X,Y, Ag, Ay).

In fact, the statements (a)-(d) are indeed equivalent:

Theorem 2.5 Letl1 <£ < wch, X,Y recursively presented Polish spaces, atg A; disjoint X!
subsets o x Y. The following are equivalent:

(a) The set4, cannot be separated from; by a(X¢x ), set.

(b) The setd, cannot be separated from; by aAj N (X2 x %), set.

(c) The set4, cannot be separated from; by aX9 (T x Ty ) set.

(d) Ag N A, < TE 20,

Proof. Theorem 2.3 implies that (a) is indeed equivalent to (b).Idb amplies, using the proof of

Proposition 2.4, that (c) implies (a), and the converse éarcl It is also clear that (¢) and (d) are
equivalent. d

A consequence of this is that Conjecture 2 and the Effectivgecture 2 are equivalent.

3 The cas& =1
We setX; :=2% andA; :={(0%T11a,0%*13) | kcw A o, BE2¥}.

Lemma 3.1 The spaceX; is a0-dimensional metrizable compact spagg,is a X! relation onXj,
and (Xl, Al) ﬁA(l) (w, —|A(w)) .

Proof. The first two assertions are clear. We argue by contradiétiothe last assertion, which gives
f:X; —w continuous withf (a) # f(B) if (o, B) €A1. We setC,,:=f~1({n}), so that(C,),e. is @
partition of X; into Al-discreteA? sets. Choose with 0 € C,,. Then0'a € C,, if i is big enough.
This gives an integek with 02611 %1% ¢ C,,, and (0?$11>°,0%%1%°) € A; N C2, which is
absurd. O



Theorem 3.2 Let X be a0-dimensional Polish space, antl a relation onX. Then exactly one of
the following holds:
(@) (X, 4) Za0 (w,~Aw)),
(b) (X1, A1) =50 (X, A).

Moreover, this is not true, even f is analytic, if X is not0-dimensional, and we cannot haye
one-to-one in (b) (with this coupléy, A;) or any other).

Proof. Note first that (a) and (b) cannot hold simultaneously, by ren8.1. We enumerate a basis
(N(n, X))nEou for the topology ofX made of clopen sets. Assume that (a) does not hold. We build

- an increasing sequence of integé$ ) ke,
- a sequenceér, ) e of points of X.

We want these objects to satisfy the following conditions:

(1) (:Cgk, 552]9—}—1) €EAN N(nk, X)2

(2) N(nkJrl? X) QN(n/m X)

(3) diam(N (ny,, X)) <27F

(4) There is no covering alV (ny, X) into A-discrete clopen subsets &f

¢ Assume that this is done. Then we can define a powit X by {z} =, ., N(n, X). Note that
(z,,) tends tor. We definef : Xy — X by f(0%°) := =, f(0***11a) := z9; and f(0%¥13) := zop41.
Note thatf is continuous. Moreove,f(02*"11a), f(0%*18)) = (zak, T2k+1) € A, so that (b) holds.

e Let us prove that the construction is possible. WeMéét_1, X) := X. Assume thatn)~; and
(ok, Tak+1) k< Satisfying (1)-(4) have been constructed, which is the éasé= 0. We choose a
covering of N'(n;_1, X) with basic clopen sets of diameter at mast, contained inN (n;_;, X).
Then one of these basic sets, S8yn;, X), satisfies (4). It remains to choogey;, 4,1 1) in the set
AN N(ng, X)2.

e Consider nowX :=R andA:={(0,1)}. Then (a) does not hold sinéis connected. If (b) holds,
then we must have(0%*+11a) =0 and f(0%*13) = 1. By continuity of f, we getf(0>°)=0=1.

This would be the same with arK;, A;). Indeed, agXi,A1) Zao (w,—A(w)), we have

ITp[A1] NTI1 [A1] #0, since otherwise there would be a clopen subisef X; separatindIy[A;] from
I1;[A4], and we would have\ (X;) C C? U (=C)? C -A;. So we can choose € ITp[A1] N TT;[Aq],
xo € Ip[A;] such that(zox) tends tox, yor1 € II1[A1] such that(ysxy1) tends tox, yor with

(@ok, yor) € A1, andxopyq With (zop41, Y2k+1) € A1 Then f(xa,) = 0, f(y2rs1) = 1 and we
conclude as before.

e ConsiderX :=2% and A := {0} x (2¢\{0>}). Then (a) does not hold since if a clopen subset
C of 2 contains0>°, then it contains alse # 0>, so that(0>°,a) € A N C2. If (b) holds, then
f(0?**11a)=0> for each integet: and f is not one-to-one.

This argument works as soon Hg[A] has at least two elements. If we argue in the other factor,
then we see that an exampl¥;, A;) with injectivity must satisfy that\, is a singletor{(«, 3)}.
As (X1,A1) =250 (2¥,Gy), o # 8. So take a clopen subsetof X; containinga but not3. Then

A(Xl)QCQU(—'C)QQ—'Al. ]



Proposition 3.3 Conjecture 2 holds fof =1.

Proof. We setX; := Xj, A} := {(0°,0°)} and Al := A;. If (x,y) € Ag N A;, then choose
(zx,yx) IN A tending to(x, %), and setf(0°) := z, g(0>°) :=y, f(0**+!1a) := f(0%18) := x,
9(0" 1 1) :=g(0%*18) :=ys. -

4 The case& =2

Lemma 4.1 The spaceX; is a0-dimensional metrizable compact spagg,is a 3 relation onXa,
and (Xg, Ag) ﬁAg (w, —|A(w)) .

Proof. The first two assertions are clear. We argue by contradiétiothe last assertion, which gives
f:Xo—w AY-measurable wittf (o) # f(B) if (o, ) € Ay. We setC,,:= f~1({n}), so that(C}, ) e
is a partition ofX into A,-discreteAY sets. By Baire’s theorem, there are an integands € 2<v
such thatC,, contains the basic clopen s&t. Then(s20™°, s21%°) € A, N C2, which is absurd. [

We have a stronger result than Conjecture 1, in the sensevihalo not need any regularity
assumption o, neither thatX is 0-dimensional:

Theorem 4.2 (Lecomte-Zeley) Let X be a Polish space, and a relation on.X. Then exactly one
of the following holds:

@) (X, 4) Zag (w0, "AW)),
(b) (X2, A2) =50 (X, A).

Proof. Note first that (a) and (b) cannot hold simultaneously, by frext.1. If A is not a digraph,
then choose: with (x, z) € A, and putf(«):=z. So we may assume thdtis a digraph. We set

v=J{vesh(x) | 3pesiwxX) VC ] Dya¥pew AN (DyxDy)=0}.
pEW
Case1U=X.

There is a countable covering &f into A-discreteX sets. We just have to reduce them to get a
partition showing that (a) holds.

Case 2.U # X.
ThenY := X \U is a nonempty closed subset %t

Claim If ) £ W € Z(Y), then there is n&Y subset ofu x X whose sections ard-discrete and
coverW. In particular, W is not A-discrete.

We argue by contradiction. Lete W, andZ an open subset of with ZNY =W. AsZnNU

can be covered with son[gp@ D,’s,s0isZ. ThusZCU, sothatyc ZNY CU\U =0, which is

the desired contradiction. o



We construct a sequenc¥; ) 3<. of open subsets df, and a sequende:; ) <3<~ Of points of
Y. We want these objects to satisfy the following conditions:

(1) zs€Vy

(2) Vie C V5

(3) diam(V;) <27+

(4) (zs0,s1) € Aif sis suitable

(5) zse=u, if e=2V sis not suitable

e Assume that this is done. We defifie3” =Y C X by {f()}:=yeo, Valk=iew Valk» SO that
[ is continuous. Note thaf(a) is the limit of z,;,, and that

Tse =Tse(al1) = - = Tse(al(g+1))

for each(s, e, ) €39 x2x2%. Thusf(sea) =liM ;00 T4c(a)q) =Tse aNd

alq)

(f(SOOz), f(‘SlB)) = ('I807 xsl) eA.
So (b) holds.

e Let us prove that the construction is possible. We chagse Y and an open neighborhodd
of zp in Y, of diameter at most. Assume thatV;) c3<: and(z,) c3<: satisfying (1)-(5) have been
constructed, which is the case for 0.

An application of the Claim givegr,, x51) € A N V2 if s is suitable. We satisfy (5), so that the
definition of thex,’s is complete. Note thats €V, if s€ 3,

We choose an open neighborhdddof =, in Y, of diameter at most—!~!, ensuring the inclusion
V, C V. This finishes the proof. O

Remark. We cannot replacéX, A;) with (2, {(s0c,s18) | s € 2<“ A, B € 2¥}). Indeed,
otherwise we gef : 2% — 3“ continuous with

{(sOa,slﬁ) | se2<¥ /\a,ﬁ€2w}g(fxf)_l({(sOa,slﬁ) | ssuitable/\a,ﬂEQW}).

Thus (f(OOO), f(Okloo)) = (skOak, Sklﬂk) = (800040, Solﬂk). But f(0°°) = 500 is the limit of
f(0F1%°) = 5413, which cannot be. This shows that it is useful to takastead of2.

Now we come to the proof of our main theorem.

Lemma 4.3 The spaceX), X} are 0-dimensional Polish spaces), A} are disjoint analytic subsets
of X§ x X1, and are not separable by @& x =9), set.

Proof. The first two assertions are clear sinkg, X} are G5 subsets o8, A9, Al have disjoint
projections,AY = A(3“) N (X x X1) is closed andAl is 9. We argue by contradiction for the
last assertion, which gives,, € I19(X9) and D,, € IT{(X3) with A C J,.c,, (Cn x Dy,) C —A3.
In particular, X9 N X} = J,,c., Cn N D,, and Baire’s theorem gives and s € 3<% such that the
inclusion N, N X3 N X! C C, N D,, holds. Note thatV, N X3 C C,, and N, N X3 C D,,. Then
(520, 521°°) € Al N (C,, x D,,), which is absurd. O
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Remark. This proof shows that the spack$, X1 of Conjecture 2 cannot be both compact, which is
quite unusual in this kind of dichotomy (even if it was alrgdlde case in [L2]). Indeed, our example
shows thatA9, Al must be separable by a closed 6gtand C, A} must have disjoint projections.
If X9, X3 are compact, thed' and its projections are compact too. The product of thesgpaom
projections is dXy x 2Y), set separating\y from A, which cannot be. This fact implies that we
cannot extend the continuous maps of Theorem 1.5.(&j to general.

Notation. We now recall some facts about the Gandy-Harringtion tapolsee [L2]). LetZ be a
recursively presented Polish space. Thewdy-H arrington topology on Z is generated by the'!
subsets oZ. We set) := {z € Z | w} :w1CK}. ThenQ is X}, dense i Z,GH), andW N Qis a
clopen subset of(2, ) for eachW € £} (Z). Moreover,(§2, GH) is a0-dimensional Polish space.
So we fix a complete compatible metrigyy on (2, GH).

Proof of Theorem 1.5.We already saw that (a)-(d) are equivalent at the end of @e2tiLemma 4.3
shows that (e) implies (a). So it is enough to show that (d)igsge). We sefV := Ag N A_1T2XT2,

which is hot empty. Lemma 2.2 implies that

—TQ X TQ

(z,y) ¢ A1 & 3C,De X! NI (z,y)eCxDC—4,

& 3C,DeAINEY (z,y)eCxDC—A;.
This and Proposition 1.4 in [Lo1] show thatis 2.

e Note thats is not suitable if and only if it is of the formsv, whereu is suitables € 2 andv € 2<%,
If 0+ s is suitable, then we set :=s|max{l <|s| | s|! is suitablg. We construct

- a sequencer; ) c3<« of points of X,

- a sequencey;)scz<« Of points ofY’,

- a sequenceél; ) e3<w of X subsets ofX,

- a sequencéVs) c3<w of XY subsets ol

- a sequencéW;) ... suitable®f 21 Subsets of{ x Y.

We want these objects to satisfy the following conditions:

(xan yul) € (HO[(Uu X Vu) N Wu] XHl[(Uu X Vu) N WU]) a Al
(xUOQH yulv) - (xu07 yul)
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e Assume that this is done. Lete XY. Then the increasing sequengg) of integers such that|py,
is suitable or of the formuOv is infinite. Condition (3) implies thatU,,,, )xe. is non-increasing.
Moreover, (U, p, Jkew is @ sequence of nonempty closed subset’ efhose diameters tend @ so
that we can defin¢f (o)} :=Nc., Unipr =Nicw Ualpy,- This defines a continuous magpX) — X
with f(a) =limy_,o 4, - Similarly, we defingy: X} — Y continuous withy(3) =limy_, . YB|qn-

alpy

If a« € X3 NXi, then the sequencd;) of integers such that|py,; is suitable is infinite. Note
that(Wa|pkj )jew IS @ non-increasing sequence of nonempty closed subs@ta/bbse GH-diameters
tend to0, so that we can definé'(a) by {F(a)} := (¢, Wa‘pkj C N C Ap. As F(a) is the
limit (in (X x Y, GH), and thus inX x Y") of (%\pkj > Yalpr, )jews We getF (o) = (f(a), g()). Thus
AZC (fxg)"(Ao).

Note thatrs. = Zse(a)1) = - = Tsz(a|(g+1)) TOr €ACH(s, €, ) € 3 x 2 x2¥. This implies that

f(800) =1limy 00 T50(a)q) = Ts0- Similarly, g(s15) = ys1 and (f(s0a), g(s18)) = (zs0,ys1) € A1.
ThusAlC (fxg)~1(4).

e Let us prove that the construction is possible.MAs not empty, we can choosey, yp) € NN, a
X! subsetV of XxY with (zg,yg) € Wy C NN of GH-diameter at most, and a¥} neighborhood
Uy (resp.,Vp) of zy (resp.,yp) of diameter at most. Assume thatz;),cs<i, (Ys)sez<ts (Us)ges<t,
(Vi) geg<t and(Ws) c5<: satisfying (1)-(9) have been constructed, which is the éask=0.

Note that(z,, y.) € (U, x V) N W, C A, 2™ ginceu is suitable. We choosE, V € XY with
(20, Yu) EUXV CUXV CU,x Vo ASTIL[(UX V) N W, ] is S IL[(Ux V) N W,]is X nTIY. In
particular,IL.[(U x V) N W,] is T»-open. This shows the existence of

(xuo,yul)e (Ho[(UXV) N Wu] XHl[(UXV) N Wu]) N A;.

Note that(z,0, yu1) €U xV CU, x V,,. We Setr,; := 2y, Yuo :=",. We definedr,, y, whens € 3!+1
is not suitable bu|l is suitable.

Assume now that is suitable, but nog|l. This gives(u, ¢, v) such that =usv2. Assume first that
e=0. Note thatz,g, = xu0 € Uno, NIo[(Uy x V3,) N W, ]. This giveses € Uy, N [(Uyx Ve ) N W],
and alsay, with (2, ys) € (Uy N Uow) X Vi) N Wy = (Uyow X Vi) N Wy. If e=1, then similarly we
get(zs,ys) € (Uy X Vi) N W,

If s and s|l are both suitable, or both non suitable, then we(setys) := (x4, ys;). So we
definedz, ys in any case. Note that Conditions (8) and (9) are fullfillent) &hat(xs, ys) € W- if s
is suitable. Moreoverys € Uy, if s|l is suitable ors|l = u0v, andz, € U, if s=ulv2, and similarly
in' Y. We choose®? setsUs, V; of diameter at mos2—/~! with

Uy x Vg if s is not suitable os|l is suitable,
(24,ys) EUs X Vi CUx Vs C Q. Uy x Vy if s=u002,
Uy x Vg if s=ulv2.

It remains to choose, whesnis suitable, W, ¢ Ell(X x Y') of GH-diameter at mos2—!—! with
(xs,ys) EWs CW,—. O

12



5 References

[K] A. S. Kechris, Classical Descriptive Set Theoigpringer-Verlag, 1995

[K-S-T] A. S. Kechris, S. Solecki and S. TodorCevic, Booblromatic numbersidv. Math.141
(1999), 1-44

[L1] D. Lecomte, On minimal non potentially closed subsetshe plane, Topology Appll54, 1
(2007) 241-262

[L2] D. Lecomte, A dichotomy characterizing analytic gragsf uncountable Borel chromatic num-
ber in any dimensionfrans. Amer. Math. So861 (2009), 4181-4193

[L3] D. Lecomte, How can we recognize potentiaI[;fgJ subsets of the plane? appear in J. Math.
Log. (see arXiv)

[Lol] A.Louveau, A separation theorem fai! sets,Trans. Amer. Math. So260 (1980), 363-378
[Lo2] A. Louveau, Ensembles analytiques et boréliens diemespaces produseérisque (S. M. F.)
78 (1980)

[M] Y. N. Moschovakis,Descriptive set theorjorth-Holland, 1980

Acknowledgements.This work started last summer, when | was invited at the Usitye of Prague
by Miroslav Zeleny. | am very grateful to him for that, an@ased that we could prove Theorem 4.2
together.

13



