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LAGRANGIAN NAVIER-STOKES DIFFUSIONS ON MANIFOLDS:
VARIATIONAL PRINCIPLE AND STABILITY

MARC ARNAUDON AND ANA BELA CRUZEIRO

ABSTRACT.

We prove a variational principle for stochastic Lagrangian Navier-Stokes
trajectories on manifolds. We study the behaviour of such trajectories con-
cerning stability as well as rotation between particles; the two-dimensional
torus case is described in detail.
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1. INTRODUCTION

As discovered by V. L. Arnold ([ff]) the motion of an incompressible non viscous
fluid can be characterized as a geodesic on a group of diffeomorphisms. This point
of view allows in particular to derive properties of the Lagrangian Euler flow, such
as stability, through the study of the geometry of the group ([d]).

When the fluid is viscous, namely for the Navier-Stokes equation, one can de-
scribe the Lagrangian trajectories as realizations of a stochastic process and inter-
pret the associated drift, solving Navier-Stokes, as an expectation over this process.
This intrinsically probabilistic approach we follow here is inspired by [E], [E] Sim-
ilar stochastic models are used for example in [@] Then the trajectories remain,
in an appropriate sense, geodesics and are almost sure solutions of a variational
principle. This was shown in [[f] for the two-dimensional torus.

We prove a variational principle for the Lagrangian Navier-Stokes diffusions in
a compact Riemannian manifold. Furthermore we study its stability properties.
The behaviour of the trajectories depends on the intensity of the noise as well as
on the metric of the underlying manifold. The example of the torus is studied in
detail. Finally we describe the evolution in time of the rotation between stochastic
Lagrangian particles.
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Let (M, g) be a compact oriented Riemannian manifold without boundary.
Recall that the It6 differential of an M-valued semimartingale Y is defined by

(1.1) dY, =P (Y),d (/O P(Y), "o dYS)

t

where
(1.2) P(Y),: Ty,M — Ty,M

is the parallel transport along ¢t — Y;. Alternatively, in local coordinates,
. 1. .
(13) avi = (a4 jriuar? savt ) o

where I'i, are the Christoffel symbols of the Levi-Civita connection.
If the semimartingale Y; has an absolutely continuous drift, we denote it by
DY; dt: for every 1-form « € T'(T*M), the finite variation part of

(1.4) | o avy
(1.5) Amm%mww

Let G*®, s > 0 be the infinite dimensional group of homeomorphisms on M which
belong to H?, the Sobolev space of order s. For s > 3 + 1, m = dimM, G* is
a C'*° Hilbert manifold. The volume preserving homeomorphism subgroup will be
denoted by GY:

v={9€G, : gp=p},
with p the volume element associated to the Riemannian metric. We denote by ¢
(resp. ¥43) the Lie algebra of G* (resp. G3,). See [] for example.
On M we consider an incompressible Brownian flow g, (t) € G}, with covariance
a € T'(TM ®TM) and time dependent drift u(¢,-) € I'(T'M). We assume that for
all z € M, a(x,z) = 2vg~!(z) for some v > 0. This means that

(1.6) dgu(t)(z) ® dgu(t)(y) = a(gu(t)(z), 9u(t)(y)) dt,

(1.7) dgu(t)(z) ® dgu(t)(z) = 2vg™" (gu(t)(2)) dt,

the drift of g, (t)(z) is absolutely continuous and satisfies Dg,,(t)(z) = u(t, g.(t)(x)).
The generator of this process is

0
L, =vA" + —
w = VAT + o 4 O

where A" is the horizontal Laplacian. The parameter v will be called the speed of

the Brownian flow.
If the time is indexed by [0,T] for some T > 0, we define the action functional

by
/OT (/M |Dgu (D)) d:c) dt] |

1
S(gu) = §E
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2. THE VARIATIONAL PRINCIPLE
Define
(2.1) A ={veC'[0,T], %), v(0,") =0, v(T,) =0}

Given v € 72, consider the following ordinary differential equation

des(v) .
(2.2) —ar ~ edv))
eo(v) =e

where e is the identity of G§°. Since v is divergence free, e.(v) is a G{°-valued
deterministic path.

We denote by & the set of continuous GY,-valued semimartingales ¢(t) such that
g(0) = e. Then for all v € J, we have e;(v) o g, (t) € Z.

Definition 2.1. Let J be a functional defined on & and taking values in R. We
define its left and right derivatives in the direction of h(-) = e.(v), v € S at a
process g € & respectively, by

(DL)nTlg] = - Tle.(ev) © g()]|emo.

(2.3) ‘ilf

(Dr)ndlg] = 7= J1g() o e.(€v)]le=o-
A process g € & wil be called a critical point of the functional J if
(2.4) (Dp)ndlg] = (Dr)nd|g], Vh =e(v), v € .

Theorem 2.2. Let (t,x) — u(t,z) be a smooth time-dependent divergence-free
vector field on M, defined on [0,T] x M. Let g,(t) a stochastic Brownian flow with
speed v > 0 and drift u. The stochastic process g, (t) is a critical point of the energy
functional S if and only if the vector field u(t) verifies the Navier-Stokes equation

(2.5) % + Vyu =v0u — Vp.

For the construction of weak solutions of Navier-Stokes equations on Riemannian

manifolds we refer to [f].

Proof. Since the functional S is right invariant, it is enough to consider the left
derivative. So we need to compute

(2.6) L leoS(e.(e0)(9))
We let

(2.7) f(e) = S(e.(ev)(gu))-
Then

(2.8) fe-3/ (E

which yields

CONIORYS (E

/ " (IDex(eo) g O@1P) dtD da

T
/0 ((Vele=oDex(ev) (gu(t)(2))  ult; gu(t)(2)))) dtD d.
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We need to compute

(2.10) Vele=oDet(ev) (gu(t)(2)) .
We have
d _ des(ev)
vtd_slazoet(gv) = va'e:OT
= Vel|e=0e0(t, e1(ev))
=0(t,e).
Together with v(0,-) = 0, this implies
d
(2.11) £|€:06t(€’0)($) =v(t,x).
Consequently
d
(2.12) 72 e=0et(ev) (9u(t) (@) = v (¢, gu(t)(2)) -
By It6 equation,
dey(cv)(gu(t)(z))

(2.13) = (det(ev) (), dgu(t)(z)) + %Vdet(fv)(gu(t)(iﬂ)) (dgu (t)(x) ® dgu(t)(x))
= (dey(ev) (), dgu(t)(2)) + vAey(ev)(gu(t)(2)) dt.
Here Ae(ev)(-) denotes the tension field of the map e;(ev) : M — M. This yields
Dey(e0)(gu(t)(2)) = (des(v) (), Dgu(t)(x)) + vAei(ev)(gu(t)(x))
+ev(t, er(ev)(gu(t)(2)))
= (de:(v)(-), ult, gu(t)(2))) + vAer(ev)(gu(t)(2))
+e0(t, er(ev)(gu(t)(2)))-

Differentiating with respect to € at € = 0, we get

(2.14)

Vele=oDer(ev)(gu(t) ()
= (Vele=odei(ev)(+), ult, gu(t)(2))) + vVe|e=0Aer(cv)(gu(t)(x))

— (V.o (), ult.ult)(@) ) +vOE |ever(e0) (u(0)(0)

+ 201, gu(1) )

= (Y0t ), 0u(8)(w) + vt ) gulD)(@) + 0o (1 94(1) )
= Vategu 0l ) + 000, Y ga 1)) + e (1, 00 1) ).

We used the commutation formula V.|.—oA = Dd—s, where [0 = dd* + d*d is the
damped Laplacian. Alternatively,

(2.16) O = A" + Rick (v).

(2.15)
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For a T'M-valued semimartingale J; which projects onto the M-valued semi-
martingale Y;, we denote by ZJ; the Ito covariant derivative:

(2.17) 2J, = P(Y)d (P(Y); ' Jy) .
Then It6 equation yields
ou
(2.18)  Qu(t, gu(t)(x)) ~ E(t’ Gu(t)(2)) dt + Vag, (1))t + VA u(t, gu(t)(z)) dt

and

(2.19) 2v(t, gu(t)(z)) ~ % (t, gu(t)(x)) dt + Vg, (t)(z)v + Z/Ahv(t, gu(t)(z)) dt.

where the notation ~ means equal up to a martingale:

/' P(gu()); ' Qul(t, gu(t)(x))

0
‘ 1 [ Ou
—/O P(gu(-)); (g(t,gu(t)(w))dt+Vdgm)(z)“VAh“(fagu(f)(x))df)

is a local martingale.
On the other hand, denoting u; = u(t, g, (¢)(z)) and vy = v(t, g, (t)(x)) we have

(2.20) {(ur,vr) = /OT(@ut, V) +/OT<ut, Duy) —l—/()T(@ut, Dvy).

Let us denote by Duv; the drift of v; with respect to the damped connection V¢ on
T M, whose geodesics are the Jacobi fields. It is known that,

(2.21) (Dut — uRicn(ut)) dt  is the drift of 2wy
and
(2.22) (th - VRicﬁ(vt)) dt  is the drift of Duv.

As can be seen from (P.17), (B.19) and (.29), the drift Dv; commutes with the
derivative with respect to a parameter, so it satisfies

(2.23) Duvy = ve'e:ODet(E’U)(gu(t)(x))'
Taking the expectation in (2.2() and using (£.23), (£.21) and (£.29), we get by

removing the martingale parts

E[(ur,vr)] = E VO <%(t 9u(t)(@)) + Va,u + vA u(t, gu(t)(x), vr) dt]

(2.24) +E

/O (s, Voo Des(e0) (gu () () —uRicﬁ(vt»dt]

+E

2 /0 tr (V.u, V.0) (4, gu(t)(x))dt] .

Then using the facts that vy = 0, together with
(2.25) (ut,RiCﬂ(vt)) = (Ricﬂ(ut),vt>
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and (R.16), we get
E [/ <Uta va'a:ODet(Ev)(gu(t)(‘T)» dt
0

(2.26) =-E l/o <%(t, gu(t) (@) + Vy,u + vOu(t, gu(t)(x)), vi) dt]

—E [21//0 tr (V.oug, V.vg) (t,gu(t)(z))dt] .

Integrating with respect to x yields
(2.27)
f'(0)

_ E VOT (/M <<<% + V.t ym> u) (£, gu(t) (), v(t,gu(t)(x))> d:c) dt]
_E [QV/OT (/Mtr (V.u, V.0) (t,gu(t)(z))dz> dt] .
Now we use the fact that gu(£)(-) is volume preserving:
f(0)
/OT (/M <<<% + V.t ym> u) (t,2), v(t,z)> d:c) dt]
_E lgy/OT (/vau, v.0) (t,x)dx) dt] .

Since M is compact and orientable, an integration by parts gives

(2.29) / tr(V.u, Vo) (t,z)de = f/ (Ou, v) (¢, z) dz.
M M

Replacing in (2:28) we get

(2.30) f'(0)=-E UOT </M <<<% + Vi — I/D) u> (t,z), v(t,:c)> dz> dt] .

The process g, (t) is a critical point of the energy functional S if and only if f/(0) =
0, which by equation (P.30)) is equivalent to

=—-E

(2.28)

(2.31) (% + V., — I/D> u=—Vp
for some function p on [0,T] x M. This achieves the proof. O

3. A MARTINGALE CHARACTERIZATION FOR SOLUTIONS OF NAVIER-STOKES
EQUATIONS

In this section, to simplify the equations, we assume the pressure to be constant.
The pressure will not be present, in any case, in the weak version of the formulae
we derive.
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We seek to obtain a formula for the drift of the covariant derivative with respect
to a parameter of a family of Navier-Stokes solutions, extending the well-known
Jacobi equation.

Consider a family of diffusions g%, a € R, satisfying

(3.1) 9%(0) = ¢()

where ¢ : R — M is a smooth path on M, and solution to the It6 SDE
(3.2) dg®(t) = u(t,g*(t)) dt + o (g"(t)) dB,

where u solves

(3.3) Owu+ Vyu + vOu =0,

B; = (BY)s>0 is a family of real Brownian motions, o = (0¢)¢>0, and for all £ > 0,
op is a vector field on M. We furthermore assume that
(3.4) oot =vg !
where g is the Riemannian metric on M.

We denote by u® = Dg*(t) = u(t,g*(t)) the drift of g*. We denote by 2°¢.J;
the vertical part of the It6 differential (with respect to V¢) of a T'M-valued semi-
martingale J;. It is known that

1
(35) @CJt == .@Jt + §R(Jt, dXt)dXt

where X; = 7(J;) and R is the curvature tensor. If J; has an absolutely continuous
drift D¢J, then the finite variation part of Z¢J; is D¢J; dt.
From the It6 equation

(3.6) Dug ~ Ou(t, g°(t)) dt 4+ V gga ryu + vOu(t, g*(t)) dt
we deduce that the drift of Z2°uf* is
(3.7) Dugt = Ou(t, g%(t)) + Vueu + vOu(t, g*(t)) = 0.
JFrom [Iil] Theorem 4.5, we have formally
(3.8)
DV qug

=VaZui + R(dg”(t), 0ag®(t))ui
+ R(dg™ (1), ag™ (6) P — v R(Oug™(0)uf + 3 R(dg" (1), Pag” (1))
Using (B.H), we obtain
(3.9)
DV qug
=V 2°uf’ + R(dg™(t), 0ag® (t)uf — vV, go (1) RicH(uf?) dt
+ R(dg“(t), 0a9%(t)) Duy — vd* R(0a9™(t))us dt + %R(dga(t), D00g”(t))uy.
Removing the martingale part we obtain the drift
(3.10)
DV qug =Va DUy + R(ug', 0.9 (t))uf — vV, ga(s) Rick(u®)
+ 2vtr R(+, 0a9®(t))V.ug — vd* R(0a9”(t))uf +vtr R(o(-), Vo, go )0 (-))us.

Now since Dug* = 0 we finally get
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Proposition 3.1. The drift of the covariant derivative with respect to « of the
family (u@)aer of Navier-Stokes solutions is given by
(3.11)
DV qug =R(uf', 0ag®(t))ug — vV, go ) Ric*(u)
+2vtr R(+, 0a9”(t))V.ug — vd*R(0ag™(t))ui +vtr R(o(-), Vo, ge )0 (-))ug

This formula extends the well known corresponding (Jacobi) equation for the
variation of geodesics.

4. THE TWO-DIMENSIONAL TORUS ENDOWED WITH THE EUCLIDEAN DISTANCE

We study the evolution in time of the L? distance between two particles in the
two dimensional torus. Notice that, in order to interpret the diffusion processes as
a solution of the variational principle described in section 2, there is no canonical
choice for the Brownian motion, as far as it corresponds to the same generator. We
make here a particular choice.

On the two-dimensional torus T = R/27Z x R/277Z we consider the following
vector fields

A(0) = (ka,—k1)cosk.0, By(0) = (ka,—k1)sink.0

and the Brownian motion

(4.1) AW (t) = Mev/v(Arday + Brdyy)
kEZ

where xj,y, are independent copies of real Brownian motions. We assume that
>u [k[2A? < oo, a necessary and sufficient condition for the Brownian flow to be
defined in L?(T). Furthermore we consider A\ = A(|]k|) to be nonzero for a equal
number of k1 and ko components. In this case the generator of the process is equal
to

0
L CvA + t+8

with 2C = 37, A7 (c.f. H Theorem 2.2). We shall assume C to be equal to one.
Let us take two Lagrangian stochastic trajectories starting from different diffeo-
morphisms and let us write

(4.2) dgr = (0dW (t)) + u(t, g¢)dt, dge = (odW (t)) + u(t, g )dt
with

go = ¢a gO = 1/}5 ¢ 7é 1/}
We consider the L? distance of the particles defined by

Pbip) = /T 16(0) — B(0)? do.

where df stands for the normalized Lebesgue measure on the torus.
We let p; = p(gt,g¢) and 7(g,g) = inf{t > 0: p, = 0}.

Lemma 4.1. The stopping time 7(g, g) is infinite.
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Proof. By uniqueness of the solution of the sde for g we can let for all ¢ > 0
Gt(0) = g:((p~ 0 4)(0)). Since g;, ¢ and 9 are diffeomorphisms, if p(6) # (6)

then g.(0) # gi((¢™" 0 )(9)).
Since ¢ # 1, the set {6 € T, G:(0) # g:(0)} has positive measure and this implies

that p; > 0, which in turn implies that 7(g, §) is infinite. O

Denote by L:(0) the local time of the process |g:(0) — §:(0)| when (g:(6), §:(0))
reaches the cutlocus of T. By It6 calculus we have

dpy :% Z MeVV (gt — G, (Ak(g) — Ak(Ge)) doi(t) + (Br(ge) — Br(gt)) dys(t))
k

1 5 ~ 1 -
+ — (9t — G, ult, g¢) —u(t, §e))y dt — —/ lg+ — G+|(6)dL¢(0)
Pt Pt Jr

1 - .
+ g M (I46(00) — Au@) I + 1Belor) — Bi@llz) d
k

— 5 2 At (o = G An(ar) = Ax(@)) + (o = G Blan) = Bulan))7)
ok

where (-,-)r and | - |7 denote, resp., the L? inner product and norm. We let
1 -

(4.3) du(t) = P (u(t, g¢) — ult, gi)) -

We have

(4.4) An(ge) — An(Ge) = —2sin k- (gt2+ gt) sin (kz (gt — §t)) .y

2

N kE-(gt+at) . k- (g9t — gr)
(W5)  Bilg) - Bula) = 2c0s 0 I gy (%) KL

where we have noted k- = (ko, —k1). Then, for k # 0 we let

k 1 _
(4.6) nE = — and ng(t) = E(gt — Gt).

This yields

(A7) Aulgr) — Au(Ge) = —2|k|?py sin F (9t + ) sin (k'(gtgt)>nk_
2 |kl pt 2

(4.8) Bi(gt) — Bi(ge) = 2|k|*pt(cos

k- (g: + i) sin (k'(gt_gt))
ML .
2 |kl pe 2
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With these notations we get
dpt
sin [ k- 0) — a.(0
:Pt\/;Z)\kUi’F/Q(nkL -ngy(t,0)) ( (9:(0) — g4 )))
k T

|klpe 2
y < i B (9:00) + 5:(0)) k- (9:(0) + 3:(0))
2 2

dxk (t) + cos

dys, (t)> do

1

00y (0500} dt = [ g (t.0)|=-dLi(0)

T t
SiIl k . (gt — gt) 2

+2v A2 |k|4 <

—2vp; Z Ai|k|4

k

dt
y (/ (W.ng(t,e))sm(k-(gt<9>+gt<e>>) sin (ks-(gtw)—gt(e))) da)th

T
2 |klpe 2
—2vp; Z Ai|k|4
k

([ s o (0O BODY 5 (5000500 )

And finally:

Proposition 4.2. The Ito equation for the distance p; between the diffeomorphisms
gt and g; s given by

(4.9) dps = py (Jtdzt + by dt + (ng(t), ou(t)), dt — dat)

where z; is a real valued Brownian motion, oy > 0 is given by

(4.10)
of =4v y_ Aj|k|*
k

y ( / (W.ng@,e))sm(k-(gt<e>+gt<e>>) sin (k-(gxe)—gt(e))) d9)2

2 |klpe 2
+4v > Ak
k
k-(gt<9>+§t<9>>) sin (k-(gtw)—gt(e))) )
X ngL -Ng(t,0)) cos do |
(st on (55000 8 (05
the process by satisfies
1 sin (k- (g —g0)\ ||’
4.11 by + —of =2v 2kl ( dt
( ) t 2 t ptg k| | |k|pt 2 T

and a; is defined by

1
(4.12) a =0, das :/ Ing (£, 0)|~—dLy(0).
T Pt
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So we have for all 0 < tg < t,
(4.13)

t t 1
Pt = Pty €XP </ osdzg +/ (bs - 505 + (ng(s), 5u(s)>T> ds — (at — at0)> .
to to

Let

(4.14) S = 0p(t,0) = %.

Notice that

Lemma 4.3. We have
i ~(g:(0) — 3:(9))
(4.15) o} <4VZ)‘2|I€|4/61&|]€|2 3 ( D) do

and

(4.16) bt>2uZA |k|4/ ng-nk)QdH/ sin® <k-(gt(9)§t(9))>d97

T |k|2p§ 2

in particular by > 0.
Let R > 0. Assuming that A, = 0 for all k such that |k| > R then on

_ i
{w1v0em, o) -50) < 7}
we have
1
by — 50? > 0.

Proof. Using Cauchy Schwartz inequality,

o <4ZA Ilie% / (g - s ) sm2<k~<9t<9>2+ét<9>>) ||Zi|r;t| <k-<gt(e>2 gt(m)) "

o mnf ()
DR /|ng ns )| cos (k (7 <9>+gt<9») ||Zi|n| <k~<gt<9>2gt(9>>)d9
Pt
/|ng - |||;1|n|< (o <>2 gtw)))de |
—a Yl A e )
_ 4V; A2 k[ ( /T 5ki|gt<i>t — )| ||Zi|r;t| <k (0:0) = gtw))) d9>2

o [ OGO [ (k) a0,

f4yZA2|kl4/ i |/<;E . <k'(9t(9)2_ gt(e))) do.
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On the other hand,

sin? (k- (g:(0) — §:(9))
( > a0,

1
by + =02 =20y Ak
27! ; g T |k[?p} 2

so that using the bound
in| (k- (9:(6) — §:(9)) 2
o2 < Ay )\2k4</ nom |s1n|< 0
T ; HH TK ! kL)'Iklpt 2
<4y§:)\ |k|4/ ny - mys )2 dB sin? <1€.(gt(9)gt(9)))d9
g

T |k|2P% 2

for o2 yields

sin (9:(0) — g:(0))
bt>2yZ)\2|k|4/ng ne) d9/|k|2pt( il 5 0D g

where we used

/(ng “ng)? d + /(ng ngL)?dl = 1.
T

T
Since A depends only on |k|, we have Ay = A\,. for all k. Then putting together
the terms corresponding to k and k+ we obtain

1
by + 503 = u;)\ﬂkr‘

/<|k|np <k-<gt<9>2gt<e>>>+“j§; <kL ()~ >>>)d9,

and this yields using the bound for o7 as well as 67 + 67, =1

1
by — 505 > uzk:)\%|k|4

« / (62— 52.) (Wp (k : <gt<e>2 - @(9))) B W (k : <gt<92> - @(9)))) do
= VZA |k|*

in” Ellg: — g:/(0) sin” |E||g: — §:](0)
x [ (62 — 62, (Sm (5' LIt > (m L ))d@
/ﬂ'(k A 2 k207 \* 2

Assuming that Ay = 0 whenever |k| > R then on

{w|V9 €T, |g:(0) — g:(0)] < %}

the functions inside the integral are nonegative, consequently

1
bt_§a1§2 ZO

Define
(4.17) Lz) =

00) = 1.

From Lemma E we easily get the following result.
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Proposition 4.4. Let R > 1. Then on

_ 2
{wwe ET, [9i(0) — 5u(0)] < %}
letting
EQ (i) Z A2 |K|4,
V2 |k|<R
we have,
1

(4.18) dpe > py (Jtdzt — [|6u(t)||r dt — / |ng(t,9)|p—st(9) +cr dt) .

T t

Moreover assuming that A\, = 0 whenever |k| > R, then letting

1
Cp = Pl inf ALk (g - v)? = (nge -v)2)2,
M= ek
on
_ m
{W|V9 €T, |g:(0) — 5:(0)] < ﬁ}a
1

(4.19) dp: > pt (Utdzt + 503 dt — ||6u(t)||r dt + ¢ dt) .

Proof. Tt |g,(0) — G:(0)] < %5 then for all k such that |k < R,
2 V2

sin? (k: (9:(6) gt(e))> . i€2<

and this implies

|| pf 2 N
So with (f.14) we get
2
e (3 E [
V2 |k|<R T

Y

e (3) 3 ((fmezan) s (fons mepan)

>3 (75)” > s

|k|<R

(again we used [1(ng - ng)?dO + [-(ng - njr)? df = 1.). This establishes ({L.1§).
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Next if |g:(6) — g:(0)] < % then from the calculation in the proof of Lemma [£.3

1
by — 502 >v > Ak
|k|<R

in” Ellg: — g:/(9) sin” |E||g: — §:](0)
x [ (62 — 62, (Sm (5' LIt > (m LIt ))d@
/11‘(k ) k22 \ 2 k[2p7 \ " 2

=2
>0 Y A [ 6 - 02200 g

2
k<R T 8p;
— a.1%(0
[0,
T Pt
this establishes ({.19). O

Theorem 4.5. Lett >0, R>1 and
™
= < — g < —7.
O ={weQ vs<t, WeT, [(g.0)w) - 3.(O)w)| < 5}

If we assume the initial conditions for the L? distance and the L? norm of the initial
velocity related as ¢ = pg — 2||ugllr > 0, and suppose that [ u =0, then on Qy,

t
(4.20)  Vs<t, ps> oJy o5 dzatcipt (Po _ 2||Uo||1r/ o= Jg or dzr—(cRt%)s ds)
0

as long as the right hand side stays positive.
On the other hand if we assume that there exist constants ci1,co > 0 such that
for all 9 € T and s € [0,¢] ,

(4.21) |Vu(t, )] < cre™ !,
then on 4, Vs < t,
t
4.22 s > Po exXp 0sdzs + Cpt — a 1—ec2t) ).
P P R
0 C2

Proof. Assume that po — 2||ugl/r > 0. From inequality (§.19) we have on Q, for
s <t,

1
(4.23) dps > ps (Usdzs + (g + 505) ds) —2||u(s,-)||T ds.

Using the fact that u(t,.) satisfies Navier-Stokes equation together with Poincaré
inequality,

d
2511408 NF = —2v[|Vu(s, )7
< —vlu(s, )| [3-
Therefore we have
[lu(s, )llr < e~ 25 [[uo]|r.
We obtain
1 v
(4.24) dps > ps (UsdzS + (g + =0?) ds) — 2e” 2% |ug]|r ds.

From this comparison theorem for solution of sde’s yields ({t.20)).
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Now assume (t.21]). To prove (}.22) we start with (j.19), and remark that
[[6u(®)|lr < sup |Vu(t,d)]. Then with the bound on Vu(t, ) we have
0T

1
dps > py (Utdzt + 50? dt — cre” " dt + c dt) )
Integrating the right hand side between ¢y and ¢ gives the result. O

Remark 4.6. The bound ([t.21)) is satisfied for instance for solutions u(t,-) of the
form e_”|k|2tAk.

Also notice that, by the expression of the constant ¢/, the stochastic Lagrangian
trajectories for a fluid with a given viscosity constant tend to get apart faster when
the higher Fourier modes (and therefore the smaller lenght scales) are randomly
excited.

5. THE TWO-DIMENSIONAL TORUS ENDOWED WITH THE EXTRINSIC DISTANCE

It seems difficult to deal with the local time term of Proposition @ To circum-
vent this problem we propose to endow the torus T with a distance pr equivalent
to the one of section [, but such that p? is smooth on T x T. Then we will see that
when the assumptions of Theorem are not fulfilled, then the behaviour of the
distance of two diffeomorphisms can be completely different even if their distance
is small. So the uniform control of the distance in Theorem @ looks as a necessary
condition for an exponential growth of the distance.

The map

R/27Z x R/27Z — [0, 2]

n 0 — 0
° 2

defines a distance on the circle R/277Z: it is the extrinsic distance on the circle
embedded in the plane. From this distance we can define the product distance on
the torus T.

o _g 08 1/2
pri(0n02), (05,05)) =2 (s (B2 ) s (252 ))

pr((01,02), (01,05)) = 2 (2 — cos(#; — 61) — cos(0 — 62)) .

The distance p2 is smooth on T x T. Now let ¢ and 1 be two diffeomorphisms on
the torus T. We define the distance p(¢, 1) with the formula

P2(6,9) = / PR(6(6),(0)) do

(91, 92) — 2

Note

=2 [ (2= cos(6! (6) — 61(6)) - cos(6(6) ~ v2(0))) b
o <Sm2 <¢1<9> 2w1(9>) L <¢2<9> = ww))) "

pt = p(gt, Jt)-

Now let
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;From the smoothness of p2, the formula for p; does not involve a local time. More
precisely, letting

g9 = g:(0) — g:(0),
dcosk-g=cosk-gi(0)—cosk - g:(0),
dsink - g =sink - g:(0) — sink - g:(0),

sindg = (sin(dg¢)1(6), sin(dg:)2(0)),
ou = (u(t, ge) —u(t, g))

we get from It6 calculus

sin & dcosk - osink -
dptptz)\k< g,(k%*]ﬁ) ( gd$k+ gdyk)>
k Pt Pt Pt T
indg o
(e Y
Pt Pt/ T

. q)2 : L2
+g <Z )‘i/ (k3 cos 6g1 + k7 cos bgz) (dcosk - g) 'Z (0sink - g) d9> gt
k T Pt

sin sin & dcosk - 2
&}3&(/@2 Ik ”) gw)dt
2 . T Pt Pt Pt

B &ZAi </ <k251n5g1 klsin592> 5sink~gd9)2 it
2 P T Pt Pt Pt

This clearly has the form

dpt = Pt (O't dZt + bt dt)

where o; and b; are bounded processes and z; is a real- valued Brownian motion.
However it can happen that the drift is negative even if p, is small, as the following
example shows.

Example 5.1. Let a > 0 small and € > 0 satisfying ¢ << a. Take ¢ = id and
assume that there exist two subsets F; and Fs of T such that E; C F,, Ej has
measure o, Fy has measure a+e, () = 0 for all § € T\ Ey and () = (61 4+, 62)
for all 8 € E;. Since € can be as small as we want, we have

pe ~4da, (sindg)o~0, (dgo)2~0, (§sink-g)o=~0,
on T\E2, (dcosk-g)o=0,
on By, (0cosk-g)o=—2 if kjisodd, (dcosk-g)o=0 if kiis even,

so at time ¢t = 0,

Pt
dpy =~ =% > k3| dt.
k odd

@
To construct a diffeomorphism like v, one can cut an annulus E; of width o in

™
T and rotate it by 7. This yields a one to one map on T. Then smoothen it around
the boundary of the annulus to get ©. The set Es can be taken as an annulus of

width &€
2

containing Fj.
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6. DISTANCE AND ROTATION PROCESSES OF TWO PARTICLES ON A GENERAL
RIEMANNIAN MANIFOLD

6.1. Distance of two particles.

Let By = (B{)s>o be a family of independent real Brownian motions, o =
(0¢)e>0, with, for all £ > 0, o, a divergence free vector field on M. We furthermore
assume that

(6.1) o(z)o*(y) = alz,y).
In particular
(6.2) o(z)o*(z) = 2vg ™ (z).

We let ¢, € GY-. In this section we assume that

(6.3) dg:(x) = o(ge(x)) dBy + u(t, g:(x)) dt, go=¢
and
(6.4) dg:(x) = o(ge(x)) dBy + u(t, ge(x)) dt, go =

For simplicity we let x; = g:(z), y¢+ = g+(x) and

pe(w) = par (e, ye)

For z,y € M such that y does not belong to the cutlocus of z, we let a — v, (z,y)
be the minimal geodesic in time 1 from = to y (yo(z,y) = z, 71 (x,y) = y)). For
a € [0,1] we let J, = Ty, the tangent map to .. In other words, for v € T,, M and
w € TyM, J,(v,w) is the value at time a of the Jacobi field along +. which takes
the values v at time 0 and w at time 1.

We first consider the case where y; does not belong to the cutlocus of ;. We
note Ty = Tu(t) = Ya(@e, ye) and v, (t) = va(xe, ye)-

Letting P(7,): be the parallel transport along v, (t), we have for the Itd covariant
differential

Da(t) = P(va)ed (P(va); "Ha(t))
. 1 .
= Vv (t)Ya + §Vd7a(t) “Vaya ) Ya(t).

On the other hand the It6 differential dr,(t) satisfies

1
dve(t) = Jo(dze, dys) + B (v(dmt,dyt)l]a) (dzy, dyy).

So we get

: : .1 :
(6:5) Z9a(t) = Vyu(dzedye) VotV 3 (9 0a, ayerda) ooy Ta+ 5 Vara®) - Vira @ Falt)-
Let e(t) € T, M be the unit vector satisfying To(t) = pi(x)e(t). For £ > 0 we let

a + JL(t, ) be the Jacobi field such that J§(t,z) = oo(g:(x)), JE(t) = o0(Ge(w)).
Moreover we assume that V_]g(tﬁi)l]g(t, x) =0 and VJf(tym)Jf(t,:c) = 0.
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With these notations, equation (@) rewrites as

1 Z 1 Z
.@Ta = VJa(dzt,dyt)Ta + 5 Vv‘]g‘]gTa dt + 5 V‘]g . V‘]gTa dt
£>0 £>0

. 1
= Ja(dSCt,dyt) + 5 ;VJgVJgTa dt.

We have

dpu(z) = d (( / (L) 1) da) UQ)

#z) (2 /01 (DT (), Tu(t)) da + /01 (DTu(t), 2T, (t)) da)

- 2p4(
- s (ITl) -2 (151
=y <J'§(t, ), et(x)> dB; + <J'o(u(t,gt(w)),u(t,ét(w))), et(w)>
>0
a jt a
2pt i ; VeV 5T, Ta) d dt—i—;/ 17412 d
m); oo
Note
/1<V]vazTa,Ta>d :/1<vﬂvT ) da
0 0

1
= —/ (R(T,, J5)JE, T,) da
0
using the fact that V ;. JE =0 for a=0,1. So finally,

dpulw) = Y (Jo(t @), ea(w)) dBY

>0

+ <J'o<u<t,gt<sc>>,u(t,mz))), ei())
S (1 (RG22 ), Tl 2) |

2pt >0

with J&N (¢, ) the part of JE(t,z) normal to T,.
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Removing the assumption that y; does not belong to the cutlocus of x, it is well
known (see [f] for a similar argument) that the formula becomes

dpi() = > (J§(t, ), eulw) ) dB]
>0

+ <J'o<u<t,gt<w>>,u<t,gt<x>>>, ei(x)) — dLi(x)

) / S (IEN 1P = (RTa(t,2), 2N (1) T (0, 2), Ta(t,2) ) da | dt

£>0

where —L¢(x) is the local time of p;(x) when (g¢(x), §:()) visits the cutlocus. Then

letting
1/2
pr = p(ge, ) = (/ pf(w)dw) :
M

dp; = piz (/M pe(e) (5 (t,2). ) dx) B!

t >0

+ i) (o(ulan(a)), u(@e@)). @) dedt— [ py(a)L(x) do
M M

Pt Pt

2Pt /M = (/ ”J“V”2 < (Ta(tax)aJﬁ’N(t,x))Jf’N(t,x),Ta(t,gg)>) da) de | dt

2pt /MZ JE(t, ), e x)>2 dx dt

£>0
LS ([ e (e @) i)

pt >0

For a vector w € Ty, ()M, we let w’ the part of w tangential to Ty(t, z). Letting

Ju <jg’T(t7$)7To(t,:c)> dz

] 9 1/2
o (57 e )

(observe p? = / | To(t, z)||* dz), we finally proved
M

oS (J'OZ’T(t, ), To(t, )) =
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Proposition 6.1. The Ité differential of the distance p; between g; and g: is given
by

do=—3" (/JVI p(@) (Pu(2).00() (07 (31(2))) = 07 (91(2)) dw) 45

t >0

+ %/M pt(x) (Pf]t,(m)agt(m)(UT(gt(1'>>>> - uT(gt(z))) dx dt — %/M pe(x)dLy () d

Fom [ SS(f (12 = R0, 96 ) 0.0, T0.0))) ) | a

M >

+ L 3 (1 — cos? (jg’T(t, ), Tolt, ))) /M ng’T(t,z)H2 dz dt.

2pe >0

In the case of manifolds with negative curvature we may observe a similar phe-
nomena to the one of the torus with the Euclidean distance treated in Section
4: as long as the L°° norm stays sufficiently small to avoid the cut-locus of the
manifold, the L? mean distance between the stochastic particles tends to increase
exponentially fast.

6.2. The rotation process.

In the following we would like to study the rotation of two particles g:(x) and
gt(x) when they are in a close distance one to another. Recall that we have noted
xy = ge(x), y+ = gi(x). We always assume that the distance from z; to y; is small:
we are interested in the behaviour of e(t) as p:(z) goes to 0. We let

(6.6) dmz(t)N = o(z¢)dB; — (o(x;)dBy, e(t))e(t)

and

(6.7) dmy(t)N = o (y)dBy — (0(y:)dBt, Po, y,e(t)) P,y e(t)
where P, . (¢) denotes the parallel transport along v,.

From It6 formula we have

(6.8) DTy = pi(z)De(t) + dpi(x)e(t) + dp(z) De(t)
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and this yields

1 1 1 1
PDe(t) = MQTO*mdPt(@e(t) e )dpt( z)Pe(t)
= pt%x) jO(dmx(t)Nadmy(t)N)
1 .
+pt(z>Jo(u(t ), u(t, yt))dt—i—th ;vﬂvﬂzﬂodt
- pim (P () = ). e(8)) (1)
e ywony V1, Jall? = R(Ta, J5)J5, Ta) da | e(t)
2Pt / ; T )
- ;p} () 7e(t)
_ L z(H)N Ny, L u (t, 2p), uN
*pt( )JO(dm (t) 7dmy(t) )ert(ﬂﬁ)JO( (tv t)v (tvyt))
+— 2p( ZvﬂvﬂTO dt
) >0
gt | [ 0 at1? — R ) et

£>0

where we used the fact that dp;(z)Ze(t) = 0, and where u¥ denotes the part of u
which is normal to the geodesic v,. Now as before

V5V e To = V1,V ye Jg — R(To, Jg) Jg.
Finally we get

Lemma 6.2.

1. 1 .
De(t) = ——Jo(dmz ()Y, dmy(®)N) + ——Jo(u™N (¢, z), W™ (¢,
e(t) (@) o(dma(t) y()™) (@) o(u™ (t,@e),u™ (8 ye))
+—— VYV, VeJb — R(Ty, J§)J§ dt
2Pt($ g T Jt ( 0 0) 0
/Z |V, JE|I? = R(Tu, JO)JL T,) da | e(t).
2Pt

£>0

From now on we assume that M = T the two dimensional torus.
In this situation the curvature tensor vanishes and we have the formulas

Jo(v,w) = v+ a(w — v), Jo(v,w) = w —v.
We immediately get

de(t) = Pe(t) =

(dmy(t)N - dmx(t)N) + ((uN(t, ye) — ulN(t, xy)) dt

1
pi()
BE an ye) — olx)|* dte(t)

£>0

Pt(fE)
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where we used the fact that V7,V ;. J¢ = 0, as a consequence of Ve J§ =0,
Ve =0,and R=0.
Let us specialize again to the case where the vector fields are given by
Ak(ﬁ) = (kg,fkl)COSk.e, Bk(ﬁ) = (k:g,fkl)sink.@
and the Brownian motion
(6.9) AW (t) = > M\ev/v(Adzy, + Brdy)
keZ
where xy, y, are independent copies of real Brownian motions. As in section @ we

assume that >, |k[*A7 < oo and we consider A\, = A\(|k|) to be nonzero for a equal
number of k1 and ks components. Again we write

(6.10) dge = (odW (t)) + ul(t, g )dt, dge = (odW (1)) + u(t, g:)dt
with

90:¢7 §0:7/)7 ¢?é’l/)

Changing the notation to g = ¢+(0) = ¢, g+ = §:(0) = yr, we get

de(t) — 1 Z /\k\/;(COSk - gy —cosk - gt> kJ"Nd:Ck
P0) %o
1
+ Z )\k\/zj(sink; gy —sink - gy) kL’Ndyk
pi(0)
k|70
1 N N
+—= t,ge) —u (t, dt
5 (0 (1,30 = (1.90)
1
-~ 202(0) Z Nvlk ((COSk - ge—cosk-g,)° + (sink - g, — sink - gt)Q) e(t)dt
Pi0) %o
= 1 Z /\k\/_kL N (2 sin M) dzk
Pt(9 92
[k|#0
1 N N
+ u ta —Uu t, dt
Pt(e) (( ( gt) ( gt))
2 L2 g2 (B = 90)
02(0) Z Aev|k sin (f)e(t) dt

) i7o

where zj is the Brownian motion defined by

k- (g k- (g
dzj = —sin 7(% +9:) dzy, + cos 7(% +9:) dy
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Noting [k > = |k[*(ny, - e(t))?, we obtain

_ ! v(ng - e(t))e’ sinik.(gtigt) 2
de(t) = () §O|k|/\k\/_( k- e(t))e'(t) (2 5 >d X
(6.11) + ﬁ (™ (t,ge) — u™(t,gr)) dt
2 242 2-2k'(§t*gt)
22(0) Z |k["Aiv (e - e(t))” sin fe(t) dt

|70

where €'(t) is a unit vector in T orthonormal to e(t). Now for every K > 0, if
pe(0) < % then for all k such that |k| < K,
sin? 71“@2_%) 1

kP22 0) (e~ 72

Now using |k| = [k*] and (ng - e(t))? + (ngo - e(t))? = 1, we get

ok (G —g) _ v
D RPAR V(- e(t) sin® =T > o T AR
|k|#£0 0<|k|<K

2
(6.12) 20

Observe that the term in the left is the second part of the drift in equation (p.11])
as well as the derivative of the quadratic variation of e(t). This yields the following
result.

Proposition 6.3. Identifying TT with C, we have e(t) = e*X* where X, is a real-
valued semimartingale with quadratic variation

6.13)  d[X,X], — Qie 3 |k|2/\iy(nk.e(t))231n2wdt
Pt( ) k[0
and drift
|

(6.14) /0 PR (u(s,gs) — u(s, gs), ie(s)) ds.

i

< -

We have for all K > 0, on {pt((?) < 2K}’

v
(6.15) dX. X > — > A

0<|k|<K

If Z A2 |k|* = 400, then as §:(0) gets closer and closer to g:(0), the rotation e(t)

| k|0
becomes more and more irreqular in the sense that the derivative of the quadratic
variation of X; tends to infinity.
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