
HAL Id: hal-00472692
https://hal.science/hal-00472692v1

Submitted on 13 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Method To Accelerate LES Explicit Solvers Using
Local Time-Stepping

Olivier Esnault, Matthieu Boileau, Ronan Vicquelin, Benoit Fiorina, Olivier
Gicquel

To cite this version:
Olivier Esnault, Matthieu Boileau, Ronan Vicquelin, Benoit Fiorina, Olivier Gicquel. A Method To
Accelerate LES Explicit Solvers Using Local Time-Stepping. 48th AIAA Aerospace Sciences Meeting
Including the New Horizons Forum and Aerospace Exposition, Jan 2010, Orlando, United States.
pp.AIAA-2010-123, �10.2514/6.2010-123�. �hal-00472692�

https://hal.science/hal-00472692v1
https://hal.archives-ouvertes.fr
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Laboratoire EM2C, CNRS, Ecole Centrale Paris, Grande voie des vignes, 92295 Châtenay-Malabry, France.

In practical flow configurations, a large disparities of geometrical length scales are often
encountered. Inside a combustor, for example, the ratio between the diameter of the
injection holes and the size of the entire combustion chamber may present several orders
of magnitude. When considering an explicit solver for fully compressible Navier-Stokes
equations, the global time step is constrained through a CFL-like condition by the size of
the smallest cells in the overall computational domain. Local refinement of the injector leads
to an inhomogeneous mesh and the former restriction drastically alters the overall solver
efficiency. A new local time-stepping (LTS) method is proposed to address this issue. The
domain is divided into subgrids composed of cells that have similar sizes. Flow equations
are simultaneously advanced on each subgrid which have a local time step adapted to
satisfy the local CFL condition. The accuracy of the method has been verified on a simple
convection case using a test code. The method has also been implemented in a large eddy
simulation (LES) explicit solver and successfully tested for an acoustic wave propagation.
It has been finally used in the two-dimensional large eddy simulation of a turbulent jet.

I. Introduction

Thanks to the progress of turbulent combustion modeling and to the increase in computing power,
today numerical simulations are now part of the design process of aeronautical turbine combustors. Main
challenges when designing a gas turbine combustor are to control flame ignition and extinction as well as
combustion instabilities that may cause the destruction of the engine. Predicting these phenomena requires
to take into account flow unsteady effects and their interaction with the reaction zone. The Large Eddy
Simulation (LES) technique, combined with significant improvements in the field of combustion modeling,
have provided researchers with the tools needed to study a wide variety of turbulent reacting flows. Although
LES has the capability to accurately predict the key phenomena, some studies remain beyond the capacities
of existing CFD tools. For example, simulations of a turbine combustor are usually limited to a single sector.
However, to accurately predict ignition, reignition, quenching and instabilities taking place in a combustor,
computations of the full chamber are required. Recently, LES of reacting flows in full combustion chambers of
gas turbines have been successfully performed with the AVBP code on several massivelly parallel machines.1–5

However, such calculations are still too expensive to be used in industry.
So, although the increasing efficiency of parallel computing, computational time remains an important

issue. The CPU time directly relies on restrictions imposed by the numerical schemes stability. When
considering an explicit solver for fully compressible Navier-Stokes equations, the time step is constrained
through an accoustic CFL-like condition by the smallest cells in the overall computational domain. For
combustion chamber simulation, local refinement of the fuel injector leads to an inhomogeneous mesh and
the former restriction affects the overall solver efficiency. One way to address this issue is to use local time-
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stepping (LTS) methods. They allow to define local time steps whose values depend on the corresponding
local mesh properties. The aforementioned severe CFL restrictions may then be overcome.

Existing LTS methods mainly group in two classes: hierarchical and non-hierarchical methods. The cate-
gory of hierarchical methods counts AMR-like strategies and adaptative multiscale schemes. AMR methods
were introduced in the 80s by Berger and co-workers6,7 and are widely used and suitable for parallel solvers
using structured meshes. They are based on a hierarchical tree of overlapping grids. Adaptative multiscale
schemes8,9 are multiresolution techniques in the line of Harten’s work.10 On the contrary, other LTS meth-
ods are rather concerned by interfacing neighboring grids that use different time steps. In this category,
one can find some domain decomposition methods for treating evolution problems that base the coupling
between subdomains on Schwarz waveform relaxation methods.11,12 However, these mathematical studies
are not ready for application to non-academic multidimensional problems. Still in this second category, one
can find methods13 in the line of a pioneering work by Osher and Sanders.14 Their work on one-dimensional
scalar conservation laws has been extended in15 that show the possibility for their LTS method to reach
a second-order in time. Other LTS methods have also been designed for moving mesh methods.16 Most
of papers use for tests some academic fluid flow problems, but one also find several publications from the
electromagnetic community.17

The objective of this work is to develop a new LTS method – called DECCOUP – adapted to explicit and
parallel solvers. The principle is to balance the computing load by splitting the computational domain into
subgrids which size depends on the local time step. To the authors’ knowledge, DECCOUP is the first LTS
method suited for massively parallel simulations except AMR-like methods.6,7 The DECCOUP technique
is developed in the scope of the ANR-CIS SIMTUR project. Final objectives are to implement it and to
use it in the AVBP code.18 AVBP is an unstructured code that solves the fully compressible LES equations
for reacting flows.19 Using a cell-vertex formulation, it can work with both structured and unstructured
grids which makes it easily applicable to complex geometries.20 Centered spatial schemes and explicit time-
advancement are used to control numerical dissipation.21 Several numerical schemes are available ; among
them are a second order finite-volume Lax-Wendroff scheme and a third order finite-element TTGC scheme.

Making an estimate based on the case illustrated on Fig. 1, one can broadly evaluate the speedup resulting
from DECCOUP. Consider a mesh involving:

• nsmall cells from blocks advanced with δtsmall,

• nlarge = Rn · nsmall larger cells from blocks advanced with δtlarge = Rδt · δtsmall,

• nbuffer = λRn · nsmall cells from buffer blocks.

The role of these buffer blocks will be described later in the document. They are intermediate blocks
whose cells are calculated twice: first taken as small cells, then taken as large ones.

Figure 1. Cell sizes distribution in a combustion chamber mesh.
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Without any LTS method, the overall load to be handled to reach the physical time tsim in the simula-
tion writes:

Load = (nsmall + nbuffer + nlarge) ·
tsim

δtsmall
(1)

while using DECCOUP it reduces to the following:

LoadLTS = (nsmall + nbuffer) ·
tsim

δtsmall
+ (nbuffer + nlarge) ·

tsim

δtlarge
(2)

Thus, assuming that computational time is proportional to the load, the following speedup is expected:

Speedup =
Load

LoadLTS
=

1 + (1 + λ)Rn

(1 + λRn) + (1 + λ) Rn

Rδt

(3)

Assuming λ ≪ 1, the former expression underlines that values of Speedup ranging from 1 (in the case
corresponding to Rn = Rδt = 1) to δtlarge/δtsmall (in the ideal case obtained when Rn → 0) can be expected.
Intermediate cases are illustrated on the graph from Fig. 2. In practice, this speedup can be obtained on
parallel computations for an optimal load balancing. Indeed, Eq. 3 is satisfied if the load is balanced on
processors such as:

Rδt
nsmall

NP,small
=

nlarge

NP,large
= (1 + Rδt)

nbuffer

NP,buffer
, (4)

where NP,small, NP,buffer, NP,large are the number of processors handling small, buffer and large cells,
respectively.

Figure 2. Speedup isolines in the Rδt−Rn plane.

The document is organized as follow. The strategy of DECCOUP is presented in section II. A test
configuration and corresponding results are described in section III. Results from the implementation of
DECCOUP in the LES code AVBP are presented in section IV. Finally, section V concludes on the present
work.

II. The DECCOUP method

In most Navier-Stokes explicit and parallel solvers, a domain decomposition method is used to split the
overall computational domain into several blocks (noted Bj). Each block is then affected to one processor.
Generally, the initial solver runs over all blocks using a unique global time step, determined through a
reduction operation (each processor evaluates the time step value allowed by the CFL criterion over its cells
and a reduction operation keeps the most restrictive value). DECCOUP is designed to allow each block Bj

to keep its proper minimum time step δtj . The method is described using 1D examples for clarity but the
generalisation to multidimensional problems is straightforward.

3 of 11

American Institute of Aeronautics and Astronautics



Consider a given spatial numerical scheme in an explicit context. To be applied at bordering cells of a
block, the corresponding stencil generally requires data from neighbouring blocks at the same time tn. These
data can be made available by using ghost cells surrounding each block and are updated from communications
between processors at the begining of each new iteration. When using a unique time step for each block,
no approximation is needed to fill in ghost cells since all blocks are simultaneously advanced in time. On
the contrary, when using LTS, two neighbouring blocks may not use the same time steps to advance the
solution. Consequently, the data required to fill in ghost cells may not be available at each discrete time
values. Ghost cells values are then approximated between two communications steps (see Fig. 3).

Figure 3. Approximations are required when using LTS : blocks Bj−1 and Bj use the same time step δt while Bj+1 uses
a larger time step ∆t = 3δt. Values to fill in the ghost cells in Bj at its interface with Bj+1 are missing so they must be
approximated.

To illustrate DECCOUP, let’s consider a set of NB blocks (Bj)j=1,NB
resulting from domain decomposi-

tion. Each block is handled by a processor Pj that uses a time step δtj . Local time steps have first to respect
the local stability criteria. Secondly, they are choosen such as a global time step ∆t = mj · δtj ,∀j ∈ [1, NB ],
where mj are integers, exists. Times corresponding to the global time step are noted (tn)n=1,N∆t

, where N∆t

is the total number of iterations using ∆t. By construction, tn is common to all block solutions. Intermediate
times between tn and tn+1 using the local time step δtj are expressed by t = tn + ν · δtj , ν = 1, mj . The
computed Bj block solution vector at time t is noted w(Bj , t). Ghost cells solution values belonging to Bj

and shared by Bj and Bk are noted w(Bj ∩ Bk, t).
At a given interface between two neighbouring one-dimensional blocks, two cases can be distinguished:

either blocks using the same time step value so no LTS handling is required or blocks using different time
steps so the DECCOUP strategy applies. In that case, DECCOUP requires a buffer block to be inserted
at the LTS interface during a DECCOUP-adapted domain decomposition phase. This preprocessing step is
detailed further. To illustrate the method, a sequence of 3 blocks Bsmall, Bbuffer and Blarge is considered.
Their corresponding parameters are all noted with the appropriate subscript (see Fig. 4). In the present
case, δtsmall < δtlarge and msmall · δtsmall = mlarge · δtlarge.

Figure 4. Within DECCOUP, a buffer block is used at LTS interfaces between Bsmall and Blarge.

The buffer block Bbuffer is dedicated to advance the solution twice from tn to tn+1. Grid spacing on this
block is designed in such a way that stability criterion is respected for both time step values δtsmall and δtlarge.
The solution is computed firstly through msmall subcycle iterations with δtsmall = ∆t/msmall, that lead to
a first solution w(Bbuffer, tn +msmall · δtsmall), and secondly using δtlarge = ∆t/mlarge, leading to a second
solution w(Bbuffer, tn +mlarge ·δtlarge). If δtsmall is used to advance the buffer block, interior block data are
available to compute w(Bsmall, tn+1) but ghost cells data w(Blarge ∩ Bbuffer, tn + ν · δtlarge), ν = 1, mlarge
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are missing. They are roughly approximated by:

w(Blarge ∩ Bbuffer, tn + ν · δtlarge)) = w(Blarge ∩ Bbuffer, tn),∀ν = 1, mlarge . (5)

Here DECCOUP takes advantage of the explicit nature of the solver. Indeed, given an explicit solver that
use a stencil requiring sleft (resp. sright) cells on the left (resp. right) of the current point, any perturbation
introduced at time tn cannot propagate through the grid of a distance exceeding – per time step δtj – sleft

cells to the right and sright cells to the lefta. Consequently, errors introduced by the previous approximation
(Eq. 5) propagate over a known number of cells from the Blarge ∩Bbuffer ghost cells. This number of cells is
equal to sleft ·mj at time tn+1. The corresponding solution w(Bbuffer, tn +msmall · δtsmall) is then polluted
by errors near the interface with Blarge but remains unaffected in the vicinity of the interface with Bsmall

(see Fig. 5).

Figure 5. When using δtsmall to advance Bbuffer in time, enough data are available to obtain w(Bsmall, tn+1) and a
partially valid solution on Bbuffer at the same time.

Figure 6. When using δtlarge to advance Bbuffer in time, enough data are available to obtain w(Blarge, tn+1) and a
partially valid solution on Bbuffer at the same time.

When δtlarge is used to advance Bbuffer, the same difficulty occurs at the interface Bbuffer ∩Bsmall (see
Fig. 6): w(Blarge, tn+1) is obtained, as well as the polluted solution w(Bbuffer, tn +mlarge · δtlarge). Finally,
the way of interfacing grids using different time steps whithin DECCOUP consists in using an intermediate
grid. Advancing the solution with δtsmall allows to locally preserve a continuity in the accuracy of the solution
through the interface between Bsmall and Bbuffer but introduces errors at the other interface, whereas the
use of the biggest time step locally preserve a continuity in the accuracy of the solution through the interface
between Bsmall and Bbuffer. On each cell of Bbuffer, two estimations of the solution w(Bbuffer, tn+1) are
available. Both of them are polluted by errors but, if Bbuffer is long enough, cells affected by errors in the
first computation do not overlap with the polluted ones during the second computation. It is then possible
to built w(Bbuffer,tn+1) as a smooth transition between the two polluted solutions that keeps only the
unaffected part of them and filters all wrong values. This is done using the following equation:

w(xi, tn+1) = (1 − p(xi)) · w(xi, tn + msmall · δtsmall) + p(xi) · w(xi, tn + mlarge · δtlarge) , (6)

where xi ∈ Bbuffer and the function p(x) can be an hyperbolic tangent located at the center x0 of Bbuffer
(

p(x) = 1
2 (1 + tanh (A(x − x0)))

)

, so as to keep the not polluted part of each solution.

aThis is true if the spatial scheme is explicit and cannot be applied if implicit schemes such as compact schemes22 are used.
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III. Evaluation of the method in a test code

In order to evaluate the accuracy of the DECCOUP method, calculations are performed using a test code
which solves the one-dimensional convection equation: ∂ρ

∂t + U ∂ρ
∂x = 0 with U = cst > 0. Periodic boundary

conditions are used and the temporal integration is explicit. The initial solution is a Gaussian wave in a
domain of length LB . This preliminary study focuses only on the accuracy of the underlying schemes and
not on the speedup of the method. The overall domain of calculation is splitted into 6 blocks, involving two
successive LTS interfaces with the following alternance: Bsmall, Bbuffer, Blarge, Blarge, Bbuffer, Bsmall.
Thus, the wave crosses LTS-interfaces twice a period, once from small to large time steps , and a second
time from large to small time steps. Here, a value of mlarge = 1 is considered, leading to ∆t = δtlarge, and
msmall = 8. The number of iterations is set so as to end the simulation at tsim = k · (LB/U), i.e. until the
wave has traveled k times through the overall domain.

The code developed for testing DECCOUP is used in 8 configurations, depending on the choices for
the scheme (HOSRK4/WENO5RK3), for the use of LTS (with/without) and for the nature of the mesh
(uniform/non-uniform). Main input parameters are:

• a level Li to define the size of mesh cells,

• the number of subcycles msmall,

• the wave speed U ,

• a CFL number

• the number of flow-through times k.

A set of meshes L0 to L4 is used to compare the solution for various levels of refinement (the width of the
Gaussian wave being fixed once for all). These meshes are built on a root one (L0), called level 0, and they
are defined recursively such that Ln+1 is obtained by splitting every cells of Ln in two identical cells (see
Fig. 7). Level 0 characteristics, namely the cell size δxlarge on Blarge (and Bbuffer) as well as cells numbers
nsmall, nlarge and nbuffer, are hardcoded. The cell size δxsmall on Bsmall is equal to δxlarge for the uniform
mesh and equal to δxsmall = δxlarge/msmall in the non-uniform case. For level Li, δx values are divided
by 2i while cells numbers are multiplicated by the same factor, insuring that block lengths are the same for
all levels to allow comparisons. In the non-uniform case, Bbuffer and Blarge remains uniform but Bsmall is
meshed with cell sizes ranging from δxlarge/msmall to δxlarge through an arithmetic progression. In terms
of spatial resolution, L0 is such that the solution goes from almost 0 to 1 over 5 cells (and over 10, 20, 40
and 80 cells for L1, L2, L3 and L4, respectively). Concerning time steps, δtlarge is set using the CFL and
wave speed U (δtlarge = CFL · δxlarge/U). When LTS is used δtsmall = δtlarge/msmall. If not, δtsmall is
equal to δtlarge.

Figure 7. First refinement levels of a schematic LTS interface, in the uniform case, and the Gaussian wave profile with
a fixed-width. Here msmall = 3.

Two schemes are retained: a high order finite differences scheme23 having a third order in space even
on non-uniform grids coupled to a RK4 time integration method (HOSRK4), as well as a fifth order finite
volumes scheme of the WENO type24 coupled to a TVD-RK3 time integration method (WENO5RK3). This
WENO scheme is also able to handle non-uniform meshes. The run parameters are: U = 1, CFL = 0.5,
δtlarge/δtsmall = 8, where CFL is based on δtsmall for the uniform mesh cases. A solution with DECCOUP
for the convection equation is shown on Fig. 8. After the wave has travelled 10 times through the periodic
domain, the DECCOUP solution perfectly matches the theoretical one. For refinement levels L0 to L4, the
accuracy of the solution is compared when DECCOUP is used and when it is not. The error is defined as the
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difference – based on a L∞-norm – between the computational solution and the exact one (i.e. the Gaussian
wave translated by U · (t − t0)), following the equation:

errorL∞(tn) =
maxi |ρ

n
i − ρ(xi, tn)|

maxi |ρ(xi, tn)|
(7)

Figure 8. Comparison between the solution obtained by DECCOUP with the WENO scheme (•) and the initial solution
(· · ·) after exactly 10 periods. The mesh is uniform (level L1), U = 1, CFL = 0.5 (based on δtsmall), δtlarge/δtsmall = 8.

Three main results appear on Fig. 9 and 10: i/ DECCOUP do not necessary introduces a loss of accuracy;
ii/ the impact of the underlying scheme on performances of DECCOUP is significant; and iii/ the method
does not seem to be sensitive to the non-uniformity of the mesh. For HOSRK4 scheme, the accuracy of the
solution appears to be either better when DECCOUP is used, in the case of a uniform mesh or unchanged,
in the non-uniform case. The performance of DECCOUP also appears to be dependent of the scheme, since
results with the WENO scheme are not as accurate as those corresponding to the HOSRK4 scheme.

Figure 9. Error as a function of the refinement level Li for uniform meshes.

Figure 10. Error as a function of the refinement level Li for non-uniform meshes.

On Fig. 11, scheme orders with and without DECCOUP have been computed for both schemes. The
HOSRK4 scheme appears to be very efficient for all considered levels of refinement, showing a better scheme
order with DECCOUP than without. As noticed previously, the method is less accurate when used with the
WENO scheme. In that case, DECCOUP introduces a slight loss in the scheme order.
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Figure 11. Order of the method as a function of the refinement level Li for HOSRK4 and WENO schemes.

IV. Implementation in a LES solver

DECCOUP has been implemented in the AVBP solver. Results are presented here concerning an acoustic
wave propagating in a 1-D periodic domain (see Fig. 12). The mesh used is non-uniform and contains 220
small cells, 4400 large cells and 400 buffer cells. The following parameters are fixed (see section I): Rδt = 10,
Rn = 20 and λ = 1/11.

Figure 12. Decomposition of the AVBP computational domain for the acoustic wave test case.

Figure 13 shows that a very good agreement is obtained between the AVBP solution calculated with
DECCOUP and the one calculated without. Another result of interest is the speedup obtained with DEC-
COUP. When no LTS method is used, the CPU time required to reach a given physical time tsim on 5
processors is 4.95 times longer than when LTS is used. Actually, the LTS method requires 2 additional pro-
cessors to handle the duplicated buffer blocks. The CPU cost due to these additional processors is included
in the calculation of the speedup using a correction factor of 5/7. The corrected speedup obtained with
DECCOUP is thus equal to 3.53 while the theoretical value given by Eq. 3 (using the same correction) is
3.25.

Figure 13. Comparison between the AVBP solution (pressure field in Pa) obtained with (—) and without (•) DECCOUP
after 20 000 time iterations.

DECCOUP has also been tested in the 2D large eddy simulation of a plane air jet. This jet is characterized
by an inlet Reynolds number of Re0 = 30 000, an inlet Mach number of M0 = 0.1 and a surrounding co-flow
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at Mach number 0.057M0. The subgrid stress tensor is modelled by the filtered Smagorinsky model.25 A
third order finite-element TTGC scheme21 using a two-step time integration is applied to an unstructured
triangular grid (see Fig. 14a). A passive scalar is injected at the inlet to visualize the turbulent jet mixing.
The aim of this test case is to see how DECCOUP may affect of the flow solution in a turbulent configuration.
A simple decomposition in three transverse blocks is performed as shown by Fig. 14a. According to the cell
size ratio between large and small cells blocks, a ratio of δtlarge/δtsmall = 10 is used. The CFL number
based on the smallest cell is equal to 0.7. At some time t0 of the jet simulation, the DECCOUP method
is started and performed during tsim = 49 flow times (Fig. 14b) corresponding to 30 000 time iterations of
δtsmall. The scalar field concentration at t0 + tsim is compared to the solution obtained at the same physical
time without using DECCOUP (Fig. 14c). Very small differences in the scalar transport can be seen between
the basic and the DECCOUP solutions. These differences may be due to the growth of rounding errors in
parallel large eddy simulations, an effect that has been identified by Senoner et al.26 Figure 14b shows that
the solution is continuous and regular inside, outside and at the boundaries of the buffer block where the
exchange of the flow solution takes place between the small and large time steps regions.

c.

Small Buffer Large

a.

b.

Figure 14. Snapshots of passive scalar fields at initial time t0 (Fig. a.) and current time t0 + t sim where tsim = 49 flow
times (corresponding to 30 000 time iterations). The flow at t0 + t sim have been calculated with DECCOUP (Fig. b.)
and without DECCOUP (Fig. c.). Figure a. shows the mesh grid (zoom) and a three-block decomposition: a small-step
block, a buffer block and a large-step block. The gray scale has been saturated at 42% of the inlet value.
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V. Conclusion

An acceleration method for LES explicit solvers based on local time-stepping has been presented. This
method called DECCOUP uses a buffer block to handle interfaces between each LTS zone. DECCOUP has
first been evaluated using a test code in a one-dimensional configuration. Results prove that the method
has a minor incidence on the accuracy of the solution, whatever the nature of the underlying scheme.
DECCOUP has also been implemented in the LES code AVBP. First academic tests shows that DECCOUP
keeps the accuracy of the original numerical method while providing a speedup which is in agreement with
the theoretical value. A 2D large eddy simulation test case has shown that DECCOUP is also accurate in
turbulent configurations.

In practical applications, DECCOUP will be particularly efficient when only a few small cells penalize
the overall calculation. Moreover, two requirements have to be fullfilled by the domain decomposition for
DECCOUP: i/ the size of buffer blocks has to be large enough to allow to built a valid solution from non-
polluted parts of intermediate solutions, and ii/ a relation between the small-size, large-size and buffer cells
have to be verified to ensure an efficient load balancing. This load balancing can be achieved using a multi
criteria mesh decomposition algorithm.
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