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Introduction

As discovered by V. I. Arnold ([2]) the motion of an incompressible non viscous fluid can be characterized as a geodesic on a group of diffeomorphisms. This point of view allows in particular to derive properties of the Lagrangian Euler flow, such as stability, through the study of the geometry of the group ( [START_REF] Misiolek | Stability of flows of ideal fluids and the geometry of the group of diffeomorphisms[END_REF]).

When the fluid is viscous, namely for the Navier-Stokes equation, one can describe the Lagrangian trajectories as realizations of a stochastic process and interpret the associated drift, solving Navier-Stokes, as an expectation over this process. This intrinsically probabilistic approach we follow here is inspired by [START_REF] Nakagomi | Stochastic variational derivations of the Navier-Stokes equation[END_REF], [START_REF] Yasue | A variational principle for the Navier-Stokes equation[END_REF]. Similar stochastic models are used for example in [START_REF] Constantin | A stochastic Lagrangian representation of the three dimensional incompressible Navier-Stokes equations[END_REF]. Then the trajectories remain, in an appropriate sense, geodesics and are almost sure solutions of a variational principle. This was shown in [START_REF] Cipriano | Navier-Stokes equation and diffusions on the group of homeomorphisms of the torus[END_REF] for the two-dimensional torus.

We prove a variational principle for the Lagrangian Navier-Stokes diffusions in a compact Riemannian manifold. Furthermore we study its stability properties. The behaviour of the trajectories depends on the intensity of the noise as well as on the metric of the underlying manifold. The example of the torus is studied in detail. Finally we describe the evolution in time of the rotation between stochastic Lagrangian particles.

Let (M, g) be a compact oriented Riemannian manifold without boundary. Recall that the Itô differential of an M -valued semimartingale Y is defined by ( where Γ i jk are the Christoffel symbols of the Levi-Civita connection. If the semimartingale Y t has an absolutely continuous drift, we denote it by DY t dt: for every 1-form α ∈ Γ(T * M ), the finite variation part of (1.4)

• 0 α(Y t ), dY t is (1.5) • 0 α(Y t ), DY t dt
Let G s , s ≥ 0 be the infinite dimensional group of homeomorphisms on M which belong to H s , the Sobolev space of order s. For s > m 2 + 1, m = dimM , G s is a C ∞ Hilbert manifold. The volume preserving homeomorphism subgroup will be denoted by G s V : G s V = {g ∈ G s , : g * µ = µ}, with µ the volume element associated to the Riemannian metric. We denote by G s (resp. G s V ) the Lie algebra of G s (resp. G s V ). See [START_REF] Misiolek | Stability of flows of ideal fluids and the geometry of the group of diffeomorphisms[END_REF] for example. On M we consider an incompressible Brownian flow g u (t) ∈ G 0

V with covariance a ∈ Γ(T M ⊙ T M ) and time dependent drift u(t, •) ∈ Γ(T M ). We assume that for all x ∈ M , a(x, x) = 2νg -1 (x) for some ν > 0. This means that (1.6) dg u (t)(x) ⊗ dg u (t)(y) = a (g u (t)(x), g u (t)(y)) dt,

(1.7) dg u (t)(x) ⊗ dg u (t)(x) = 2νg -1 (g u (t)(x)) dt, the drift of g u (t)(x) is absolutely continuous and satisfies Dg u (t)(x) = u(t, g u (t)(x)). The generator of this process is

L u = ν∆ h + ∂ ∂t + ∂ u
where ∆ h is the horizontal Laplacian. The parameter ν will be called the speed of the Brownian flow.

If the time is indexed by [0, T ] for some T > 0, we define the action functional by

S(g u ) = 1 2 E T 0 M Dg u (t)(x) 2 dx dt .

The variational principle

Define

(2.1)

H = v ∈ C 1 ([0, T ], G ∞ V ), v(0, •) = 0, v(T, •) = 0 Given v ∈ H , consider the following ordinary differential equation de t (v) dt = v(t, e t (v)) e 0 (v) = e (2.2)
where e is the identity of

G ∞ V . Since v is divergence free, e • (v) is a G ∞ V -valued deterministic path.
We denote by P the set of continuous G 0 V -valued semimartingales g(t) such that g(0) = e. Then for all v ∈ H , we have e t (v) • g u (t) ∈ P. Definition 2.1. Let J be a functional defined on P and taking values in R. We define its left and right derivatives in the direction of h(•) = e • (v), v ∈ H at a process g ∈ P respectively, by

(D L ) h J[g] = d dε J[e • (εv) • g(•)]| ε=0 , (D R ) h J[g] = d dε J[g(•) • e • (εv)]| ε=0 .
(2.3)

A process g ∈ P wil be called a critical point of the functional J if

(2.4) (D L ) h J[g] = (D R ) h J[g], ∀h = e(v), v ∈ H . Theorem 2.2. Let (t, x) → u(t, x
) be a smooth time-dependent divergence-free vector field on M , defined on [0, T ] × M . Let g u (t) a stochastic Brownian flow with speed ν > 0 and drift u. The stochastic process g u (t) is a critical point of the energy functional S if and only if the vector field u(t) verifies the Navier-Stokes equation

(2.5) ∂u ∂t + ∇ u u = ν u -∇p.
For the construction of weak solutions of Navier-Stokes equations on Riemannian manifolds we refer to [START_REF] Nagasawa | Navier-Stokes flow on Riemannian manifolds Nonlinear An[END_REF].

Proof. Since the functional S is right invariant, it is enough to consider the left derivative. So we need to compute

(2.6) d dε | ε=0 S(e • (εv)(g u )).
We let

(2.7) f (ε) = S(e • (εv)(g u )). Then (2.8) f (ε) = 1 2 M E T 0 De t (εv)(g u )(t)(x) 2 dt dx which yields (2.9) f ′ (0) = M E T 0 ( ∇ ε | ε=0 De t (εv) (g u (t)(x)) , u(t, g u (t)(x)) ) dt dx.
We need to compute (2.10)

∇ ε | ε=0 De t (εv) (g u (t)(x)) .
We have

∇ t d dε | ε=0 e t (εv) = ∇ ε | ε=0 de t (εv) dt = ∇ ε | ε=0 ε v(t, e t (εv)) = v(t, e).
Together with v(0, •) = 0, this implies

d dε | ε=0 e t (εv)(x) = v(t, x). (2.11) Consequently (2.12) d dε | ε=0 e t (εv) (g u (t)(x)) = v (t, g u (t)(x)) .
By Itô equation,

de t (εv)(g u (t)(x)) = de t (εv)(•), dg u (t)(x) + 1 2 ∇de t (εv)(g u (t)(x)) (dg u (t)(x) ⊗ dg u (t)(x)) = de t (εv)(•), dg u (t)(x) + ν∆e t (εv)(g u (t)(x)) dt.
(2.13)

Here ∆e t (εv)(•) denotes the tension field of the map e t (εv) : M → M . This yields

De t (εv)(g u (t)(x)) = de t (εv)(•), Dg u (t)(x) + ν∆e t (εv)(g u (t)(x)) + ε v(t, e t (εv)(g u (t)(x))) = de t (εv)(•), u(t, g u (t)(x)) + ν∆e t (εv)(g u (t)(x))
+ ε v(t, e t (εv)(g u (t)(x))).

(2.14)

Differentiating with respect to ε at ε = 0, we get

∇ ε | ε=0 De t (εv)(g u (t)(x)) = ∇ ε | ε=0 de t (εv)(•), u(t, g u (t)(x)) + ν∇ ε | ε=0 ∆e t (εv)(g u (t)(x)) + ∂v ∂t (t, g u (t)(x)) = ∇ • d dε | ε=0 e t (εv)(•), u(t, g u (t)(x)) + ν d dε | ε=0 e t (εv)(g u (t)(x)) + ∂v ∂t (t, g u (t)(x)) = ∇ • v(t, •), u(t, g u (t)(x)) + ν v(t, •)(g u (t)(x)) + ∂v ∂t (t, g u (t)(x)) = ∇ u(t,gu(t)(x)) v(t, •) + ν v(t, •)(g u (t)(x)) + ∂v ∂t (t, g u (t)(x)).
(2.15)

We used the commutation formula

∇ ε | ε=0 ∆ = d dε , where = dd * + d * d is the damped Laplacian. Alternatively, (2.16) v = ∆ h v + Ric ♯ (v).
For a T M -valued semimartingale J t which projects onto the M -valued semimartingale Y t , we denote by DJ t the Itô covariant derivative:

(2.17) 

DJ
(t)(x)) ≃ ∂v ∂t (t, g u (t)(x)) dt + ∇ dgu(t)(x) v + ν∆ h v(t, g u (t)(x)) dt.
where the notation ≃ means equal up to a martingale: 

• 0 P (g u (•)) -1 t Du(t, g u (t)(x)) - • 0 P (g u (•)) -1 t ∂u ∂t (t, g u (t)(x)) dt + ∇ dgu(t)(x) u + ν∆ h u(t,
E [ u T , v T ] = E T 0 ∂u ∂t (t, g u (t)(x)) + ∇ ut u + ν∆ h u(t, g u (t)(x)), v t dt + E T 0 u t , ∇ ε | ε=0 De t (εv)(g u (t)(x)) -ν Ric ♯ (v t ) dt + E 2ν T 0 tr ∇ • u, ∇ • v (t, g u (t)(x)) dt .
(2.24)

Then using the facts that v T = 0, together with

(2.25) u t , Ric ♯ (v t ) = Ric ♯ (u t ), v t
and (2.16), we get

E T 0 u t , ∇ ε | ε=0 De t (εv)(g u (t)(x)) dt = -E T 0 ∂u ∂t (t, g u (t)(x)) + ∇ ut u + ν u(t, g u (t)(x)), v t dt -E 2ν T 0 tr ∇ • u t , ∇ • v t (t, g u (t)(x)) dt .
(2.26)

Integrating with respect to x yields

f ′ (0) = -E T 0 M ∂ ∂t + ∇ u + ν u (t, g u (t)(x)), v(t, g u (t)(x)) dx dt -E 2ν T 0 M tr ∇ • u, ∇ • v (t, g u (t)(x)) dx dt .
(2.27)

Now we use the fact that g u (t)(•) is volume preserving:

f ′ (0) = -E T 0 M ∂ ∂t + ∇ u + ν u (t, x), v(t, x) dx dt -E 2ν T 0 M tr ∇ • u, ∇ • v (t, x) dx dt .
(2.28)

Since M is compact and orientable, an integration by parts gives

(2.29) M tr ∇ • u, ∇ • v (t, x) dx = - M u, v (t, x) dx.
Replacing in (2.28) we get

f ′ (0) = -E T 0 M ∂ ∂t + ∇ u -ν u (t, x), v(t, x) dx dt . (2.30)
The process g u (t) is a critical point of the energy functional S if and only if f ′ (0) = 0, which by equation (2.30) is equivalent to

(2.31) ∂ ∂t + ∇ u -ν u = -∇p
for some function p on [0, T ] × M . This achieves the proof.

A martingale characterization for solutions of Navier-Stokes equations

In this section, to simplify the equations, we assume the pressure to be constant. The pressure will not be present, in any case, in the weak version of the formulae we derive.

We seek to obtain a formula for the drift of the covariant derivative with respect to a parameter of a family of Navier-Stokes solutions, extending the well-known Jacobi equation.

Consider a family of diffusions g α , α ∈ R, satisfying

(3.1) g α (0) = ϕ(α)
where ϕ : R → M is a smooth path on M , and solution to the Itô SDE

(3.2) dg α (t) = u(t, g α (t)) dt + σ(g α (t)) dB t
where u solves

(3.3) ∂ t u + ∇ u u + ν u = 0, B t = (B ℓ t ) ℓ≥0 is a family of real Brownian motions, σ = (σ ℓ ) ℓ≥0
, and for all ℓ ≥ 0, σ ℓ is a vector field on M . We furthermore assume that

(3.4) σσ * = νg -1
where g is the Riemannian metric on M .

D c J t = DJ t + 1 2 R(J t , dX t )dX t (3.5)
where X t = π(J t ) and R is the curvature tensor. If J t has an absolutely continuous drift D c J t , then the finite variation part of

D c J t is D c J t dt.
From the Itô equation

(3.6) D c u α t ≃ ∂ t u(t, g α (t)) dt + ∇ dg α (t) u + ν u(t, g α (t)) dt we deduce that the drift of D c u α t is (3.7) D c u α t = ∂ t u(t, g α (t)) + ∇ u α t u + ν u(t, g α (t)) = 0. ¿From [1] Theorem 4.5, we have formally D∇ α u α t =∇ α Du α t + R(dg α (t), ∂ α g α (t))u α t + R(dg α (t), ∂ α g α (t))Du α t -νd * R(∂ α g α (t))u α t + 1 2 R(dg α (t), D∂ α g α (t))u α t . (3.8) 
Using (3.5), we obtain

D c ∇ α u α t =∇ α D c u α t + R(dg α (t), ∂ α g α (t))u α t -ν∇ ∂αg α (t) Ric ♯ (u α t ) dt + R(dg α (t), ∂ α g α (t))Du α t -νd * R(∂ α g α (t))u α t dt + 1 2 R(dg α (t), D∂ α g α (t))u α t . (3.9) 
Removing the martingale part we obtain the drift

D c ∇ α u α t =∇ α D c u α t + R(u α t , ∂ α g α (t))u α t -ν∇ ∂αg α (t) Ric ♯ (u α t ) + 2ν tr R(•, ∂ α g α (t))∇ • u α t -νd * R(∂ α g α (t))u α t + ν tr R(σ(•), ∇ ∂α g α (t) σ(•))u α t .
(3.10)

Now since Du α t = 0 we finally get Proposition 3.1. The drift of the covariant derivative with respect to α of the family (u α t ) α∈R of Navier-Stokes solutions is given by

D c ∇ α u α t =R(u α t , ∂ α g α (t))u α t -ν∇ ∂αg α (t) Ric ♯ (u α t ) + 2ν tr R(•, ∂ α g α (t))∇ • u α t -νd * R(∂ α g α (t))u α t + ν tr R(σ(•), ∇ ∂a g α (t) σ(•))u α t .
(3.11)

This formula extends the well known corresponding (Jacobi) equation for the variation of geodesics.

The two-dimensional torus endowed with the Euclidean distance

We study the evolution in time of the L 2 distance between two particles in the two dimensional torus. Notice that, in order to interpret the diffusion processes as a solution of the variational principle described in section 2, there is no canonical choice for the Brownian motion, as far as it corresponds to the same generator. We make here a particular choice.

On the two-dimensional torus T = R/2πZ × R/2πZ we consider the following vector fields

A k (θ) = (k 2 , -k 1 ) cos k.θ, B k (θ) = (k 2 , -k 1 ) sin k.θ and the Brownian motion (4.1) dW (t) = k∈Z λ k √ ν(A k dx k + B k dy k )
where x k , y k are independent copies of real Brownian motions. We assume that k |k| 2 λ 2 k < ∞, a necessary and sufficient condition for the Brownian flow to be defined in L 2 (T). Furthermore we consider λ k = λ(|k|) to be nonzero for a equal number of k 1 and k 2 components. In this case the generator of the process is equal to

L u = Cν∆ + ∂ ∂t + ∂ u with 2C = k λ 2 k (c.f.[3] Theorem 2.
2). We shall assume C to be equal to one. Let us take two Lagrangian stochastic trajectories starting from different diffeomorphisms and let us write (4.2)

dg t = (odW (t)) + u(t, g t )dt, dg t = (odW (t)) + u(t, gt )dt with g 0 = φ, g0 = ψ, φ = ψ
We consider the L 2 distance of the particles defined by

ρ 2 (φ, ψ) = T |φ(θ) -ψ(θ)| 2 dθ.
where dθ stands for the normalized Lebesgue measure on the torus. We let ρ t = ρ(g t , gt ) and τ (g, g) = inf{t > 0 : ρ t = 0}.

Lemma 4.1. The stopping time τ (g, g) is infinite.

Proof. By uniqueness of the solution of the sde for gt we can let for all t > 0 gt (θ) = g t ((φ -1 • ψ)(θ)). Since g t , ϕ and ψ are diffeomorphisms, if ϕ(θ) = ψ(θ)

then g t (θ) = g t ((φ -1 • ψ)(θ)).
Since φ = ψ, the set {θ ∈ T, gt (θ) = g t (θ)} has positive measure and this implies that ρ t > 0, which in turn implies that τ (g, g) is infinite.

Denote by L t (θ) the local time of the process |g t (θ)gt (θ)| when (g t (θ), gt (θ)) reaches the cutlocus of T. By Itô calculus we have

dρ t = 1 ρ t k λ k √ ν g t -gt , (A k (g t ) -A k (g t )) dx k (t) + (B k (g t ) -B k (g t )) dy k (t) T + 1 ρ t g t -gt , u(t, g t ) -u(t, gt ) T dt - 1 ρ t T |g t -gt |(θ)dL t (θ) + 1 2ρ t k λ 2 k ν A k (g t ) -A k (g t ) 2 T + B k (g t ) -B k (g t ) 2 T dt - 1 2ρ 3 t k λ 2 k ν g t -gt , A k (g t ) -A k (g t ) 2 T + g t -gt , B k (g t ) -B k (g t ) 2 T dt
where •, • T and • T denote, resp., the L 2 inner product and norm. We let

(4.3) δu(t) = 1 ρ t (u(t, g t ) -u(t, gt )) .
We have

(4.4) A k (g t ) -A k (g t ) = -2 sin k • (g t + gt ) 2 sin k • (g t -gt ) 2 k ⊥ , (4.5) B k (g t ) -B k (g t ) = 2 cos k • (g t + gt ) 2 sin k • (g t -gt ) 2 k ⊥ ,
where we have noted k ⊥ = (k 2 , -k 1 ). Then, for k = 0 we let

(4.6) n k = k |k| , and 
n g (t) = 1 ρ t (g t -gt ).
This yields

(4.7) A k (g t ) -A k (g t ) = -2|k| 2 ρ t sin k • (g t + gt ) 2 sin |k|ρ t k • (g t -gt ) 2 n k ⊥ , (4.8) B k (g t ) -B k (g t ) = 2|k| 2 ρ t (cos k • (g t + gt ) 2 sin |k|ρ t k • (g t -gt ) 2 n k ⊥ .
With these notations we get

dρ t = ρ t √ ν k λ k |k| 2 T 2 (n k ⊥ • n g (t, θ)) sin |k|ρ t k • (g t (θ) -gt (θ)) 2 × -sin k • (g t (θ) + gt (θ)) 2 dx k (t) + cos k • (g t (θ) + gt (θ)) 2 dy k (t) dθ + ρ t n g (t), δu(t) T dt -ρ t T |n g (t, θ)| 1 ρ t dL t (θ) + 2νρ t k λ 2 k |k| 4 sin |k|ρ t k • (g t -gt ) 2 2 T dt -2νρ t k λ 2 k |k| 4 × T (n k ⊥ • n g (t, θ)) sin k • (g t (θ) + gt (θ)) 2 sin |k|ρ t k • (g t (θ) -gt (θ)) 2 dθ 2 dt -2νρ t k λ 2 k |k| 4 × T (n k ⊥ • n g (t, θ)) cos k • (g t (θ) + gt (θ)) 2 sin |k|ρ t k • (g t (θ) -gt (θ)) 2 dθ 2 dt.
And finally:

Proposition 4.2. The Itô equation for the distance ρ t between the diffeomorphisms g t and gt is given by (4.9)

dρ t = ρ t σ t dz t + b t dt + n g (t), δu(t) T dt -da t
where z t is a real valued Brownian motion, σ t > 0 is given by

σ 2 t =4ν k λ 2 k |k| 4 × T (n k ⊥ • n g (t, θ)) sin k • (g t (θ) + gt (θ)) 2 sin |k|ρ t k • (g t (θ) -gt (θ)) 2 dθ 2 + 4ν k λ 2 k |k| 4 × T (n k ⊥ • n g (t, θ)) cos k • (g t (θ) + gt (θ)) 2 sin |k|ρ t k • (g t (θ) -gt (θ)) 2 dθ 2 , (4.10) 
the process b t satisfies

b t + 1 2 σ 2 t =2νρ t k λ 2 k |k| 4 sin |k|ρ t k • (g t -gt ) 2 2 T dt (4.11)
and a t is defined by

a 0 = 0, da t = T |n g (t, θ)| 1 ρ t dL t (θ). (4.12)
So we have for all 0 < t 0 < t,

ρ t = ρ t0 exp t t0 σ s dz s + t t0 b s - 1 2 σ 2 s + n g (s), δu(s) T ds -(a t -a t0 ) . (4.13) Let (4.14) δ k = δ k (t, θ) = ρ t (n g • n k ) |g t (θ) -gt θ)| .
Notice that

δ 2 k + δ 2 k ⊥ = 1. Lemma 4.3. We have σ 2 t ≤ 4ν k λ 2 k |k| 4 T δ 2 k ⊥ sin 2 |k| 2 ρ 2 t k • (g t (θ) -gt (θ)) 2 dθ (4.15) and (4.16) b t ≥ 2ν k λ 2 k |k| 4 T (n g • n k ) 2 dθ T sin 2 |k| 2 ρ 2 t k • (g t (θ) -gt (θ)) 2 dθ, in particular b t ≥ 0. Let R > 0. Assuming that λ k = 0 for all k such that |k| > R then on ω | ∀θ ∈ T, |g t (θ) -gt (θ)| ≤ π R we have b t - 1 2 σ 2 t ≥ 0.
Proof. Using Cauchy Schwartz inequality,

σ 2 t ≤ 4 k λ 2 k |k| 4 ν T |(n g • n k ⊥ )| sin 2 k • (g t (θ) + gt (θ)) 2 | sin | |k|ρ t k • (g t (θ) -gt (θ)) 2 dθ × T |(n g • n k ⊥ )|) | sin | |k|ρ t k • (g t (θ) -gt (θ)) 2 dθ + 4 k λ 2 k |k| 4 ν T |(n g • n k ⊥ )| cos 2 k • (g t (θ) + gt (θ)) 2 | sin | |k|ρ t k • (g t (θ) -gt (θ)) 2 dθ × T |(n g • n k ⊥ )| | sin | |k|ρ t k • (g t (θ) -gt (θ)) 2 dθ = 4ν k λ 2 k |k| 4 T |(n g • n k ⊥ )| | sin | |k|ρ t k • (g t (θ) -gt (θ)) 2 dθ 2 = 4ν k λ 2 k |k| 4 T δ k ⊥ |g t (θ) -gt θ)| ρ t | sin | |k|ρ t k • (g t (θ) -gt (θ)) 2 dθ 2 ≤ 4ν k λ 2 k |k| 4 T |g t (θ) -gt (θ)| 2 ρ 2 t dθ T δ 2 k ⊥ sin 2 |k| 2 ρ 2 t k • (g t (θ) -gt (θ)) 2 dθ = 4ν k λ 2 k |k| 4 T δ 2 k ⊥ sin 2 |k| 2 ρ 2 t k • (g t (θ) -gt (θ)) 2 dθ.
On the other hand,

b t + 1 2 σ 2 t = 2ν k λ 2 k |k| 4 T sin 2 |k| 2 ρ 2 t k • (g t (θ) -gt (θ))
2 dθ, so that using the bound

σ 2 t ≤ 4ν k λ 2 k |k| 4 T |(n g • n k ⊥ )| | sin | |k|ρ t k • (g t (θ) -gt (θ)) 2 dθ 2 ≤ 4ν k λ 2 k |k| 4 T (n g • n k ⊥ ) 2 dθ T sin 2 |k| 2 ρ 2 t k • (g t (θ) -gt (θ)) 2 dθ for σ 2 t yields b t ≥ 2ν k λ 2 k |k| 4 T (n g • n k ) 2 dθ T sin 2 |k| 2 ρ 2 t k • (g t (θ) -gt (θ))
2 dθ

where we used

T (n g • n k ) 2 dθ + T (n g • n k ⊥ ) 2 dθ = 1.
Since λ k depends only on |k|, we have λ k = λ k ⊥ for all k. Then putting together the terms corresponding to k and k ⊥ we obtain

b t + 1 2 σ 2 t = ν k λ 2 k |k| 4 × T sin 2 |k| 2 ρ 2 t k • (g t (θ) -gt (θ)) 2 + sin 2 |k| 2 ρ 2 t k ⊥ • (g t (θ) -gt (θ)) 2 dθ,
and this yields using the bound for σ 2 t as well as

δ 2 k + δ 2 k ⊥ = 1 b t - 1 2 σ 2 t ≥ ν k λ 2 k |k| 4 × T (δ 2 k -δ 2 k ⊥ ) sin 2 |k| 2 ρ 2 t k • (g t (θ) -gt (θ)) 2 - sin 2 |k| 2 ρ 2 t k ⊥ • (g t (θ) -gt (θ)) 2 dθ = ν k λ 2 k |k| 4 × T (δ 2 k -δ 2 k ⊥ ) sin 2 |k| 2 ρ 2 t δ k |k||g t -gt |(θ) 2 - sin 2 |k| 2 ρ 2 t δ k ⊥ |k||g t -gt |(θ) 2 dθ
Assuming that λ k = 0 whenever |k| > R then on

ω|∀θ ∈ T, |g t (θ) -gt (θ)| ≤ π R the functions inside the integral are nonegative, consequently b t - 1 2 σ 2 t ≥ 0. Define (4.17) ℓ(x) = sin x x for x = 0, ℓ(0) = 1.
From Lemma 4.3 we easily get the following result.

Proposition 4.4. Let R ≥ 1. Then on ω|∀θ ∈ T, |g t (θ) -gt (θ)| ≤ π √ 2 R , letting c R = ν 8 ℓ 2 π √ 2 |k|≤R λ 2 k |k| 4 ,
we have,

dρ t ≥ ρ t σ t dz t -δu(t) T dt - T |n g (t, θ)| 1 ρ t dL t (θ) + c R dt . (4.18)
Moreover assuming that λ k = 0 whenever |k| > R, then letting

c ′ R = 1 8 ν inf |v|=1 |k|≤R λ 2 k |k| 4 (n k • v) 2 -(n k ⊥ • v) 2 2 , on ω|∀θ ∈ T, |g t (θ) -gt (θ)| ≤ π 2R , dρ t ≥ ρ t σ t dz t + 1 2 σ 2 t dt -δu(t) T dt + c ′ R dt . (4.19) Proof. If |g t (θ) -gt (θ)| ≤ π √ 2 R
then for all k such that |k| ≤ R,

ℓ 2 k • (g t (θ) -gt (θ)) 2 ≥ ℓ 2 π √ 2
and this implies

sin 2 |k| 2 ρ 2 t k • (g t (θ) -gt (θ)) 2 ≥ 1 4 ℓ 2 π √ 2 (n k • n g ) 2 .
So with (4.16) we get

b t ≥ 1 2 ℓ 2 π √ 2 ν |k|≤R λ 2 k |k| 4 T (n g • n k ) 2 dθ 2 ≥ 1 4 ℓ 2 π √ 2 ν |k|≤R λ 2 k |k| 4 T (n g • n k ) 2 dθ 2 + T (n g • n k ⊥ ) 2 dθ 2 ≥ 1 8 ℓ 2 π √ 2 ν |k|≤R λ 2 k |k| 4 (again we used T (n g • n k ) 2 dθ + T (n g • n k ⊥ ) 2 dθ = 1.
). This establishes (4.18).

Next if |g t (θ)gt (θ)| ≤ π 2R then from the calculation in the proof of Lemma 4.3

b t - 1 2 σ 2 t ≥ ν |k|≤R λ 2 k |k| 4 × T (δ 2 k -δ 2 k ⊥ ) sin 2 |k| 2 ρ 2 t δ k |k||g t -gt |(θ) 2 - sin 2 |k| 2 ρ 2 t δ k ⊥ |k||g t -gt |(θ) 2 dθ ≥ ν |k|≤R λ 2 k |k| 4 T (δ 2 k -δ 2 k ⊥ ) 2 |g t -gt | 2 (θ) 8ρ 2 t dθ ≥ T |g t -gt | 2 (θ) ρ 2 t c ′ R dθ = c ′ R .
this establishes (4.19).

Theorem 4.5. Let t > 0, R ≥ 1 and

Ω t = ω ∈ Ω, ∀s ≤ t, ∀θ ∈ T, |(g s (θ)(ω) -gs (θ)(ω))| ≤ π 2R .
If we assume the initial conditions for the L 2 distance and the L 2 norm of the initial velocity related as c = ρ 0 -2 u 0 T > 0, and suppose that T u = 0, then on Ω t ,

(4.20) ∀s ≤ t, ρ s ≥ e t 0 σs dzs+c ′ R t ρ 0 -2 u 0 T t 0 e -s 0 σr dzr-(c ′ R + ν
2 )s ds as long as the right hand side stays positive.

On the other hand if we assume that there exist constants c 1 , c 2 > 0 such that for all θ ∈ T and s ∈ [0, t] ,

(4.21) |∇u(t, θ)| ≤ c 1 e -c2t ,
then on Ω t , ∀s ≤ t,

(4.22) ρ s ≥ ρ 0 exp t 0 σ s dz s + c ′ R t - c 1 c 2 1 -e -c2t .
Proof. Assume that ρ 0 -2 u 0 T > 0. 

dρ t ≥ ρ t σ t dz t + 1 2 σ 2 t dt -c 1 e -c2t dt + c ′ R dt .
Integrating the right hand side between t 0 and t gives the result.

Remark 4.6. The bound (4.21) is satisfied for instance for solutions u(t, •) of the form e -ν|k| 2 t A k . Also notice that, by the expression of the constant c ′ R , the stochastic Lagrangian trajectories for a fluid with a given viscosity constant tend to get apart faster when the higher Fourier modes (and therefore the smaller lenght scales) are randomly excited.

The two-dimensional torus endowed with the extrinsic distance

It seems difficult to deal with the local time term of Proposition 4.2. To circumvent this problem we propose to endow the torus T with a distance ρ T equivalent to the one of section 4, but such that ρ 2

T is smooth on T × T. Then we will see that when the assumptions of Theorem 4.5 are not fulfilled, then the behaviour of the distance of two diffeomorphisms can be completely different even if their distance is small. So the uniform control of the distance in Theorem 4.5 looks as a necessary condition for an exponential growth of the distance.

The map

R/2πZ × R/2πZ → [0, 2] (θ 1 , θ 2 ) → 2 sin θ 2 -θ 1 2
defines a distance on the circle R/2πZ: it is the extrinsic distance on the circle embedded in the plane. From this distance we can define the product distance on the torus T.

ρ T ((θ 1 , θ 2 ), (θ ′ 1 , θ ′ 2 )) = 2 sin 2 θ ′ 1 -θ 1 2 + sin 2 θ ′ 2 -θ 2 2 1/2 . Note ρ 2 T ((θ 1 , θ 2 ), (θ ′ 1 , θ ′ 2 )) = 2 (2 -cos(θ ′ 1 -θ 1 ) -cos(θ ′ 2 -θ 2 )) . The distance ρ 2
T is smooth on T × T. Now let φ and ψ be two diffeomorphisms on the torus T. We define the distance ρ(φ, ψ) with the formula

ρ 2 (φ, ψ) = T ρ 2 T (φ(θ), ψ(θ)) dθ = 2 T 2 -cos(φ 1 (θ) -ψ 1 (θ)) -cos(φ 2 (θ) -ψ 2 (θ)) dθ = 4 T sin 2 φ 1 (θ) -ψ 1 (θ) 2 + sin 2 φ 2 (θ) -ψ 2 (θ) 2 dθ Now let ρ t = ρ(g t , gt ).
¿From the smoothness of ρ 2 T , the formula for ρ t does not involve a local time. More precisely, letting δg = g t (θ)gt (θ),

δ cos k • g = cos k • g t (θ) -cos k • gt (θ), δ sin k • g = sin k • g t (θ) -sin k • gt (θ), sin δg = (sin(δg t ) 1 (θ), sin(δg t ) 2 (θ)), δu = (u(t, g t ) -u(t, gt ))
we get from Itô calculus

dρ t = ρ t k λ k sin δg ρ t , (k 2 , -k 1 ) δ cos k • g ρ t dx k + δ sin k • g ρ t dy k T + ρ t sin δg ρ t , δu ρ t T dt + ρ t 2 k λ 2 k T k 2 2 cos δg 1 + k 2 1 cos δg 2 (δ cos k • g) 2 + (δ sin k • g) 2 ρ 2 t dθ dt - ρ t 2 k λ 2 k T k 2 sin δg 1 ρ t -k 1 sin δg 2 ρ t δ cos k • g ρ t dθ 2 dt - ρ t 2 k λ 2 k T k 2 sin δg 1 ρ t -k 1 sin δg 2 ρ t δ sin k • g ρ t dθ 2 dt.
This clearly has the form

dρ t = ρ t (σ t dz t + b t dt)
where σ t and b t are bounded processes and z t is a real-valued Brownian motion. However it can happen that the drift is negative even if ρ t is small, as the following example shows.

Example 5.1. Let α > 0 small and ε > 0 satisfying ε << α. Take φ = id and assume that there exist two subsets E 1 and E 2 of T such that E 1 ⊂ E 2 , E 1 has measure α, E 2 has measure α + ε, ψ(θ) = θ for all θ ∈ T\E 2 and ψ(θ) = (θ 1 + π, θ 2 ) for all θ ∈ E 1 . Since ε can be as small as we want, we have

ρ 2 0 ≃ 4α, (sin δg) 0 ≃ 0, (δg 0 ) 2 ≃ 0, (δ sin k • g) 0 ≃ 0, on T\E 2 , (δ cos k • g) 0 = 0, on E 1 , (δ cos k • g) 0 = -2 if k 1 is odd, (δ cos k • g) 0 = 0 if k 1 is even, so at time t = 0, dρ t ≃ - ρ t 2   k1 odd λ 2 k k 2 2   dt.
To construct a diffeomorphism like ψ, one can cut an annulus E 1 of width α 2π in T and rotate it by π. This yields a one to one map on T. Then smoothen it around the boundary of the annulus to get ψ. The set E 2 can be taken as an annulus of width α + ε 2π containing E 1 .

6. Distance and rotation processes of two particles on a general Riemannian manifold 6.1. Distance of two particles.

Let B t = (B ℓ t ) ℓ≥0 be a family of independent real Brownian motions, σ = (σ ℓ ) ℓ≥0 , with, for all ℓ ≥ 0, σ ℓ a divergence free vector field on M . We furthermore assume that (6.1) σ(x)σ * (y) = a(x, y).

In particular

(6.2) σ(x)σ * (x) = 2νg -1 (x).
We let ϕ, ψ ∈ G 0 V . In this section we assume that (6.3) dg t (x) = σ(g t (x)) dB t + u(t, g t (x)) dt, g 0 = ϕ and (6.4) dg t (x) = σ(g t (x)) dB t + u(t, gt (x)) dt, g0 = ψ For simplicity we let x t = g t (x), y t = gt (x) and

ρ t (x) = ρ M (x t , y t )
For x, y ∈ M such that y does not belong to the cutlocus of x, we let a → γ a (x, y) be the minimal geodesic in time 1 from x to y (γ 0 (x, y) = x, γ 1 (x, y) = y)). For a ∈ [0, 1] we let J a = T γ a the tangent map to γ a . In other words, for v ∈ T x M and w ∈ T y M , J a (v, w) is the value at time a of the Jacobi field along γ • which takes the values v at time 0 and w at time 1.

We first consider the case where y t does not belong to the cutlocus of x t . We note T a = T a (t) = γa (x t , y t ) and γ a (t) = γ a (x t , y t ).

Letting P (γ a ) t be the parallel transport along γ a (t), we have for the Itô covariant differential D γa (t) := P (γ a ) t d P (γ a ) - Let e(t) ∈ T xt M be the unit vector satisfying T 0 (t) = ρ t (x)e(t). For ℓ ≥ 0 we let a → J ℓ a (t, x) be the Jacobi field such that J ℓ 0 (t, x) = σ ℓ (g t (x)), J ℓ 1 (t) = σ ℓ (g t (x)). Moreover we assume that ∇ J ℓ 0 (t,x) J ℓ 0 (t, x) = 0 and ∇ J ℓ 1 (t,x) J ℓ 1 (t, x) = 0.

With these notations, equation (6.5) rewrites as

DT a = ∇ Ja(dxt,dyt) T a + 1 2 ℓ≥0 ∇ ∇ J ℓ a J ℓ a T a dt + 1 2 ℓ≥0 ∇ J ℓ a • ∇ J ℓ a T a dt = Ja (dx t , dy t ) + 1 2 ℓ≥0 ∇ J ℓ a ∇ J ℓ a T a dt.
We have

dρ t (x) = d 1 0 T a (t), T a (t) da 1/2 = 1 2ρ t (x) 2 1 0 DT a (t), T a (t) da + 1 0 DT a (t), DT a (t) da - 1 8ρ t (x) 3 d T 0 2 • d T 0 2 = ℓ≥0
Jℓ 0 (t, x), e t (x) dB ℓ t + J0 (u(t, g t (x)), u(t, gt (x))), e t (x)

+ 1 2ρ t (x)   1 0 ℓ≥0 ∇ J ℓ a ∇ J ℓ a T a , T a da dt + ℓ≥0 1 0 Jℓ a 2 da   - 1 2ρ t (x) ℓ≥0 Jℓ 0 (t, x), e t (x) 2 . Note 1 0 ∇ J ℓ a ∇ J ℓ a T a , T a da = 1 0 ∇ J ℓ a ∇ Ta J ℓ a , T a da = 1 0 ∇ Ta ∇ J ℓ a J ℓ a , T a da - 1 0 R(T a , J ℓ a )J ℓ a , T a da = 1 0 T a ∇ J ℓ a J ℓ a , T a da - 1 0 R(T a , J ℓ a )J ℓ a , T a da = ∇ J ℓ a J ℓ a , T a 1 0 - 1 0 R(T a , J ℓ a )J ℓ a , T a da = - 1 0
R(T a , J ℓ a )J ℓ a , T a da using the fact that ∇ J ℓ a J ℓ a = 0 for a = 0, 1. So finally,

dρ t (x) = ℓ≥0 Jℓ 0 (t, x), e t (x) dB ℓ t + J0 (u(t, g t (x)), u(t, gt (x))), e t (x) + 1 2ρ t (x)   1 0 ℓ≥0 Jℓ,N a 2 -R(T a (t, x), J ℓ,N a (t, x))J ℓ,N a (t, x), T a (t, x) da   dt
with J ℓ,N a (t, x) the part of J ℓ a (t, x) normal to T a .

Proposition 6.1. The Itô differential of the distance ρ t between g t and gt is given by

dρ t = 1 ρ t ℓ≥0 M ρ t (x) P gt(x),gt(x) (σ T ℓ (g t (x))) -σ T ℓ (g t (x) dx dB ℓ t + 1 ρ t M ρ t (x) P gt(x),gt(x) (u T (g t (x)))) -u T (g t (x)) dx dt - 1 ρ t M ρ t (x)dL t (x) dx + 1 2ρ t   M ℓ≥0 1 0 Jℓ,N a 2 -R(T a (t, x), J ℓ,N a (t, x))J ℓ,N a (t, x), T a (t, x) da dx   dt + 1 2ρ t ℓ≥0 1 -cos 2 Jℓ,T 0 (t, •), T 0 (t, •) M Jℓ,T 0 (t, x) 2 dx dt.
In the case of manifolds with negative curvature we may observe a similar phenomena to the one of the torus with the Euclidean distance treated in Section 4: as long as the L ∞ norm stays sufficiently small to avoid the cut-locus of the manifold, the L 2 mean distance between the stochastic particles tends to increase exponentially fast.

The rotation process.

In the following we would like to study the rotation of two particles g t (x) and gt (x) when they are in a close distance one to another. Recall that we have noted x t = g t (x), y t = gt (x). We always assume that the distance from x t to y t is small: we are interested in the behaviour of e(t) as ρ t (x) goes to 0. We let ( 

(t) = 1 ρ t (x) DT 0 - 1 ρ t (x) dρ t (x)e(t) - 1 2 1 ρ t (x) dρ t (x)De(t) = 1 ρ t (x) J0 (d m x(t) N , d m y(t) N ) + 1 ρ t (x) J0 (u(t, x t ), u(t, y t )) dt + 1 2ρ t (x) ℓ≥0 ∇ J ℓ 0 ∇ J ℓ 0 T 0 dt - 1 ρ t (x) P yt,xt (u(t, y t )) -u(t, x t ), e(t) e(t) - 1 2ρ t (x) 2   1 0 ℓ≥0 ∇ Ta J ℓ a 2 -R(T a , J ℓ a )J ℓ a , T a da   e(t) - 1 2 
1 ρ t (x) dρ t (x)De(t) = 1 ρ t (x) J0 (d m x(t) N , d m y(t) N ) + 1 ρ t (x) J0 (u N (t, x t ), u N (t, y t )) + 1 2ρ t (x) ℓ≥0 ∇ J ℓ 0 ∇ J ℓ 0 T 0 dt - 1 2ρ t (x) 2   1 0 ℓ≥0 ∇ Ta J ℓ a 2 -R(T a , J ℓ a )J ℓ a , T a da   e(t)
where we used the fact that dρ t (x)De(t) = 0, and where u N denotes the part of u which is normal to the geodesic γ a . Now as before

∇ J ℓ 0 ∇ J ℓ 0 T 0 = ∇ T0 ∇ J ℓ 0 J ℓ 0 -R(T 0 , J ℓ 0 )J ℓ 0 . Finally we get Lemma 6.2. De(t) = 1 ρ t (x) J0 (d m x(t) N , d m y(t) N ) + 1 ρ t (x) J0 (u N (t, x t ), u N (t, y t )) + 1 2ρ t (x) ℓ≥0 ∇ T0 ∇ J ℓ J ℓ -R(T 0 , J ℓ 0 )J ℓ 0 dt - 1 2ρ t (x) 2   1 0 ℓ≥0 ∇ Ta J ℓ a 2 -R(T a , J ℓ a )J ℓ a , T a da   e(t)
.

¿From now on we assume that M = T the two dimensional torus.

In this situation the curvature tensor vanishes and we have the formulas

J a (v, w) = v + a(w -v), Ja (v, w) = w -v.
We immediately get

de(t) = De(t) = 1 ρ t (x) d m y(t) N -d m x(t) N + 1 ρ t (x) (u N (t, y t ) -u N (t, x t ) dt - 1 2ρ t (x) 2 ℓ≥0 σ ℓ (y t ) -σ ℓ (x t )
2 dt e(t)

where we used the fact that ∇ T0 ∇ J ℓ J ℓ = 0, as a consequence of ∇ J ℓ 0 J ℓ 0 = 0, ∇ J ℓ 1 J ℓ 1 = 0, and R ≡ 0. Let us specialize again to the case where the vector fields are given by A k (θ) = (k 2 , -k 1 ) cos k.θ, B k (θ) = (k 2 , -k 1 ) sin k.θ and the Brownian motion (6.9) becomes more and more irregular in the sense that the derivative of the quadratic variation of X t tends to infinity.

dW

  Y0 M → T Yt Mis the parallel transport along t → Y t . Alternatively, in local coordinates,

	1.1)	dY t = P (Y ) t d	0	•	P (Y ) -1 s • dY s	t
	where					
	(1.2) P (Y ) (1.3) dY t = dY i t +	1 2	Γ i jk (Y t )dY j t ⊗ dY k t	∂ i

t : T

  Let us denote by Dv t the drift of v t with respect to the damped connection ∇ c on T M , whose geodesics are the Jacobi fields. It is known that, Ric ♯ (v t ) dt is the drift of Dv t .

					g u (t)(x)) dt
	is a local martingale.			
	On the other hand, denoting u t = u(t, g u (t)(x)) and v t = v(t, g u (t)(x)) we have
		T	T	T	
	(2.20)	u T , v T =	Du t , v t +	u t , Dv t +	Du t , Dv t .
		0	0	0	
	(2.21)	Du t -ν Ric ♯ (u t ) dt is the drift of Du t
	and				
	(2.22) Dv t -ν As can be seen from (2.15), (2.19) and (2.22), the drift Dv t commutes with the
	derivative with respect to a parameter, so it satisfies	
	(2.23)	Dv t = ∇ ε | ε=0 De t (εv)(g u (t)(x)).	
	Taking the expectation in (2.20) and using (2.23), (2.21) and (2.22), we get by
	removing the martingale parts		

  Now assume (4.21). To prove (4.22) we start with (4.19), and remark that δu(t) T ≤ sup θ∈T |∇u(t, θ)|. Then with the bound on ∇u(t, θ) we have

	(4.23)		R +	1 2	σ 2 s ) ds -2 u(s, •) T ds.
	Using the fact that u(t, .) satisfies Navier-Stokes equation together with Poincaré
	inequality,			
		d ds	||u(s, .)|| 2 T = -2ν||∇u(s, .)|| 2 T
	Therefore we have	T . ≤ -ν||u(s, .)|| 2
	We obtain		||u(s, .)|| T ≤ e -ν 2 s ||u 0 || T .
	(4.24)	dρ s ≥ ρ s σ s dz s + (c ′ R +	1 2	σ 2 s ) ds -2e -ν 2 s ||u 0 || T ds.
	From this comparison theorem for solution of sde's yields (4.20).

From inequality (4.19) we have on Ω t , for s ≤ t, dρ s ≥ ρ s σ s dz s + (c ′

  J a (dx t , dy t ).

			1 t γa (t)
	= ∇ dγa(t) γa +	1 2	∇ dγa(t) • ∇ dγa(t) γa (t).
	On the other hand the Itô differential dγ a (t) satisfies
	dγ a (t) = J a (dx t , dy t ) + ∇ (dxt,dyt) So we get 1 2
	(6.5) D γa (t) = ∇ Ja(dxt,dyt) γa +∇ 1 2 (∇(dx t ,dy t ) Ja)(dxt,dyt) γa +	1 2	∇ dγa(t) •∇ dγa(t) γa (t).

  N = σ(y t )dB t -σ(y t )dB t , P xt,yt e(t) P xt,yt e(t)

	and this yields	
	De	
	and	
	(6.7) d m y(t) where P xt,γa(t) denotes the parallel transport along γ a .
	¿From Itô formula we have
	(6.8)	DT 0 = ρ t (x)De(t) + dρ t (x)e(t) + dρ t (x)De(t)

6.6) d m x(t) N = σ(x t )dB t -σ(x t )dB t , e(t) e(t)

  (t) = k dx k + B k dy k )where x k , y k are independent copies of real Brownian motions. As in section 4 we assume that k |k| 2 λ 2 k < ∞ and we consider λ k = λ(|k|) to be nonzero for a equal number of k 1 and k 2 components. Again we write (6.10)dg t = (odW (t)) + u(t, g t )dt, dg t = (odW (t)) + u(t, gt )dt Changing the notation to g t = g t (θ) = x t , gt = gt (θ) = y t , we get N (t, gt ) -u N (t, g t ) dt Noting |k ⊥,N | 2 = |k| 2 (n k • e(t))2 , we obtain ′ (t) is a unit vector in T orthonormal to e(t). Now for every K > 0, ifρ t (θ) ≤ π 2Kthen for all k such that |k| ≤ K,Now using |k| = |k ⊥ | and (n k • e(t)) 2 + (n k ⊥ • e(t)) 2 = 1, we get 2 λ 2 k ν(n k • e(t)) 2 sin 2 k • (g t -g t )Observe that the term in the left is the second part of the drift in equation (6.11) as well as the derivative of the quadratic variation of e(t). This yields the following result.Proposition 6.3. Identifying T T with C, we have e(t) = e iXt where X t is a realvalued semimartingale with quadratic variation = +∞, then as gt (θ) gets closer and closer to g t (θ), the rotation e(t)

		de(t) =	1 ρ t (θ)	|k| =0	|k|λ k	√	ν(n k • e(t))e ′ (t) 2 sin	k • (g t -g t ) 2	dz k
	(6.11)	+	1 ρ t (θ)	(u N (t, gt ) -u N (t, g t ) dt
		-	2 ρ 2 t (θ)	|k| =0	|k| 2 λ 2 k ν(n k • e(t)) 2 sin 2 k • (g t -g t ) 2	e(t) dt
	k∈Z where e sin 2 k•(gt-gt) λ k √ 2 |k| 2 ρ 2 t (θ)(n k • e(t)) 2 ≥ ν(A with (6.12) 2 ρ 2 t (θ) |k| =0 2	1 π 2 .	≥	ν 2π 2	0<|k|<K	λ 2 k |k| 4 .
					g 0 = φ,		g0 = ψ,	φ = ψ.
	de(t) = λ + 1 ρ t (θ) |k| =0 1 ρ t (θ) |k| =0 (6.13) d[X, X] t = k ν(n and drift 4 ρ 2 t (θ) |k| =0 |k| 2 λ 2 λ -1 2ρ 2 |k| =0 t (θ) λ 2 (6.14)	2 e(t) dt
	= + (6.15) (u -1 ρ t (θ) |k| =0 1 ρ t (θ) 2 ρ 2 t (θ) |k| =0 If |k| =0 λ 2 k |k| 4	λ k λ 2 k ν|k ⊥,N | 2 sin 2 ( √ νk ⊥,N 2 sin d[X, X] t ≥ k • (g t -g t ) π , 2K 2 ν π 2 0<|k|<K k • (g t -g t ) 2 )e(t) dt dz k λ 2 k |k| 4 .
	where z k is the Brownian motion defined by
		dz k = -sin	k • (g t + g t ) 2	dx k + cos	k • (g t + g t ) 2	dy k .

k √ ν (cos k • gtcos k • g t ) k ⊥,N dx k k √ ν (sin k • gtsin k • g t ) k ⊥,N dy k + 1 ρ t (θ) (u N (t, gt ) -u N (t, g t ) dt k ν|k ⊥,N | 2 (cos k • gtcos k • g t ) 2 + (sin k • gtsin k • g t ) |k| k • e(t)) 2 sin 2 k • (g t -g t ) 2 dt t 0 1 ρ s (θ)

u(s, gs ) -u(s, g s ), ie(s) ds.

We have for all K > 0, on ρ t (θ) ≤

We denote by u α t = Dg α (t) = u(t, g α (t)) the drift of g α . We denote by D c J t the vertical part of the Itô differential (with respect to ∇ c ) of a T M -valued semimartingale J t . It is known that Acknowledgment. The second author wishes to thank the support of the Université de Poitiers. This work has also benefited from the portuguese grant PTDC/MAT/69635/2006.

Removing the assumption that y t does not belong to the cutlocus of x t , it is well known (see [START_REF] Kendall | Nonnegative Ricci curvature and the Brownian coupling property[END_REF] for a similar argument) that the formula becomes

where -L t (x) is the local time of ρ t (x) when (g t (x), gt (x)) visits the cutlocus. Then letting

, we get