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Integration by parts formula with respect to jump times for stochastic

differential equations
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Abstract

We establish an integration by parts formula based on jump times in an abstract framework in

order to study the regularity of the law for processes solution of stochastic differential equations

with jumps.
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1 Introduction

We consider the one dimensional equation

Xt = x+

∫ t

0
c(u, a,Xu−)dN(u, a) +

∫ t

0
g(u,Xu)du (1)

where N is a Poisson point measure of intensity measure µ on some abstract measurable space E.

We assume that c and g are infinitely differentiable with respect to t and x, have bounded derivatives

of any order and have linear growth with respect to x. Moreover we assume that the derivatives of c

are bounded by a function c such that
∫

E c(a)dµ(a) < ∞. Under these hypotheses the equation has

a unique solution and the stochastic integral with respect to the Poisson point measure is a Stieltjes

integral.
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Our aim is to give sufficient conditions in order to prove that the law of Xt is absolutely continuous

with respect to the Lebesgue measure and has a smooth density. If E = R
m and if the measure µ

admits a smooth density h then one may develop a Malliavin calculus based on the amplitudes of

the jumps in order to solve this problem. This has been done first in [4] and then in [3]. But if µ is

a singular measure this approach fails and one has to use the noise given by the jump times of the

Poisson point measure in order to settle a differential calculus analogous to the Malliavin calculus.

This is a much more delicate problem and several approaches have been proposed. A first step is

to prove that the law of Xt is absolutely continuous with respect to the Lebesgue measure, without

taking care of the regularity. A first result in this sense was obtained by Carlen and Pardoux in [5]

and was followed by a lot of other papers (see [6], [7], [11], [13]). The second step is to obtain the

regularity of the density. Recently two results of this type have been obtained by Ishikawa and Kunita

in [10] and by Kulik in [12]. In both cases one deals with an equation of the form

dXt = g(t,Xt)dt+ f(t,Xt−)dUt (2)

where U is a Lévy process. The above equation is multi-dimensional (let us mention that the method

presented in our paper may be used in the multi-dimensional case as well, but then some technical

problems related to the control of the Malliavin covariance matrix have to be solved - and for simplicity

we preferred to leave out this kind of difficulties in this paper). Ishikawa and Kunita in [10] used the

finite difference approach given by J. Picard in [14] in order to obtain sufficient conditions for the

regularity of the density of the solution of an equation of type (1) (in a somehow more particular

form, closed to linear equations). The result in that paper produces a large class of examples in which

we get a smooth density even for an intensity measure which is singular with respect to the Lebesgue

measure. The second approach is due to Kulik [12]. He settled a Malliavin type calculus based on

perturbations of the time structure in order to give sufficient conditions for the smoothness of the

density. In his paper the coefficient f is equal to one so the non degeneracy comes from the drift term

g only. As before, he obtains the regularity of the density even if the intensity measure µ is singular.

He also proves that under some appropriate conditions, the density is not smooth for a small t so that

one has to wait before the regularization effect of the noise produces a regular density.

The result proved in our paper is the following. We consider the function

α(t, a, x) = g(x) − g(x+ c(t, a, x)) + (g∂xc+ ∂tc)(t, a, x).

Except the regularity and boundedness conditions on g and c we consider the following non degeneracy
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assumption. There exists a measurable function α such that |α(t, a, x)| ≥ α(a) > 0 for every (t, a, x) ∈

R+ × E × R. We assume that there exists a sequence of subsets En ↑ E such that µ(En) < ∞ and

limn→∞

1

µ(En)
ln(

∫

En

1

α(a)
dµ(a)) = θ < ∞.

If θ = 0 then, for every t > 0, the law of Xt has a C∞ density with respect to the Lebesgue measure.

Suppose now that θ > 0 and let q ∈ N. Then, for t > 16θ(q + 2)(q + 1)2 the law of Xt has a density

of class Cq. Notice that for small t we are not able to prove that a density exists and we have to wait

for a sufficiently large t in order to obtain a regularization effect.

In the paper of Kulik [12] one takes c(t, a, x) = a so α(t, a, x) = g(x) − g(x + c(t, a, x)). Then

the non degeneracy condition concerns just the drift coefficient g. And in the paper of Ishikawa and

Kunita the basic example (which corresponds to the geometric Lévy process) is c(t, a, x) = xa(ea − 1)

and g constant. So α(t, a, x) = a(ea − 1) ∼ a2 as a → 0. The drift coefficient does not contribute to

the non degeneracy condition (which is analogous to the uniform ellipticity condition).

The paper is organized as follows. In Section 2 we give an integration by parts formula of Malliavin

type. This is analogous to the integration by parts formulas given in [2] and [1]. But there are two

specific points: first of all the integration by parts formula take into account the border terms (in

the above mentioned papers the border terms cancel because one makes use of some weights which

are null on the border; but in the paper of Kulik [12] such border terms appear as well). The second

point is that we use here a ”one shot” integration by parts formula: in the classical gaussian Malliavin

calculus one employs all the noise which is available - so one derives an infinite dimensional differential

calculus based on ”all the increments” of the Brownian motion. The analogous approach in the case

of Poisson point measures is to use all the noise which comes from the random structure (jumps). And

this is the point of view of almost all the papers on this topic. But in our paper we use just ”one jump

time” which is chosen in a cleaver way (according to the non degeneracy condition). In Section 3 we

apply the general integration by parts formula to stochastic equations with jumps. The basic noise is

given by the jump times.

2 Integration by parts formula

2.1 Notations-derivative operators

The abstract framework is quite similar to the one developed in [2] but we introduce here some

modifications in order to take into account the border terms appearing in the integration by parts
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formula. We consider a sequence of random variables (Vi)i∈N∗ on a probability space (Ω,F , P ), a sub

σ-algebra G ⊆ F and a random variable J , G measurable, with values in N. Our aim is to establish a

differential calculus based on the variables (Vi), conditionally on G. In order to derive an integration

by parts formula, we need some assumptions on the random variables (Vi). The main hypothesis is

that conditionally on G, the law of Vi admits a locally smooth density with respect to the Lebesgue

measure.

H0. i) Conditionally on G, the random variables (Vi)1≤i≤J are independent and for each i ∈

{1, . . . , J} the law of Vi is absolutely continuous with respect to the Lebesgue measure. We note pi

the conditional density.

ii) For all i ∈ {1, . . . , J}, there exist some G measurable random variables ai and bi such

that −∞ < ai < bi < +∞, (ai, bi) ⊂ {pi > 0}. We also assume that pi admits a continuous bounded

derivative on (ai, bi) and that ln pi is bounded on (ai, bi).

We define now the class of functions on which this differential calculus will apply. We consider in

this paper functions f : Ω× R
N∗

→ R which can be written as

f(ω, v) =

∞
∑

m=1

fm(ω, v1, ..., vm)1{J(ω)=m} (3)

where fm : Ω× R
m → R are G × B(Rm)−measurable functions.

In the following, we fix L ∈ N and we will perform integration by parts L times. But we will

use another set of variables for each integration by parts. So for 1 ≤ l ≤ L, we fix a set of indices

Il ⊂ {1, . . . , J} such that if l 6= l′, Il ∩ Il′ = ∅. In order to do l integration by parts, we will use

successively the variables Vi, i ∈ Il then the variables Vi, i ∈ Il−1 and end with Vi, i ∈ I1. Moreover,

given l we fix a partition (Λl,i)i∈Il of Ω such that the sets Λl,i ∈ G, i ∈ Il. If ω ∈ Λl,i, we will use only

the variable Vi in our integration by parts.

With these notations, we define our basic spaces. We consider in this paper random variables F =

f(ω, V ) where V = (Vi)i and f is given by (3). To simplify the notation we write F = fJ(ω, V1, . . . , VJ )

so that conditionally on G we have J = m and F = fm(ω, V1, . . . , Vm). We denote by S0 the space of

random variables F = fJ(ω, V1, . . . , VJ) where fJ is a continuous function on OJ =
∏J

i=1(ai, bi) such

that there exists a G measurable random variable C satisfying

sup
v∈OJ

|fJ(ω, v)| ≤ C(ω) < +∞ a.e. (4)

We also assume that fJ has left limits (respectively right limits) in ai (respectively in bi). Let us be

more precise.
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With the notations V(i) = (V1, ..., Vi−1, Vi+1, ..., VJ ) and (V(i), vi) = (V1, . . . , Vi−1, vi, Vi+1, . . . , VJ )

for vi ∈ (ai, bi) our assumption is that the following limits exist and are finite:

lim
ε→0

fJ(ω, V(i), ai + ε) := F (a+i ), lim
ε→0

fJ(ω, V(i), bi − ε) := F (b−i ). (5)

Now for k ≥ 1, Sk(Il) denotes the space of random variables F = fJ(ω, V1, . . . , VJ ) ∈ S0, such that

fJ admits partial derivatives up to order k with respect to the variables vi, i ∈ Il and these partial

derivatives belong to S0.

We are now able to define our differential operators.

� The derivative operators. We define Dl : S
1(Il) → S0(Il) : by

DlF := 1OJ
(V )

∑

i∈Il

1Λl,i
(ω)∂vif(ω, V ),

where OJ =
∏J

i=1(ai, bi).

� The divergence operators We note

p(l) =
∑

i∈Il

1Λl,i
pi, (6)

and we define δl : S
1(Il) → S0(Il) by

δl(F ) = DlF + FDl ln p(l) = 1OJ
(V )

∑

i∈Il

1Λl,i
(∂viF + F∂vi ln pi)

We can easily see that if F,U ∈ S1(Il) we have

δl(FU) = Fδl(U) + UDlF. (7)

� The border terms Let U ∈ S0(Il). We define (using the notation (5) )

[U ]l =
∑

i∈Il

1Λl,i
1OJ,i

(V(i))((Upi)(b
−
i )− (Upi)(a

+
i ))

with OJ,i =
∏

1≤j≤J,j 6=i(aj , bj)

2.2 Duality and basic integration by parts formula

In our framework the duality between δl and Dl is given by the following proposition. In the sequel,

we denote by EG the conditional expectation with respect to the sigma-algebra G.
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Proposition 1 Assuming H0 then ∀F,U ∈ S1(Il) we have

EG(UDlF ) = −EG(Fδl(U)) + EG [FU ]l. (8)

For simplicity, we assume in this proposition that the random variables F and U take value in R but

such a result can easily be extended to R
d value random variables.

Proof: We have EG(UDlF ) =
∑

i∈Il
1Λl,i

EG1OJ
(V )(∂vif

J(ω, V )uJ(ω, V )). From H0 we obtain

EG1OJ
(V )(∂vif

J(ω, V )uJ (ω, V )) = EG1OJ,i
(V(i))

∫ bi

ai

∂vi(f
J)uJpi(vi)dvi.

By using the classical integration by parts formula, we have

∫ bi

ai

∂vi(f
J)uJpi(vi)dvi = [fJuJpi]

bi
ai −

∫ bi

ai

fJ∂vi(u
Jpi)dvi.

Observing that ∂vi(u
Jpi) = (∂vi(u

J ) + uJ∂vi(ln pi))pi, we have

EG(1OJ
(V )∂vif

JuJ) = EG1OJ,i
[(V(i))f

JuJpi]
bi
ai − EG1OJ

(V )F (∂vi(U) + U∂vi(ln pi))

and the proposition is proved.

⋄

We can now state a first integration by parts formula.

Proposition 2 Let H0 hold true and let F ∈ S2(Il), G ∈ S1(Il) and Φ : R → R be a bounded function

with bounded derivative. We assume that F = fJ(ω, V ) satisfies the condition

min
i∈Il

inf
v∈OJ

|∂vif
J(ω, v)| ≥ γ(ω), (9)

where γ is G measurable and we define on {γ > 0}

(DlF )−1 = 1OJ
(V )

∑

i∈Il

1Λl,i

1

∂vif(ω, V )
,

then

1{γ>0}EG(Φ
(1)(F )G) = −1{γ>0}EG (Φ(F )Hl(F,G)) + 1{γ>0}EG [Φ(F )G(DlF )−1]l (10)

with

Hl(F,G) = δl(G(DlF )−1) = Gδl((DlF )−1) +DlG(DlF )−1. (11)
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Proof: We observe that

DlΦ(F ) = 1OJ
(V )

∑

i∈Il

1Λl,i
∂viΦ(F ) = 1OJ

(V )Φ(1)(F )
∑

i∈Il

1Λl,i
∂viF,

so that

DlΦ(F ).DlF = Φ(1)(F )(DlF )2,

and then 1{γ>0}Φ
(1)(F ) = 1{γ>0}DlΦ(F ).(DlF )−1. Now since F ∈ S2(Il), we deduce that (DlF )−1 ∈

S1(Il) on {γ > 0} and applying Proposition 1 with U = G(DlF )−1 we obtain the result.

⋄

2.3 Iterations of the integration by parts formula

We will iterate the integration by parts formula given in Proposition 2. We recall that if we iterate

l times the integration by parts formula, we will integrate by parts successively with respect to the

variables (Vi)i∈Ik for 1 ≤ k ≤ l. In order to give some estimates of the weights appearing in these

formulas we introduce the following norm on S l(∪l
k=1Ik), for 1 ≤ l ≤ L.

|F |l = |F |∞ +

l
∑

k=1

∑

1≤l1<...<lk≤l

|Dl1 . . . DlkF |∞, (12)

where |.|∞ is defined on S0 by

|F |∞ = sup
v∈OJ

|fJ(ω, v)|.

For l = 0, we set |F |0 = |F |∞. We remark that we have for 1 ≤ l1 < . . . < lk ≤ l

|Dl1 . . . DlkF |∞ =
∑

i1∈Il1 ,...,ik∈Ilk

(
k
∏

j=1

1Λlj ,ij
)|∂vi1 . . . ∂vikF |∞,

and since for each l (Λl,i)i∈Il is a partition of Ω, for ω fixed, the preceding sum has only one term not

equal to zero. This family of norms satisfies for F ∈ S l+1(∪l+1
k=1Ik) :

|F |l+1 = |Dl+1F |l + |F |l so |Dl+1F |l ≤ |F |l+1. (13)

Moreover it is easy to check that if F,G ∈ S l(∪l
k=1Ik)

|FG|l ≤ Cl|F |l|G|l, (14)
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where Cl is a constant depending on l. Finally for any function φ ∈ Cl(R,R) we have

|φ(F )|l ≤ Cl

l
∑

k=0

|φ(k)(F )|∞|F |kl ≤ Cl max
0≤k≤l

|φ(k)(F )|∞(1 + |F |ll). (15)

With these notations we can iterate the integration by parts formula.

Theorem 1 Let H0 hold true and let Φ : R 7→ R a bounded function with bounded derivatives up to

order L. Let F = fJ(w, V ) ∈ S1(∪L
l=1Il) such that

inf
i∈{1,...,J}

inf
v∈OJ

|∂vif
J(ω, v)| ≥ γ(ω), γ ∈ [0, 1] Gmeasurable (16)

then we have for l ∈ {1, . . . , L}, G ∈ S l(∪l
k=1Ik) and F ∈ S l+1(∪l

k=1Ik)

1{γ>0}|EGΦ
(l)(F )G| ≤ Cl||Φ||∞1{γ>0}EG

(

|G|l(1 + |p|0)
lΠl(F )

)

(17)

where Cl is a constant depending on l, ||Φ||∞ = supx |Φ(x)|, |p|0 = maxl=1,...,L |p(l)|∞ and Πl(F ) is

defined on {γ > 0} by

Πl(F ) =
l

∏

k=1

(1 + |(DkF )−1|k−1)(1 + |δk((DkF )−1)|k−1). (18)

Moreover we have the bound

Πl(F ) ≤ Cl
(1 + | ln p|1)

l

γl(l+2)

l
∏

k=1

(1 + |F |k−1
k + |DkF |k−1

k )2, (19)

where | ln p|1 = maxi=1,...,J |(ln pi)
′|∞.

Proof: We proceed by induction. For l = 1, we have from Proposition 2 since G ∈ S1(I1) and

F ∈ S2(I1)

1{γ>0}EG(Φ
(1)(F )G) = −1{γ>0}EG (Φ(F )H1(F,G)) + 1{γ>0}EG [Φ(F )G(D1F )−1]1.

We have on {γ > 0}

|H1(F,G)| ≤ |G||δ1((D1F )−1)|+ |D1G||(D1F )−1|,

≤ (|G|∞ + |D1G|∞)(1 + |(D1F )−1|∞)(1 + |δ1((D1F )−1)|∞),

= |G|1(1 + |(D1F )−1|0)(1 + |δ1((D1F )−1)|0).
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Turning to the border term [Φ(F )G(D1F )−1]1, we check that

|[Φ(F )G(D1F )−1]1| ≤ 2||Φ||∞|G|∞
∑

i∈I1
1Λ1,i |

1
∂viF

|∞
∑

i∈I1
1Λ1,i |pi|∞,

≤ 2||Φ||∞|G|0|(D1F )−1|0|p|0.

This proves the result for l = 1.

Now assume that Theorem 1 is true for l ≥ 1 and let us prove it for l + 1. By assumption we

have G ∈ S l+1(∪l+1
k=1Ik) ⊂ S1(Il+1) and F ∈ S l+2(∪l+1

k=1Ik) ⊂ S2(Il+1). Consequently we can apply

Proposition 2 on Il+1. This gives

1{γ>0}EG(Φ
(l+1)(F )G) = −1{γ>0}EG

(

Φ(l)(F )Hl+1(F,G)
)

+ 1{γ>0}EG [Φ
(l)(F )G(Dl+1F )−1]l+1, (20)

with

Hl+1(F,G) = Gδl+1((Dl+1F )−1) +Dl+1G(Dl+1F )−1,

[Φ(l)(F )G(Dl+1F )−1]l+1 =
∑

i∈Il+1

1Λl+1,i
1OJ,i

(V(i))

(

(Φ(l)(F )G
1

∂viF
pi)(b

−
i )− (Φ(l)(F )G

1

∂viF
pi)(a

+
i )

)

.

We easily see that Hl+1(F,G) ∈ S l(∪l
k=1Ik) and so using the induction hypothesis we obtain

1{γ>0}|EGΦ
(l)(F )Hl+1(F,G)| ≤ Cl||Φ||∞1{γ>0}EG |Hl+1(F,G)|l(1 + |p|0)

lΠl(F ),

and we just have to bound |Hl+1(F,G)|l on {γ > 0}. But using successively (14) and (13)

|Hl+1(F,G)|l ≤ Cl(|G|l|δl+1((Dl+1F )−1)|l + |Dl+1G|l|(Dl+1F )−1)|l,

≤ Cl|G|l+1(1 + |(Dl+1F )−1)|l)(1 + |δl+1((Dl+1F )−1)|l).

This finally gives

|EGΦ
(l)(F )Hl+1(F,G)| ≤ Cl||Φ||∞EG |G|l+1(1 + |p|0)

lΠl+1(F ). (21)

So we just have to prove a similar inequality for EG [Φ
(l)(F )G(Dl+1F )−1]l+1. This reduces to consider

EG

∑

i∈Il+1

1Λl+1,i
1OJ,i

(V(i))(Φ
(l)(F )G

1

∂viF
pi)(b

−
i ) =

∑

i∈Il+1

1Λl+1,i
pi(b

−
i )EG1OJ,i

(V(i))(Φ
(l)(F )G

1

∂viF
)(b−i )

(22)

since the other term can be treated similarly. Consequently we just have to bound

|EG1OJ,i
(V(i))(Φ

(l)(F )G
1

∂viF
)(b−i )|.

Since all variables satisfy (4), we obtain from Lebesgue Theorem, using the notation (5)

EG1OJ,i
(V(i))(Φ

(l)(F )G
1

∂viF
)(b−i ) = lim

ε→0
EG1OJ,i

(V(i))(Φ
(l)(fJ(V(i), bi − ε))(gJ

1

∂vif
J
)(V(i), bi − ε).
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To shorten the notation we write simply F (bi − ε) = fJ(V(i), bi − ε).

Now one can prove that if U ∈ S l′(∪l+1
k=1Ik) for 1 ≤ l′ ≤ l then ∀i ∈ Il+1, U(bi−ε) ∈ S l′(∪l

k=1Ik) and

|U(bi−ε)|l′ ≤ |U |l′ . We deduce then that ∀i ∈ Il+1 F (bi−ε) ∈ S l+1(∪l
k=1Ik) and that (G 1

∂viF
)(bi−ε) ∈

S l(∪l
k=1Ik) and from induction hypothesis

|EG(Φ
(l)(F (bi − ε))1OJ,i

(G 1
∂viF

)(bi − ε)| ≤ Cl||Φ||∞EG |G(bi − ε)|l|
1

∂viF (bi−ε) |l(1 + |p|0)
lΠl(F (bi − ε)),

≤ Cl||Φ||∞EG |G|l|
1

∂viF
|l(1 + |p|0)

lΠl(F ).

Putting this in (22) we obtain

|EG

∑

i∈Il+1

1Λl+1,i
1OJ,i

(Φ(l)(F )G
1

∂viF
pi)(b

−
i )| ≤ Cl||Φ||∞EG |G|l(1 + |p|0)

lΠl(F )
∑

i∈Il+1

1Λl+1,i
|pi|∞|

1

∂viF
|l,

≤ Cl||Φ||∞EG |G|l(1 + |p|0)
l+1Πl(F )|(Dl+1F )−1|l. (23)

Finally plugging (21) and (23) in (20)

|EG(Φ
(l+1)(F )G)| ≤ Cl||Φ||∞

(

EG |G|l+1(1 + |p|0)
lΠl+1(F ) +EG |G|l(1 + |p|0)

l+1Πl(F )|(Dl+1F )−1|l
)

,

≤ Cl||Φ||∞EG |G|l+1(1 + |p|0)
l+1Πl+1(F ),

and inequality (17) is proved for l + 1. This achieves the first part of the proof of Theorem 1.

It remains to prove (19). We assume that ω ∈ {γ > 0}.

Let 1 ≤ k ≤ l. We first notice that combining (13) and (14) we obtain

|δk(F )|k−1 ≤ |F |k (1 +
∣

∣Dk ln p(k)
∣

∣

∞
),

since p(k) only depends on the variables Vi, i ∈ Ik. So we deduce the bound

∣

∣δk((DkF )−1)
∣

∣

k−1
≤

∣

∣(DkF )−1
∣

∣

k
(1 + |ln p|1). (24)

Now we have

|(DkF )−1|k−1 =
∑

i∈Ik

1Λk,i
|

1

∂viF
|k−1

From (15) with φ(x) = 1/x

|
1

∂viF
|k−1 ≤ Ck

(1 + |F |k−1
k )

γk
,

and consequently

|(DkF )−1|k−1 ≤ Ck
(1 + |F |k−1

k )

γk
. (25)

10



Moreover we have using successively (13) and (25)

|(DkF )−1|k = |(DkF )−1|k−1 + |Dk(DkF )−1|k−1,

≤ Ck

(

(1+|F |k−1
k )

γk +
(1+|DkF |k−1

k )

γk+1

)

,

≤ Ck
(1+|F |k−1

k +|DkF |k−1
k )

γk+1 .

Putting this in (24)

∣

∣δk((DkF )−1)
∣

∣

k−1
≤ Ck

(1 + |F |k−1
k + |DkF |k−1

k )

γk+1
(1 + |ln p|1). (26)

Finally from (25) and (26), we deduce

Πl(F ) ≤ Cl
(1 + |ln p|1)

l

γl(l+2)

l
∏

k=1

(1 + |F |k−1
k + |DkF |k−1

k )2,

and Theorem 1 is proved. ⋄

3 Stochastic equations with jumps

3.1 Notations and hypotheses

We consider a Poisson point process p with measurable state space (E,B(E)). We refer to Ikeda

and Watanabe [10] for the notation. We denote by N the counting measure associated to p so

Nt(A) := N((0, t) × A) = #{s < t; ps ∈ A}. The intensity measure is dt× dµ(a) where µ is a sigma-

finite measure on (E,B(E)) and we fix an non decreasing sequence (En) of subsets of E such that

E = ∪nEn, µ(En) < ∞ and µ(En+1) ≤ µ(En) +K for all n and for a constant K > 0.

We consider the one dimensional stochastic equation

Xt = x+

∫ t

0

∫

E
c(s, a,Xs−)dN(s, a) +

∫ t

0
g(s,Xs)ds. (27)

Our aim is to give sufficient conditions on the coefficients c and g in order to prove that the law of Xt

is absolutely continuous with respect to the Lebesgue measure and has a smooth density. We make

the following assumptions on the coefficients c and g.

H1. We assume that the functions c and g are infinitely differentiable with respect to the variables

(t, x) and that there exist a bounded function c and a constant g, such that

∀(t, a, x) |c(t, a, x)| ≤ c(a)(1 + |x|), sup
l+l′≥1

|∂l′
t ∂

l
xc(t, a, x)| ≤ c(a);

11



∀(t, x) |g(t, x)| ≤ g(1 + |x|), sup
l+l′≥1

|∂l′

t ∂
l
xg(t, x)| ≤ g;

We assume moreover that
∫

E c(a)dµ(a) < ∞.

Under H1, equation (27) admits a unique solution.

H2. We assume that there exists a measurable function ĉ : E 7→ R+ such that
∫

E ĉ(a)dµ(a) < ∞

and

∀(t, a, x) |∂xc(t, a, x)(1 + ∂xc(t, a, x))
−1| ≤ ĉ(a).

To simplify the notation we take ĉ = c. Under H2, the tangent flow associated to (27) is invertible.

At last we give a non-degeneracy condition wich will imply (16). We denote by α the function

α(t, a, x) = g(t, x) − g(t, x+ c(t, a, x)) + (g∂xc+ ∂tc)(t, a, x). (28)

H3. We assume that there exists a measurable function α : E 7→ R+ such that

∀(t, a, x) |α(t, a, x)| ≥ α(a) > 0,

∀n

∫

En

1

α(a)
dµ(a) < ∞ and lim inf

n

1

µ(En)
ln

(
∫

En

1

α(a)
dµ(a)

)

= θ < ∞.

We give in the following some examples where E = (0, 1] and α(a) = a.

3.2 Main results and examples

Following the methodology introduced in Bally and Clément [2], our aim is to bound the Fourier

transform of Xt, p̂Xt(ξ), in terms of 1/|ξ|, recalling that if
∫

R
|ξ|q|p̂Xt(ξ)|dξ < ∞, for q > 0, then the

law of Xt is absolutely continuous and its density is C[q]. This is done in the next proposition. The

proof of this proposition relies on an approximation of Xt which will be given in the next section.

Proposition 3 Assuming H1, H2 and H3 we have for all n,L ∈ N
∗

|p̂Xt(ξ)| ≤ Ct,L

(

e−µ(En)t/(2L) +
1

|ξ|L
An,L

)

,

with An,L = µ(En)
L(
∫

En

1
α(a)dµ(a))

L(L+2).

From this proposition, we deduce our main result.

Theorem 2 We assume that H1, H2 and H3 hold. Let q ∈ N, then for t > 16θ(q + 2)(q + 1)2, the

law of Xt is absolutely continuous with respect to the Lebesgue measure and its density is of class Cq.

In particular if θ = 0, the law of Xt is absolutely continuous with respect to the Lebesgue measure and

its density is of class C∞ for every t > 0.

12



Proof: From Proposition 3, we have

|p̂Xt(ξ)| ≤ Ct,L

(

e−µ(En)t/2L +
1

|ξ|L
An,L

)

.

Now ∀k, k0 > 0, if t/2L > kθ, we deduce from H3 that for n ≥ nL

t/2L >
k

µ(En)
ln(

∫

En

1

α(a)
dµ(a)) +

k lnµ(En)

k0µ(En)

since the second term on the right hand side tends to zero. This implies

eµ(En)t/2L > (

∫

En

1

α(a)
dµ(a))kµ(En)

k/k0 .

Choosing k = L(L+ 2) and k/k0 = L, we obtain that for n ≥ nL and t/2L > L(L+ 2)θ

eµ(En)t/2L > An,L.

and then

|p̂Xt(ξ)| ≤ Ct,L

(

e−µ(En)t/2L + 1
|ξ|L

eµ(En)t/2L
)

,

≤ Ct,L(
1

Bn(t)
+ Bn(t)

|ξ|L
),

with Bn(t) = eµ(En)t/2L. Now recalling that µ(En) < µ(En+1) ≤ K + µ(En), we have Bn(t) <

Bn+1(t) ≤ KtBn(t). Moreover since Bn(t) goes to infinity with n we have

1{|ξ|L/2≥BnL
(t)} =

∑

n≥nL

1{Bn(t)≤|ξ|L/2<Bn+1(t)}
.

But if Bn(t) ≤ |ξ|L/2 < Bn+1(t), |p̂Xt(ξ)| ≤ Ct,L/|ξ|
L/2 and so

∫

|ξ|q|p̂Xt(ξ)|dξ =
∫

|ξ|L/2<BnL(t)
|ξ|q|p̂Xt(ξ)|dξ +

∫

|ξ|L/2≥BnL
(t) |ξ|

q|p̂Xt(ξ)|dξ,

≤ Ct,L,nL
+
∫

|ξ|L/2≥BnL
(t) |ξ|

q−L/2dξ.

For q ∈ N, choosing L such that L/2 − q > 1, we obtain
∫

|ξ|q|p̂Xt(ξ)|dξ < ∞ for t/2L > L(L + 2)θ

and consequently the law of Xt admits a density Cq for t > 2L2(L + 2)θ and L > 2(q + 1), that is

t > 16θ(q + 1)2(q + 2) and Theorem 2 is proved.

⋄

We end this section with two examples

Example 1. We take E = (0, 1], µλ =
∑

k≥1
1
kλ
δ1/k with 0 < λ < 1 and En = [1/n, 1]. We

have ∪nEn = E, µ(En) =
∑n

k=1
1
kλ

and µλ(En+1) ≤ µλ(En) + 1 . We consider the process (Xt)

13



solution of (27) with c(t, a, x) = a and g(t, x) = g(x) assuming that the derivatives of g are bounded

and that |g′(x)| ≥ g > 0. We have
∫

E adµλ(a) =
∑

k≥1
1

kλ+1 < ∞ so H1 and H2 hold. Moreover

α(t, a, x) = g(x) − g(x + a) so α(a) = ga. Now
∫

En

1
adµλ(a) =

∑n
k=1 k

1−λ which is equivalent as n go

to infinity to n2−λ/(2− λ). Now we have

1

µλ(En)
ln

(
∫

En

1

α(a)
dµλ(a)

)

=
ln(g

∑n
k=1 k

1−λ)
∑n

k=1
1
kλ

∼n→∞ C
ln(n2−λ)

n1−λ
→ 0,

and then H3 is satisfied with θ = 0. We conclude from Theorem 2 that ∀t > 0, Xt admits a density

C∞.

In the case λ = 1, we have µ1(En) =
∑n

k=1
1
k ∼n→∞ lnn then

1

µ1(En)
ln

(
∫

En

1

α(a)
dµ1(a)

)

=
ln(g

∑n
k=1 1)

∑n
k=1

1
k

∼n→∞ 1,

and this gives H3 with θ = 1. So the density of Xt is regular as soon as t is large enough. In fact it is

proved in Kulik [12] that under some appropriate conditions the density of Xt is not continuous for

small t.

Example 2. We take the intensity measure µλ as in the previous example and we consider the

process (Xt) solution of (27) with g = 1 and c(t, a, x) = ax. This gives c(a) = a and α(a) = a. So the

conclusions are similar to example 1 in both cases 0 < λ < 1 and λ = 1. But in this example we can

compare our result to the one given by Ichikawa and Kunita [10]. They assume the condition

lim inf
u→0

1

uh

∫

|a|≤u
a2dµ(a) > 0, (⋆)

for some h ∈ (0, 2). Here we have

∫

|a|≤u
a2dµ(a) =

∑

k≥1/u

1

k2+λ
∼u→0

u1+λ

1 + λ
.

So if 0 < λ < 1, (⋆) holds and their results apply. In the case λ = 1, (⋆) fails and they do not conclude.

However in our approach we conclude that the density of Xt is C
q for t > 16(q + 2)(q + 1)2.

The next section is devoted to the proof of Proposition 3.

3.3 Approximation of Xt and integration by parts formula

In order to bound the Fourier transform of the process Xt solution of (27), we will apply the differential

calculus developed in section 2. The first step consists in an approximation of Xt by a random variable
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XN
t which can be viewed as an element of our basic space S0. We assume that the process (XN

t ) is

solution of the discrete version of equation (27)

XN
t = x+

∫ t

0

∫

EN

c(s, a,XN
s−)dN(s, a) +

∫ t

0
g(s,XN

s )ds. (29)

Since µ(EN ) < ∞, the number of jumps of the process XN on the interval (0, t) is finite and con-

sequently we may consider the random variable XN
t as a function of these jump times and ap-

ply the methodology proposed in section 2. We denote by (JN
t ) the Poisson process defined by

JN
t = N((0, t), EN ) = #{s < t; ps ∈ EN} and we note (TN

k )k≥1 its jump times. We also introduce the

notation ∆N
k = pTN

k
. With these notations, the process solution of (29) can be written

XN
t = x+

JN
t

∑

k=1

c(TN
k ,∆N

k ,XN
TN
k −

) +

∫ t

0
g(s,XN

s )ds. (30)

We will not work with all the variables (TN
k )k but only with the jump times (T n

k ) of the Poisson

process Jn
t , where n < N . In the following we will keep n fixed and we will make N go to infinity.

We note (TN,n
k )k the jump times of the Poisson process JN,n

t = N((0, t), EN \En) and ∆n,N
k = p

Tn,N
k

.

Now we fixe L ∈ N
∗, the number of integration by parts and we note tl = tl/L, 0 ≤ l ≤ L. Assuming

that Jn
tl
− Jn

tl−1
= ml for 1 ≤ l ≤ L, we denote by (T n

l,i)1≤i≤ml
the jump times of Jn

t belonging to the

time interval (tl−1, tl). In the following we assume that ml ≥ 1, ∀l. For i = 0 we set T n
l,0 = tl−1 and

for i = ml + 1, T n
l,ml+1 = tl. With these definitions we choose our basic variables (Vi, i ∈ Il) as

(Vi, i ∈ Il) = (T n
l,2i+1, 0 ≤ i ≤ [(ml − 1)/2]). (31)

The σ-algebra which contains the noise which is not involved in our differential calculus is

G = σ{(Jn
tl
)1≤l≤L; (T

n
l,2i)1≤2i≤ml,1≤l≤L; (T

N,n
k )k; (∆

N
k )k}. (32)

Using some well known results on Poisson processes, we easily see that conditionally on G the variables

(Vi) are independent and for i ∈ Il the law of Vi conditionally on G is uniform on (T n
l,2i, T

n
l,2i+2) and

we have

pi(v) =
1

T n
l,2i+2 − T n

l,2i

1(Tn
l,2i,T

n
l,2i+2)

(v), i ∈ Il, (33)

Consequently taking ai = T n
l,2i and bi = T n

l,2i+2 we check that hypothesis H0 holds. It remains to

define the localizing sets (Λl,i)i∈Il .

We denote

hnl =
tl − tl−1

2ml
=

t

2Lml

15



and nl = [(ml − 1)/2]. We will work on the G measurable set

Λn
l = ∪nl

i=0{T
n
l,2i+2 − T n

l,2i ≥ hnl }, (34)

and we consider the following partition of this set:

Λl,0 = {T n
l,2 − T n

l,0 ≥ hnl },

Λl,i = ∩i
k=1{T

n
l,2k − T n

l,2k−2 < hnl } ∩ {T n
l,2i+2 − T n

l,2i ≥ hnl }, i = 1, ..., nl.

After L − l iterations of the integration by parts we will work with the variables Vi, i ∈ Il so the

corresponding derivative is

DlF =
∑

i∈Il

1Λl,i
∂ViF =

∑

i∈Il

1Λl,i
∂Tn

l,2i+1
F.

If we are on Λn
l then we have at least one i such that tl−1 ≤ T n

l,2i < T n
l,2i+1 < T n

l,2i+2 ≤ tl and

T n
l,2i+2 −T n

l,2i ≥ hnl . Notice that in this case 1Λl,i
|pi|∞ ≤ (hnl )

−1 and roughly speaking this means that

the variable Vi = T n
l,2i+1 gives a sufficiently large quantity of noise. Moreover, in order to perform L

integrations by parts we will work on

Γn
L = ∩L

l=1Λ
n
l (35)

and we will leave out the complementary of Γn
L. The following lemma says that on the set Γn

L we have

enough noise and that the complementary of this set may be ignored.

Lemma 1 Using the notation given in Theorem 1 one has

i) |p|0 := max1≤l≤L
∑

i∈Il
1Λl,i

|pi|∞ ≤ 2L
t J

n
t ,

ii) P ((Γn
L)

c) ≤ L exp(−µ(En)t/2L).

Proof: As mentioned before 1Λl,i
|pi|∞ ≤ (hnl )

−1 = 2Lml/t ≤ 2L
t J

n
t and so we have i). In order

to prove ii) we have to estimate P ((Λn
l )

c) for 1 ≤ l ≤ L. We denote sl =
1
2(tl + tl−1) and we will

prove that {Jn
tl
− Jn

sl
≥ 1} ⊂ Λn

l . Suppose first that ml = Jn
tl
− Jn

tl−1
is even. Then 2nl + 2 = ml. If

T n
l,2i+2 − T n

l,2i < hnl for every i = 0, ..., nl then

T n
l,ml

− tl−1 =

nl
∑

i=0

(T n
l,2i+2 − T n

l,2i) ≤ (nl + 1)×
t

2Lml
≤

t

4L
≤ sl − tl−1
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so there are no jumps in (sl, tl). Suppose now that ml is odd so 2nl + 2 = ml + 1 and T n
l,2nl+2 = tl. If

we have T n
l,2i+2 − T n

l,2i < hnl for every i = 0, ..., nl, then we deduce

nl
∑

i=0

(T n
l,2i+2 − T n

l,2i) < (nl + 1)×
t

2Lml
<

ml + 1

ml

t

4L
≤

t

2L
,

and there are no jumps in (sl, tl). So we have proved that {Jn
tl
−Jn

sl
≥ 1} ⊂ Λn

l and since P (Jn
tl
−Jn

sl
=

0) = exp(−µ(En)t/2L) the inequality ii) follows. ⋄

Now we will apply Theorem 1, with FN = XN
t , G = 1 and Φξ(x) = eiξx. So we have to check

that FN ∈ SL+1(∪L
l=1Il) and that condition (16) holds. Moreover we have to bound |FN |l−1

l and

|DlF
N |l−1

l , for 1 ≤ l ≤ L. This needs some preliminary lemma.

Lemma 2 Let v = (vi)i≥0 a positive non increasing sequence with v0 = 0 and (ai)i≥1 a sequence of

E. We define Jt(v) by Jt(v) = vi if vi ≤ t < vi+1 and we consider the process solution of

Xt = x+

Jt
∑

k=1

c(vk, ak,Xvk−) +

∫ t

0
g(s,Xs)ds. (36)

We assume that H1 holds. Then Xt admits some derivatives with respect to vi and if we note Ui(t) =

∂viXt and Wi(t) = ∂2
viXt, the processes (Ui(t))t≥vi and (Wi(t))t≥vi solve respectively

Ui(t) = α(vi, ai,Xvi−) +

Jt
∑

k=i+1

∂xc(vk, ak,Xvk−)Ui(vk−) +

∫ t

vi

∂xg(s,Xs)Ui(s)ds, (37)

Wi(t) = βi(t) +

Jt
∑

k=i+1

∂xc(vk, ak,Xvk−)Wi(vk−) +

∫ t

vi

∂xg(s,Xs)Wi(s)ds, (38)

with

α(t, a, x) = g(t, x) − g(t, x+ c(t, a, x)) + g(t, x)∂xc(t, a, x) + ∂tc(t, a, x),

βi(t) = ∂tα(vi, ai,Xvi−) + ∂xα(vi, ai,Xvi−)g(vi,Xvi−)− ∂xg(vi,Xvi)Ui(vi)

+
∑Jt

k=i+1 ∂
2
xc(vk, ak,Xvk−)(Ui(vk−))2 +

∫ t
vi
∂2
xg(s,Xs)(Ui(s))

2ds.

Proof: If s < vi, we have ∂viXs = 0. Now we have

Xvi− = x+

vi−1
∑

k=1

c(vk, ak,Xvk−) +

∫ vi

0
g(s,Xs)ds,

and consequently

∂viXvi− = g(vi,Xvi−).
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For t > vi, we observe that

Xt = Xvi− +

Jt
∑

k=vi

c(vk, ak,Xvk−) +

∫ t

vi

g(s,Xs)ds,

this gives

∂viXt = g(vi,Xvi−) + g(vi,Xvi−)∂xc(vi, ai,Xvi−) + ∂tc(vi, ai,Xvi−)− g(vi,Xvi)

+
∑Jt

k=i+1 ∂xc(vk, ak,Xvk−)∂viXvk− +
∫ t
vi
∂xg(s,Xs)∂viXsds.

Remarking that Xvi = Xvi−+ c(vi, ai,Xvi−), we obtain (37). The proof of (38) is similar and we omit

it.

⋄

We give next a bound for Xt and its derivatives with respect to the variables (vi).

Lemma 3 Let (Xt) the process solution of (36). We assume that H1 holds and we note

nt(c) =

Jt
∑

k=1

c(ak).

Then we have:

sup
s≤t

|Xt| ≤ Ct(1 + nt(c))e
nt(c).

Moreover ∀l ≥ 1, there exist some constants Ct,l and Cl such that ∀(vki)i=1,...,l with t > vkl, we have

sup
vkl≤s≤t

|∂vk1 . . . ∂vkl−1
Ukl(s)|+ sup

vkl≤s≤t
|∂vk1 . . . ∂vkl−1

Wkl(s)| ≤ Ct,l(1 + nt(c))
CleClnt(c).

We observe that the previous bound does not depend on the variables (vi).

Proof: We just give a sketch of the proof. We first remark that the process (et) solution of

et = 1 +

Jt
∑

k=1

c(ak)evk− + g

∫ t

0
esds,

is given by et =
∏Jt

k=1(1 + c(ak))e
gt. Now from H1, we deduce for s ≤ t

|Xs| ≤ |x|+
∑Js

k=1 c(ak)(1 + |Xvk−|) +
∫ s
0 g(1 + |Xu|)du,

≤ |x|+
∑Jt

k=1 c(ak) + gt+
∑Js

k=1 c(ak)|Xvk−|+
∫ s
0 g|Xu|du,

≤ (|x|+
∑Jt

k=1 c(ak) + gt)es

where the last inequality follows from Gronwall lemma. Then using the previous remark

sup
s≤t

|Xs| ≤ Ct(1 + nt(c))

Jt
∏

k=1

(1 + c(ak)) ≤ Ct(1 + nt(c))e
nt(c). (39)
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We check easily that |α(t, a, x)| ≤ C(1 + |x|)c(a), and we get successively from (37) and (39)

sup
vkl≤s≤t

|Ukl(s)| ≤ Ct(1 + |Xvkl−
|)c(akl)(1 + nt(c))e

nt(c) ≤ Ct(1 + nt(c))
2e2nt(c).

Putting this in (38), we obtain a similar bound for supvkl≤s≤t |Wkl(s)| and we end the proof of Lemma

3 by induction since we can derive equations for the higher order derivatives of Ukl(s) and Wkl(s)

analogous to (38).

⋄

We come back to the process (XN
t ) solution of (29). We recall that FN = XN

t and we will check

that FN satisfies the hypotheses of Theorem 1.

Lemma 4 i) We assume that H1 holds. Then ∀l ≥ 1, ∃Ct,l, Cl independent of N such that

|FN |l + |DlF
N |l ≤ Ct,l

(

(1 +Nt(c))e
Nt(c)

)Cl

,

with Nt(c) =
∫ t
0

∫

E c(a)dN(s, a).

ii) Moreover if we assume in addition that H2 and H3 hold and that ml = Jn
tl
− Jn

tl−1
≥ 1,

∀l ∈ {1, . . . , L} then we have ∀1 ≤ l ≤ L, ∀i ∈ Il

|∂ViF
N | ≥

(

e2Nt(c)Nt(1En1/α)
)−1

:= γn

and (16) holds.

We remark that on the non degeneracy set Γn
L given by (35) we have at least one jump on (tl−1, tl),

that is ml ≥ 1, ∀l ∈ {1, . . . , L}. Moreover we have Γn
L ⊂ {γn > 0}.

Proof: The proof of i) is a straightforward consequence of Lemma 3, replacing nt(c) by
∑JN

t
p=1 c(∆

N
p )

and observing that

JN
t

∑

p=1

c(∆N
p ) =

∫ t

0

∫

EN

c(a)dN(s, a) ≤

∫ t

0

∫

E
c(a)dN(s, a) = Nt(c).

Turning to ii) we have from Lemma 2

∂TN
k
XN

t = α(TN
k ,∆N

k ,XN
TN
k −

) +

JN
t

∑

p=k+1

∂xc(T
N
p ,∆N

p ,XN
TN
p −)∂TN

k
XN

TN
p − +

∫ t

TN
k

∂xg(s,X
N
s )∂TN

k
Xsds.

Assuming H2, we define (Y N
t )t and (ZN

t )t as the solutions of the equations

Y N
t = 1 +

∑JN
t

p=1 ∂xc(T
N
p ,∆N

p ,XN
TN
p −

)YTN
k − +

∫ t
0 ∂xg(s,X

N
s )Y N

s ds,

ZN
t = 1−

∑JN
t

p=1

∂xc(TN
p ,∆N

p ,XN

TN
p −

)

1+∂xc(TN
p ,∆N

p ,XN

TN
p −

)
ZTN

k − −
∫ t
0 ∂xg(s,X

N
s )ZN

s ds.
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We have Y N
t × ZN

t = 1, ∀t ≥ 0 and

|Y N
t | ≤ etgeNt(1EN

c) ≤ eNt(c), |ZN
t | = |

1

Y N
t

| ≤ eNt(c).

Now one can easily check that

∂TN
k
XN

t = α(TN
k ,∆N

k ,XN
TN
k −

)Y N
t ZN

TN
k
,

and using H3 and the preceding bound it yields

|∂TN
k
XN

t | ≥ e−2Nt(c)α(∆N
k ).

Recalling that we do not consider the derivatives with respect to all the variables (TN
k ) but only with

respect to (Vi) = (T n
l,2i+1)l,i with n < N fixed, we have ∀1 ≤ l ≤ L and ∀i ∈ Il

|∂ViX
N
t | ≥ e−2Nt(c)





Jn
t

∑

p=1

1

α(∆n
p )





−1

=
(

e2Nt(c)Nt(1En1/α)
)−1

,

and Lemma 4 is proved.

⋄

With this lemma we are at last able to prove Proposition 3.

Proof of Proposition 3: From Theorem 1 we have since Γn
L ⊂ {γn > 0}

1Γn
L
|EGΦ

(L)(FN )| ≤ CL||Φ||∞1Γn
L
EG(1 + |p0|)

LΠL(F
N ).

Now from Lemma 1 i) we have

|p0| ≤ 2LJn
t /t

and moreover we can check that | ln p|1 = 0. So we deduce from Lemma 4

ΠL(F
N ) ≤

Ct,L

γ
L(L+2)
n

(

(1 +Nt(c))e
Nt(c)

)CL

≤ Ct,LNt(1En1/α)
L(L+2)

(

(1 +Nt(c))e
Nt(c)

)CL

.

This finally gives

|E1Γn
L
Φ(L)(FN )| ≤ ||Φ||∞Ct,LE

(

(JN
t )LNt(1En1/α)

L(L+2)
(

(1 +Nt(c))e
Nt(c)

)CL
)

. (40)

Now we know from a classical computation (see for example [2]) that the Laplace transform of Nt(f)

satisfies

Ee−sNt(f) = e−tαf (s), αf (s) =

∫

E
(1− e−sf(a))dµ(a). (41)
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From H1, we have
∫

E c(a)dµ(a) < ∞, so we deduce using (41) with f = c that, ∀q > 0

E
(

(1 +Nt(c))e
Nt(c)

)q
≤ Ct,q < ∞.

Since Jn
t is a Poisson process with intensity tµ(En), we have ∀q > 0

E(Jn
t )

q ≤ Ct,qµ(En)
q.

Finally, using once again (41) with f = 1En1/α we see easily that ∀q > 0

ENt(1En1/α)
q ≤ Ct,q

(∫

En

1

α(a)
dµ(a)

)q

.

Turning back to (40) and combining Cauchy-Schwarz inequality and the previous bounds we deduce

|E1Γn
L
Φ(L)(FN )| ≤ ||Φ||∞Ct,Lµ(En)

L

(∫

En

1

α(a)
dµ(a)

)L(L+2)

= ||Φ||∞Ct,LAn,L. (42)

We are now ready to give a bound for p̂XN
t
(ξ). We have p̂XN

t
(ξ) = EΦξ(F

N ), with Φξ(x) = eiξx. Since

Φ
(L)
ξ (x) = (iξ)LΦξ(x), we can write |p̂XN

t
(ξ)| = |EΦ

(L)
ξ (FN )|/|ξ|L and consequently we deduce from

(42)

|p̂XN
t
(ξ)| ≤ P ((Γn

L)
c) + Ct,LAn,L/|ξ|

L.

But from Lemma 1 ii) we have

P ((Γn
L)

c) ≤ Le−µ(En)t/(2L)

and finally

|p̂XN
t
(ξ)| ≤ CL,t

(

e−µ(En)t/(2L) +An,L/|ξ|
L
)

.

We achieve the proof of Proposition 3 by letting N go to infinity, keeping n fixed.

⋄
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