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1 Introduction

The reader should see [K] for the standard descriptive set theoretic notation used in this paper.
We study a definable coloring problem. We will need some more notation:

Notation. The lettersX, Y will refer to some sets. We set∆(X) :={(x0, x1)∈X
2 | x0=x1}.

Definition 1.1 (1) LetA⊆X2. We say thatA is adigraph if A ∩∆(X)=∅.

(2) LetA be a digraph. Acountable coloring of (X,A) is a mapc :X → ω such thatA does not
meet(c×c)−1

(

∆(ω)
)

.

In [K-S-T], the authors characterize the analytic digraphsof having a Borel countable coloring.
The characterization is given in terms of the following notion of comparison between relations.

Notation. LetX,Y be Polish spaces,A (resp.,B) a relation onX (resp.,Y ), andΓ a class of sets.

(X,A) �Γ (Y,B) ⇔ ∃f :X→Y Γ-measurable withA⊆(f×f)−1(B).

In this case, we say thatf is aΓ-measurable homomorphism from (X,A) into (Y,B). This notion
essentially makes sense for digraphs (we can takef to be constant ifB is not a digraph).

We also have to introduce a minimum digraph without Borel countable coloring:

• Let ψ :ω→ 2<ω be the natural bijection. More specifically,ψ(0) := ∅ is the sequence of length0,
ψ(1) :=0, ψ(2) :=1 are the sequences of length1, and so on. Note that|ψ(n)|≤n if n∈ω. Letn∈ω.
As |ψ(n)| ≤ n, we can definesn := ψ(n)0n−|ψ(n)|. The crucial properties of the sequence(sn)n∈ω
are the following:

- For eachs∈2<ω, there isn∈ω such thats⊆sn (we say that(sn)n∈ω is dense in 2<ω).

- |sn|=n.

• We putG0 :={(sn0γ, sn1γ) | n∈ω andγ∈2ω}⊆2ω×2ω. Note thatG0 is analytic since the map
(n, γ) 7→(sn0γ, sn1γ) is continuous.

The previous definitions were given, whenΓ=∆
1
1, in [K-S-T], where the following is proved:

Theorem 1.2 (Kechris, Solecki, Todorčevíc) LetX be a Polish space, andA an analytic relation on
X. Then exactly one of the following holds:

(a) There is a Borel countable coloring of(X,A), i.e.,(X,A) �
∆1

1

(

ω,¬∆(ω)
)

,

(b) (2ω,G0) �Σ0

1

(X,A).

This result had several developments during the last years:

- We can characterize the potentially closed sets via a Hurewicz-like test, and in finite dimension it
is a consequence of the previous result. Let us specify this.The following definition can be found in
[Lo2] (see Definition 3.3).
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Definition 1.3 (Louveau) LetX,Y be Polish spaces,A a Borel subset ofX×Y , andΓ a Borel class.
We say thatA is potentially in Γ

(

denotedA ∈ pot(Γ)
)

iff we can find a finer Polish topologyσ
(resp.,τ) onX (resp.,Y ) such thatA∈Γ

(

(X,σ)×(Y, τ)
)

.

In particular, the potentially open sets are exactly the countable unions of Borel rectangles. A
consequence of this is that the Borel hierarchy build on the Borel rectangles is exactly the hierarchy
of the classes of the sets potentially in some Borel class.

The good notion of comparison to study the pot(Γ) sets is as follows. LetX0,X1, Y0, Y1 be
Polish spaces, andAε0, A

ε
1 disjoint analytic subsets ofXε×Yε. Then we set

(X0, Y0, A
0
0, A

0
1) ≤ (X1, Y1, A

1
0, A

1
1) ⇔

∃f :X0→X1 ∃g :Y0→Y1 continuous with∀ε∈2 A0
ε⊆(f×g)−1(A1

ε),

The following theorem is proved in [L1], and is a consequenceof Theorem 1.2:

Theorem 1.4 LetX,Y be Polish spaces, andA0, A1 disjoint analytic subsets ofX×Y . Then exactly
one of the following holds:

(a) The setA0 can be separated fromA1 by a pot(Σ0
1) set,

(b)
(

2ω, 2ω ,∆(2ω),G0

)

≤ (X,Y,A0, A1).

In [L1], it is also proved that we cannot havef one-to-one in Theorem 1.2.(b) in general. It is easy
to check that Theorem 1.2 is also an easy consequence of Theorem 1.4. This means that the study of
the Borel countable colorings is highly related to the studyof countable unions of Borel rectangles.

- We can extend Theorem 1.2 to any finite dimension, and also ininfinite dimension if we change the
space in which lives the infinite dimensional version ofG0 (see [L2]).

- B. Miller recently developped some techniques to recover many dichotomy results of descriptive
set theory, but without using effective descriptive set theory. He replaces it with some versions of
Theorem 1.2. In particular, he can prove Theorem 1.2 withouteffective descriptive set theory.

WhenA is Borel, it is natural to ask about the relation between the Borel class ofA and that of the
coloring f when Theorem 1.2.(a) holds. This leads to consider∆

0
ξ-measurable countable colorings

(or equivalentlyΣ0
ξ-measurable countable colorings). We have the following conjecture:

Conjecture 1 Let1≤ξ<ω1. Then there are

- a 0-dimensional Polish spaceXξ,

- an analytic relationAξ onXξ

such that for any0-dimensional Polish spaceX, and for any analytic relationA onX, exactly one of
the following holds:

(a) (X,A) �
∆0

ξ

(

ω,¬∆(ω)
)

,

(b) (Xξ,Aξ) �Σ0

1

(X,A).

We will prove it when1≤ ξ≤ 2, and in these cases we do not have to assume thatA is analytic.
A sequences∈ 3<ω will be said to besuitable if s= ∅ or s(|s|−1)=2. We will haveX2 := 3ω and
A2 :=

{

(s0α, s1β) | s suitable∧ α, β∈2ω
}

.
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We saw that the study of the Borel countable colorings is highly related to the study of count-
able unions of Borel rectangles, and gave some motivation for studyingΣ0

ξ-measurable countable
colorings. This motivates the study of countable unions ofΣ

0
ξ rectangles. Another motivation is that

(X,A) �
∆0

ξ

(

ω,¬∆(ω)
)

is equivalent to the fact that∆(X) can be separated fromA by a(Σ0
ξ×Σ

0
ξ)σ

set, by the generalized reduction property for the classΣ
0
ξ (see 22.16 in [K]).

Conjecture 2 Let1≤ξ<ω1. Then there are

- 0-dimensional Polish spacesX0
ξ ,X

1
ξ ,

- disjoint analytic subsetsA0
ξ ,A

1
ξ ofX0

ξ×X
1
ξ

such that for any Polish spacesX,Y , and for any pairA0, A1 of disjoint analytic subsets ofX×Y ,
exactly one of the following holds:

(a) The setA0 can be separated fromA1 by a(Σ0
ξ×Σ

0
ξ)σ set,

(b) (X0
ξ ,X

1
ξ ,A

0
ξ ,A

1
ξ) ≤ (X,Y,A0, A1).

It is easy to prove this whenξ = 1. Our main result is that Conjecture 2 holds whenξ = 2. We
now describe our minimum example(X0

2,X
1
2,A

0
2,A

1
2).

Notation. We putX0
2 := 3ω \

{

s1β | s suitable∧ β ∈ 2ω
}

, X1
2 := 3ω \

{

s0α | s suitable∧ α ∈ 2ω
}

,
A
0
2 :=∆(X0

2 ∩ X
1
2) andA1

2 :=A2 :=
{

(s0α, s1β) | s suitable∧ α, β∈2ω
}

.

We use effective descriptive set theory, and give effectivestrengthenings of our results. The
reader should see [M] for basic notions of effective descriptive set theory. In particular, we will see
that to test whether an analytic relation has aΣ

0
ξ-measurable countable coloring, it is enough to test

countably many partitions instead of continuum many. We will use the topologyT2 generated by the
Σ

1
1 ∩Π

0
1 subsets of a recursively presented Polish space (introduced in [Lo1]). Our main result can

be strengthened as follows (see [L3]).

Theorem 1.5 Let X,Y be recursively presented Polish spaces, andA0, A1 disjoint Σ 1
1 subsets of

X×Y . The following are equivalent:

(a) The setA0 cannot be separated fromA1 by a(Σ0
2×Σ

0
2)σ set.

(b) The setA0 cannot be separated fromA1 by a∆1
1 ∩ (Σ0

2×Σ
0
2)σ set.

(c) The setA0 cannot be separated fromA1 by aΣ0
1(T2×T2) set.

(d)A0 ∩ A1
T2×T2 6=∅.

(e) (X0
2,X

1
2,A

0
2,A

1
2) ≤ (X,Y,A0, A1).
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2 Some general effective facts

One can hope for an effective strengthening of Conjecture 1:
Effective conjecture 1Let1≤ξ<ω1. Then there are

- a 0-dimensional Polish spaceXξ,

- an analytic relationAξ onXξ

such that(Xξ,Aξ) 6�∆0

ξ

(

ω,¬∆(ω)
)

and for anyα ∈ ωω with 1 ≤ ξ < ωα1 , for any0-dimensional

recursively inα presented Polish spaceX, and for anyΣ 1
1 (α) relationA onX, one of the following

holds:

(a) (X,A) �∆1

1
(α)∩∆0

ξ

(

ω,¬∆(ω)
)

,

(b) (Xξ,Aξ) �Σ0

1

(X,A).

We will see that this effective conjecture is true when1 ≤ ξ ≤ 2. The following statement is a
corollary of this effective conjecture, and is in fact a theorem:

Theorem 2.1 Let 1≤ ξ <ωCK
1 , X a 0-dimensional recursively presented Polish space, andA a Σ

1
1

relation onX. We assume that(X,A) �∆0

ξ

(

ω,¬∆(ω)
)

. Then(X,A) �∆1

1
∩∆0

ξ

(

ω,¬∆(ω)
)

.

A consequence of this is that to test whether an analytic relation has aΣ0
ξ-measurable countable

coloring, it is enough to test countably many partitions instead of continuum many. Another con-
sequence is the equivalence between Conjecture 1 and the Effective conjecture 1. We have in fact
preliminary results that will help us to prove also the equivalence between (a)-(d) in Theorem 1.5, in
the general case.

Lemma 2.2 Let 1 ≤ ξ < ωCK
1 , X,Y recursively presented Polish spaces, andA ∈ Σ

1
1 (X) ∩ Σ

0
ξ,

B∈Σ
1
1 (Y )∩Σ

0
ξ andC∈Σ

1
1 (X×Y ) disjoint fromA×B. Then there areA′, B′∈∆

1
1 ∩Σ

0
ξ such that

A′×B′ separatesA×B fromC.

Proof. Note thatA and{x∈X | ∃y∈B (x, y)∈C} are disjointΣ 1
1 sets, separable by aΣ0

ξ subset
of X. By Theorems 1.A and 1.B in [Lo1], there isA′∈∆1

1 ∩Σ
0
ξ separating these two sets. Similarly,

B and{y∈Y | ∃x∈A′ (x, y)∈C} are disjointΣ 1
1 sets, and there isB′∈∆

1
1 ∩Σ

0
ξ separating these

two sets. �

Theorem 2.3 Let 1≤ ξ < ωCK
1 , X,Y recursively presented Polish spaces, andA0, A1 disjoint Σ 1

1

subsets ofX×Y . We assume thatA0 is separable fromA1 by a
(

Σ
0
ξ×Σ

0
ξ

)

σ
set. ThenA0 is separable

fromA1 by a∆1
1 ∩

(

(∆1
1 ∩Σ

0
ξ)×(∆1

1 ∩Σ
0
ξ)
)

σ
set.

Proof. By Example 2 of Chapter 3 in [Lo2], the family
(

N(n,X)
)

n∈ω
is regular without parameter.

By Corollary 2.10 in [Lo2],Π0
ξ(X), as well asΣ0

ξ(X) =
(
⋃

η<ξ Π
0
η(X)

)

σ
, are regular without

parameter. By Theorem 2.12 in [Lo2],Σ0
ξ(X)×Σ0

ξ(Y ) is also regular without parameter. By Theorem
2.8 in [Lo2], the familyΦ:=

(

Σ
0
ξ(X)×Σ0

ξ(Y )
)

σ
is separating which imply the existence ofS∈∆

1
1∩Φ

separatingA0 fromA1.
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With the notation of [Lo2], letn be an integer with(0∞, n)∈W andC0∞,n=S. Then(0∞, n) is
in WΦ, which by Theorem 2.8.(ii) in [Lo2] is

{

(α, n)∈W | ∃β∈∆
1
1(α) ∀m∈ω

(

α, β(m)
)

∈WΣ0

ξ
(X)×Σ0

ξ
(Y ) ∧ Cα,n=

⋃

m∈ω

Cα,β(m)

}

.

This implies thatS ∈∆
1
1 ∩

(

∆
1
1 ∩ (Σ0

ξ×Σ
0
ξ)
)

σ
. It remains to check that∆1

1 ∩ (Σ0
ξ×Σ

0
ξ) = (∆1

1 ∩

Σ
0
ξ)×(∆1

1 ∩ Σ
0
ξ). The second set is clearly a subset of the first one. So assume thatR=A×B ∈

∆
1
1∩(Σ0

ξ×Σ
0
ξ). We may assume thatR is not empty. Then the projectionsA,B areΣ 1

1 sinceR∈∆
1
1.

Lemma 2.2 givesA′, B′∈∆
1
1 ∩Σ

0
ξ with A×B⊆A′×B′⊆R=A×B. �

Recall that ifA is a relation onX andD⊆X, thenD isA-discrete if A ∩D2=∅.

Proof of Theorem 2.1.We apply Theorem 2.3 toY :=X, A0 :=∆(X) andA1 :=A. As

(X,A) �
∆0

ξ

(

ω,¬∆(ω)
)

,

∆(X) is separable fromA by a (Σ0
ξ×Σ

0
ξ)σ set. Theorem 2.3 givesCn,Dn ∈ ∆

1
1 ∩ Σ

0
ξ such that

S :=
⋃

n∈ω Cn×Dn ∈∆
1
1 separates∆(X) from A. As the set of codes for∆1

1 ∩ Σ
0
ξ subsets ofX

isΠ 1
1 (see Proposition 1.4 in [Lo1]), the∆1

1-selection theorem and the separation theorem imply that
we may assume that the sequences(Cn) and(Dn) are∆1

1. Note that(Cn ∩ Dn) is a∆
1
1 covering

of X into A-discrete∆1
1 ∩ Σ

0
ξ sets. AsX is 0-dimensional we can reduce this covering into a∆

1
1

covering(∆n) of X into ∆
1
1 ∩Σ

0
ξ sets, which are in fact∆0

ξ . This gives the desired partition. �

Notation. Following [Lo1], we define the following topologies on a0-dimensional recursively inα
presented Polish spaceX, for anyα∈ωω. LetT1(α) be the usual topology onX, and for2≤ξ<ω1,
Tξ(α) be the topology generated by theΣ 1

1 (α) ∩ Π
0
<ξ subsets ofX. The next proposition gives a

reformulation of the inequality(X,A) �
∆1

1
(α)∩∆0

ξ

(

ω,¬∆(ω)
)

of the Effective conjecture 1.

Proposition 2.4 Let 1≤ ξ < ωCK
1 , X a 0-dimensional recursively presented Polish space, andA a

Σ
1
1 relation onX. Then(X,A) �

∆1

1
∩∆0

ξ

(

ω,¬∆(ω)
)

is equivalent to∆(X) ∩ A
Tξ×Tξ =∅.

Proof. Assume first that(X,A) �
∆1

1
∩∆0

ξ

(

ω,¬∆(ω)
)

. Then there is a partition(Bn) of X into A-

discrete∆1
1 ∩∆

0
ξ sets. In particular, Theorem 1.A in [Lo1] implies thatBn is a countable union of

∆
1
1 ∩Π

0
<ξ sets ifξ≥2. In particular,Bn is Tξ-open and∆(X) is disjoint fromA

Tξ×Tξ .

Conversely, assume that∆(X) ∩ A
Tξ×Tξ = ∅. Then each elementx of X is contained in aA-

discreteΣ 1
1 ∩Π

0
<ξ set (basic clopen set ifξ=1). Lemma 2.2 implies that each elementx of X is in

fact contained in aA-discrete∆1
1 ∩Π

0
<ξ set ifξ≥2. It remains to apply Proposition 1.4 in [Lo1] and

the∆1
1-selection theorem to get the desired partition. �
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One can also hope for an effective strengthening of Conjecture 2 generalizing Theorem 1.5:

Effective conjecture 2Let1≤ξ<ω1. Then there are

- 0-dimensional Polish spacesX0
ξ ,X

1
ξ ,

- disjoint analytic subsetsA0
ξ ,A

1
ξ of the spaceX0

ξ×X
1
ξ , not separable by a(Σ0

ξ×Σ
0
ξ)σ set,

such that for anyα∈ωω such that1≤ξ<ωα1 , for any recursively inα presented Polish spacesX,Y ,
and for any pairA0, A1 of disjointΣ 1

1 (α) subsets ofX×Y , the following are equivalent:

(a) The setA0 cannot be separated fromA1 by a(Σ0
ξ×Σ

0
ξ)σ set.

(b) The setA0 cannot be separated fromA1 by a∆1
1(α) ∩ (Σ0

ξ×Σ
0
ξ)σ set.

(c) The setA0 cannot be separated fromA1 by aΣ0
1

(

Tξ(α)×Tξ(α)
)

set.

(d)A0 ∩ A1
Tξ(α)×Tξ(α) 6=∅.

(e) (X0
ξ ,X

1
ξ ,A

0
ξ ,A

1
ξ) ≤ (X,Y,A0, A1).

In fact, the statements (a)-(d) are indeed equivalent:

Theorem 2.5 Let 1≤ ξ < ωCK
1 , X,Y recursively presented Polish spaces, andA0, A1 disjoint Σ 1

1

subsets ofX×Y . The following are equivalent:

(a) The setA0 cannot be separated fromA1 by a(Σ0
ξ×Σ

0
ξ)σ set.

(b) The setA0 cannot be separated fromA1 by a∆1
1 ∩ (Σ0

ξ×Σ
0
ξ)σ set.

(c) The setA0 cannot be separated fromA1 by aΣ0
1(Tξ×Tξ) set.

(d)A0 ∩ A1
Tξ×Tξ 6=∅.

Proof. Theorem 2.3 implies that (a) is indeed equivalent to (b). It also implies, using the proof of
Proposition 2.4, that (c) implies (a), and the converse is clear. It is also clear that (c) and (d) are
equivalent. �

A consequence of this is that Conjecture 2 and the Effective conjecture 2 are equivalent.

3 The caseξ=1

We setX1 :=2ω andA1 :={(02k+11α, 02k1β) | k∈ω ∧ α, β∈2ω}.

Lemma 3.1 The spaceX1 is a 0-dimensional metrizable compact space,A1 is aΣ
0
1 relation onX1,

and(X1,A1) 6�∆0

1

(

ω,¬∆(ω)
)

.

Proof. The first two assertions are clear. We argue by contradictionfor the last assertion, which gives
f :X1→ω continuous withf(α) 6=f(β) if (α, β)∈A1. We setCn :=f−1({n}), so that(Cn)n∈ω is a
partition ofX1 into A1-discrete∆0

1 sets. Choosen with 0∞∈Cn. Then0iα∈Cn if i is big enough.
This gives an integerk with 02k+11∞, 02k1∞ ∈ Cn, and(02k+11∞, 02k1∞) ∈ A1 ∩ C2

n, which is
absurd. �
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Theorem 3.2 LetX be a0-dimensional Polish space, andA a relation onX. Then exactly one of
the following holds:

(a) (X,A) �∆0

1

(

ω,¬∆(ω)
)

,

(b) (X1,A1) �Σ0

1

(X,A).

Moreover, this is not true, even ifA is analytic, ifX is not0-dimensional, and we cannot havef
one-to-one in (b) (with this couple(X1,A1) or any other).

Proof. Note first that (a) and (b) cannot hold simultaneously, by Lemma 3.1. We enumerate a basis
(

N(n,X)
)

n∈ω
for the topology ofX made of clopen sets. Assume that (a) does not hold. We build

- an increasing sequence of integers(nk)k∈ω,

- a sequence(xp)p∈ω of points ofX.

We want these objects to satisfy the following conditions:

(1) (x2k, x2k+1)∈A ∩N(nk,X)2

(2) N(nk+1,X)⊆N(nk,X)
(3) diam

(

N(nk,X)
)

≤2−k

(4) There is no covering ofN(nk,X) intoA-discrete clopen subsets ofX

• Assume that this is done. Then we can define a pointx of X by {x}=
⋂

k∈ω N(nk,X). Note that
(xp) tends tox. We definef :X1 →X by f(0∞) := x, f(02k+11α) := x2k andf(02k1β) := x2k+1.
Note thatf is continuous. Moreover,

(

f(02k+11α), f(02k1β)
)

=(x2k, x2k+1)∈A, so that (b) holds.

• Let us prove that the construction is possible. We setN(n−1,X) :=X. Assume that(nk)k<l and
(x2k, x2k+1)k<l satisfying (1)-(4) have been constructed, which is the casefor l = 0. We choose a
covering ofN(nl−1,X) with basic clopen sets of diameter at most2−l, contained inN(nl−1,X).
Then one of these basic sets, sayN(nl,X), satisfies (4). It remains to choose(x2l, x2l+1) in the set
A ∩N(nl,X)2.

• Consider nowX :=R andA :={(0, 1)}. Then (a) does not hold sinceR is connected. If (b) holds,
then we must havef(02k+11α)=0 andf(02k1β)=1. By continuity off , we getf(0∞)=0=1.

This would be the same with any(X1,A1). Indeed, as(X1,A1) 6�∆0

1

(

ω,¬∆(ω)
)

, we have

Π0[A1]∩Π1[A1] 6=∅, since otherwise there would be a clopen subsetC of X1 separatingΠ0[A1] from
Π1[A1], and we would have∆(X1)⊆C2 ∪ (¬C)2⊆¬A1. So we can choosex∈Π0[A1] ∩ Π1[A1],
x2k ∈ Π0[A1] such that(x2k) tends tox, y2k+1 ∈ Π1[A1] such that(y2k+1) tends tox, y2k with
(x2k, y2k) ∈ A1, andx2k+1 with (x2k+1, y2k+1) ∈ A1. Thenf(x2k) = 0, f(y2k+1) = 1 and we
conclude as before.

• ConsiderX := 2ω andA := {0∞}×(2ω \{0∞}). Then (a) does not hold since if a clopen subset
C of 2ω contains0∞, then it contains alsoα 6= 0∞, so that(0∞, α) ∈ A ∩ C2. If (b) holds, then
f(02k+11α)=0∞ for each integerk andf is not one-to-one.

This argument works as soon asΠ0[A1] has at least two elements. If we argue in the other factor,
then we see that an example(X1,A1) with injectivity must satisfy thatA1 is a singleton{(α, β)}.
As (X1,A1) �Σ0

1

(2ω,G0), α 6= β. So take a clopen subsetC of X1 containingα but notβ. Then

∆(X1)⊆C
2 ∪ (¬C)2⊆¬A1. �
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Proposition 3.3 Conjecture 2 holds forξ=1.

Proof. We setXε1 := X1, A0
1 := {(0∞, 0∞)} andA

1
1 := A1. If (x, y) ∈ A0 ∩ A1, then choose

(xk, yk) in A1 tending to(x, y), and setf(0∞) := x, g(0∞) := y, f(02k+11α) := f(02k1β) := xk,
g(02k+11α) :=g(02k1β) :=yk. �

4 The caseξ=2

Lemma 4.1 The spaceX2 is a 0-dimensional metrizable compact space,A2 is aΣ
0
2 relation onX2,

and(X2,A2) 6�∆0

2

(

ω,¬∆(ω)
)

.

Proof. The first two assertions are clear. We argue by contradictionfor the last assertion, which gives
f :X2→ω∆

0
2-measurable withf(α) 6=f(β) if (α, β)∈A2. We setCn :=f−1({n}), so that(Cn)n∈ω

is a partition ofX2 into A2-discrete∆0
2 sets. By Baire’s theorem, there are an integern ands∈2<ω

such thatCn contains the basic clopen setNs. Then(s20∞, s21∞)∈A2 ∩ C
2
n, which is absurd. �

We have a stronger result than Conjecture 1, in the sense thatwe do not need any regularity
assumption onA, neither thatX is 0-dimensional:

Theorem 4.2 (Lecomte-Zeleńy) LetX be a Polish space, andA a relation onX. Then exactly one
of the following holds:

(a) (X,A) �∆0

2

(

ω,¬∆(ω)
)

,

(b) (X2,A2) �Σ0

1

(X,A).

Proof. Note first that (a) and (b) cannot hold simultaneously, by Lemma 4.1. IfA is not a digraph,
then choosex with (x, x)∈A, and putf(α) :=x. So we may assume thatA is a digraph. We set

U :=
⋃

{

V ∈Σ
0
1(X) | ∃D∈Σ

0
2(ω×X) V ⊆

⋃

p∈ω

Dp ∧ ∀p∈ω A ∩ (Dp×Dp)=∅
}

.

Case 1.U=X.

There is a countable covering ofX intoA-discreteΣ0
2 sets. We just have to reduce them to get a

partition showing that (a) holds.

Case 2.U 6=X.

ThenY :=X\U is a nonempty closed subset ofX.

Claim If ∅ 6=W ∈Σ
0
1(Y ), then there is noΣ0

2 subset ofω×X whose sections areA-discrete and
coverW . In particular,W is notA-discrete.

We argue by contradiction. Lety∈W , andZ an open subset ofX with Z ∩ Y =W . AsZ ∩ U
can be covered with some

⋃

p∈ω Dp’s, so isZ. ThusZ⊆U , so thaty∈Z ∩ Y ⊆U \U =∅, which is
the desired contradiction. ⋄
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We construct a sequence(Vs)s∈3<ω of open subsets ofY , and a sequence(xs)s∈3<ω of points of
Y . We want these objects to satisfy the following conditions:

(1) xs∈Vs
(2) Vsε⊆Vs
(3) diam(Vs)≤2−|s|

(4) (xs0, xs1)∈A if s is suitable
(5) xsε=xs if ε=2 ∨ s is not suitable

• Assume that this is done. We definef :3ω→Y ⊆X by {f(α)} :=
⋂

k∈ω Vα|k=
⋂

k∈ω Vα|k, so that
f is continuous. Note thatf(α) is the limit ofxα|k, and that

xsε=xsε(α|1)= ...=xsε(α|(q+1))

for each(s, ε, α)∈3<ω×2×2ω. Thusf(sεα)= limq→∞ xsε(α|q)=xsε and
(

f(s0α), f(s1β)
)

=(xs0, xs1)∈A.

So (b) holds.

• Let us prove that the construction is possible. We choosex∅ ∈ Y and an open neighborhoodV∅
of x∅ in Y , of diameter at most1. Assume that(Vs)s∈3≤l and(xs)s∈3≤l satisfying (1)-(5) have been
constructed, which is the case forl=0.

An application of the Claim gives(xs0, xs1)∈A ∩ V 2
s if s is suitable. We satisfy (5), so that the

definition of thexs’s is complete. Note thatxs∈Vs|l if s∈3l+1.

We choose an open neighborhoodVs of xs in Y , of diameter at most2−l−1, ensuring the inclusion
Vs⊆Vs|l. This finishes the proof. �

Remark. We cannot replace(X2,A2) with
(

2ω,
{

(s0α, s1β) | s ∈ 2<ω ∧ α, β ∈ 2ω
})

. Indeed,
otherwise we getf :2ω→3ω continuous with

{

(s0α, s1β) | s∈2<ω ∧ α, β∈2ω
}

⊆(f×f)−1(
{

(s0α, s1β) | s suitable∧ α, β∈2ω
}

).

Thus
(

f(0∞), f(0k1∞)
)

= (sk0αk, sk1βk) = (s00α0, s01βk). But f(0∞) = s00α0 is the limit of
f(0k1∞)=s01βk, which cannot be. This shows that it is useful to take3 instead of2.

Now we come to the proof of our main theorem.

Lemma 4.3 The spacesX0
2,X

1
2 are0-dimensional Polish spaces,A0

2,A
1
2 are disjoint analytic subsets

of X0
2×X

1
2, and are not separable by a(Σ0

2×Σ
0
2)σ set.

Proof. The first two assertions are clear sinceX0
2,X

1
2 areGδ subsets of3ω, A0

2,A
1
2 have disjoint

projections,A0
2 = ∆(3ω) ∩ (X0

2×X
1
2) is closed andA1

2 is Σ
0
2. We argue by contradiction for the

last assertion, which givesCn ∈ Π
0
1(X

0
2) andDn ∈ Π

0
1(X

1
2) with A

0
2 ⊆

⋃

n∈ω (Cn×Dn) ⊆ ¬A1
2.

In particular,X0
2 ∩ X

1
2 =

⋃

n∈ω Cn ∩ Dn, and Baire’s theorem givesn ands ∈ 3<ω such that the
inclusionNs ∩ X

0
2 ∩ X

1
2 ⊆ Cn ∩ Dn holds. Note thatNs ∩ X

0
2 ⊆ Cn andNs ∩ X

1
2 ⊆ Dn. Then

(s20∞, s21∞)∈A
1
2 ∩ (Cn×Dn), which is absurd. �
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Remark. This proof shows that the spacesX0
2,X

1
2 of Conjecture 2 cannot be both compact, which is

quite unusual in this kind of dichotomy (even if it was already the case in [L2]). Indeed, our example
shows thatA0

2,A
1
2 must be separable by a closed setC, andC,A1

2 must have disjoint projections.
If X

0
2,X

1
2 are compact, thenC and its projections are compact too. The product of these compact

projections is a(Σ0
2×Σ

0
2)σ set separatingA0

2 from A
1
2, which cannot be. This fact implies that we

cannot extend the continuous maps of Theorem 1.5.(e) to3ω in general.

Notation. We now recall some facts about the Gandy-Harringtion topology (see [L2]). LetZ be a
recursively presented Polish space. TheGandy-Harrington topology onZ is generated by theΣ 1

1

subsets ofZ. We setΩ := {z ∈Z | ωz1 =ωCK
1 }. ThenΩ is Σ

1
1 , dense in(Z,GH), andW ∩ Ω is a

clopen subset of(Ω,ΣZ) for eachW ∈Σ
1
1 (Z). Moreover,(Ω,GH) is a0-dimensional Polish space.

So we fix a complete compatible metricdGH on (Ω,GH).

Proof of Theorem 1.5.We already saw that (a)-(d) are equivalent at the end of Section 2. Lemma 4.3

shows that (e) implies (a). So it is enough to show that (d) implies (e). We setN :=A0 ∩ A1
T2×T2,

which is not empty. Lemma 2.2 implies that

(x, y) /∈A1
T2×T2 ⇔ ∃C,D∈Σ

1
1 ∩Π

0
1 (x, y)∈C×D⊆¬A1

⇔ ∃C,D∈∆
1
1 ∩Σ

0
2 (x, y)∈C×D⊆¬A1.

This and Proposition 1.4 in [Lo1] show thatN is Σ 1
1 .

• Note thats is not suitable if and only if it is of the formuεv, whereu is suitable,ε∈2 andv∈2<ω.
If ∅ 6=s is suitable, then we sets− :=s|max{l< |s| | s|l is suitable}. We construct

- a sequence(xs)s∈3<ω of points ofX,

- a sequence(ys)s∈3<ω of points ofY ,

- a sequence(Us)s∈3<ω of Σ 0
1 subsets ofX,

- a sequence(Vs)s∈3<ω of Σ 0
1 subsets ofY ,

- a sequence(Ws)s∈3<ω suitableof Σ 1
1 subsets ofX×Y .

We want these objects to satisfy the following conditions:

(1) (xs, ys)∈Us×Vs
(2) (xs, ys)∈Ws⊆N ∩ Ω if s is suitable
(3) Usε⊆Us if s is suitable ors=u0v, andUu1v2⊆Uu
(4) Vsε⊆Vs if s is suitable ors=u1v, andVu0v2⊆Vu
(5)Ws⊆Ws− if ∅ 6=s is suitable
(6) diam(Us),diam(Vs)≤2−|s|

(7) diamGH(Ws)≤2−|s| if s is suitable
(8) (xu0, yu1)∈

(

Π0[(Uu×Vu) ∩Wu]×Π1[(Uu×Vu) ∩Wu]
)

∩A1

(9) (xu0v, yu1v)=(xu0, yu1)

11



• Assume that this is done. Letα∈X
0
2. Then the increasing sequence(pk) of integers such thatα|pk

is suitable or of the formu0v is infinite. Condition (3) implies that(Uα|pk)k∈ω is non-increasing.
Moreover,(Uα|pk)k∈ω is a sequence of nonempty closed subsets ofX whose diameters tend to0, so
that we can define{f(α)} :=

⋂

k∈ω Uα|pk =
⋂

k∈ω Uα|pk . This defines a continuous mapf :X0
2→X

with f(α)= limk→∞ xα|pk . Similarly, we defineg :X1
2→Y continuous withg(β)= limk→∞ yβ|qk .

If α ∈ X
0
2 ∩ X

1
2, then the sequence(kj) of integers such thatα|pkj is suitable is infinite. Note

that(Wα|pkj
)j∈ω is a non-increasing sequence of nonempty closed subsets ofΩ whose GH-diameters

tend to0, so that we can defineF (α) by {F (α)} :=
⋂

j∈ω Wα|pkj
⊆ N ⊆ A0. As F (α) is the

limit (in (X×Y,GH), and thus inX×Y ) of (xα|pkj , yα|pkj )j∈ω, we getF (α)=
(

f(α), g(α)
)

. Thus

A
0
2⊆(f×g)−1(A0).

Note thatxsε = xsε(α|1) = ... = xsε(α|(q+1)) for each(s, ε, α) ∈ 3<ω×2×2ω . This implies that
f(s0α) = limq→∞ xs0(α|q) = xs0. Similarly, g(s1β) = ys1 and

(

f(s0α), g(s1β)
)

= (xs0, ys1)∈A1.
ThusA1

2⊆(f×g)−1(A1).

• Let us prove that the construction is possible. AsN is not empty, we can choose(x∅, y∅)∈N ∩Ω, a
Σ

1
1 subsetW∅ ofX×Y with (x∅, y∅)∈W∅⊆N∩Ω of GH-diameter at most1, and aΣ 0

1 neighborhood
U∅ (resp.,V∅) of x∅ (resp.,y∅) of diameter at most1. Assume that(xs)s∈3≤l , (ys)s∈3≤l , (Us)s∈3≤l ,
(Vs)s∈3≤l and(Ws)s∈3≤l satisfying (1)-(9) have been constructed, which is the casefor l=0.

Note that(xu, yu)∈ (Uu×Vu) ∩Wu⊆A1
T2×T2 sinceu is suitable. We chooseU, V ∈Σ

0
1 with

(xu, yu)∈U×V ⊆U×V ⊆Uu×Vu. AsΠε[(U×V ) ∩Wu] isΣ 1
1 , Πε[(U×V ) ∩Wu] isΣ 1

1 ∩Π
0
1. In

particular,Πε[(U×V ) ∩Wu] is T2-open. This shows the existence of

(xu0, yu1)∈
(

Π0[(U×V ) ∩Wu]×Π1[(U×V ) ∩Wu]
)

∩A1.

Note that(xu0, yu1)∈U×V ⊆Uu×Vu. We setxu1 :=xu, yu0 :=yu. We definedxs, ys whens∈3l+1

is not suitable buts|l is suitable.

Assume now thats is suitable, but nots|l. This gives(u, ε, v) such thats=uεv2. Assume first that
ε=0. Note thatxu0v=xu0∈Uu0v∩Π0[(Uu×Vu) ∩Wu]. This givesxs∈Uu0v∩Π0[(Uu×Vu)∩Wu],
and alsoys with (xs, ys)∈

(

(Uu ∩ Uu0v)×Vu
)

∩Wu=(Uu0v×Vu) ∩Wu. If ε=1, then similarly we
get(xs, ys)∈(Uu×Vu1v) ∩Wu.

If s and s|l are both suitable, or both non suitable, then we set(xs, ys) := (xs|l, ys|l). So we
definedxs, ys in any case. Note that Conditions (8) and (9) are fullfilled, and that(xs, ys)∈Ws− if s
is suitable. Moreover,xs ∈Us|l if s|l is suitable ors|l=u0v, andxs ∈Uu if s=u1v2, and similarly
in Y . We chooseΣ 0

1 setsUs, Vs of diameter at most2−l−1 with

(xs, ys)∈Us×Vs⊆Us×Vs⊆







Us|l×Vs|l if s is not suitable ors|l is suitable,
Us|l×Vu if s=u0v2,
Uu×Vs|l if s=u1v2.

It remains to choose, whens is suitable,Ws ∈ Σ
1
1 (X ×Y ) of GH-diameter at most2−l−1 with

(xs, ys)∈Ws⊆Ws− . �
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