

Lagrangian Navier-Stokes diffusions on manifolds: variational principle and stability

Marc Arnaudon, Ana Bela Cruzeiro

▶ To cite this version:

Marc Arnaudon, Ana Bela Cruzeiro. Lagrangian Navier-Stokes diffusions on manifolds: variational principle and stability. Bulletin des Sciences Mathématiques, 2012, 8 (136), pp.857-881. 10.1016/j.bulsci.2012.06.007. hal-00472684

HAL Id: hal-00472684

https://hal.science/hal-00472684

Submitted on 13 Apr 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

LAGRANGIAN NAVIER-STOKES DIFFUSIONS ON MANIFOLDS: VARIATIONAL PRINCIPLE AND STABILITY

MARC ARNAUDON AND ANA BELA CRUZEIRO

Abstract.

We prove a variational principle for stochastic Lagrangian Navier-Stokes trajectories on manifolds. We study the behaviour of such trajectories concerning stability as well as rotation between particles; the two-dimensional torus case is described in detail.

Contents

1.	Introduction	1
2.	The variational principle	3
3.	A martingale characterization for solutions of Navier-Stokes equations	6
4.	The two-dimensional torus endowed with the Euclidean distance	8
5.	The two-dimensional torus endowed with the extrinsic distance	15
6.	Distance and rotation processes of two particles on a general Riemannian	
	manifold	17
6.1.	Distance of two particles	17
6.2.	The rotation process	20
Ref	erences	24

1. Introduction

As discovered by V. I. Arnold ([2]) the motion of an incompressible non viscous fluid can be characterized as a geodesic on a group of diffeomorphisms. This point of view allows in particular to derive properties of the Lagrangian Euler flow, such as stability, through the study of the geometry of the group ([6]).

When the fluid is viscous, namely for the Navier-Stokes equation, one can describe the Lagrangian trajectories as realizations of a stochastic process and interpret the associated drift, solving Navier-Stokes, as an expectation over this process. This intrinsically probabilistic approach we follow here is inspired by [8], [9]. Similar stochastic models are used for example in [4]. Then the trajectories remain, in an appropriate sense, geodesics and are almost sure solutions of a variational principle. This was shown in [3] for the two-dimensional torus.

We prove a variational principle for the Lagrangian Navier-Stokes diffusions in a compact Riemannian manifold. Furthermore we study its stability properties. The behaviour of the trajectories depends on the intensity of the noise as well as on the metric of the underlying manifold. The example of the torus is studied in detail. Finally we describe the evolution in time of the rotation between stochastic Lagrangian particles.

1

Let (M, \mathbf{g}) be a compact oriented Riemannian manifold without boundary. Recall that the Itô differential of an M-valued semimartingale Y is defined by

$$(1.1) dY_t = P(Y)_t d\left(\int_0^{\cdot} P(Y)_s^{-1} \circ dY_s\right)_t$$

where

$$(1.2) P(Y)_t: T_{Y_0}M \to T_{Y_t}M$$

is the parallel transport along $t \mapsto Y_t$. Alternatively, in local coordinates,

(1.3)
$$dY_t = \left(dY_t^i + \frac{1}{2}\Gamma_{jk}^i(Y_t)dY_t^j \otimes dY_t^k\right)\partial_i$$

where Γ^{i}_{ik} are the Christoffel symbols of the Levi-Civita connection.

If the semimartingale Y_t has an absolutely continuous drift, we denote it by $DY_t dt$: for every 1-form $\alpha \in \Gamma(T^*M)$, the finite variation part of

(1.4)
$$\int_0^{\cdot} \langle \alpha(Y_t), dY_t \rangle$$

is

(1.5)
$$\int_0^{\cdot} \langle \alpha(Y_t), DY_t dt \rangle$$

Let G^s , $s \ge 0$ be the infinite dimensional group of homeomorphisms on M which belong to H^s , the Sobolev space of order s. For $s > \frac{m}{2} + 1$, $m = \dim M$, G^s is a C^{∞} Hilbert manifold. The volume preserving homeomorphism subgroup will be denoted by G^s_V :

$$G_V^s = \{ g \in G^s, : g_*\mu = \mu \},$$

with μ the volume element associated to the Riemannian metric. We denote by \mathscr{G}^s (resp. \mathscr{G}^s_V) the Lie algebra of G^s (resp. G^s_V). See [6] for example.

On M we consider an incompressible Brownian flow $g_u(t) \in G_V^0$ with covariance $a \in \Gamma(TM \odot TM)$ and time dependent drift $u(t, \cdot) \in \Gamma(TM)$. We assume that for all $x \in M$, $a(x, x) = 2\nu \mathbf{g}^{-1}(x)$ for some $\nu > 0$. This means that

$$(1.6) dg_u(t)(x) \otimes dg_u(t)(y) = a\left(g_u(t)(x), g_u(t)(y)\right) dt,$$

$$(1.7) dq_u(t)(x) \otimes dq_u(t)(x) = 2\nu \mathbf{g}^{-1} \left(q_u(t)(x) \right) dt,$$

the drift of $g_u(t)(x)$ is absolutely continuous and satisfies $Dg_u(t)(x) = u(t, g_u(t)(x))$. The generator of this process is

$$L_u = \nu \Delta^h + \frac{\partial}{\partial t} + \partial_u$$

where Δ^h is the horizontal Laplacian. The parameter ν will be called the speed of the Brownian flow.

If the time is indexed by [0,T] for some T>0, we define the action functional by

$$S(g_u) = \frac{1}{2} \mathbb{E} \left[\int_0^T \left(\int_M \|Dg_u(t)(x)\|^2 dx \right) dt \right].$$

2. The variational principle

Define

(2.1)
$$\mathcal{H} = \left\{ v \in C^1([0, T], \mathcal{G}_V^{\infty}), \ v(0, \cdot) = 0, \ v(T, \cdot) = 0 \right\}$$

Given $v \in \mathcal{H}$, consider the following ordinary differential equation

(2.2)
$$\frac{de_t(v)}{dt} = \dot{v}(t, e_t(v))$$
$$e_0(v) = e$$

where e is the identity of G_V^{∞} . Since v is divergence free, e.(v) is a G_V^{∞} -valued deterministic path.

We denote by \mathscr{P} the set of continuous G_V^0 -valued semimartingales g(t) such that g(0) = e. Then for all $v \in \mathscr{H}$, we have $e_t(v) \circ g_u(t) \in \mathscr{P}$.

Definition 2.1. Let J be a functional defined on \mathscr{P} and taking values in \mathbb{R} . We define its left and right derivatives in the direction of $h(\cdot) = e(v)$, $v \in \mathscr{H}$ at a process $g \in \mathscr{P}$ respectively, by

(2.3)
$$(D_L)_h J[g] = \frac{d}{d\varepsilon} J[e.(\varepsilon v) \circ g(\cdot)]|_{\varepsilon=0},$$

$$(D_R)_h J[g] = \frac{d}{d\varepsilon} J[g(\cdot) \circ e.(\varepsilon v)]|_{\varepsilon=0}.$$

A process $g \in \mathcal{P}$ wil be called a critical point of the functional J if

$$(2.4) (D_L)_h J[g] = (D_R)_h J[g], \forall h = e(v), v \in \mathcal{H}.$$

Theorem 2.2. Let $(t,x) \mapsto u(t,x)$ be a smooth time-dependent divergence-free vector field on M, defined on $[0,T] \times M$. Let $g_u(t)$ a stochastic Brownian flow with speed $\nu > 0$ and drift u. The stochastic process $g_u(t)$ is a critical point of the energy functional S if and only if the vector field u(t) verifies the Navier-Stokes equation

(2.5)
$$\frac{\partial u}{\partial t} + \nabla_u u = \nu \Box u - \nabla p.$$

For the construction of weak solutions of Navier-Stokes equations on Riemannian manifolds we refer to [7].

Proof. Since the functional S is right invariant, it is enough to consider the left derivative. So we need to compute

(2.6)
$$\frac{d}{d\varepsilon}|_{\varepsilon=0}S(e.(\varepsilon v)(g_u)).$$

We let

(2.7)
$$f(\varepsilon) = S(e_{\cdot}(\varepsilon v)(g_u)).$$

Then

(2.8)
$$f(\varepsilon) = \frac{1}{2} \int_{M} \left(\mathbb{E} \left[\int_{0}^{T} \left(\|De_{t}(\varepsilon v)(g_{u})(t)(x)\|^{2} \right) dt \right] \right) dx$$

which yields

$$(2.9) \quad f'(0) = \int_{M} \left(\mathbb{E} \left[\int_{0}^{T} \left(\langle \nabla_{\varepsilon} |_{\varepsilon=0} De_{t}(\varepsilon v) \left(g_{u}(t)(x) \right), u(t, g_{u}(t)(x)) \rangle \right) dt \right] \right) dx.$$

We need to compute

(2.10)
$$\nabla_{\varepsilon}|_{\varepsilon=0} De_t(\varepsilon v) \left(g_u(t)(x) \right).$$

We have

$$\nabla_t \frac{d}{d\varepsilon}|_{\varepsilon=0} e_t(\varepsilon v) = \nabla_{\varepsilon}|_{\varepsilon=0} \frac{de_t(\varepsilon v)}{dt}$$
$$= \nabla_{\varepsilon}|_{\varepsilon=0} \varepsilon \dot{v}(t, e_t(\varepsilon v))$$
$$= \dot{v}(t, e).$$

Together with $v(0,\cdot)=0$, this implies

(2.11)
$$\frac{d}{d\varepsilon}|_{\varepsilon=0}e_t(\varepsilon v)(x) = v(t,x).$$

Consequently

(2.12)
$$\frac{d}{d\varepsilon}|_{\varepsilon=0}e_t(\varepsilon v)\left(g_u(t)(x)\right) = v\left(t, g_u(t)(x)\right).$$

By Itô equation,

$$de_t(\varepsilon v)(g_u(t)(x))$$

$$(2.13) = \langle de_t(\varepsilon v)(\cdot), dg_u(t)(x) \rangle + \frac{1}{2} \nabla de_t(\varepsilon v)(g_u(t)(x)) (dg_u(t)(x) \otimes dg_u(t)(x))$$
$$= \langle de_t(\varepsilon v)(\cdot), dg_u(t)(x) \rangle + \nu \Delta e_t(\varepsilon v)(g_u(t)(x)) dt.$$

Here $\Delta e_t(\varepsilon v)(\cdot)$ denotes the tension field of the map $e_t(\varepsilon v): M \to M$. This yields

(2.14)
$$De_{t}(\varepsilon v)(g_{u}(t)(x)) = \langle de_{t}(\varepsilon v)(\cdot), Dg_{u}(t)(x) \rangle + \nu \Delta e_{t}(\varepsilon v)(g_{u}(t)(x)) + \varepsilon \dot{v}(t, e_{t}(\varepsilon v)(g_{u}(t)(x))) = \langle de_{t}(\varepsilon v)(\cdot), u(t, g_{u}(t)(x)) \rangle + \nu \Delta e_{t}(\varepsilon v)(g_{u}(t)(x)) + \varepsilon \dot{v}(t, e_{t}(\varepsilon v)(g_{u}(t)(x))).$$

Differentiating with respect to ε at $\varepsilon = 0$, we get

$$\nabla_{\varepsilon}|_{\varepsilon=0}De_{t}(\varepsilon v)(g_{u}(t)(x))$$

$$= \langle \nabla_{\varepsilon}|_{\varepsilon=0}de_{t}(\varepsilon v)(\cdot), \ u(t,g_{u}(t)(x))\rangle + \nu \nabla_{\varepsilon}|_{\varepsilon=0}\Delta e_{t}(\varepsilon v)(g_{u}(t)(x))$$

$$+ \frac{\partial v}{\partial t}(t,g_{u}(t)(x))$$

$$= \left\langle \nabla \cdot \frac{d}{d\varepsilon}|_{\varepsilon=0}e_{t}(\varepsilon v)(\cdot), \ u(t,g_{u}(t)(x))\right\rangle + \nu \Box \frac{d}{d\varepsilon}|_{\varepsilon=0}e_{t}(\varepsilon v)(g_{u}(t)(x))$$

$$+ \frac{\partial v}{\partial t}(t,g_{u}(t)(x))$$

$$= \langle \nabla \cdot v(t,\cdot), \ u(t,g_{u}(t)(x))\rangle + \nu \Box v(t,\cdot)(g_{u}(t)(x)) + \frac{\partial v}{\partial t}(t,g_{u}(t)(x))$$

$$= \nabla_{u(t,g_{u}(t)(x))}v(t,\cdot) + \nu \Box v(t,\cdot)(g_{u}(t)(x)) + \frac{\partial v}{\partial t}(t,g_{u}(t)(x)).$$

We used the commutation formula $\nabla_{\varepsilon}|_{\varepsilon=0}\Delta=\Box\frac{d}{d\varepsilon}$, where $\Box=dd^*+d^*d$ is the damped Laplacian. Alternatively,

$$(2.16) \Box v = \Delta^h v + \operatorname{Ric}^{\sharp}(v).$$

For a TM-valued semimartingale J_t which projects onto the M-valued semimartingale Y_t , we denote by $\mathscr{D}J_t$ the Itô covariant derivative:

(2.17)
$$\mathscr{D}J_t = P(Y)_t d\left(P(Y)_t^{-1} J_t\right).$$

Then Itô equation yields

$$(2.18) \quad \mathscr{D}u(t, g_u(t)(x)) \simeq \frac{\partial u}{\partial t}(t, g_u(t)(x)) dt + \nabla_{dg_u(t)(x)} u + \nu \Delta^h u(t, g_u(t)(x)) dt$$

and

$$(2.19) \quad \mathscr{D}v(t, g_u(t)(x)) \simeq \frac{\partial v}{\partial t}(t, g_u(t)(x)) dt + \nabla_{dg_u(t)(x)}v + \nu \Delta^h v(t, g_u(t)(x)) dt.$$

where the notation \simeq means equal up to a martingale:

$$\int_0^{\cdot} P(g_u(\cdot))_t^{-1} \mathcal{D}u(t, g_u(t)(x))$$

$$-\int_0^{\cdot} P(g_u(\cdot))_t^{-1} \left(\frac{\partial u}{\partial t}(t, g_u(t)(x)) dt + \nabla_{dg_u(t)(x)} u + \nu \Delta^h u(t, g_u(t)(x)) dt \right)$$

is a local martingale.

On the other hand, denoting $u_t = u(t, g_u(t)(x))$ and $v_t = v(t, g_u(t)(x))$ we have

(2.20)
$$\langle u_T, v_T \rangle = \int_0^T \langle \mathscr{D}u_t, v_t \rangle + \int_0^T \langle u_t, \mathscr{D}v_t \rangle + \int_0^T \langle \mathscr{D}u_t, \mathscr{D}v_t \rangle.$$

Let us denote by Dv_t the drift of v_t with respect to the damped connection ∇^c on TM, whose geodesics are the Jacobi fields. It is known that,

(2.21)
$$\left(Du_t - \nu \operatorname{Ric}^{\sharp}(u_t) \right) dt \quad \text{is the drift of} \quad \mathscr{D}u_t$$

and

(2.22)
$$\left(Dv_t - \nu \operatorname{Ric}^{\sharp}(v_t) \right) dt \quad \text{is the drift of} \quad \mathscr{D}v_t.$$

As can be seen from (2.15), (2.19) and (2.22), the drift Dv_t commutes with the derivative with respect to a parameter, so it satisfies

$$(2.23) Dv_t = \nabla_{\varepsilon}|_{\varepsilon=0} De_t(\varepsilon v)(g_u(t)(x)).$$

Taking the expectation in (2.20) and using (2.23), (2.21) and (2.22), we get by removing the martingale parts

$$\mathbb{E}\left[\langle u_{T}, v_{T} \rangle\right] = \mathbb{E}\left[\int_{0}^{T} \langle \frac{\partial u}{\partial t}(t, g_{u}(t)(x)) + \nabla_{u_{t}} u + \nu \Delta^{h} u(t, g_{u}(t)(x)), v_{t} \rangle dt\right]
+ \mathbb{E}\left[\int_{0}^{T} \langle u_{t}, \nabla_{\varepsilon}|_{\varepsilon=0} De_{t}(\varepsilon v)(g_{u}(t)(x)) - \nu \operatorname{Ric}^{\sharp}(v_{t}) \rangle dt\right]
+ \mathbb{E}\left[2\nu \int_{0}^{T} \operatorname{tr} \langle \nabla_{\cdot} u, \nabla_{\cdot} v \rangle (t, g_{u}(t)(x)) dt\right].$$

Then using the facts that $v_T = 0$, together with

$$\langle u_t, \operatorname{Ric}^{\sharp}(v_t) \rangle = \langle \operatorname{Ric}^{\sharp}(u_t), v_t \rangle$$

and (2.16), we get

$$\mathbb{E}\left[\int_{0}^{T} \langle u_{t}, \nabla_{\varepsilon}|_{\varepsilon=0} De_{t}(\varepsilon v)(g_{u}(t)(x))\rangle dt\right]$$

$$= -\mathbb{E}\left[\int_{0}^{T} \langle \frac{\partial u}{\partial t}(t, g_{u}(t)(x)) + \nabla_{u_{t}} u + \nu \Box u(t, g_{u}(t)(x)), v_{t}\rangle dt\right]$$

$$- \mathbb{E}\left[2\nu \int_{0}^{T} \operatorname{tr} \langle \nabla_{\cdot} u_{t}, \nabla_{\cdot} v_{t}\rangle (t, g_{u}(t)(x)) dt\right].$$

Integrating with respect to x yields

(2.27)

$$= -\mathbb{E}\left[\int_0^T \left(\int_M \left\langle \left(\left(\frac{\partial}{\partial t} + \nabla_u + \nu \Box\right) u\right)(t, g_u(t)(x)), \ v(t, g_u(t)(x))\right\rangle dx\right) dt\right]$$
$$-\mathbb{E}\left[2\nu \int_0^T \left(\int_M \operatorname{tr} \left\langle \nabla_{\cdot} u, \ \nabla_{\cdot} v\right\rangle(t, g_u(t)(x)) dx\right) dt\right].$$

Now we use the fact that $g_u(t)(\cdot)$ is volume preserving:

$$(2.28) = -\mathbb{E}\left[\int_{0}^{T} \left(\int_{M} \left\langle \left(\left(\frac{\partial}{\partial t} + \nabla_{u} + \nu \Box\right) u\right)(t, x), \ v(t, x)\right\rangle dx\right) dt\right] - \mathbb{E}\left[2\nu \int_{0}^{T} \left(\int_{M} \operatorname{tr} \left\langle \nabla_{\cdot} u, \ \nabla_{\cdot} v\right\rangle(t, x) dx\right) dt\right].$$

Since M is compact and orientable, an integration by parts gives

(2.29)
$$\int_{M} \operatorname{tr} \langle \nabla u, \nabla v \rangle (t, x) dx = -\int_{M} \langle \Box u, v \rangle (t, x) dx.$$

Replacing in (2.28) we get

$$(2.30) \quad f'(0) = -\mathbb{E}\left[\int_0^T \left(\int_M \left\langle \left(\left(\frac{\partial}{\partial t} + \nabla_u - \nu \Box\right) u\right)(t, x), \ v(t, x)\right\rangle \, dx\right) \, dt\right].$$

The process $g_u(t)$ is a critical point of the energy functional S if and only if f'(0) = 0, which by equation (2.30) is equivalent to

(2.31)
$$\left(\frac{\partial}{\partial t} + \nabla_u - \nu \Box\right) u = -\nabla p$$

for some function p on $[0,T] \times M$. This achieves the proof.

3. A martingale characterization for solutions of Navier-Stokes equations

In this section, to simplify the equations, we assume the pressure to be constant. The pressure will not be present, in any case, in the weak version of the formulae we derive.

We seek to obtain a formula for the drift of the covariant derivative with respect to a parameter of a family of Navier-Stokes solutions, extending the well-known Jacobi equation.

Consider a family of diffusions g^{α} , $\alpha \in \mathbb{R}$, satisfying

$$(3.1) g^{\alpha}(0) = \varphi(\alpha)$$

where $\varphi : \mathbb{R} \to M$ is a smooth path on M, and solution to the Itô SDE

(3.2)
$$dq^{\alpha}(t) = u(t, q^{\alpha}(t)) dt + \sigma(q^{\alpha}(t)) dB_t$$

where u solves

$$\partial_t u + \nabla_u u + \nu \Box u = 0,$$

 $B_t = (B_t^{\ell})_{\ell \geq 0}$ is a family of real Brownian motions, $\sigma = (\sigma_{\ell})_{\ell \geq 0}$, and for all $\ell \geq 0$, σ_{ℓ} is a vector field on M. We furthermore assume that

$$\sigma \sigma^* = \nu g^{-1}$$

where g is the Riemannian metric on M.

We denote by $u_t^{\alpha} = Dg^{\alpha}(t) = u(t, g^{\alpha}(t))$ the drift of g^{α} . We denote by $\mathcal{D}^c J_t$ the vertical part of the Itô differential (with respect to ∇^c) of a TM-valued semi-martingale J_t . It is known that

(3.5)
$$\mathscr{D}^{c}J_{t} = \mathscr{D}J_{t} + \frac{1}{2}R(J_{t}, dX_{t})dX_{t}$$

where $X_t = \pi(J_t)$ and R is the curvature tensor. If J_t has an absolutely continuous drift $D^c J_t$, then the finite variation part of $\mathscr{D}^c J_t$ is $D^c J_t dt$.

From the Itô equation

(3.6)
$$\mathscr{D}^{c}u_{t}^{\alpha} \simeq \partial_{t}u(t, g^{\alpha}(t)) dt + \nabla_{dg^{\alpha}(t)}u + \nu \Box u(t, g^{\alpha}(t)) dt$$

we deduce that the drift of $\mathscr{D}^c u_t^{\alpha}$ is

(3.7)
$$D^{c}u_{t}^{\alpha} = \partial_{t}u(t, g^{\alpha}(t)) + \nabla_{u_{t}^{\alpha}}u + \nu \Box u(t, g^{\alpha}(t)) = 0.$$

¿From [1] Theorem 4.5, we have formally

$$(3.8)$$

$$\mathscr{D}\nabla_{\alpha}u_{t}^{\alpha}$$

$$=\nabla_{\alpha}\mathscr{D}u_{t}^{\alpha}+R(dg^{\alpha}(t),\partial_{\alpha}g^{\alpha}(t))u_{t}^{\alpha}$$

$$+R(dg^{\alpha}(t),\partial_{\alpha}g^{\alpha}(t))\mathscr{D}u_{t}^{\alpha}-\nu d^{*}R(\partial_{\alpha}g^{\alpha}(t))u_{t}^{\alpha}+\frac{1}{2}R(dg^{\alpha}(t),\mathscr{D}\partial_{\alpha}g^{\alpha}(t))u_{t}^{\alpha}.$$

Using (3.5), we obtain

$$(3.9) \mathscr{D}^{c}\nabla_{\alpha}u_{t}^{\alpha}$$

$$=\nabla_{\alpha}\mathscr{D}^{c}u_{t}^{\alpha}+R(dg^{\alpha}(t),\partial_{\alpha}g^{\alpha}(t))u_{t}^{\alpha}-\nu\nabla_{\partial_{\alpha}g^{\alpha}(t)}\operatorname{Ric}^{\sharp}(u_{t}^{\alpha})dt$$

$$+R(dg^{\alpha}(t),\partial_{\alpha}g^{\alpha}(t))\mathscr{D}u_{t}^{\alpha}-\nu d^{*}R(\partial_{\alpha}g^{\alpha}(t))u_{t}^{\alpha}dt+\frac{1}{2}R(dg^{\alpha}(t),\mathscr{D}\partial_{\alpha}g^{\alpha}(t))u_{t}^{\alpha}.$$

Removing the martingale part we obtain the drift

(3.10)

$$\begin{split} D^c \nabla_{\alpha} u_t^{\alpha} = & \nabla_{\alpha} D^c u_t^{\alpha} + R(u_t^{\alpha}, \partial_{\alpha} g^{\alpha}(t)) u_t^{\alpha} - \nu \nabla_{\partial_{\alpha} g^{\alpha}(t)} \operatorname{Ric}^{\sharp}(u_t^{\alpha}) \\ & + 2\nu \operatorname{tr} R(\cdot, \partial_{\alpha} g^{\alpha}(t)) \nabla_{\cdot} u_t^{\alpha} - \nu d^* R(\partial_{\alpha} g^{\alpha}(t)) u_t^{\alpha} + \nu \operatorname{tr} R(\sigma(\cdot), \nabla_{\partial_{\alpha} g^{\alpha}(t)} \sigma(\cdot)) u_t^{\alpha}. \end{split}$$

Now since $Du_t^{\alpha} = 0$ we finally get

Proposition 3.1. The drift of the covariant derivative with respect to α of the family $(u_t^{\alpha})_{\alpha \in \mathbb{R}}$ of Navier-Stokes solutions is given by

(3.11)

$$\begin{split} D^{c}\nabla_{\alpha}u^{\alpha}_{t} = & R(u^{\alpha}_{t}, \partial_{\alpha}g^{\alpha}(t))u^{\alpha}_{t} - \nu\nabla_{\partial_{\alpha}g^{\alpha}(t)}\operatorname{Ric}^{\sharp}(u^{\alpha}_{t}) \\ & + 2\nu\operatorname{tr}R(\cdot, \partial_{\alpha}g^{\alpha}(t))\nabla_{\cdot}u^{\alpha}_{t} - \nu d^{*}R(\partial_{\alpha}g^{\alpha}(t))u^{\alpha}_{t} + \nu\operatorname{tr}R(\sigma(\cdot), \nabla_{\partial_{\alpha}g^{\alpha}(t)}\sigma(\cdot))u^{\alpha}_{t}. \end{split}$$

This formula extends the well known corresponding (Jacobi) equation for the variation of geodesics.

4. The two-dimensional torus endowed with the Euclidean distance

We study the evolution in time of the L^2 distance between two particles in the two dimensional torus. Notice that, in order to interpret the diffusion processes as a solution of the variational principle described in section 2, there is no canonical choice for the Brownian motion, as far as it corresponds to the same generator. We make here a particular choice.

On the two-dimensional torus $\mathbb{T} = \mathbb{R}/2\pi\mathbb{Z} \times \mathbb{R}/2\pi\mathbb{Z}$ we consider the following vector fields

$$A_k(\theta) = (k_2, -k_1)\cos k.\theta, \quad B_k(\theta) = (k_2, -k_1)\sin k.\theta$$

and the Brownian motion

(4.1)
$$dW(t) = \sum_{k \in \mathbb{Z}} \lambda_k \sqrt{\nu} (A_k dx_k + B_k dy_k)$$

where x_k, y_k are independent copies of real Brownian motions. We assume that $\sum_k |k|^2 \lambda_k^2 < \infty$, a necessary and sufficient condition for the Brownian flow to be defined in $L^2(\mathbb{T})$. Furthermore we consider $\lambda_k = \lambda(|k|)$ to be nonzero for a equal number of k_1 and k_2 components. In this case the generator of the process is equal to

$$L_u = C\nu\Delta + \frac{\partial}{\partial t} + \partial_u$$

with $2C = \sum_k \lambda_k^2$ (c.f.[3] Theorem 2.2). We shall assume C to be equal to one. Let us take two Lagrangian stochastic trajectories starting from different diffeomorphisms and let us write

$$(4.2) dg_t = (odW(t)) + u(t, g_t)dt, d\tilde{g}_t = (odW(t)) + u(t, \tilde{g}_t)dt$$
 with

$$g_0 = \phi, \qquad \tilde{g}_0 = \psi, \qquad \phi \neq \psi$$

We consider the L^2 distance of the particles defined by

$$\rho^{2}(\phi, \psi) = \int_{\mathbb{T}} |\phi(\theta) - \psi(\theta)|^{2} d\theta.$$

where $d\theta$ stands for the normalized Lebesgue measure on the torus.

We let
$$\rho_t = \rho(g_t, \tilde{g}_t)$$
 and $\tau(g, \tilde{g}) = \inf\{t > 0 : \rho_t = 0\}.$

Lemma 4.1. The stopping time $\tau(g, \tilde{g})$ is infinite.

Proof. By uniqueness of the solution of the sde for \tilde{g}_t we can let for all t > 0 $\tilde{g}_t(\theta) = g_t((\phi^{-1} \circ \psi)(\theta))$. Since g_t , φ and ψ are diffeomorphisms, if $\varphi(\theta) \neq \psi(\theta)$ then $g_t(\theta) \neq g_t((\phi^{-1} \circ \psi)(\theta))$.

Since $\phi \neq \psi$, the set $\{\theta \in \mathbb{T}, \ \tilde{g}_t(\theta) \neq g_t(\theta)\}$ has positive measure and this implies that $\rho_t > 0$, which in turn implies that $\tau(g, \tilde{g})$ is infinite.

Denote by $L_t(\theta)$ the local time of the process $|g_t(\theta) - \tilde{g}_t(\theta)|$ when $(g_t(\theta), \tilde{g}_t(\theta))$ reaches the cutlocus of \mathbb{T} . By Itô calculus we have

$$d\rho_{t} = \frac{1}{\rho_{t}} \sum_{k} \lambda_{k} \sqrt{\nu} \left\langle g_{t} - \tilde{g}_{t}, \left(A_{k}(g_{t}) - A_{k}(\tilde{g}_{t}) \right) dx_{k}(t) + \left(B_{k}(g_{t}) - B_{k}(\tilde{g}_{t}) \right) dy_{k}(t) \right\rangle_{\mathbb{T}}$$

$$+ \frac{1}{\rho_{t}} \left\langle g_{t} - \tilde{g}_{t}, u(t, g_{t}) - u(t, \tilde{g}_{t}) \right\rangle_{\mathbb{T}} dt - \frac{1}{\rho_{t}} \int_{\mathbb{T}} |g_{t} - \tilde{g}_{t}| (\theta) dL_{t}(\theta)$$

$$+ \frac{1}{2\rho_{t}} \sum_{k} \lambda_{k}^{2} \nu \left(\left\| A_{k}(g_{t}) - A_{k}(\tilde{g}_{t}) \right\|_{\mathbb{T}}^{2} + \left\| B_{k}(g_{t}) - B_{k}(\tilde{g}_{t}) \right\|_{\mathbb{T}}^{2} \right) dt$$

$$- \frac{1}{2\rho_{t}^{3}} \sum_{k} \lambda_{k}^{2} \nu \left(\left\langle g_{t} - \tilde{g}_{t}, A_{k}(g_{t}) - A_{k}(\tilde{g}_{t}) \right\rangle_{\mathbb{T}}^{2} + \left\langle g_{t} - \tilde{g}_{t}, B_{k}(g_{t}) - B_{k}(\tilde{g}_{t}) \right\rangle_{\mathbb{T}}^{2} \right) dt$$

where $\langle \cdot, \cdot \rangle_{\mathbb{T}}$ and $\| \cdot \|_{\mathbb{T}}$ denote, resp., the L^2 inner product and norm. We let

(4.3)
$$\delta u(t) = \frac{1}{\rho_t} \left(u(t, g_t) - u(t, \tilde{g}_t) \right).$$

We have

$$(4.4) A_k(g_t) - A_k(\tilde{g}_t) = -2\sin\frac{k \cdot (g_t + \tilde{g}_t)}{2}\sin\left(\frac{k \cdot (g_t - \tilde{g}_t)}{2}\right)k^{\perp},$$

$$(4.5) B_k(g_t) - B_k(\tilde{g}_t) = 2\cos\frac{k \cdot (g_t + \tilde{g}_t)}{2}\sin\left(\frac{k \cdot (g_t - \tilde{g}_t)}{2}\right)k^{\perp},$$

where we have noted $k^{\perp} = (k_2, -k_1)$. Then, for $k \neq 0$ we let

(4.6)
$$n_k = \frac{k}{|k|}, \quad \text{and} \quad n_g(t) = \frac{1}{\rho_t} (g_t - \tilde{g}_t).$$

This yields

$$(4.7) A_k(g_t) - A_k(\tilde{g}_t) = -2|k|^2 \rho_t \sin \frac{k \cdot (g_t + \tilde{g}_t)}{2} \frac{\sin}{|k|\rho_t} \left(\frac{k \cdot (g_t - \tilde{g}_t)}{2}\right) n_{k^{\perp}},$$

$$(4.8) B_k(g_t) - B_k(\tilde{g}_t) = 2|k|^2 \rho_t(\cos\frac{k \cdot (g_t + \tilde{g}_t)}{2}) \frac{\sin|k|\rho_t}{|k|\rho_t} \left(\frac{k \cdot (g_t - \tilde{g}_t)}{2}\right) n_{k^{\perp}}.$$

With these notations we get

 $d\rho_t$

$$\begin{split} &= \rho_t \sqrt{\nu} \sum_k \lambda_k |k|^2 \int_{\mathbb{T}} 2 \left(n_{k^{\perp}} \cdot n_g(t,\theta) \right) \frac{\sin}{|k|\rho_t} \left(\frac{k \cdot (g_t(\theta) - \tilde{g}_t(\theta))}{2} \right) \\ &\times \left(-\sin \frac{k \cdot (g_t(\theta) + \tilde{g}_t(\theta))}{2} dx_k(t) + \cos \frac{k \cdot (g_t(\theta) + \tilde{g}_t(\theta))}{2} dy_k(t) \right) d\theta \\ &+ \rho_t \left\langle n_g(t), \delta u(t) \right\rangle_{\mathbb{T}} dt - \rho_t \int_{\mathbb{T}} |n_g(t,\theta)| \frac{1}{\rho_t} dL_t(\theta) \\ &+ 2\nu \rho_t \sum_k \lambda_k^2 |k|^4 \left\| \frac{\sin}{|k|\rho_t} \left(\frac{k \cdot (g_t - \tilde{g}_t)}{2} \right) \right\|_{\mathbb{T}}^2 dt \\ &- 2\nu \rho_t \sum_k \lambda_k^2 |k|^4 \\ &\times \left(\int_{\mathbb{T}} \left(n_{k^{\perp}} \cdot n_g(t,\theta) \right) \sin \left(\frac{k \cdot (g_t(\theta) + \tilde{g}_t(\theta))}{2} \right) \frac{\sin}{|k|\rho_t} \left(\frac{k \cdot (g_t(\theta) - \tilde{g}_t(\theta))}{2} \right) d\theta \right)^2 dt \\ &- 2\nu \rho_t \sum_k \lambda_k^2 |k|^4 \\ &\times \left(\int_{\mathbb{T}} \left(n_{k^{\perp}} \cdot n_g(t,\theta) \right) \cos \left(\frac{k \cdot (g_t(\theta) + \tilde{g}_t(\theta))}{2} \right) \frac{\sin}{|k|\rho_t} \left(\frac{k \cdot (g_t(\theta) - \tilde{g}_t(\theta))}{2} \right) d\theta \right)^2 dt. \end{split}$$

And finally:

Proposition 4.2. The Itô equation for the distance ρ_t between the diffeomorphisms g_t and \tilde{g}_t is given by

(4.9)
$$d\rho_t = \rho_t \left(\sigma_t dz_t + b_t dt + \langle n_g(t), \delta u(t) \rangle_{\mathbb{T}} dt - da_t \right)$$

where z_t is a real valued Brownian motion, $\sigma_t > 0$ is given by

$$\begin{split} \sigma_t^2 = & 4\nu \sum_k \lambda_k^2 |k|^4 \\ & \times \left(\int_{\mathbb{T}} \left(n_{k^\perp} \cdot n_g(t,\theta) \right) \sin \left(\frac{k \cdot \left(g_t(\theta) + \tilde{g}_t(\theta) \right)}{2} \right) \frac{\sin}{|k|\rho_t} \left(\frac{k \cdot \left(g_t(\theta) - \tilde{g}_t(\theta) \right)}{2} \right) \, d\theta \right)^2 \\ & + 4\nu \sum_k \lambda_k^2 |k|^4 \\ & \times \left(\int_{\mathbb{T}} \left(n_{k^\perp} \cdot n_g(t,\theta) \right) \cos \left(\frac{k \cdot \left(g_t(\theta) + \tilde{g}_t(\theta) \right)}{2} \right) \frac{\sin}{|k|\rho_t} \left(\frac{k \cdot \left(g_t(\theta) - \tilde{g}_t(\theta) \right)}{2} \right) \, d\theta \right)^2, \end{split}$$

the process b_t satisfies

(4.11)
$$b_t + \frac{1}{2}\sigma_t^2 = 2\nu\rho_t \sum_k \lambda_k^2 |k|^4 \left\| \frac{\sin}{|k|\rho_t} \left(\frac{k \cdot (g_t - \tilde{g}_t)}{2} \right) \right\|_{\mathbb{T}}^2 dt$$

and a_t is defined by

(4.12)
$$a_0 = 0, da_t = \int_{\mathbb{T}} |n_g(t, \theta)| \frac{1}{\rho_t} dL_t(\theta).$$

So we have for all $0 < t_0 < t$,

$$\rho_t = \rho_{t_0} \exp\left(\int_{t_0}^t \sigma_s \, dz_s + \int_{t_0}^t \left(b_s - \frac{1}{2}\sigma_s^2 + \langle n_g(s), \delta u(s) \rangle_{\mathbb{T}}\right) \, ds - (a_t - a_{t_0})\right).$$

Let

(4.14)
$$\delta_k = \delta_k(t, \theta) = \frac{\rho_t(n_g \cdot n_k)}{|q_t(\theta) - \tilde{q}_t\theta)|}$$

Notice that

$$\delta_k^2 + \delta_{k^{\perp}}^2 = 1.$$

Lemma 4.3. We have

(4.15)
$$\sigma_t^2 \le 4\nu \sum_{k} \lambda_k^2 |k|^4 \int_{\mathbb{T}} \delta_{k^{\perp}}^2 \frac{\sin^2}{|k|^2 \rho_t^2} \left(\frac{k \cdot (g_t(\theta) - \tilde{g}_t(\theta))}{2} \right) d\theta$$

and

$$(4.16) b_t \ge 2\nu \sum_{k} \lambda_k^2 |k|^4 \int_{\mathbb{T}} (n_g \cdot n_k)^2 d\theta \int_{\mathbb{T}} \frac{\sin^2}{|k|^2 \rho_t^2} \left(\frac{k \cdot (g_t(\theta) - \tilde{g}_t(\theta))}{2} \right) d\theta,$$

in particular $b_{t} > 0$.

Let R > 0. Assuming that $\lambda_k = 0$ for all k such that |k| > R then on

$$\left\{ \omega \mid \forall \theta \in \mathbb{T}, \ |g_t(\theta) - \tilde{g}_t(\theta)| \le \frac{\pi}{R} \right\}$$

we have

$$b_t - \frac{1}{2}\sigma_t^2 \ge 0.$$

Proof. Using Cauchy Schwartz inequality,

$$\begin{split} &\sigma_t^2 \leq 4 \sum_k \lambda_k^2 |k|^4 \nu \int_{\mathbb{T}} |(n_g \cdot n_{k^\perp})| \sin^2 \left(\frac{k \cdot (g_t(\theta) + \tilde{g}_t(\theta))}{2}\right) \frac{|\sin|}{|k|\rho_t} \left(\frac{k \cdot (g_t(\theta) - \tilde{g}_t(\theta))}{2}\right) d\theta \\ &\times \int_{\mathbb{T}} |(n_g \cdot n_{k^\perp})|) \frac{|\sin|}{|k|\rho_t} \left(\frac{k \cdot (g_t(\theta) - \tilde{g}_t(\theta))}{2}\right) d\theta \\ &+ 4 \sum_k \lambda_k^2 |k|^4 \nu \int_{\mathbb{T}} |(n_g \cdot n_{k^\perp})| \cos^2 \left(\frac{k \cdot (g_t(\theta) + \tilde{g}_t(\theta))}{2}\right) \frac{|\sin|}{|k|\rho_t} \left(\frac{k \cdot (g_t(\theta) - \tilde{g}_t(\theta))}{2}\right) d\theta \\ &\times \int_{\mathbb{T}} |(n_g \cdot n_{k^\perp})| \frac{|\sin|}{|k|\rho_t} \left(\frac{k \cdot (g_t(\theta) - \tilde{g}_t(\theta))}{2}\right) d\theta \\ &= 4\nu \sum_k \lambda_k^2 |k|^4 \left(\int_{\mathbb{T}} |(n_g \cdot n_{k^\perp})| \frac{|\sin|}{|k|\rho_t} \left(\frac{k \cdot (g_t(\theta) - \tilde{g}_t(\theta))}{2}\right) d\theta \right)^2 \\ &= 4\nu \sum_k \lambda_k^2 |k|^4 \left(\int_{\mathbb{T}} \frac{\delta_{k^\perp} |g_t(\theta) - \tilde{g}_t(\theta)|}{\rho_t} \frac{|\sin|}{|k|\rho_t} \left(\frac{k \cdot (g_t(\theta) - \tilde{g}_t(\theta))}{2}\right) d\theta \right)^2 \\ &\leq 4\nu \sum_k \lambda_k^2 |k|^4 \int_{\mathbb{T}} \frac{|g_t(\theta) - \tilde{g}_t(\theta)|^2}{\rho_t^2} d\theta \int_{\mathbb{T}} \delta_{k^\perp}^2 \frac{\sin^2}{|k|^2 \rho_t^2} \left(\frac{k \cdot (g_t(\theta) - \tilde{g}_t(\theta))}{2}\right) d\theta \\ &= 4\nu \sum_k \lambda_k^2 |k|^4 \int_{\mathbb{T}} \delta_{k^\perp}^2 \frac{\sin^2}{|k|^2 \rho_t^2} \left(\frac{k \cdot (g_t(\theta) - \tilde{g}_t(\theta))}{2}\right) d\theta. \end{split}$$

On the other hand,

$$b_t + \frac{1}{2}\sigma_t^2 = 2\nu \sum_k \lambda_k^2 |k|^4 \int_{\mathbb{T}} \frac{\sin^2}{|k|^2 \rho_t^2} \left(\frac{k \cdot (g_t(\theta) - \tilde{g}_t(\theta))}{2} \right) d\theta,$$

so that using the bound

$$\sigma_t^2 \le 4\nu \sum_k \lambda_k^2 |k|^4 \left(\int_{\mathbb{T}} |(n_g \cdot n_{k^{\perp}})| \frac{|\sin|}{|k|\rho_t} \left(\frac{k \cdot (g_t(\theta) - \tilde{g}_t(\theta))}{2} \right) d\theta \right)^2$$

$$\le 4\nu \sum_k \lambda_k^2 |k|^4 \int_{\mathbb{T}} (n_g \cdot n_{k^{\perp}})^2 d\theta \int_{\mathbb{T}} \frac{\sin^2}{|k|^2 \rho_t^2} \left(\frac{k \cdot (g_t(\theta) - \tilde{g}_t(\theta))}{2} \right) d\theta$$

for σ_t^2 yields

$$b_t \ge 2\nu \sum_k \lambda_k^2 |k|^4 \int_{\mathbb{T}} (n_g \cdot n_k)^2 d\theta \int_{\mathbb{T}} \frac{\sin^2}{|k|^2 \rho_t^2} \left(\frac{k \cdot (g_t(\theta) - \tilde{g}_t(\theta))}{2} \right) d\theta$$

where we used

$$\int_{\mathbb{T}} (n_g \cdot n_k)^2 d\theta + \int_{\mathbb{T}} (n_g \cdot n_{k^{\perp}})^2 d\theta = 1.$$

Since λ_k depends only on |k|, we have $\lambda_k = \lambda_{k^{\perp}}$ for all k. Then putting together the terms corresponding to k and k^{\perp} we obtain

$$b_t + \frac{1}{2}\sigma_t^2 = \nu \sum_k \lambda_k^2 |k|^4$$

$$\times \int_{\mathbb{T}} \left(\frac{\sin^2}{|k|^2 \rho_t^2} \left(\frac{k \cdot (g_t(\theta) - \tilde{g}_t(\theta))}{2} \right) + \frac{\sin^2}{|k|^2 \rho_t^2} \left(\frac{k^{\perp} \cdot (g_t(\theta) - \tilde{g}_t(\theta))}{2} \right) \right) d\theta,$$

and this yields using the bound for σ_t^2 as well as $\delta_k^2 + \delta_{k^\perp}^2 = 1$

$$\begin{split} b_{t} - \frac{1}{2}\sigma_{t}^{2} &\geq \nu \sum_{k} \lambda_{k}^{2} |k|^{4} \\ &\times \int_{\mathbb{T}} (\delta_{k}^{2} - \delta_{k^{\perp}}^{2}) \left(\frac{\sin^{2}}{|k|^{2} \rho_{t}^{2}} \left(\frac{k \cdot (g_{t}(\theta) - \tilde{g}_{t}(\theta))}{2} \right) - \frac{\sin^{2}}{|k|^{2} \rho_{t}^{2}} \left(\frac{k^{\perp} \cdot (g_{t}(\theta) - \tilde{g}_{t}(\theta))}{2} \right) \right) d\theta \\ &= \nu \sum_{k} \lambda_{k}^{2} |k|^{4} \\ &\times \int_{\mathbb{T}} (\delta_{k}^{2} - \delta_{k^{\perp}}^{2}) \left(\frac{\sin^{2}}{|k|^{2} \rho_{t}^{2}} \left(\delta_{k} \frac{|k| |g_{t} - \tilde{g}_{t}|(\theta)}{2} \right) - \frac{\sin^{2}}{|k|^{2} \rho_{t}^{2}} \left(\delta_{k^{\perp}} \frac{|k| |g_{t} - \tilde{g}_{t}|(\theta)}{2} \right) \right) d\theta \end{split}$$

Assuming that $\lambda_k = 0$ whenever |k| > R then on

$$\left\{ \omega | \forall \theta \in \mathbb{T}, |g_t(\theta) - \tilde{g}_t(\theta)| \le \frac{\pi}{R} \right\}$$

the functions inside the integral are nonegative, consequently

$$b_t - \frac{1}{2}\sigma_t^2 \ge 0.$$

Define

(4.17)
$$\ell(x) = \frac{\sin x}{x} \text{ for } x \neq 0, \quad \ell(0) = 1.$$

From Lemma 4.3 we easily get the following result.

Proposition 4.4. Let $R \ge 1$. Then on

$$\left\{ \omega | \forall \theta \in \mathbb{T}, |g_t(\theta) - \tilde{g}_t(\theta)| \le \frac{\pi\sqrt{2}}{R} \right\},$$

letting

$$c_R = \frac{\nu}{8} \ell^2 \left(\frac{\pi}{\sqrt{2}}\right) \sum_{|k| \le R} \lambda_k^2 |k|^4,$$

we have,

$$(4.18) d\rho_t \ge \rho_t \left(\sigma_t dz_t - \|\delta u(t)\|_{\mathbb{T}} dt - \int_{\mathbb{T}} |n_g(t,\theta)| \frac{1}{\rho_t} dL_t(\theta) + c_R dt \right).$$

Moreover assuming that $\lambda_k = 0$ whenever |k| > R, then letting

$$c_R' = \frac{1}{8} \nu \inf_{|v|=1} \sum_{|k| \le R} \lambda_k^2 |k|^4 \left((n_k \cdot v)^2 - (n_{k^{\perp}} \cdot v)^2 \right)^2,$$

on

$$\left\{ \omega | \forall \theta \in \mathbb{T}, |g_t(\theta) - \tilde{g}_t(\theta)| \le \frac{\pi}{2R} \right\},$$

$$(4.19) d\rho_t \ge \rho_t \left(\sigma_t dz_t + \frac{1}{2} \sigma_t^2 dt - \|\delta u(t)\|_{\mathbb{T}} dt + c_R' dt \right).$$

Proof. If $|g_t(\theta) - \tilde{g}_t(\theta)| \le \frac{\pi\sqrt{2}}{R}$ then for all k such that $|k| \le R$,

$$\ell^2 \left(\frac{k \cdot (g_t(\theta) - \tilde{g}_t(\theta))}{2} \right) \ge \ell^2 \left(\frac{\pi}{\sqrt{2}} \right)$$

and this implies

$$\frac{\sin^2}{|k|^2 \rho_t^2} \left(\frac{k \cdot (g_t(\theta) - \tilde{g}_t(\theta))}{2} \right) \ge \frac{1}{4} \ell^2 \left(\frac{\pi}{\sqrt{2}} \right) (n_k \cdot n_g)^2.$$

So with (4.16) we get

$$b_t \ge \frac{1}{2} \ell^2 \left(\frac{\pi}{\sqrt{2}}\right) \nu \sum_{|k| \le R} \lambda_k^2 |k|^4 \left(\int_{\mathbb{T}} (n_g \cdot n_k)^2 d\theta\right)^2$$

$$\ge \frac{1}{4} \ell^2 \left(\frac{\pi}{\sqrt{2}}\right) \nu \sum_{|k| \le R} \lambda_k^2 |k|^4 \left(\left(\int_{\mathbb{T}} (n_g \cdot n_k)^2 d\theta\right)^2 + \left(\int_{\mathbb{T}} (n_g \cdot n_{k^{\perp}})^2 d\theta\right)^2\right)$$

$$\ge \frac{1}{8} \ell^2 \left(\frac{\pi}{\sqrt{2}}\right) \nu \sum_{|k| \le R} \lambda_k^2 |k|^4$$

(again we used $\int_{\mathbb{T}} (n_g \cdot n_k)^2 d\theta + \int_{\mathbb{T}} (n_g \cdot n_{k^{\perp}})^2 d\theta = 1$.). This establishes (4.18).

Next if $|g_t(\theta) - \tilde{g}_t(\theta)| \le \frac{\pi}{2R}$ then from the calculation in the proof of Lemma 4.3

$$\begin{aligned} b_{t} - \frac{1}{2}\sigma_{t}^{2} &\geq \nu \sum_{|k| \leq R} \lambda_{k}^{2} |k|^{4} \\ &\times \int_{\mathbb{T}} (\delta_{k}^{2} - \delta_{k}^{2}) \left(\frac{\sin^{2}}{|k|^{2} \rho_{t}^{2}} \left(\delta_{k} \frac{|k| |g_{t} - \tilde{g}_{t}|(\theta)}{2} \right) - \frac{\sin^{2}}{|k|^{2} \rho_{t}^{2}} \left(\delta_{k}^{\perp} \frac{|k| |g_{t} - \tilde{g}_{t}|(\theta)}{2} \right) \right) d\theta \\ &\geq \nu \sum_{|k| \leq R} \lambda_{k}^{2} |k|^{4} \int_{\mathbb{T}} (\delta_{k}^{2} - \delta_{k}^{2})^{2} \frac{|g_{t} - \tilde{g}_{t}|^{2}(\theta)}{8\rho_{t}^{2}} d\theta \\ &\geq \int_{\mathbb{T}} \frac{|g_{t} - \tilde{g}_{t}|^{2}(\theta)}{\rho_{t}^{2}} c_{R}' d\theta = c_{R}'. \end{aligned}$$

this establishes (4.19).

Theorem 4.5. Let t > 0, $R \ge 1$ and

$$\Omega_t = \left\{ \omega \in \Omega, \ \forall s \le t, \ \forall \theta \in \mathbb{T}, \ |(g_s(\theta)(\omega) - \tilde{g}_s(\theta)(\omega))| \le \frac{\pi}{2R} \right\}.$$

If we assume the initial conditions for the L^2 distance and the L^2 norm of the initial velocity related as $c = \rho_0 - 2||u_0||_{\mathbb{T}} > 0$, and suppose that $\int_{\mathbb{T}} u = 0$, then on Ω_t ,

$$(4.20) \forall s \le t, \quad \rho_s \ge e^{\int_0^t \sigma_s \, dz_s + c_R' t} \left(\rho_0 - 2 \|u_0\|_{\mathbb{T}} \int_0^t e^{-\int_0^s \sigma_r \, dz_r - (c_R' + \frac{\nu}{2})s} \, ds \right)$$

as long as the right hand side stays positive.

On the other hand if we assume that there exist constants $c_1, c_2 > 0$ such that for all $\theta \in \mathbb{T}$ and $s \in [0,t]$,

$$(4.21) |\nabla u(t,\theta)| \le c_1 e^{-c_2 t},$$

then on Ω_t , $\forall s < t$,

(4.22)
$$\rho_s \ge \rho_0 \exp\left(\int_0^t \sigma_s \, dz_s + c_R' t - \frac{c_1}{c_2} \left(1 - e^{-c_2 t}\right)\right).$$

Proof. Assume that $\rho_0 - 2||u_0||_{\mathbb{T}} > 0$. From inequality (4.19) we have on Ω_t , for $s \leq t$,

$$(4.23) d\rho_s \ge \rho_s \left(\sigma_s dz_s + (c_R' + \frac{1}{2}\sigma_s^2) \, ds \right) - 2\|u(s, \cdot)\|_{\mathbb{T}} \, ds.$$

Using the fact that u(t,.) satisfies Navier-Stokes equation together with Poincaré inequality,

$$\frac{d}{ds}||u(s,.)||_{\mathbb{T}}^{2} = -2\nu||\nabla u(s,.)||_{\mathbb{T}}^{2}$$

$$\leq -\nu||u(s,.)||_{\mathbb{T}}^{2}.$$

Therefore we have

$$||u(s,.)||_{\mathbb{T}} \le e^{-\frac{\nu}{2}s}||u_0||_{\mathbb{T}}.$$

We obtain

$$(4.24) d\rho_s \ge \rho_s \left(\sigma_s dz_s + (c_R' + \frac{1}{2}\sigma_s^2) ds \right) - 2e^{-\frac{\nu}{2}s} ||u_0||_{\mathbb{T}} ds.$$

From this comparison theorem for solution of sde's yields (4.20).

Now assume (4.21). To prove (4.22) we start with (4.19), and remark that $\|\delta u(t)\|_{\mathbb{T}} \leq \sup_{\theta \in \mathbb{T}} |\nabla u(t,\theta)|$. Then with the bound on $\nabla u(t,\theta)$ we have

$$d\rho_t \ge \rho_t \left(\sigma_t dz_t + \frac{1}{2} \sigma_t^2 dt - c_1 e^{-c_2 t} dt + c_R' dt \right).$$

Integrating the right hand side between t_0 and t gives the result.

Remark 4.6. The bound (4.21) is satisfied for instance for solutions $u(t,\cdot)$ of the form $e^{-\nu|k|^2t}A_k$.

Also notice that, by the expression of the constant c_R' , the stochastic Lagrangian trajectories for a fluid with a given viscosity constant tend to get apart faster when the higher Fourier modes (and therefore the smaller length scales) are randomly excited.

5. The two-dimensional torus endowed with the extrinsic distance

It seems difficult to deal with the local time term of Proposition 4.2. To circumvent this problem we propose to endow the torus \mathbb{T} with a distance $\rho_{\mathbb{T}}$ equivalent to the one of section 4, but such that $\rho_{\mathbb{T}}^2$ is smooth on $\mathbb{T} \times \mathbb{T}$. Then we will see that when the assumptions of Theorem 4.5 are not fulfilled, then the behaviour of the distance of two diffeomorphisms can be completely different even if their distance is small. So the uniform control of the distance in Theorem 4.5 looks as a necessary condition for an exponential growth of the distance.

The map

$$\mathbb{R}/2\pi\mathbb{Z} \times \mathbb{R}/2\pi\mathbb{Z} \to [0, 2]$$
$$(\theta_1, \theta_2) \mapsto 2 \left| \sin \left(\frac{\theta_2 - \theta_1}{2} \right) \right|$$

defines a distance on the circle $\mathbb{R}/2\pi\mathbb{Z}$: it is the extrinsic distance on the circle embedded in the plane. From this distance we can define the product distance on the torus \mathbb{T} .

$$\rho_{\mathbb{T}}((\theta_1, \theta_2), (\theta_1', \theta_2')) = 2\left(\sin^2\left(\frac{\theta_1' - \theta_1}{2}\right) + \sin^2\left(\frac{\theta_2' - \theta_2}{2}\right)\right)^{1/2}.$$

Note

$$\rho_{\mathbb{T}}^{2}((\theta_{1}, \theta_{2}), (\theta'_{1}, \theta'_{2})) = 2\left(2 - \cos(\theta'_{1} - \theta_{1}) - \cos(\theta'_{2} - \theta_{2})\right).$$

The distance $\rho_{\mathbb{T}}^2$ is smooth on $\mathbb{T} \times \mathbb{T}$. Now let ϕ and ψ be two diffeomorphisms on the torus \mathbb{T} . We define the distance $\rho(\phi, \psi)$ with the formula

$$\rho^{2}(\phi, \psi) = \int_{\mathbb{T}} \rho_{\mathbb{T}}^{2}(\phi(\theta), \psi(\theta)) d\theta$$

$$= 2 \int_{\mathbb{T}} \left(2 - \cos(\phi^{1}(\theta) - \psi^{1}(\theta)) - \cos(\phi^{2}(\theta) - \psi^{2}(\theta)) \right) d\theta$$

$$= 4 \int_{\mathbb{T}} \left(\sin^{2} \left(\frac{\phi^{1}(\theta) - \psi^{1}(\theta)}{2} \right) + \sin^{2} \left(\frac{\phi^{2}(\theta) - \psi^{2}(\theta)}{2} \right) \right) d\theta$$

Now let

$$\rho_t = \rho(g_t, \tilde{g}_t).$$

From the smoothness of $\rho_{\mathbb{T}}^2$, the formula for ρ_t does not involve a local time. More precisely, letting

$$\delta g = g_t(\theta) - \tilde{g}_t(\theta),$$

$$\delta \cos k \cdot g = \cos k \cdot g_t(\theta) - \cos k \cdot \tilde{g}_t(\theta),$$

$$\delta \sin k \cdot g = \sin k \cdot g_t(\theta) - \sin k \cdot \tilde{g}_t(\theta),$$

$$\sin \delta g = (\sin(\delta g_t)_1(\theta), \sin(\delta g_t)_2(\theta)),$$

$$\delta u = (u(t, g_t) - u(t, \tilde{g}_t))$$

we get from Itô calculus

$$d\rho_{t} = \rho_{t} \sum_{k} \lambda_{k} \left\langle \frac{\sin \delta g}{\rho_{t}}, (k_{2}, -k_{1}) \left(\frac{\delta \cos k \cdot g}{\rho_{t}} dx_{k} + \frac{\delta \sin k \cdot g}{\rho_{t}} dy_{k} \right) \right\rangle_{\mathbb{T}}$$

$$+ \rho_{t} \left\langle \frac{\sin \delta g}{\rho_{t}}, \frac{\delta u}{\rho_{t}} \right\rangle_{\mathbb{T}} dt$$

$$+ \frac{\rho_{t}}{2} \left(\sum_{k} \lambda_{k}^{2} \int_{\mathbb{T}} \left(k_{2}^{2} \cos \delta g_{1} + k_{1}^{2} \cos \delta g_{2} \right) \frac{(\delta \cos k \cdot g)^{2} + (\delta \sin k \cdot g)^{2}}{\rho_{t}^{2}} d\theta \right) dt$$

$$- \frac{\rho_{t}}{2} \sum_{k} \lambda_{k}^{2} \left(\int_{\mathbb{T}} \left(k_{2} \frac{\sin \delta g_{1}}{\rho_{t}} - k_{1} \frac{\sin \delta g_{2}}{\rho_{t}} \right) \frac{\delta \cos k \cdot g}{\rho_{t}} d\theta \right)^{2} dt$$

$$- \frac{\rho_{t}}{2} \sum_{k} \lambda_{k}^{2} \left(\int_{\mathbb{T}} \left(k_{2} \frac{\sin \delta g_{1}}{\rho_{t}} - k_{1} \frac{\sin \delta g_{2}}{\rho_{t}} \right) \frac{\delta \sin k \cdot g}{\rho_{t}} d\theta \right)^{2} dt.$$

This clearly has the form

$$d\rho_t = \rho_t \left(\sigma_t \, dz_t + b_t \, dt \right)$$

where σ_t and b_t are bounded processes and z_t is a real-valued Brownian motion. However it can happen that the drift is negative even if ρ_t is small, as the following example shows.

Example 5.1. Let $\alpha > 0$ small and $\varepsilon > 0$ satisfying $\varepsilon << \alpha$. Take $\phi = \mathrm{id}$ and assume that there exist two subsets E_1 and E_2 of $\mathbb T$ such that $E_1 \subset E_2$, E_1 has measure α , E_2 has measure $\alpha + \varepsilon$, $\psi(\theta) = \theta$ for all $\theta \in \mathbb T \setminus E_2$ and $\psi(\theta) = (\theta_1 + \pi, \theta_2)$ for all $\theta \in E_1$. Since ε can be as small as we want, we have

$$\rho_0^2 \simeq 4\alpha$$
, $(\sin \delta g)_0 \simeq 0$, $(\delta g_0)_2 \simeq 0$, $(\delta \sin k \cdot g)_0 \simeq 0$,
on $\mathbb{T} \setminus E_2$, $(\delta \cos k \cdot g)_0 = 0$,

on E_1 , $(\delta \cos k \cdot g)_0 = -2$ if k_1 is odd, $(\delta \cos k \cdot g)_0 = 0$ if k_1 is even, so at time t = 0,

$$d\rho_t \simeq -\frac{\rho_t}{2} \left(\sum_{k_1 \text{ odd}} \lambda_k^2 k_2^2 \right) dt.$$

To construct a diffeomorphism like ψ , one can cut an annulus E_1 of width $\frac{\alpha}{2\pi}$ in \mathbb{T} and rotate it by π . This yields a one to one map on \mathbb{T} . Then smoothen it around the boundary of the annulus to get ψ . The set E_2 can be taken as an annulus of width $\frac{\alpha + \varepsilon}{2\pi}$ containing E_1 .

6. DISTANCE AND ROTATION PROCESSES OF TWO PARTICLES ON A GENERAL RIEMANNIAN MANIFOLD

6.1. Distance of two particles.

Let $B_t = (B_t^{\ell})_{\ell \geq 0}$ be a family of independent real Brownian motions, $\sigma = (\sigma_{\ell})_{\ell \geq 0}$, with, for all $\ell \geq 0$, σ_{ℓ} a divergence free vector field on M. We furthermore assume that

(6.1)
$$\sigma(x)\sigma^*(y) = a(x,y).$$

In particular

(6.2)
$$\sigma(x)\sigma^*(x) = 2\nu \mathbf{g}^{-1}(x).$$

We let $\varphi, \psi \in G_V^0$. In this section we assume that

(6.3)
$$dg_t(x) = \sigma(g_t(x)) dB_t + u(t, g_t(x)) dt, \quad g_0 = \varphi$$

and

(6.4)
$$d\tilde{g}_t(x) = \sigma(\tilde{g}_t(x)) dB_t + u(t, \tilde{g}_t(x)) dt, \quad \tilde{g}_0 = \psi$$

For simplicity we let $x_t = g_t(x)$, $y_t = \tilde{g}_t(x)$ and

$$\rho_t(x) = \rho_M(x_t, y_t)$$

For $x, y \in M$ such that y does not belong to the cutlocus of x, we let $a \mapsto \gamma_a(x, y)$ be the minimal geodesic in time 1 from x to y ($\gamma_0(x, y) = x$, $\gamma_1(x, y) = y$)). For $a \in [0, 1]$ we let $J_a = T\gamma_a$ the tangent map to γ_a . In other words, for $v \in T_xM$ and $w \in T_yM$, $J_a(v, w)$ is the value at time a of the Jacobi field along γ , which takes the values v at time 0 and w at time 1.

We first consider the case where y_t does not belong to the cutlocus of x_t . We note $T_a = T_a(t) = \dot{\gamma}_a(x_t, y_t)$ and $\gamma_a(t) = \gamma_a(x_t, y_t)$.

Letting $P(\gamma_a)_t$ be the parallel transport along $\gamma_a(t)$, we have for the Itô covariant differential

$$\mathcal{D}\dot{\gamma}_a(t) := P(\gamma_a)_t d\left(P(\gamma_a)_t^{-1} \dot{\gamma}_a(t)\right)$$
$$= \nabla_{d\gamma_a(t)} \dot{\gamma}_a + \frac{1}{2} \nabla_{d\gamma_a(t)} \cdot \nabla_{d\gamma_a(t)} \dot{\gamma}_a(t).$$

On the other hand the Itô differential $d\gamma_a(t)$ satisfies

$$d\gamma_a(t) = J_a(dx_t, dy_t) + \frac{1}{2} \left(\nabla_{(dx_t, dy_t)} J_a \right) (dx_t, dy_t).$$

So we get

$$(6.5) \ \mathscr{D}\dot{\gamma}_a(t) = \nabla_{J_a(dx_t, dy_t)}\dot{\gamma}_a + \nabla_{\frac{1}{2}\left(\nabla_{(dx_t, dy_t)}J_a\right)(dx_t, dy_t)}\dot{\gamma}_a + \frac{1}{2}\nabla_{d\gamma_a(t)}\cdot\nabla_{d\gamma_a(t)}\dot{\gamma}_a(t).$$

Let $e(t) \in T_{x_t}M$ be the unit vector satisfying $T_0(t) = \rho_t(x)e(t)$. For $\ell \geq 0$ we let $a \mapsto J_a^{\ell}(t,x)$ be the Jacobi field such that $J_0^{\ell}(t,x) = \sigma_{\ell}(g_t(x)), \ J_1^{\ell}(t) = \sigma_{\ell}(\tilde{g}_t(x))$. Moreover we assume that $\nabla_{J_0^{\ell}(t,x)}J_0^{\ell}(t,x) = 0$ and $\nabla_{J_1^{\ell}(t,x)}J_1^{\ell}(t,x) = 0$.

With these notations, equation (6.5) rewrites as

$$\mathscr{D}T_a = \nabla_{J_a(dx_t, dy_t)} T_a + \frac{1}{2} \sum_{\ell \ge 0} \nabla_{\nabla_{J_a^{\ell}} J_a^{\ell}} T_a dt + \frac{1}{2} \sum_{\ell \ge 0} \nabla_{J_a^{\ell}} \cdot \nabla_{J_a^{\ell}} T_a dt$$
$$= \dot{J}_a(dx_t, dy_t) + \frac{1}{2} \sum_{\ell \ge 0} \nabla_{J_a^{\ell}} \nabla_{J_a^{\ell}} T_a dt.$$

We have

$$\begin{split} d\rho_t(x) &= d\left(\left(\int_0^1 \langle T_a(t), T_a(t) \rangle \ da\right)^{1/2}\right) \\ &= \frac{1}{2\rho_t(x)} \left(2\int_0^1 \langle \mathscr{D}T_a(t), T_a(t) \rangle \ da + \int_0^1 \langle \mathscr{D}T_a(t), \mathscr{D}T_a(t) \rangle \ da\right) \\ &- \frac{1}{8\rho_t(x)^3} d\left(\|T_0\|^2\right) \cdot d\left(\|T_0\|^2\right) \\ &= \sum_{\ell \geq 0} \left\langle \dot{J}_0^\ell(t, x), e_t(x) \right\rangle \ dB_t^\ell + \left\langle \dot{J}_0(u(t, g_t(x)), u(t, \tilde{g}_t(x))), e_t(x) \right\rangle \\ &+ \frac{1}{2\rho_t(x)} \left(\int_0^1 \sum_{\ell \geq 0} \left\langle \nabla_{J_a^\ell} \nabla_{J_a^\ell} T_a, T_a \right\rangle \ da \ dt + \sum_{\ell \geq 0} \int_0^1 \|\dot{J}_a^\ell\|^2 \ da\right) \\ &- \frac{1}{2\rho_t(x)} \sum_{\ell \geq 0} \langle \dot{J}_0^\ell(t, x), e_t(x) \rangle^2. \end{split}$$

Note

$$\begin{split} \int_0^1 \left\langle \nabla_{J_a^\ell} \nabla_{J_a^\ell} T_a, T_a \right\rangle \, da &= \int_0^1 \left\langle \nabla_{J_a^\ell} \nabla_{T_a} J_a^\ell, T_a \right\rangle \, da \\ &= \int_0^1 \left\langle \nabla_{T_a} \nabla_{J_a^\ell} J_a^\ell, T_a \right\rangle \, da - \int_0^1 \left\langle R(T_a, J_a^\ell) J_a^\ell, T_a \right\rangle \, da \\ &= \int_0^1 T_a \left\langle \nabla_{J_a^\ell} J_a^\ell, T_a \right\rangle \, da - \int_0^1 \left\langle R(T_a, J_a^\ell) J_a^\ell, T_a \right\rangle \, da \\ &= \left[\left\langle \nabla_{J_a^\ell} J_a^\ell, T_a \right\rangle \right]_0^1 - \int_0^1 \left\langle R(T_a, J_a^\ell) J_a^\ell, T_a \right\rangle \, da \\ &= -\int_0^1 \left\langle R(T_a, J_a^\ell) J_a^\ell, T_a \right\rangle \, da \end{split}$$

using the fact that $\nabla_{J_a^\ell}J_a^\ell=0$ for a=0,1. So finally,

$$\begin{split} d\rho_t(x) &= \sum_{\ell \geq 0} \left\langle \dot{J}_0^\ell(t,x), e_t(x) \right\rangle \, dB_t^\ell \\ &+ \left\langle \dot{J}_0(u(t,g_t(x)), u(t,\tilde{g}_t(x))), e_t(x) \right\rangle \\ &+ \frac{1}{2\rho_t(x)} \left(\int_0^1 \sum_{\ell \geq 0} \left(\|\dot{J}_a^{\ell,N}\|^2 - \left\langle R(T_a(t,x), J_a^{\ell,N}(t,x)) J_a^{\ell,N}(t,x), T_a(t,x) \right\rangle \right) \, da \right) \, dt \end{split}$$

with $J_a^{\ell,N}(t,x)$ the part of $J_a^{\ell}(t,x)$ normal to T_a .

Removing the assumption that y_t does not belong to the cutlocus of x_t , it is well known (see [5] for a similar argument) that the formula becomes

$$d\rho_{t}(x) = \sum_{\ell \geq 0} \left\langle \dot{J}_{0}^{\ell}(t, x), e_{t}(x) \right\rangle dB_{t}^{\ell}$$

$$+ \left\langle \dot{J}_{0}(u(t, g_{t}(x)), u(t, \tilde{g}_{t}(x))), e_{t}(x) \right\rangle - dL_{t}(x)$$

$$+ \frac{1}{2\rho_{t}(x)} \left(\int_{0}^{1} \sum_{\ell \geq 0} \left(\|\dot{J}_{a}^{\ell, N}\|^{2} - \left\langle R(T_{a}(t, x), J_{a}^{\ell, N}(t, x)) J_{a}^{\ell, N}(t, x), T_{a}(t, x) \right\rangle \right) da \right) dt$$

where $-L_t(x)$ is the local time of $\rho_t(x)$ when $(g_t(x), \tilde{g}_t(x))$ visits the cutlocus. Then letting

$$\rho_t = \rho(g_t, \tilde{g}_t) = \left(\int_M \rho_t^2(x) \, dx\right)^{1/2},$$

we get

$$\begin{split} d\rho_t &= \frac{1}{\rho_t} \sum_{\ell \geq 0} \left(\int_M \rho_t(x) \left\langle \dot{J}_0^\ell(t,x), e_t(x) \right\rangle \, dx \right) \, dB_t^\ell \\ &+ \frac{1}{\rho_t} \int_M \rho_t(x) \left\langle \dot{J}_0(u(g_t(x)), u(\tilde{g}_t(x))), e_t(x) \right\rangle \, dx \, dt - \frac{1}{\rho_t} \int_M \rho_t(x) L_t(x) \, dx \\ &+ \frac{1}{2\rho_t} \left(\int_M \sum_{\ell \geq 0} \left(\int_0^1 \left(\| \dot{J}_a^{\ell,N} \|^2 - \left\langle R(T_a(t,x), J_a^{\ell,N}(t,x)) J_a^{\ell,N}(t,x), T_a(t,x) \right\rangle \right) \, da \right) \, dx \right) \, dt \\ &+ \frac{1}{2\rho_t} \int_M \sum_{\ell \geq 0} \left\langle \dot{J}_0^\ell(t,x), e_t(x) \right\rangle^2 \, dx \, dt \\ &- \frac{1}{2\rho_t^3} \sum_{\ell \geq 0} \left(\int_M \rho_t(x) \left\langle \dot{J}_0^\ell(t,x), e_t(x) \right\rangle \, dx \right)^2 \, dt. \end{split}$$

For a vector $w \in T_{g_t(x)}M$, we let w^T the part of w tangential to $T_0(t,x)$. Letting

$$\cos\left(\dot{J}_{0}^{\ell,T}(t,\cdot),T_{0}(t,\cdot)\right) = \frac{\int_{M} \left\langle \dot{J}_{0}^{\ell,T}(t,x),T_{0}(t,x)\right\rangle dx}{\rho_{t} \left(\int_{M} \left\|\dot{J}_{0}^{\ell,T}(t,x)\right\|^{2} dx\right)^{1/2}}$$

(observe $\rho_t^2 = \int_M \|T_0(t,x)\|^2 dx$), we finally proved

Proposition 6.1. The Itô differential of the distance ρ_t between g_t and \tilde{g}_t is given by

$$\begin{split} d\rho_t &= \frac{1}{\rho_t} \sum_{\ell \geq 0} \left(\int_{M} \rho_t(x) \left(P_{\tilde{g}_t(x), g_t(x)}(\sigma_\ell^T(\tilde{g}_t(x))) - \sigma_\ell^T(g_t(x) \right) \, dx \right) \, dB_t^\ell \\ &+ \frac{1}{\rho_t} \int_{M} \rho_t(x) \left(P_{\tilde{g}_t(x), g_t(x)}(u^T(\tilde{g}_t(x)))) - u^T(g_t(x)) \right) \, dx \, dt - \frac{1}{\rho_t} \int_{M} \rho_t(x) dL_t(x) \, dx \\ &+ \frac{1}{2\rho_t} \left(\int_{M} \sum_{\ell \geq 0} \left(\int_{0}^{1} \left(\|\dot{J}_a^{\ell,N}\|^2 - \left\langle R(T_a(t,x), J_a^{\ell,N}(t,x)) J_a^{\ell,N}(t,x), T_a(t,x) \right\rangle \right) \, da \right) \, dx \right) \, dt \\ &+ \frac{1}{2\rho_t} \sum_{\ell \geq 0} \left(1 - \cos^2 \left(\dot{J}_0^{\ell,T}(t,\cdot), T_0(t,\cdot) \right) \right) \int_{M} \left\| \dot{J}_0^{\ell,T}(t,x) \right\|^2 \, dx \, dt. \end{split}$$

In the case of manifolds with negative curvature we may observe a similar phenomena to the one of the torus with the Euclidean distance treated in Section 4: as long as the L^{∞} norm stays sufficiently small to avoid the cut-locus of the manifold, the L^2 mean distance between the stochastic particles tends to increase exponentially fast.

6.2. The rotation process.

In the following we would like to study the rotation of two particles $g_t(x)$ and $\tilde{g}_t(x)$ when they are in a close distance one to another. Recall that we have noted $x_t = g_t(x)$, $y_t = \tilde{g}_t(x)$. We always assume that the distance from x_t to y_t is small: we are interested in the behaviour of e(t) as $\rho_t(x)$ goes to 0. We let

(6.6)
$$d_m x(t)^N = \sigma(x_t) dB_t - \langle \sigma(x_t) dB_t, e(t) \rangle e(t)$$

and

(6.7)
$$d_m y(t)^N = \sigma(y_t) dB_t - \langle \sigma(y_t) dB_t, P_{x_t, y_t} e(t) \rangle P_{x_t, y_t} e(t)$$

where $P_{x_t,\gamma_a(t)}$ denotes the parallel transport along γ_a . ¿From Itô formula we have

(6.8)
$$\mathscr{D}T_0 = \rho_t(x)\mathscr{D}e(t) + d\rho_t(x)e(t) + d\rho_t(x)\mathscr{D}e(t)$$

and this yields

$$\begin{split} \mathscr{D}e(t) &= \frac{1}{\rho_{t}(x)} \mathscr{D}T_{0} - \frac{1}{\rho_{t}(x)} d\rho_{t}(x) e(t) - \frac{1}{2} \frac{1}{\rho_{t}(x)} d\rho_{t}(x) \mathscr{D}e(t) \\ &= \frac{1}{\rho_{t}(x)} \dot{J}_{0}(d_{m}x(t)^{N}, d_{m}y(t)^{N}) \\ &+ \frac{1}{\rho_{t}(x)} \dot{J}_{0}(u(t, x_{t}), u(t, y_{t})) dt + \frac{1}{2\rho_{t}(x)} \sum_{\ell \geq 0} \nabla_{J_{0}^{\ell}} \nabla_{J_{0}^{\ell}} T_{0} dt \\ &- \frac{1}{\rho_{t}(x)} \left\langle P_{y_{t}, x_{t}}(u(t, y_{t})) - u(t, x_{t}), e(t) \right\rangle e(t) \\ &- \frac{1}{2\rho_{t}(x)^{2}} \left(\int_{0}^{1} \sum_{\ell \geq 0} \left(\|\nabla_{T_{a}} J_{a}^{\ell}\|^{2} - R(T_{a}, J_{a}^{\ell}) J_{a}^{\ell}, T_{a} \right) da \right) e(t) \\ &- \frac{1}{2} \frac{1}{\rho_{t}(x)} d\rho_{t}(x) \mathscr{D}e(t) \\ &= \frac{1}{\rho_{t}(x)} \dot{J}_{0}(d_{m}x(t)^{N}, d_{m}y(t)^{N}) + \frac{1}{\rho_{t}(x)} \dot{J}_{0}(u^{N}(t, x_{t}), u^{N}(t, y_{t})) \\ &+ \frac{1}{2\rho_{t}(x)} \sum_{\ell \geq 0} \nabla_{J_{0}^{\ell}} \nabla_{J_{0}^{\ell}} T_{0} dt \\ &- \frac{1}{2\rho_{t}(x)^{2}} \left(\int_{0}^{1} \sum_{\ell \geq 0} \left(\|\nabla_{T_{a}} J_{a}^{\ell}\|^{2} - R(T_{a}, J_{a}^{\ell}) J_{a}^{\ell}, T_{a} \right) da \right) e(t) \end{split}$$

where we used the fact that $d\rho_t(x)\mathcal{D}e(t)=0$, and where u^N denotes the part of u which is normal to the geodesic γ_a . Now as before

$$\nabla_{J_0^{\ell}} \nabla_{J_0^{\ell}} T_0 = \nabla_{T_0} \nabla_{J_0^{\ell}} J_0^{\ell} - R(T_0, J_0^{\ell}) J_0^{\ell}.$$

Finally we get

Lemma 6.2.

$$\mathscr{D}e(t) = \frac{1}{\rho_t(x)} \dot{J}_0(d_m x(t)^N, d_m y(t)^N) + \frac{1}{\rho_t(x)} \dot{J}_0(u^N(t, x_t), u^N(t, y_t))$$

$$+ \frac{1}{2\rho_t(x)} \sum_{\ell \ge 0} \nabla_{T_0} \nabla_{J^\ell} J^\ell - R(T_0, J_0^\ell) J_0^\ell dt$$

$$- \frac{1}{2\rho_t(x)^2} \left(\int_0^1 \sum_{\ell \ge 0} \left(\|\nabla_{T_a} J_a^\ell\|^2 - R(T_a, J_a^\ell) J_a^\ell, T_a \right) da \right) e(t).$$

From now on we assume that $M=\mathbb{T}$ the two dimensional torus. In this situation the curvature tensor vanishes and we have the formulas

$$J_a(v, w) = v + a(w - v), \qquad \dot{J}_a(v, w) = w - v.$$

We immediately get

$$de(t) = \mathcal{D}e(t) = \frac{1}{\rho_t(x)} \left(d_m y(t)^N - d_m x(t)^N \right) + \frac{1}{\rho_t(x)} \left((u^N(t, y_t) - u^N(t, x_t)) \right) dt$$
$$- \frac{1}{2\rho_t(x)^2} \sum_{\ell > 0} \|\sigma_\ell(y_t) - \sigma_\ell(x_t)\|^2 dt \, e(t)$$

where we used the fact that $\nabla_{T_0}\nabla_{J^\ell}J^\ell=0$, as a consequence of $\nabla_{J_0^\ell}J_0^\ell=0$, $\nabla_{J_1^\ell}J_1^\ell=0$, and $R\equiv 0$.

Let us specialize again to the case where the vector fields are given by

$$A_k(\theta) = (k_2, -k_1)\cos k.\theta, \quad B_k(\theta) = (k_2, -k_1)\sin k.\theta$$

and the Brownian motion

(6.9)
$$dW(t) = \sum_{k \in \mathbb{Z}} \lambda_k \sqrt{\nu} (A_k dx_k + B_k dy_k)$$

where x_k, y_k are independent copies of real Brownian motions. As in section 4 we assume that $\sum_k |k|^2 \lambda_k^2 < \infty$ and we consider $\lambda_k = \lambda(|k|)$ to be nonzero for a equal number of k_1 and k_2 components. Again we write

$$(6.10) dg_t = (odW(t)) + u(t, g_t)dt, d\tilde{g}_t = (odW(t)) + u(t, \tilde{g}_t)dt$$

with

$$g_0 = \phi, \qquad \tilde{g}_0 = \psi, \qquad \phi \neq \psi.$$

Changing the notation to $g_t = g_t(\theta) = x_t$, $\tilde{g}_t = \tilde{g}_t(\theta) = y_t$, we get

$$\begin{split} de(t) &= \frac{1}{\rho_t(\theta)} \sum_{|k| \neq 0} \lambda_k \sqrt{\nu} \left(\cos k \cdot \tilde{g}_t - \cos k \cdot g_t \right) k^{\perp,N} dx_k \\ &+ \frac{1}{\rho_t(\theta)} \sum_{|k| \neq 0} \lambda_k \sqrt{\nu} \left(\sin k \cdot \tilde{g}_t - \sin k \cdot g_t \right) k^{\perp,N} dy_k \\ &+ \frac{1}{\rho_t(\theta)} \left(\left(u^N(t, \tilde{g}_t) - u^N(t, g_t) \right) dt \\ &- \frac{1}{2\rho_t^2(\theta)} \sum_{|k| \neq 0} \lambda_k^2 \nu |k^{\perp,N}|^2 \left(\left(\cos k \cdot \tilde{g}_t - \cos k \cdot g_t \right)^2 + \left(\sin k \cdot \tilde{g}_t - \sin k \cdot g_t \right)^2 \right) e(t) dt \\ &= \frac{1}{\rho_t(\theta)} \sum_{|k| \neq 0} \lambda_k \sqrt{\nu} k^{\perp,N} \left(2 \sin \frac{k \cdot (\tilde{g}_t - g_t)}{2} \right) dz_k \\ &+ \frac{1}{\rho_t(\theta)} \left(\left(u^N(t, \tilde{g}_t) - u^N(t, g_t) \right) dt \\ &- \frac{2}{\rho_t^2(\theta)} \sum_{|k| \neq 0} \lambda_k^2 \nu |k^{\perp,N}|^2 \sin^2(\frac{k \cdot (\tilde{g}_t - g_t)}{2}) e(t) dt \end{split}$$

where z_k is the Brownian motion defined by

$$dz_k = -\sin\frac{k \cdot (\tilde{g}_t + g_t)}{2} dx_k + \cos\frac{k \cdot (\tilde{g}_t + g_t)}{2} dy_k.$$

Noting $|k^{\perp,N}|^2 = |k|^2 (n_k \cdot e(t))^2$, we obtain

$$de(t) = \frac{1}{\rho_t(\theta)} \sum_{|k| \neq 0} |k| \lambda_k \sqrt{\nu} (n_k \cdot e(t)) e'(t) \left(2 \sin \frac{k \cdot (\tilde{g}_t - g_t)}{2} \right) dz_k$$

$$+ \frac{1}{\rho_t(\theta)} \left((u^N(t, \tilde{g}_t) - u^N(t, g_t)) dt - \frac{2}{\rho_t^2(\theta)} \sum_{|k| \neq 0} |k|^2 \lambda_k^2 \nu (n_k \cdot e(t))^2 \sin^2 \frac{k \cdot (\tilde{g}_t - g_t)}{2} e(t) dt$$

where e'(t) is a unit vector in $\mathbb T$ orthonormal to e(t). Now for every K>0, if $\rho_t(\theta)\leq \frac{\pi}{2K}$ then for all k such that $|k|\leq K$,

$$\frac{\sin^2 \frac{k \cdot (\tilde{g}_t - g_t)}{2}}{|k|^2 \rho_t^2(\theta) (n_k \cdot e(t))^2} \ge \frac{1}{\pi^2}.$$

Now using $|k| = |k^{\perp}|$ and $(n_k \cdot e(t))^2 + (n_{k^{\perp}} \cdot e(t))^2 = 1$, we get

(6.12)
$$\frac{2}{\rho_t^2(\theta)} \sum_{|k| \neq 0} |k|^2 \lambda_k^2 \nu (n_k \cdot e(t))^2 \sin^2 \frac{k \cdot (\tilde{g}_t - g_t)}{2} \ge \frac{\nu}{2\pi^2} \sum_{0 < |k| < K} \lambda_k^2 |k|^4.$$

Observe that the term in the left is the second part of the drift in equation (6.11) as well as the derivative of the quadratic variation of e(t). This yields the following result.

Proposition 6.3. Identifying $T\mathbb{T}$ with \mathbb{C} , we have $e(t) = e^{iX_t}$ where X_t is a real-valued semimartingale with quadratic variation

(6.13)
$$d[X,X]_t = \frac{4}{\rho_t^2(\theta)} \sum_{|k| \neq 0} |k|^2 \lambda_k^2 \nu (n_k \cdot e(t))^2 \sin^2 \frac{k \cdot (\tilde{g}_t - g_t)}{2} dt$$

and drift

(6.14)
$$\int_0^t \frac{1}{\rho_s(\theta)} \langle u(s, \tilde{g}_s) - u(s, g_s), ie(s) \rangle ds.$$

We have for all K > 0, on $\left\{ \rho_t(\theta) \leq \frac{\pi}{2K} \right\}$,

(6.15)
$$d[X,X]_t \ge \frac{\nu}{\pi^2} \sum_{0 \le |k| \le K} \lambda_k^2 |k|^4.$$

If $\sum_{|k|\neq 0} \lambda_k^2 |k|^4 = +\infty$, then as $\tilde{g}_t(\theta)$ gets closer and closer to $g_t(\theta)$, the rotation e(t)

becomes more and more irregular in the sense that the derivative of the quadratic variation of X_t tends to infinity.

Acknowledgment. The second author wishes to thank the support of the Université de Poitiers. This work has also benefited from the portuguese grant

PTDC/MAT/69635/2006.

References

- [1] M. Arnaudon and A. Thalmaier, *Horizontal martingales in vector bundles*, Séminaire de Probabilités, XXXVI, 419–456, Lecture Notes in Math., 1801, Springer, Berlin, 2003.
- [2] V. I. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier 16 (1966), 316–361.
- [3] F. Cipriano and A.B. Cruzeiro, Navier-Stokes equation and diffusions on the group of homeomorphisms of the torus, Comm. Math. Phys. 275 (2007), no. 1, 255–269.
- [4] P. Constantin and G. Iyer, A stochastic Lagrangian representation of the three dimensional incompressible Navier-Stokes equations, Comm. Pure. Appl. Math. LXI (2008), 330–345.
- [5] W.S. Kendall, Nonnegative Ricci curvature and the Brownian coupling property, Stochastics 19 (1986), no. 1-2, 111-129.
- [6] G. Misiolek, Stability of flows of ideal fluids and the geometry of the group of diffeomorphisms, Indiana Univ. Math. J. 42 (1993), no. 1, 215–235.
- [7] T. Nagasawa, Navier-Stokes flow on Riemannian manifolds Nonlinear An., Th., Methods and Applic. 30 (1997) no. 2, 825–832.
- [8] t. T. Nakagomi, K. Yasue and J.-C. Zambrini, Stochastic variational derivations of the Navier-Stokes equation. Lett. Math. Phys. 160 (1981), 337–365.
- [9] K. Yasue, A variational principle for the Navier-Stokes equation. J. Funct. Anal. 51(2) (1983), 133-141.

LABORATOIRE DE MATHÉMATIQUES ET APPLICATIONS

CNRS: UMR 6086

Université de Poitiers, Téléport 2 - BP 30179

F-86962 FUTUROSCOPE CHASSENEUIL CEDEX, FRANCE

E-mail address: marc.arnaudon@math.univ-poitiers.fr

GFMUL AND DEP. DE MATEMÁTICA IST(TUL).

Av. Rovisco Pais

1049-001 Lisboa, Portugal

E-mail address: abcruz@math.ist.utl.pt