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LAGRANGIAN NAVIER-STOKES DIFFUSIONS ON MANIFOLDS:

VARIATIONAL PRINCIPLE AND STABILITY

MARC ARNAUDON AND ANA BELA CRUZEIRO

Abstract.
We prove a variational principle for stochastic Lagrangian Navier-Stokes

trajectories on manifolds. We study the behaviour of such trajectories con-
cerning stability as well as rotation between particles; the two-dimensional
torus case is described in detail.
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1. Introduction

As discovered by V. I. Arnold ([2]) the motion of an incompressible non viscous
fluid can be characterized as a geodesic on a group of diffeomorphisms. This point
of view allows in particular to derive properties of the Lagrangian Euler flow, such
as stability, through the study of the geometry of the group ([6]).

When the fluid is viscous, namely for the Navier-Stokes equation, one can de-
scribe the Lagrangian trajectories as realizations of a stochastic process and inter-
pret the associated drift, solving Navier-Stokes, as an expectation over this process.
This intrinsically probabilistic approach we follow here is inspired by [8], [9]. Sim-
ilar stochastic models are used for example in [4]. Then the trajectories remain,
in an appropriate sense, geodesics and are almost sure solutions of a variational
principle. This was shown in [3] for the two-dimensional torus.

We prove a variational principle for the Lagrangian Navier-Stokes diffusions in
a compact Riemannian manifold. Furthermore we study its stability properties.
The behaviour of the trajectories depends on the intensity of the noise as well as
on the metric of the underlying manifold. The example of the torus is studied in
detail. Finally we describe the evolution in time of the rotation between stochastic
Lagrangian particles.
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2 M. ARNAUDON AND A. B. CRUZEIRO

Let (M,g) be a compact oriented Riemannian manifold without boundary.
Recall that the Itô differential of an M -valued semimartingale Y is defined by

(1.1) dYt = P (Y )t d

(∫ ·

0

P (Y )
−1
s ◦ dYs

)

t

where

(1.2) P (Y )t : TY0M → TYt
M

is the parallel transport along t 7→ Yt. Alternatively, in local coordinates,

(1.3) dYt =

(

dY i
t +

1

2
Γi
jk(Yt)dY

j
t ⊗ dY k

t

)

∂i

where Γi
jk are the Christoffel symbols of the Levi-Civita connection.

If the semimartingale Yt has an absolutely continuous drift, we denote it by
DYt dt: for every 1-form α ∈ Γ(T ∗M), the finite variation part of

(1.4)

∫ ·

0

〈α(Yt), dYt〉

is

(1.5)

∫ ·

0

〈α(Yt), DYt dt〉

Let Gs, s ≥ 0 be the infinite dimensional group of homeomorphisms onM which
belong to Hs, the Sobolev space of order s. For s > m

2 + 1, m = dimM , Gs is
a C∞ Hilbert manifold. The volume preserving homeomorphism subgroup will be
denoted by Gs

V :

Gs
V = {g ∈ Gs, : g∗µ = µ},

with µ the volume element associated to the Riemannian metric. We denote by G s

(resp. G s
V ) the Lie algebra of Gs (resp. Gs

V ). See [6] for example.
On M we consider an incompressible Brownian flow gu(t) ∈ G0

V with covariance
a ∈ Γ(TM ⊙ TM) and time dependent drift u(t, ·) ∈ Γ(TM). We assume that for
all x ∈M , a(x, x) = 2νg−1(x) for some ν > 0. This means that

(1.6) dgu(t)(x) ⊗ dgu(t)(y) = a (gu(t)(x), gu(t)(y)) dt,

(1.7) dgu(t)(x) ⊗ dgu(t)(x) = 2νg−1 (gu(t)(x)) dt,

the drift of gu(t)(x) is absolutely continuous and satisfiesDgu(t)(x) = u(t, gu(t)(x)).
The generator of this process is

Lu = ν∆h +
∂

∂t
+ ∂u

where ∆h is the horizontal Laplacian. The parameter ν will be called the speed of
the Brownian flow.

If the time is indexed by [0, T ] for some T > 0, we define the action functional
by

S(gu) =
1

2
E

[

∫ T

0

(∫

M

‖Dgu(t)(x)‖2 dx
)

dt

]

.
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2. The variational principle

Define

(2.1) H =
{

v ∈ C1([0, T ], G
∞
V ), v(0, ·) = 0, v(T, ·) = 0

}

Given v ∈ H , consider the following ordinary differential equation

det(v)

dt
= v̇(t, et(v))

e0(v) = e
(2.2)

where e is the identity of G∞
V . Since v is divergence free, e·(v) is a G∞

V -valued
deterministic path.

We denote by P the set of continuous G0
V -valued semimartingales g(t) such that

g(0) = e. Then for all v ∈ H , we have et(v) ◦ gu(t) ∈ P.

Definition 2.1. Let J be a functional defined on P and taking values in R. We
define its left and right derivatives in the direction of h(·) = e·(v), v ∈ H at a
process g ∈ P respectively, by

(DL)hJ [g] =
d

dε
J [e·(εv) ◦ g(·)]|ε=0,

(DR)hJ [g] =
d

dε
J [g(·) ◦ e·(εv)]|ε=0.

(2.3)

A process g ∈ P wil be called a critical point of the functional J if

(2.4) (DL)hJ [g] = (DR)hJ [g], ∀h = e(v), v ∈ H .

Theorem 2.2. Let (t, x) 7→ u(t, x) be a smooth time-dependent divergence-free

vector field on M , defined on [0, T ]×M . Let gu(t) a stochastic Brownian flow with

speed ν > 0 and drift u. The stochastic process gu(t) is a critical point of the energy

functional S if and only if the vector field u(t) verifies the Navier-Stokes equation

(2.5)
∂u

∂t
+∇uu = ν�u−∇p.

For the construction of weak solutions of Navier-Stokes equations on Riemannian
manifolds we refer to [7].

Proof. Since the functional S is right invariant, it is enough to consider the left
derivative. So we need to compute

(2.6)
d

dε
|ε=0S(e·(εv)(gu)).

We let

(2.7) f(ε) = S(e·(εv)(gu)).

Then

(2.8) f(ε) =
1

2

∫

M

(

E

[

∫ T

0

(

‖Det(εv)(gu)(t)(x)‖2
)

dt

])

dx

which yields

(2.9) f ′(0) =

∫

M

(

E

[

∫ T

0

(〈∇ε|ε=0Det(εv) (gu(t)(x)) , u(t, gu(t)(x))〉) dt
])

dx.
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We need to compute

(2.10) ∇ε|ε=0Det(εv) (gu(t)(x)) .

We have

∇t
d

dε
|ε=0et(εv) = ∇ε|ε=0

det(εv)

dt
= ∇ε|ε=0εv̇(t, et(εv))

= v̇(t, e).

Together with v(0, ·) = 0, this implies

d

dε
|ε=0et(εv)(x) = v(t, x).(2.11)

Consequently

(2.12)
d

dε
|ε=0et(εv) (gu(t)(x)) = v (t, gu(t)(x)) .

By Itô equation,

det(εv)(gu(t)(x))

= 〈det(εv)(·), dgu(t)(x)〉 +
1

2
∇det(εv)(gu(t)(x)) (dgu(t)(x) ⊗ dgu(t)(x))

= 〈det(εv)(·), dgu(t)(x)〉 + ν∆et(εv)(gu(t)(x)) dt.

(2.13)

Here ∆et(εv)(·) denotes the tension field of the map et(εv) :M →M . This yields

Det(εv)(gu(t)(x)) = 〈det(εv)(·), Dgu(t)(x)〉 + ν∆et(εv)(gu(t)(x))

+ εv̇(t, et(εv)(gu(t)(x)))

= 〈det(εv)(·), u(t, gu(t)(x))〉 + ν∆et(εv)(gu(t)(x))

+ εv̇(t, et(εv)(gu(t)(x))).

(2.14)

Differentiating with respect to ε at ε = 0, we get

∇ε|ε=0Det(εv)(gu(t)(x))

= 〈∇ε|ε=0det(εv)(·), u(t, gu(t)(x))〉 + ν∇ε|ε=0∆et(εv)(gu(t)(x))

+
∂v

∂t
(t, gu(t)(x))

=

〈

∇·
d

dε
|ε=0et(εv)(·), u(t, gu(t)(x))

〉

+ ν�
d

dε
|ε=0et(εv)(gu(t)(x))

+
∂v

∂t
(t, gu(t)(x))

= 〈∇·v(t, ·), u(t, gu(t)(x))〉 + ν�v(t, ·)(gu(t)(x)) +
∂v

∂t
(t, gu(t)(x))

= ∇u(t,gu(t)(x))v(t, ·) + ν�v(t, ·)(gu(t)(x)) +
∂v

∂t
(t, gu(t)(x)).

(2.15)

We used the commutation formula ∇ε|ε=0∆ = �
d
dε , where � = dd∗ + d∗d is the

damped Laplacian. Alternatively,

(2.16) �v = ∆hv +Ric♯(v).
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For a TM -valued semimartingale Jt which projects onto the M -valued semi-
martingale Yt, we denote by DJt the Itô covariant derivative:

(2.17) DJt = P (Y )td
(

P (Y )−1
t Jt

)

.

Then Itô equation yields

(2.18) Du(t, gu(t)(x)) ≃
∂u

∂t
(t, gu(t)(x)) dt +∇dgu(t)(x)u+ ν∆hu(t, gu(t)(x)) dt

and

(2.19) Dv(t, gu(t)(x)) ≃
∂v

∂t
(t, gu(t)(x)) dt +∇dgu(t)(x)v + ν∆hv(t, gu(t)(x)) dt.

where the notation ≃ means equal up to a martingale:
∫ ·

0

P (gu(·))−1
t Du(t, gu(t)(x))

−
∫ ·

0

P (gu(·))−1
t

(

∂u

∂t
(t, gu(t)(x)) dt +∇dgu(t)(x)u+ ν∆hu(t, gu(t)(x)) dt

)

is a local martingale.
On the other hand, denoting ut = u(t, gu(t)(x)) and vt = v(t, gu(t)(x)) we have

(2.20) 〈uT , vT 〉 =
∫ T

0

〈Dut, vt〉+
∫ T

0

〈ut, Dvt〉+
∫ T

0

〈Dut, Dvt〉.

Let us denote by Dvt the drift of vt with respect to the damped connection ∇c on
TM , whose geodesics are the Jacobi fields. It is known that,

(2.21)
(

Dut − ν Ric♯(ut)
)

dt is the drift of Dut

and

(2.22)
(

Dvt − ν Ric♯(vt)
)

dt is the drift of Dvt.

As can be seen from (2.15), (2.19) and (2.22), the drift Dvt commutes with the
derivative with respect to a parameter, so it satisfies

(2.23) Dvt = ∇ε|ε=0Det(εv)(gu(t)(x)).

Taking the expectation in (2.20) and using (2.23), (2.21) and (2.22), we get by
removing the martingale parts

E [〈uT , vT 〉] = E

[

∫ T

0

〈∂u
∂t

(t, gu(t)(x)) +∇ut
u+ ν∆hu(t, gu(t)(x)), vt〉 dt

]

+ E

[

∫ T

0

〈ut, ∇ε|ε=0Det(εv)(gu(t)(x)) − ν Ric♯(vt)〉 dt
]

+ E

[

2ν

∫ T

0

tr 〈∇·u, ∇·v〉 (t, gu(t)(x)) dt
]

.

(2.24)

Then using the facts that vT = 0, together with

(2.25) 〈ut,Ric♯(vt)〉 = 〈Ric♯(ut), vt〉
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and (2.16), we get

E

[

∫ T

0

〈ut, ∇ε|ε=0Det(εv)(gu(t)(x))〉 dt
]

= −E

[

∫ T

0

〈∂u
∂t

(t, gu(t)(x)) +∇ut
u+ ν�u(t, gu(t)(x)), vt〉 dt

]

− E

[

2ν

∫ T

0

tr 〈∇·ut, ∇·vt〉 (t, gu(t)(x)) dt
]

.

(2.26)

Integrating with respect to x yields

f ′(0)

= −E

[

∫ T

0

(∫

M

〈((

∂

∂t
+∇u + ν�

)

u

)

(t, gu(t)(x)), v(t, gu(t)(x))

〉

dx

)

dt

]

− E

[

2ν

∫ T

0

(∫

M

tr 〈∇·u, ∇·v〉 (t, gu(t)(x)) dx
)

dt

]

.

(2.27)

Now we use the fact that gu(t)(·) is volume preserving:

f ′(0)

= −E

[

∫ T

0

(∫

M

〈((

∂

∂t
+∇u + ν�

)

u

)

(t, x), v(t, x)

〉

dx

)

dt

]

− E

[

2ν

∫ T

0

(∫

M

tr 〈∇·u, ∇·v〉 (t, x) dx
)

dt

]

.

(2.28)

Since M is compact and orientable, an integration by parts gives

(2.29)

∫

M

tr 〈∇·u, ∇·v〉 (t, x) dx = −
∫

M

〈�u, v〉 (t, x) dx.

Replacing in (2.28) we get

f ′(0) = −E

[

∫ T

0

(∫

M

〈((

∂

∂t
+∇u − ν�

)

u

)

(t, x), v(t, x)

〉

dx

)

dt

]

.(2.30)

The process gu(t) is a critical point of the energy functional S if and only if f ′(0) =
0, which by equation (2.30) is equivalent to

(2.31)

(

∂

∂t
+∇u − ν�

)

u = −∇p

for some function p on [0, T ]×M . This achieves the proof. �

3. A martingale characterization for solutions of Navier-Stokes
equations

In this section, to simplify the equations, we assume the pressure to be constant.
The pressure will not be present, in any case, in the weak version of the formulae
we derive.
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We seek to obtain a formula for the drift of the covariant derivative with respect
to a parameter of a family of Navier-Stokes solutions, extending the well-known
Jacobi equation.

Consider a family of diffusions gα, α ∈ R, satisfying

(3.1) gα(0) = ϕ(α)

where ϕ : R →M is a smooth path on M , and solution to the Itô SDE

(3.2) dgα(t) = u(t, gα(t)) dt + σ(gα(t)) dBt

where u solves

(3.3) ∂tu+∇uu+ ν�u = 0,

Bt = (Bℓ
t )ℓ≥0 is a family of real Brownian motions, σ = (σℓ)ℓ≥0, and for all ℓ ≥ 0,

σℓ is a vector field on M . We furthermore assume that

(3.4) σσ∗ = νg−1

where g is the Riemannian metric on M .
We denote by uαt = Dgα(t) = u(t, gα(t)) the drift of gα. We denote by DcJt

the vertical part of the Itô differential (with respect to ∇c) of a TM -valued semi-
martingale Jt. It is known that

D
cJt = DJt +

1

2
R(Jt, dXt)dXt(3.5)

where Xt = π(Jt) and R is the curvature tensor. If Jt has an absolutely continuous
drift DcJt, then the finite variation part of DcJt is D

cJt dt.
From the Itô equation

(3.6) D
cuαt ≃ ∂tu(t, g

α(t)) dt+∇dgα(t)u+ ν�u(t, gα(t)) dt

we deduce that the drift of Dcuαt is

(3.7) Dcuαt = ∂tu(t, g
α(t)) +∇uα

t
u+ ν�u(t, gα(t)) = 0.

¿From [1] Theorem 4.5, we have formally

D∇αu
α
t

=∇αDuαt +R(dgα(t), ∂αg
α(t))uαt

+R(dgα(t), ∂αg
α(t))Duαt − νd∗R(∂αg

α(t))uαt +
1

2
R(dgα(t),D∂αg

α(t))uαt .

(3.8)

Using (3.5), we obtain

D
c∇αu

α
t

=∇αD
cuαt +R(dgα(t), ∂αg

α(t))uαt − ν∇∂αgα(t) Ric
♯(uαt ) dt

+R(dgα(t), ∂αg
α(t))Duαt − νd∗R(∂αg

α(t))uαt dt+
1

2
R(dgα(t),D∂αg

α(t))uαt .

(3.9)

Removing the martingale part we obtain the drift

Dc∇αu
α
t =∇αD

cuαt +R(uαt , ∂αg
α(t))uαt − ν∇∂αgα(t) Ric

♯(uαt )

+ 2ν trR(·, ∂αgα(t))∇·u
α
t − νd∗R(∂αg

α(t))uαt + ν trR(σ(·),∇∂αgα(t)σ(·))uαt .

(3.10)

Now since Duαt = 0 we finally get
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Proposition 3.1. The drift of the covariant derivative with respect to α of the

family (uαt )α∈R of Navier-Stokes solutions is given by

Dc∇αu
α
t =R(uαt , ∂αg

α(t))uαt − ν∇∂αgα(t) Ric
♯(uαt )

+ 2ν trR(·, ∂αgα(t))∇·u
α
t − νd∗R(∂αg

α(t))uαt + ν trR(σ(·),∇∂agα(t)σ(·))uαt .

(3.11)

This formula extends the well known corresponding (Jacobi) equation for the
variation of geodesics.

4. The two-dimensional torus endowed with the Euclidean distance

We study the evolution in time of the L2 distance between two particles in the
two dimensional torus. Notice that, in order to interpret the diffusion processes as
a solution of the variational principle described in section 2, there is no canonical
choice for the Brownian motion, as far as it corresponds to the same generator. We
make here a particular choice.

On the two-dimensional torus T = R/2πZ × R/2πZ we consider the following
vector fields

Ak(θ) = (k2,−k1) cos k.θ, Bk(θ) = (k2,−k1) sin k.θ
and the Brownian motion

(4.1) dW (t) =
∑

k∈Z

λk
√
ν(Akdxk +Bkdyk)

where xk, yk are independent copies of real Brownian motions. We assume that
∑

k |k|2λ2k < ∞, a necessary and sufficient condition for the Brownian flow to be
defined in L2(T). Furthermore we consider λk = λ(|k|) to be nonzero for a equal
number of k1 and k2 components. In this case the generator of the process is equal
to

Lu = Cν∆+
∂

∂t
+ ∂u

with 2C =
∑

k λ
2
k (c.f.[3] Theorem 2.2). We shall assume C to be equal to one.

Let us take two Lagrangian stochastic trajectories starting from different diffeo-
morphisms and let us write

(4.2) dgt = (odW (t)) + u(t, gt)dt, dg̃t = (odW (t)) + u(t, g̃t)dt

with

g0 = φ, g̃0 = ψ, φ 6= ψ

We consider the L2 distance of the particles defined by

ρ2(φ, ψ) =

∫

T

|φ(θ)− ψ(θ)|2 dθ.

where dθ stands for the normalized Lebesgue measure on the torus.
We let ρt = ρ(gt, g̃t) and τ(g, g̃) = inf{t > 0 : ρt = 0}.

Lemma 4.1. The stopping time τ(g, g̃) is infinite.
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Proof. By uniqueness of the solution of the sde for g̃t we can let for all t > 0
g̃t(θ) = gt((φ

−1 ◦ ψ)(θ)). Since gt, ϕ and ψ are diffeomorphisms, if ϕ(θ) 6= ψ(θ)
then gt(θ) 6= gt((φ

−1 ◦ ψ)(θ)).
Since φ 6= ψ, the set {θ ∈ T, g̃t(θ) 6= gt(θ)} has positive measure and this implies

that ρt > 0, which in turn implies that τ(g, g̃) is infinite. �

Denote by Lt(θ) the local time of the process |gt(θ) − g̃t(θ)| when (gt(θ), g̃t(θ))
reaches the cutlocus of T. By Itô calculus we have

dρt =
1

ρt

∑

k

λk
√
ν 〈gt − g̃t, (Ak(gt)−Ak(g̃t)) dxk(t) + (Bk(gt)−Bk(g̃t)) dyk(t)〉T

+
1

ρt
〈gt − g̃t, u(t, gt)− u(t, g̃t)〉T dt−

1

ρt

∫

T

|gt − g̃t|(θ)dLt(θ)

+
1

2ρt

∑

k

λ2kν
(

‖Ak(gt)−Ak(g̃t)‖2T + ‖Bk(gt)−Bk(g̃t)‖2T
)

dt

− 1

2ρ3t

∑

k

λ2kν
(

〈gt − g̃t, Ak(gt)−Ak(g̃t)〉2T + 〈gt − g̃t, Bk(gt)−Bk(g̃t)〉2T
)

dt

where 〈·, ·〉T and ‖ · ‖T denote, resp., the L2 inner product and norm. We let

(4.3) δu(t) =
1

ρt
(u(t, gt)− u(t, g̃t)) .

We have

(4.4) Ak(gt)−Ak(g̃t) = −2 sin
k · (gt + g̃t)

2
sin

(

k · (gt − g̃t)

2

)

k⊥,

(4.5) Bk(gt)−Bk(g̃t) = 2 cos
k · (gt + g̃t)

2
sin

(

k · (gt − g̃t)

2

)

k⊥,

where we have noted k⊥ = (k2,−k1). Then, for k 6= 0 we let

(4.6) nk =
k

|k| , and ng(t) =
1

ρt
(gt − g̃t).

This yields

(4.7) Ak(gt)−Ak(g̃t) = −2|k|2ρt sin
k · (gt + g̃t)

2

sin

|k|ρt

(

k · (gt − g̃t)

2

)

nk⊥ ,

(4.8) Bk(gt)−Bk(g̃t) = 2|k|2ρt(cos
k · (gt + g̃t)

2

sin

|k|ρt

(

k · (gt − g̃t)

2

)

nk⊥ .
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With these notations we get

dρt

= ρt
√
ν
∑

k

λk|k|2
∫

T

2 (nk⊥ · ng(t, θ))
sin

|k|ρt

(

k · (gt(θ) − g̃t(θ))

2

)

×
(

− sin
k · (gt(θ) + g̃t(θ))

2
dxk(t) + cos

k · (gt(θ) + g̃t(θ))

2
dyk(t)

)

dθ

+ ρt 〈ng(t), δu(t)〉T dt− ρt

∫

T

|ng(t, θ)|
1

ρt
dLt(θ)

+ 2νρt
∑

k

λ2k|k|4
∥

∥

∥

∥

sin

|k|ρt

(

k · (gt − g̃t)

2

)∥

∥

∥

∥

2

T

dt

− 2νρt
∑

k

λ2k|k|4

×
(∫

T

(nk⊥ · ng(t, θ)) sin

(

k · (gt(θ) + g̃t(θ))

2

)

sin

|k|ρt

(

k · (gt(θ) − g̃t(θ))

2

)

dθ

)2

dt

− 2νρt
∑

k

λ2k|k|4

×
(∫

T

(nk⊥ · ng(t, θ)) cos

(

k · (gt(θ) + g̃t(θ))

2

)

sin

|k|ρt

(

k · (gt(θ) − g̃t(θ))

2

)

dθ

)2

dt.

And finally:

Proposition 4.2. The Itô equation for the distance ρt between the diffeomorphisms

gt and g̃t is given by

(4.9) dρt = ρt
(

σtdzt + bt dt+ 〈ng(t), δu(t)〉T dt− dat
)

where zt is a real valued Brownian motion, σt > 0 is given by

σ2
t =4ν

∑

k

λ2k|k|4

×
(∫

T

(nk⊥ · ng(t, θ)) sin

(

k · (gt(θ) + g̃t(θ))

2

)

sin

|k|ρt

(

k · (gt(θ)− g̃t(θ))

2

)

dθ

)2

+ 4ν
∑

k

λ2k|k|4

×
(∫

T

(nk⊥ · ng(t, θ)) cos

(

k · (gt(θ) + g̃t(θ))

2

)

sin

|k|ρt

(

k · (gt(θ)− g̃t(θ))

2

)

dθ

)2

,

(4.10)

the process bt satisfies

bt +
1

2
σ2
t =2νρt

∑

k

λ2k|k|4
∥

∥

∥

∥

sin

|k|ρt

(

k · (gt − g̃t)

2

)∥

∥

∥

∥

2

T

dt(4.11)

and at is defined by

a0 = 0, dat =

∫

T

|ng(t, θ)|
1

ρt
dLt(θ).(4.12)
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So we have for all 0 < t0 < t,

ρt = ρt0 exp

(∫ t

t0

σs dzs +

∫ t

t0

(

bs −
1

2
σ2
s + 〈ng(s), δu(s)〉T

)

ds− (at − at0)

)

.

(4.13)

Let

(4.14) δk = δk(t, θ) =
ρt(ng · nk)

|gt(θ)− g̃tθ)|
.

Notice that

δ2k + δ2k⊥ = 1.

Lemma 4.3. We have

σ2
t ≤ 4ν

∑

k

λ2k|k|4
∫

T

δ2k⊥

sin2

|k|2ρ2t

(

k · (gt(θ)− g̃t(θ))

2

)

dθ(4.15)

and

(4.16) bt ≥ 2ν
∑

k

λ2k|k|4
∫

T

(ng · nk)
2 dθ

∫

T

sin2

|k|2ρ2t

(

k · (gt(θ) − g̃t(θ))

2

)

dθ,

in particular bt ≥ 0.
Let R > 0. Assuming that λk = 0 for all k such that |k| > R then on

{

ω | ∀θ ∈ T, |gt(θ) − g̃t(θ)| ≤
π

R

}

we have

bt −
1

2
σ2
t ≥ 0.

Proof. Using Cauchy Schwartz inequality,

σ2
t ≤ 4

∑

k

λ2k|k|4ν
∫

T

|(ng · nk⊥)| sin2
(

k · (gt(θ) + g̃t(θ))

2

) | sin |
|k|ρt

(

k · (gt(θ)− g̃t(θ))

2

)

dθ

×
∫

T

|(ng · nk⊥)|) | sin ||k|ρt

(

k · (gt(θ) − g̃t(θ))

2

)

dθ

+ 4
∑

k

λ2k|k|4ν
∫

T

|(ng · nk⊥)| cos2
(

k · (gt(θ) + g̃t(θ))

2

) | sin |
|k|ρt

(

k · (gt(θ)− g̃t(θ))

2

)

dθ

×
∫

T

|(ng · nk⊥)| | sin ||k|ρt

(

k · (gt(θ)− g̃t(θ))

2

)

dθ

= 4ν
∑

k

λ2k|k|4
(∫

T

|(ng · nk⊥)| | sin ||k|ρt

(

k · (gt(θ)− g̃t(θ))

2

)

dθ

)2

= 4ν
∑

k

λ2k|k|4
(∫

T

δk⊥ |gt(θ) − g̃tθ)|
ρt

| sin |
|k|ρt

(

k · (gt(θ)− g̃t(θ))

2

)

dθ

)2

≤ 4ν
∑

k

λ2k|k|4
∫

T

|gt(θ) − g̃t(θ)|2
ρ2t

dθ

∫

T

δ2k⊥

sin2

|k|2ρ2t

(

k · (gt(θ)− g̃t(θ))

2

)

dθ

= 4ν
∑

k

λ2k|k|4
∫

T

δ2k⊥

sin2

|k|2ρ2t

(

k · (gt(θ)− g̃t(θ))

2

)

dθ.
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On the other hand,

bt +
1

2
σ2
t = 2ν

∑

k

λ2k|k|4
∫

T

sin2

|k|2ρ2t

(

k · (gt(θ)− g̃t(θ))

2

)

dθ,

so that using the bound

σ2
t ≤ 4ν

∑

k

λ2k|k|4
(∫

T

|(ng · nk⊥)| | sin ||k|ρt

(

k · (gt(θ)− g̃t(θ))

2

)

dθ

)2

≤ 4ν
∑

k

λ2k|k|4
∫

T

(ng · nk⊥)2 dθ

∫

T

sin2

|k|2ρ2t

(

k · (gt(θ)− g̃t(θ))

2

)

dθ

for σ2
t yields

bt ≥ 2ν
∑

k

λ2k|k|4
∫

T

(ng · nk)
2 dθ

∫

T

sin2

|k|2ρ2t

(

k · (gt(θ)− g̃t(θ))

2

)

dθ

where we used
∫

T

(ng · nk)
2 dθ +

∫

T

(ng · nk⊥)2 dθ = 1.

Since λk depends only on |k|, we have λk = λk⊥ for all k. Then putting together
the terms corresponding to k and k⊥ we obtain

bt +
1

2
σ2
t = ν

∑

k

λ2k|k|4

×
∫

T

(

sin2

|k|2ρ2t

(

k · (gt(θ) − g̃t(θ))

2

)

+
sin2

|k|2ρ2t

(

k⊥ · (gt(θ) − g̃t(θ))

2

))

dθ,

and this yields using the bound for σ2
t as well as δ2k + δ2k⊥ = 1

bt −
1

2
σ2
t ≥ ν

∑

k

λ2k|k|4

×
∫

T

(δ2k − δ2k⊥)

(

sin2

|k|2ρ2t

(

k · (gt(θ) − g̃t(θ))

2

)

− sin2

|k|2ρ2t

(

k⊥ · (gt(θ) − g̃t(θ))

2

))

dθ

= ν
∑

k

λ2k|k|4

×
∫

T

(δ2k − δ2k⊥)

(

sin2

|k|2ρ2t

(

δk
|k||gt − g̃t|(θ)

2

)

− sin2

|k|2ρ2t

(

δk⊥

|k||gt − g̃t|(θ)
2

))

dθ

Assuming that λk = 0 whenever |k| > R then on
{

ω|∀θ ∈ T, |gt(θ)− g̃t(θ)| ≤
π

R

}

the functions inside the integral are nonegative, consequently

bt −
1

2
σ2
t ≥ 0.

�

Define

(4.17) ℓ(x) =
sinx

x
for x 6= 0, ℓ(0) = 1.

From Lemma 4.3 we easily get the following result.
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Proposition 4.4. Let R ≥ 1. Then on

{

ω|∀θ ∈ T, |gt(θ) − g̃t(θ)| ≤
π
√
2

R

}

,

letting

cR =
ν

8
ℓ2
(

π√
2

)

∑

|k|≤R

λ2k|k|4,

we have,

dρt ≥ ρt

(

σtdzt − ‖δu(t)‖T dt−
∫

T

|ng(t, θ)|
1

ρt
dLt(θ) + cR dt

)

.(4.18)

Moreover assuming that λk = 0 whenever |k| > R, then letting

c′R =
1

8
ν inf

|v|=1

∑

|k|≤R

λ2k|k|4
(

(nk · v)2 − (nk⊥ · v)2
)2
,

on
{

ω|∀θ ∈ T, |gt(θ) − g̃t(θ)| ≤
π

2R

}

,

dρt ≥ ρt

(

σtdzt +
1

2
σ2
t dt− ‖δu(t)‖T dt+ c′R dt

)

.(4.19)

Proof. If |gt(θ)− g̃t(θ)| ≤
π
√
2

R
then for all k such that |k| ≤ R,

ℓ2
(

k · (gt(θ)− g̃t(θ))

2

)

≥ ℓ2
(

π√
2

)

and this implies

sin2

|k|2ρ2t

(

k · (gt(θ)− g̃t(θ))

2

)

≥ 1

4
ℓ2
(

π√
2

)

(nk · ng)
2.

So with (4.16) we get

bt ≥
1

2
ℓ2
(

π√
2

)

ν
∑

|k|≤R

λ2k|k|4
(∫

T

(ng · nk)
2 dθ

)2

≥ 1

4
ℓ2
(

π√
2

)

ν
∑

|k|≤R

λ2k|k|4
(

(∫

T

(ng · nk)
2 dθ

)2

+

(∫

T

(ng · nk⊥)2 dθ

)2
)

≥ 1

8
ℓ2
(

π√
2

)

ν
∑

|k|≤R

λ2k|k|4

(again we used
∫

T
(ng · nk)

2 dθ +
∫

T
(ng · nk⊥)2 dθ = 1.). This establishes (4.18).



14 M. ARNAUDON AND A. B. CRUZEIRO

Next if |gt(θ)− g̃t(θ)| ≤
π

2R
then from the calculation in the proof of Lemma 4.3

bt −
1

2
σ2
t ≥ ν

∑

|k|≤R

λ2k|k|4

×
∫

T

(δ2k − δ2k⊥)

(

sin2

|k|2ρ2t

(

δk
|k||gt − g̃t|(θ)

2

)

− sin2

|k|2ρ2t

(

δk⊥

|k||gt − g̃t|(θ)
2

))

dθ

≥ ν
∑

|k|≤R

λ2k|k|4
∫

T

(δ2k − δ2k⊥)
2 |gt − g̃t|2(θ)

8ρ2t
dθ

≥
∫

T

|gt − g̃t|2(θ)
ρ2t

c′R dθ = c′R.

this establishes (4.19). �

Theorem 4.5. Let t > 0, R ≥ 1 and

Ωt =
{

ω ∈ Ω, ∀s ≤ t, ∀θ ∈ T, |(gs(θ)(ω)− g̃s(θ)(ω))| ≤
π

2R

}

.

If we assume the initial conditions for the L2 distance and the L2 norm of the initial

velocity related as c = ρ0 − 2‖u0‖T > 0, and suppose that
∫

T
u = 0, then on Ωt,

(4.20) ∀s ≤ t, ρs ≥ e
∫

t

0
σs dzs+c′Rt

(

ρ0 − 2‖u0‖T
∫ t

0

e−
∫

s

0
σr dzr−(c′R+ ν

2 )s ds

)

as long as the right hand side stays positive.

On the other hand if we assume that there exist constants c1, c2 > 0 such that

for all θ ∈ T and s ∈ [0, t] ,

(4.21) |∇u(t, θ)| ≤ c1e
−c2t,

then on Ωt, ∀s ≤ t,

(4.22) ρs ≥ ρ0 exp

(∫ t

0

σs dzs + c′Rt−
c1
c2

(

1− e−c2t
)

)

.

Proof. Assume that ρ0 − 2‖u0‖T > 0. From inequality (4.19) we have on Ωt, for
s ≤ t,

dρs ≥ ρs

(

σsdzs + (c′R +
1

2
σ2
s) ds

)

− 2‖u(s, ·)‖T ds.(4.23)

Using the fact that u(t, .) satisfies Navier-Stokes equation together with Poincaré
inequality,

d

ds
||u(s, .)||2

T
= −2ν||∇u(s, .)||2

T

≤ −ν||u(s, .)||2
T
.

Therefore we have

||u(s, .)||T ≤ e−
ν
2 s||u0||T.

We obtain

dρs ≥ ρs

(

σsdzs + (c′R +
1

2
σ2
s) ds

)

− 2e−
ν
2 s||u0||T ds.(4.24)

From this comparison theorem for solution of sde’s yields (4.20).
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Now assume (4.21). To prove (4.22) we start with (4.19), and remark that
‖δu(t)‖T ≤ sup

θ∈T

|∇u(t, θ)|. Then with the bound on ∇u(t, θ) we have

dρt ≥ ρt

(

σtdzt +
1

2
σ2
t dt− c1e

−c2t dt+ c′R dt

)

.

Integrating the right hand side between t0 and t gives the result. �

Remark 4.6. The bound (4.21) is satisfied for instance for solutions u(t, ·) of the
form e−ν|k|2tAk.

Also notice that, by the expression of the constant c′R, the stochastic Lagrangian
trajectories for a fluid with a given viscosity constant tend to get apart faster when
the higher Fourier modes (and therefore the smaller lenght scales) are randomly
excited.

5. The two-dimensional torus endowed with the extrinsic distance

It seems difficult to deal with the local time term of Proposition 4.2. To circum-
vent this problem we propose to endow the torus T with a distance ρT equivalent
to the one of section 4, but such that ρ2

T
is smooth on T×T. Then we will see that

when the assumptions of Theorem 4.5 are not fulfilled, then the behaviour of the
distance of two diffeomorphisms can be completely different even if their distance
is small. So the uniform control of the distance in Theorem 4.5 looks as a necessary
condition for an exponential growth of the distance.

The map

R/2πZ× R/2πZ → [0, 2]

(θ1, θ2) 7→ 2

∣

∣

∣

∣

sin

(

θ2 − θ1
2

)∣

∣

∣

∣

defines a distance on the circle R/2πZ: it is the extrinsic distance on the circle
embedded in the plane. From this distance we can define the product distance on
the torus T.

ρT((θ1, θ2), (θ
′
1, θ

′
2)) = 2

(

sin2
(

θ′1 − θ1
2

)

+ sin2
(

θ′2 − θ2
2

))1/2

.

Note

ρ2
T
((θ1, θ2), (θ

′
1, θ

′
2)) = 2 (2− cos(θ′1 − θ1)− cos(θ′2 − θ2)) .

The distance ρ2
T
is smooth on T× T. Now let φ and ψ be two diffeomorphisms on

the torus T. We define the distance ρ(φ, ψ) with the formula

ρ2(φ, ψ) =

∫

T

ρ2
T
(φ(θ), ψ(θ)) dθ

= 2

∫

T

(

2− cos(φ1(θ) − ψ1(θ)) − cos(φ2(θ)− ψ2(θ))
)

dθ

= 4

∫

T

(

sin2
(

φ1(θ)− ψ1(θ)

2

)

+ sin2
(

φ2(θ)− ψ2(θ)

2

))

dθ

Now let

ρt = ρ(gt, g̃t).



16 M. ARNAUDON AND A. B. CRUZEIRO

¿From the smoothness of ρ2
T
, the formula for ρt does not involve a local time. More

precisely, letting

δg = gt(θ)− g̃t(θ),

δ cos k · g = cos k · gt(θ)− cos k · g̃t(θ),
δ sin k · g = sin k · gt(θ) − sink · g̃t(θ),
sin δg = (sin(δgt)1(θ), sin(δgt)2(θ)),

δu = (u(t, gt)− u(t, g̃t))

we get from Itô calculus

dρt = ρt
∑

k

λk

〈

sin δg

ρt
, (k2,−k1)

(

δ cos k · g
ρt

dxk +
δ sin k · g

ρt
dyk

)〉

T

+ ρt

〈

sin δg

ρt
,
δu

ρt

〉

T

dt

+
ρt
2

(

∑

k

λ2k

∫

T

(

k22 cos δg1 + k21 cos δg2
) (δ cos k · g)2 + (δ sink · g)2

ρ2t
dθ

)

dt

− ρt
2

∑

k

λ2k

(∫

T

(

k2
sin δg1
ρt

− k1
sin δg2
ρt

)

δ cos k · g
ρt

dθ

)2

dt

− ρt
2

∑

k

λ2k

(∫

T

(

k2
sin δg1
ρt

− k1
sin δg2
ρt

)

δ sin k · g
ρt

dθ

)2

dt.

This clearly has the form

dρt = ρt (σt dzt + bt dt)

where σt and bt are bounded processes and zt is a real- valued Brownian motion.
However it can happen that the drift is negative even if ρt is small, as the following
example shows.

Example 5.1. Let α > 0 small and ε > 0 satisfying ε << α. Take φ = id and
assume that there exist two subsets E1 and E2 of T such that E1 ⊂ E2, E1 has
measure α, E2 has measure α+ε, ψ(θ) = θ for all θ ∈ T\E2 and ψ(θ) = (θ1+π, θ2)
for all θ ∈ E1. Since ε can be as small as we want, we have

ρ20 ≃ 4α, (sin δg)0 ≃ 0, (δg0)2 ≃ 0, (δ sin k · g)0 ≃ 0,

on T\E2, (δ cos k · g)0 = 0,

on E1, (δ cos k · g)0 = −2 if k1is odd, (δ cos k · g)0 = 0 if k1is even,

so at time t = 0,

dρt ≃ −ρt
2





∑

k1 odd

λ2kk
2
2



 dt.

To construct a diffeomorphism like ψ, one can cut an annulus E1 of width
α

2π
in

T and rotate it by π. This yields a one to one map on T. Then smoothen it around
the boundary of the annulus to get ψ. The set E2 can be taken as an annulus of

width
α+ ε

2π
containing E1.
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6. Distance and rotation processes of two particles on a general
Riemannian manifold

6.1. Distance of two particles.

Let Bt = (Bℓ
t )ℓ≥0 be a family of independent real Brownian motions, σ =

(σℓ)ℓ≥0, with, for all ℓ ≥ 0, σℓ a divergence free vector field on M . We furthermore
assume that

(6.1) σ(x)σ∗(y) = a(x, y).

In particular

(6.2) σ(x)σ∗(x) = 2νg−1(x).

We let ϕ, ψ ∈ G0
V . In this section we assume that

(6.3) dgt(x) = σ(gt(x)) dBt + u(t, gt(x)) dt, g0 = ϕ

and

(6.4) dg̃t(x) = σ(g̃t(x)) dBt + u(t, g̃t(x)) dt, g̃0 = ψ

For simplicity we let xt = gt(x), yt = g̃t(x) and

ρt(x) = ρM (xt, yt)

For x, y ∈M such that y does not belong to the cutlocus of x, we let a 7→ γa(x, y)
be the minimal geodesic in time 1 from x to y (γ0(x, y) = x, γ1(x, y) = y)). For
a ∈ [0, 1] we let Ja = Tγa the tangent map to γa. In other words, for v ∈ TxM and
w ∈ TyM , Ja(v, w) is the value at time a of the Jacobi field along γ· which takes
the values v at time 0 and w at time 1.

We first consider the case where yt does not belong to the cutlocus of xt. We
note Ta = Ta(t) = γ̇a(xt, yt) and γa(t) = γa(xt, yt).

Letting P (γa)t be the parallel transport along γa(t), we have for the Itô covariant
differential

D γ̇a(t) := P (γa)td
(

P (γa)
−1
t γ̇a(t)

)

= ∇dγa(t)γ̇a +
1

2
∇dγa(t) · ∇dγa(t)γ̇a(t).

On the other hand the Itô differential dγa(t) satisfies

dγa(t) = Ja(dxt, dyt) +
1

2

(

∇(dxt,dyt)Ja
)

(dxt, dyt).

So we get

(6.5) D γ̇a(t) = ∇Ja(dxt,dyt)γ̇a+∇ 1
2 (∇(dxt,dyt)

Ja)(dxt,dyt)
γ̇a+

1

2
∇dγa(t) ·∇dγa(t)γ̇a(t).

Let e(t) ∈ Txt
M be the unit vector satisfying T0(t) = ρt(x)e(t). For ℓ ≥ 0 we let

a 7→ Jℓ
a(t, x) be the Jacobi field such that Jℓ

0(t, x) = σℓ(gt(x)), J
ℓ
1(t) = σℓ(g̃t(x)).

Moreover we assume that ∇Jℓ
0(t,x)

Jℓ
0(t, x) = 0 and ∇Jℓ

1(t,x)
Jℓ
1(t, x) = 0.
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With these notations, equation (6.5) rewrites as

DTa = ∇Ja(dxt,dyt)Ta +
1

2

∑

ℓ≥0

∇∇
Jℓ
a
Jℓ
a
Ta dt+

1

2

∑

ℓ≥0

∇Jℓ
a
· ∇Jℓ

a
Ta dt

= J̇a(dxt, dyt) +
1

2

∑

ℓ≥0

∇Jℓ
a
∇Jℓ

a
Ta dt.

We have

dρt(x) = d

(

(∫ 1

0

〈Ta(t), Ta(t)〉 da
)1/2

)

=
1

2ρt(x)

(

2

∫ 1

0

〈DTa(t), Ta(t)〉 da+
∫ 1

0

〈DTa(t),DTa(t)〉 da
)

− 1

8ρt(x)3
d
(

‖T0‖2
)

· d
(

‖T0‖2
)

=
∑

ℓ≥0

〈

J̇ℓ
0(t, x), et(x)

〉

dBℓ
t +

〈

J̇0(u(t, gt(x)), u(t, g̃t(x))), et(x)
〉

+
1

2ρt(x)





∫ 1

0

∑

ℓ≥0

〈

∇Jℓ
a
∇Jℓ

a
Ta, Ta

〉

da dt+
∑

ℓ≥0

∫ 1

0

‖J̇ℓ
a‖2 da





− 1

2ρt(x)

∑

ℓ≥0

〈J̇ℓ
0(t, x), et(x)〉2.

Note
∫ 1

0

〈

∇Jℓ
a
∇Jℓ

a
Ta, Ta

〉

da =

∫ 1

0

〈

∇Jℓ
a
∇Ta

Jℓ
a, Ta

〉

da

=

∫ 1

0

〈

∇Ta
∇Jℓ

a
Jℓ
a, Ta

〉

da−
∫ 1

0

〈

R(Ta, J
ℓ
a)J

ℓ
a, Ta

〉

da

=

∫ 1

0

Ta
〈

∇Jℓ
a
Jℓ
a, Ta

〉

da−
∫ 1

0

〈

R(Ta, J
ℓ
a)J

ℓ
a, Ta

〉

da

=
[〈

∇Jℓ
a
Jℓ
a, Ta

〉]1

0
−
∫ 1

0

〈

R(Ta, J
ℓ
a)J

ℓ
a, Ta

〉

da

= −
∫ 1

0

〈

R(Ta, J
ℓ
a)J

ℓ
a, Ta

〉

da

using the fact that ∇Jℓ
a
Jℓ
a = 0 for a = 0, 1. So finally,

dρt(x) =
∑

ℓ≥0

〈

J̇ℓ
0(t, x), et(x)

〉

dBℓ
t

+
〈

J̇0(u(t, gt(x)), u(t, g̃t(x))), et(x)
〉

+
1

2ρt(x)





∫ 1

0

∑

ℓ≥0

(

‖J̇ℓ,N
a ‖2 −

〈

R(Ta(t, x), J
ℓ,N
a (t, x))Jℓ,N

a (t, x), Ta(t, x)
〉

)

da



 dt

with Jℓ,N
a (t, x) the part of Jℓ

a(t, x) normal to Ta.
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Removing the assumption that yt does not belong to the cutlocus of xt, it is well
known (see [5] for a similar argument) that the formula becomes

dρt(x) =
∑

ℓ≥0

〈

J̇ℓ
0(t, x), et(x)

〉

dBℓ
t

+
〈

J̇0(u(t, gt(x)), u(t, g̃t(x))), et(x)
〉

− dLt(x)

+
1

2ρt(x)





∫ 1

0

∑

ℓ≥0

(

‖J̇ℓ,N
a ‖2 −

〈

R(Ta(t, x), J
ℓ,N
a (t, x))Jℓ,N

a (t, x), Ta(t, x)
〉

)

da



 dt

where −Lt(x) is the local time of ρt(x) when (gt(x), g̃t(x)) visits the cutlocus. Then
letting

ρt = ρ(gt, g̃t) =

(∫

M

ρ2t (x) dx

)1/2

,

we get

dρt =
1

ρt

∑

ℓ≥0

(∫

M

ρt(x)
〈

J̇ℓ
0(t, x), et(x)

〉

dx

)

dBℓ
t

+
1

ρt

∫

M

ρt(x)
〈

J̇0(u(gt(x)), u(g̃t(x))), et(x)
〉

dx dt− 1

ρt

∫

M

ρt(x)Lt(x) dx

+
1

2ρt





∫

M

∑

ℓ≥0

(∫ 1

0

(

‖J̇ℓ,N
a ‖2 −

〈

R(Ta(t, x), J
ℓ,N
a (t, x))Jℓ,N

a (t, x), Ta(t, x)
〉

)

da

)

dx



 dt

+
1

2ρt

∫

M

∑

ℓ≥0

〈

J̇ℓ
0(t, x), et(x)

〉2

dx dt

− 1

2ρ3t

∑

ℓ≥0

(
∫

M

ρt(x)
〈

J̇ℓ
0(t, x), et(x)

〉

dx

)2

dt.

For a vector w ∈ Tgt(x)M , we let wT the part of w tangential to T0(t, x). Letting

cos
(

J̇ℓ,T
0 (t, ·), T0(t, ·)

)

=

∫

M

〈

J̇ℓ,T
0 (t, x), T0(t, x)

〉

dx

ρt

(

∫

M

∥

∥

∥J̇
ℓ,T
0 (t, x)

∥

∥

∥

2

dx

)1/2

(observe ρ2t =

∫

M

‖T0(t, x)‖2 dx), we finally proved
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Proposition 6.1. The Itô differential of the distance ρt between gt and g̃t is given
by

dρt =
1

ρt

∑

ℓ≥0

(∫

M

ρt(x)
(

Pg̃t(x),gt(x)(σ
T
ℓ (g̃t(x))) − σT

ℓ (gt(x)
)

dx

)

dBℓ
t

+
1

ρt

∫

M

ρt(x)
(

Pg̃t(x),gt(x)(u
T (g̃t(x)))) − uT (gt(x))

)

dx dt− 1

ρt

∫

M

ρt(x)dLt(x) dx

+
1

2ρt





∫

M

∑

ℓ≥0

(∫ 1

0

(

‖J̇ℓ,N
a ‖2 −

〈

R(Ta(t, x), J
ℓ,N
a (t, x))Jℓ,N

a (t, x), Ta(t, x)
〉

)

da

)

dx



 dt

+
1

2ρt

∑

ℓ≥0

(

1− cos2
(

J̇ℓ,T
0 (t, ·), T0(t, ·)

))

∫

M

∥

∥

∥J̇
ℓ,T
0 (t, x)

∥

∥

∥

2

dx dt.

In the case of manifolds with negative curvature we may observe a similar phe-
nomena to the one of the torus with the Euclidean distance treated in Section
4: as long as the L∞ norm stays sufficiently small to avoid the cut-locus of the
manifold, the L2 mean distance between the stochastic particles tends to increase
exponentially fast.

6.2. The rotation process.

In the following we would like to study the rotation of two particles gt(x) and
g̃t(x) when they are in a close distance one to another. Recall that we have noted
xt = gt(x), yt = g̃t(x). We always assume that the distance from xt to yt is small:
we are interested in the behaviour of e(t) as ρt(x) goes to 0. We let

(6.6) dmx(t)
N = σ(xt)dBt − 〈σ(xt)dBt, e(t)〉e(t)

and

(6.7) dmy(t)
N = σ(yt)dBt − 〈σ(yt)dBt, Pxt,yt

e(t)〉Pxt,yt
e(t)

where Pxt,γa(t) denotes the parallel transport along γa.
¿From Itô formula we have

(6.8) DT0 = ρt(x)De(t) + dρt(x)e(t) + dρt(x)De(t)
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and this yields

De(t) =
1

ρt(x)
DT0 −

1

ρt(x)
dρt(x)e(t)−

1

2

1

ρt(x)
dρt(x)De(t)

=
1

ρt(x)
J̇0(dmx(t)

N , dmy(t)
N )

+
1

ρt(x)
J̇0(u(t, xt), u(t, yt)) dt+

1

2ρt(x)

∑

ℓ≥0

∇Jℓ
0
∇Jℓ

0
T0 dt

− 1

ρt(x)
〈Pyt,xt

(u(t, yt))− u(t, xt), e(t)〉 e(t)

− 1

2ρt(x)2





∫ 1

0

∑

ℓ≥0

(

‖∇Ta
Jℓ
a‖2 −R(Ta, J

ℓ
a)J

ℓ
a, Ta

)

da



 e(t)

− 1

2

1

ρt(x)
dρt(x)De(t)

=
1

ρt(x)
J̇0(dmx(t)

N , dmy(t)
N ) +

1

ρt(x)
J̇0(u

N (t, xt), u
N (t, yt))

+
1

2ρt(x)

∑

ℓ≥0

∇Jℓ
0
∇Jℓ

0
T0 dt

− 1

2ρt(x)2





∫ 1

0

∑

ℓ≥0

(

‖∇Ta
Jℓ
a‖2 −R(Ta, J

ℓ
a)J

ℓ
a, Ta

)

da



 e(t)

where we used the fact that dρt(x)De(t) = 0, and where uN denotes the part of u
which is normal to the geodesic γa. Now as before

∇Jℓ
0
∇Jℓ

0
T0 = ∇T0∇Jℓ

0
Jℓ
0 −R(T0, J

ℓ
0)J

ℓ
0 .

Finally we get

Lemma 6.2.

De(t) =
1

ρt(x)
J̇0(dmx(t)

N , dmy(t)
N ) +

1

ρt(x)
J̇0(u

N (t, xt), u
N (t, yt))

+
1

2ρt(x)

∑

ℓ≥0

∇T0∇JℓJℓ −R(T0, J
ℓ
0)J

ℓ
0 dt

− 1

2ρt(x)2





∫ 1

0

∑

ℓ≥0

(

‖∇Ta
Jℓ
a‖2 −R(Ta, J

ℓ
a)J

ℓ
a, Ta

)

da



 e(t).

¿From now on we assume that M = T the two dimensional torus.
In this situation the curvature tensor vanishes and we have the formulas

Ja(v, w) = v + a(w − v), J̇a(v, w) = w − v.

We immediately get

de(t) = De(t) =
1

ρt(x)

(

dmy(t)
N − dmx(t)

N
)

+
1

ρt(x)

(

(uN (t, yt)− uN(t, xt)
)

dt

− 1

2ρt(x)2

∑

ℓ≥0

‖σℓ(yt)− σℓ(xt)‖2 dt e(t)
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where we used the fact that ∇T0∇JℓJℓ = 0, as a consequence of ∇Jℓ
0
Jℓ
0 = 0,

∇Jℓ
1
Jℓ
1 = 0, and R ≡ 0.

Let us specialize again to the case where the vector fields are given by

Ak(θ) = (k2,−k1) cos k.θ, Bk(θ) = (k2,−k1) sin k.θ

and the Brownian motion

(6.9) dW (t) =
∑

k∈Z

λk
√
ν(Akdxk +Bkdyk)

where xk, yk are independent copies of real Brownian motions. As in section 4 we
assume that

∑

k |k|2λ2k <∞ and we consider λk = λ(|k|) to be nonzero for a equal
number of k1 and k2 components. Again we write

(6.10) dgt = (odW (t)) + u(t, gt)dt, dg̃t = (odW (t)) + u(t, g̃t)dt

with

g0 = φ, g̃0 = ψ, φ 6= ψ.

Changing the notation to gt = gt(θ) = xt, g̃t = g̃t(θ) = yt, we get

de(t) =
1

ρt(θ)

∑

|k|6=0

λk
√
ν (cos k · g̃t − cos k · gt) k⊥,Ndxk

+
1

ρt(θ)

∑

|k|6=0

λk
√
ν (sin k · g̃t − sin k · gt) k⊥,Ndyk

+
1

ρt(θ)

(

(uN (t, g̃t)− uN(t, gt)
)

dt

− 1

2ρ2t (θ)

∑

|k|6=0

λ2kν|k⊥,N |2
(

(cos k · g̃t − cos k · gt)2 + (sin k · g̃t − sin k · gt)2
)

e(t) dt

=
1

ρt(θ)

∑

|k|6=0

λk
√
νk⊥,N

(

2 sin
k · (g̃t − gt)

2

)

dzk

+
1

ρt(θ)

(

(uN (t, g̃t)− uN(t, gt)
)

dt

− 2

ρ2t (θ)

∑

|k|6=0

λ2kν|k⊥,N |2 sin2(k · (g̃t − gt)

2
)e(t) dt

where zk is the Brownian motion defined by

dzk = − sin
k · (g̃t + gt)

2
dxk + cos

k · (g̃t + gt)

2
dyk.
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Noting |k⊥,N |2 = |k|2(nk · e(t))2, we obtain

de(t) =
1

ρt(θ)

∑

|k|6=0

|k|λk
√
ν(nk · e(t))e′(t)

(

2 sin
k · (g̃t − gt)

2

)

dzk

+
1

ρt(θ)

(

(uN (t, g̃t)− uN (t, gt)
)

dt

− 2

ρ2t (θ)

∑

|k|6=0

|k|2λ2kν(nk · e(t))2 sin2 k · (g̃t − gt)

2
e(t) dt

(6.11)

where e′(t) is a unit vector in T orthonormal to e(t). Now for every K > 0, if

ρt(θ) ≤
π

2K
then for all k such that |k| ≤ K,

sin2 k·(g̃t−gt)
2

|k|2ρ2t (θ)(nk · e(t))2 ≥ 1

π2
.

Now using |k| = |k⊥| and (nk · e(t))2 + (nk⊥ · e(t))2 = 1, we get

(6.12)
2

ρ2t (θ)

∑

|k|6=0

|k|2λ2kν(nk · e(t))2 sin2 k · (g̃t − gt)

2
≥ ν

2π2

∑

0<|k|<K

λ2k|k|4.

Observe that the term in the left is the second part of the drift in equation (6.11)
as well as the derivative of the quadratic variation of e(t). This yields the following
result.

Proposition 6.3. Identifying TT with C, we have e(t) = eiXt where Xt is a real-

valued semimartingale with quadratic variation

(6.13) d[X,X ]t =
4

ρ2t (θ)

∑

|k|6=0

|k|2λ2kν(nk · e(t))2 sin2
k · (g̃t − gt)

2
dt

and drift

(6.14)

∫ t

0

1

ρs(θ)
〈u(s, g̃s)− u(s, gs), ie(s)〉 ds.

We have for all K > 0, on
{

ρt(θ) ≤
π

2K

}

,

(6.15) d[X,X ]t ≥
ν

π2

∑

0<|k|<K

λ2k|k|4.

If
∑

|k|6=0

λ2k|k|4 = +∞, then as g̃t(θ) gets closer and closer to gt(θ), the rotation e(t)

becomes more and more irregular in the sense that the derivative of the quadratic

variation of Xt tends to infinity.
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