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Abstract—Some current and future pervasive data driven
applications must operate in ”extreme” environments where end-
to-end connectivity cannot be guaranteed at all times. In fact,it
is likely that in these environments partitions are, rather than
exceptions, part of the normal network operation. In this paper,
we introduce Cover, a suite of adaptive strategies to control
the trajectory of ”infrastructure” nodes, which are deployed to
bridge network partitions and thus play a critical role in data
delivery. In particular, we focus on applications where end (or
target) nodes are mobile and their mobility is unknown. Our
goal is then to deploy and manage infrastructure nodes so that
application-level requirements such as reliable data delivery and
latency are met while still limiting deployment cost and balancing
the load among infrastructure nodes. Cover achieves these
goals using a localized and adaptive approach to infrastructure
management based on theobserved mobility of target nodes. To
this end, Cover takes advantage of contact opportunities between
infrastructure nodes to exchange information about their covered
zones, and thus, help monitor targets in a more efficient fashion.
Through extensive simulations, we show how Cover’s adaptive
features yield a fair distribution of targets per infrastructure
node based only on limited network knowledge.

I. I NTRODUCTION

Context. Emerging pervasive communication systems will
face a number of challenges including the need to operate
in ”extreme” environments and thus withstand frequent and
arbitrarily long-lived connectivity disruptions. These disrup-
tions in connectivity may be caused by a number of factors
including node mobility, wireless channel impairments, par-
ticipating nodes’ energy and communication capability limita-
tions, sparse deployments, etc. Examples of applications likely
to operate in these extreme environments include emergency
response and disaster recovery, environmental and habitat
monitoring, vehicular networks, etc. In the literature, these
networks have been referred to as intermittently-connected,
highly-partitioned, or delay-tolerant networks (DTN) [1]. We
focus specifically on scenarios where end nodes (or targets)
such as vehicles, animals being monitored/tracked, humans,
etc. are mobile and little a priori information about their
mobility is known.

Motivation. It is then critical to design efficient protocols to
support pervasive, ”any time, any place” services in these net-
worked environments prone to connectivity disruptions. Some
of the main challenges include satisfying application-specific
requirements under intermittent connectivity and withoutprior

knowledge of network topology characteristics such as node
location and mobility. This is a fairly complex zone coverage
problem and constitutes the main focus of this paper.

Previous work on deployment management using mobile
infrastructure nodes (e.g., robots) focused on static targets [2],
[3], [4], [5], [6]. Here the goal is to ”cover” multiple targets
satisfying application-specific requirements (e.g., datafresh-
ness, delivery latency) without prior knowledge of the targets’
location or mobility. Additionally, most efforts to-date use
”flat” deployments, where mobile targets are also used for core
network functions such as data routing and forwarding [7], [8],
[9], [10], [11]. Instead, in this paper, we considertwo-tiered
deployments composed not only by mobile targets but also
by mobile infrastructure nodes. Moreover, we also suppose
that data-producing nodes (targets) do not have permanent
network connectivity; instead, we assume that, through mobile
infrastructure nodes, they are periodically connected to the
network at most everyt seconds. Such infrastructure nodes are
specialized nodes whose trajectories are controlled and adapt
over time to the targets’ mobility. The main issue in such a
context is then how todeploy and manage the infrastructure
nodes in order to guarantee that all the target nodes are covered
while respecting the application constraints and balancing
load. In the sequel, a target node is said to be ”covered” if
it is connected to the network using an infrastructure node at
least everyt seconds.

Contributions. To improve the availability of the system with
respect to the driving applications, this paper introducesCover,
an adaptive strategy for infrastructure node placement and
(trajectory) control. Cover relies on localized mechanisms
that combine information about characteristics of the nodes
and application requirements. Such fundamental problem has
received very little attention in the literature. In particular, we
focus on the following network deployment problem: Given
an area to monitor and a set of target nodes with unlimited
mobility within this area:

• Cover is localized, i.e., every decision taken by infrastruc-
ture nodes is based on local neighborhood information
only. Cover takes advantage of contact opportunities
between infrastructure nodes to exchange information
about their covered zones, and thus, help monitor target
displacement in a more efficient fashion. As a conse-
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quence, Cover scales better with regard to the network
size and the mobility of the nodes.

• Cover ensures that every data-producing node is con-
nected regularly to an infrastructure node.

• Cover balances the load between infrastructure nodes for
an improved functioning of the system.

The remainder of this paper is structured as follows. In
Section II we discuss the problem statement and present our
system model and assumptions. In Section III, we describe the
main components of Cover. Through extensive simulations, we
evaluate Cover’s performance under different node densities
and mobility patterns in Section IV. We evaluate several
performance metrics. The results show among other issues, the
impact of the mobility pattern of targets on the shape of zones
covered by infrastructure nodes. In addition, results confirm
the good distribution of targets per node, which is reached
independently of the mobility patterns of the targets. Finally,
Section V presents the related work and Section VI concludes
the paper.

II. PROBLEM STATEMENT, MODEL, AND ASSUMPTIONS

In the system considered in this paper, target nodes (TN)
generate data that must be collected by infrastructure nodes
(IN). Since the mobility of TNs is unpredictable and uncon-
trolled, the only solution is to control the trajectory and speed
of INs to meet the required frequency of readings defined by
the application. This means that every TN meets an IN in a
regular way and that encounters cannot be spaced of more than
some maximum delay. Furthermore, for the sake of fairness,
we must balance the number of TNs to be monitored by INs.
It is worth noting that a TN is said to be covered if it is
connected to the network using an IN at least everyt seconds.
Since the locations of the TN are constrained by the area to
be monitored, covering each physical points of the area every
t seconds ensures the coverage of each TN.

To meet the abovementioned challenges, Cover assigns
geographical zones to mobile infrastructure nodes. To thisend,
infrastructure nodes constantly check the number of targets
they cover and adapt their trajectory when necessary. In the
following, we describe our scenario and the assumptions used
in later sections. Table I summarizes the notation used in this
paper.

A. Target area and population

We assume that the target area to be monitored is known
and is a square of sizeL×L. We divide this area intoC cells
of size l × l, where l = L/

√
C. In this area, we deployN

mobile target nodes andM infrastructure nodes. Note that the
cell defines the minimum area that a static IN can continuously
monitor. In this way, if the number of INsM ≥ C, there is no
need for infrastructure adaptation. In this paper, we consider
the case where each IN has to monitor multiple cells (i.e.,
M < C). We denotevIN (resp.vTN ) the speed of INs (resp.
TNs).

Let Z(mi) be the number of cells in the zone covered
by IN mi and T (mi) be the number of TNs in these cells

TABLE I
SUMMARY OF NOTATION .

Notation Meaning
TN Target node
IN Infrastructure node
N Number of TNs
M Number of INs
C Number of cells
mi Infrastructure nodei
fmin Minimum reading frequency
Γ(mi) Set ofmi ’s neighbors
Tmax Maximum number of TNs per cell
vIN Speed of INs
vT N Speed of TNs
T (mi) Number of TNs covered bymi

Topt Optimal number of TNs per INs
Z(mi) Number of cells covered bymi

Zmax Maximum number of cells an IN can cover

a

l
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5

6

7

43

2
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Fig. 1. Illustration of an area of10 × 10 cells covered by7 INs. The area
covered by each of them is denoted by the node’s identifier.

(i.e., the number of TNs monitored bymi). We refer to these
variables as, respectively,zone number andcover number. We
also assume that there is a maximum number of TNsTmax

that a single cell can accommodate, which limits the number
of TNs covered bymi to Tmax × Z(mi).

We assume that TNs have the same computational, memory,
energy, and communication capabilities. On the other hand,
we consider that INs have no energy constraints and that they
have longer communication ranges. Two INs are considered
as neighbors if the zones they cover share at least one border
of sizel. Fig. 1 illustrates one possible configuration for seven
INs. In this example,m2 has four neighbors (m1,m3,m4 and
m6), while m7 has only two neighbors (m1 and m6). We
denoteΓ(mi) the set ofmi’s neighbors.

B. Data reporting

By definition, TNs report to INs. An IN can retrieve data
from a TN if and only if they occupy the same cell at the same
time. An IN computes its trajectory as a function of the set
of cells it has to monitor. INs have to regularly visitZ(mi)
cells – we call the fact of visiting all cells of a zone acycle
and define it as thecoverage of the IN. We refer the frequency
at which a IN visits a cell asfmin. Finally, we assume that
the time an IN spends in each cell is enough to retrieve data
from at most a maximum number of TNsTmax.

2



Fig. 2. Three ways a cell can be crossed by INs.

Cells can be crossed in the three ways illustrated in Fig. 2.
Note that crossing a cell always requires traveling distance
equal tol. We assume that INs have no prior knowledge on
the mobility of the TNs.

III. A DAPTABLE ZONE COVERAGE

We present in this section how Cover guarantees the cov-
erage of the whole monitored area, while supporting the
requirements of the application. Cover algorithm is detailed
in the following and formally described by Algorithm 1.

A. Meeting constraints with preliminary settings

Frequency reading.l is chosen such that a TN (with a given
vTN speed) can cross at most one cell during a reading period.
This implies thatvTN ≤ l × fmin. A cell has to be visited
by an IN at least twice every 1

fmin

to ensure that every TN
is covered at least once. Under these assumptions and for the
reading frequency to be respected, the number of cells an IN
can monitor (i.e.,Z(mi) ≤ Zmax) has to be bounded with
regards to the IN speed and the required reading frequency
fmin, whereZmax = vIN

fmin

× 1
2l

. Indeed, vIN

2fmin

represents the
maximum number of cells that an IN can cover during a cycle
of duration 1

2fmin

.

Whole coverage. At bootstrap, we assume that INs are
uniformly distributed (cf. [12]). In this way, the zone to cover,
composed ofC cells, is equally shared among INs. Since an
IN can cover at mostZmax cells, the system needs a minimum
number of INs,Mmin, such thatMmin =

⌈

C
Zmax

⌉

. Given so,
INs are assigned zones in a way that:

1)
⌈

C
M

⌉

cells are assigned to(C modM) INs.

2)
⌊

C
M

⌋

cells are assigned to(M − (C modM)) INs.

Indeed, at bootstrap, every cell is covered by exactly one
IN. As we will see later, since at each step of the algorithm
an IN delegates a cell if and only if another IN accepts to
monitor it, whole coverage is always guaranteed.

TN balancing. The goal of Cover is to balance the number of
TNs per IN in order to balance load. Each of the cells contains
a certain amount of TNs. The number of TNs covered bymi

has to tend to an optimal valueTopt = N/M in order to
balance the load among INs. Indeed, if every IN coversTopt
distinct TNs, by definition, the whole set of TNs is covered
and coverage sets are non-overlapping.

B. Periodic learning and checking

The proposed algorithm is run in a distributed way at each
IN. Every mi is aware of its cover numberT (mi) and zone
numberZ(mi) at all times, which it regularly broadcasts to
its 1-hop neighbors. If correctly performed by the INs, the
algorithm balances the number of TNs covered by each IN

Algorithm 1 Cover- Run periodically at everymi.
1: LEAVE← 0,
2: if T (mi) > Topt + θ then
3: {IN mi covers too many TNs, it has to share.}
4: LEAVE← 1
5: end if
6: if (LEAVE=0) then
7: if Check Neigh(mi, α) = TRUE then
8: LEAVE← 1
9: else

10: flag(mi)← 0
11: LEAVE← 0
12: end if
13: end if
14: if LEAVE= 1 then
15: u←SELECT IN(mi)
16: if u 6=NULL then
17: LEAVE CELL(u)
18: else
19: flag(mi)← 1
20: end if
21: end if

while ensuring the reading frequency and the coverage of the
whole area. The algorithm works as follows. INmi regularly
compares its cover number toTopt+ θ, whereθ is a constant
such that2θ > Tmax. If T (mi) > Topt + θ, this means that
mi monitors too many TNs (cf. lines2 − 5 in Algorithm 1).
For a givenmi, if T (mi) ≥ Topt +θ, a variable LEAVE is set
to 1. In this case,mi checks whether one of its neighbors may
take a cell from it (cf. line15 in Algorithm 1), the procedure
SELECT IN(mi) is detailed in Algorithm 2. If a neighbor can
take a cell frommi, mi gives a cell to a selected neighboru.
Cells are delegated one at once (cf. line17 in Algorithm 1).
So, asmi runs the process at each step, it naturally delegates
cells till gettingT (mi) < Topt+ θ or having no neighbormj

able to receive an extra cell. However, as we will see later,
this latter case is quite unfrequent and is considered in lines
6− 13, 19 in Algorithm 1.

C. Neighbor selection SELECT IN()

Neighborhood discovery is performed by exchanging hello
messages. INmi observes the cover and zone numbers of each
of its neighbors to decide to which one it should give a cell. It
first determines the neighbormj such that: (i)Z(mj) < Zmax,
∀mj ∈ Γ(mi), in order to ensure the reading frequency (cf.
line 1 in Algorithm 2) and (ii) T (mj) < Topt− θ, ∀mj ∈
Γ(mi), in order to balance the number of TNs per IN (cf. line
3 in Algorithm 2). Asθ is such that2θ > Tmax, giving a cell
to mj cannot increasemj ’s cover number aboveTopt + θ,
which avoids a flip-flop phenomenon.

If the subset of neighbors satisfying the requirements listed
above is non empty,mi computes for each of them the
product of their cover by their zone number,Z(mj)×T (mj),
and selects the one with the smallest product (cf. line6 in
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Algorithm 2 Select_IN

1: V ← mj ∈ Γ(mi) such asZ(mj) < Zmax

2: {V is the set of neighbors of INmi which zone number
is smaller than the maximum allowed.}

3: V ′ ← mj ∈ V such asT (mj) < Topt − θ
4: {V ′ is the set of neighbors of INmi which cover number

is smaller than the maximum allowed.}
5: if V ′ 6= ∅ then
6: u← mw ∈ V ′ which minimizesT (mw)× Z(mw)
7: Returnu
8: else
9: Return NULL

10: end if

Algorithm 2). In case of ties,mi chooses at random between
candidates. The product allows considering both features at
the same time, without privileging one over the other.

D. Cell delegation LEAVE CELL()

When assigning a cell to a neighbor line17 in Algorithm 1,
mi gives preference to cells that allow keeping its zone
connected and as compact as possible. By compact, we mean
that mi tries to minimize the size of its border. For instance,
in Fig. 1 if m6 decides to give a cell tom5, it has the choice
between cellsa, b, c, d ande. If m6 decides to give cellb, its
zone would be disconnected since cella will be no longer
adjacent to another cell ofm6. If m6 chooses cellc or d, its
remaining zone will be less compact (its border is enlarged
by 2l. Finally, m6 has choice between cellsa ande. In order
to optimize its trajectory,m6 selects cella (its border is then
reduced by2l). In this way, its zone remains connected and
compact. Note that in some cases there might be only one
candidate cell to be transferred. In such a case, the IN has no
choice and thus the shape of the resulting zone may be not
compact (as we will see in Section IV).

At this stage,mi initiates a negotiation phase withmj . mj

may refusemi’s request if it is already in a negotiation phase
with another IN. If so,mi has to select another neighbor fol-
lowing the same rules as previously described. This condition
guarantees that any IN receives at most one cell per step. This
also prevents it from transgressing its cover number and having
to leave a cell at its turn.

E. Dealing with exceptions Check Neigh()

It may happen that an IN has too many TNs to monitor
and cannot give any of its cells to a neighbor. This may occur
for two reasons: (i) neighbors have reached the proper cover
number (ii) or they have reached the maximal allowed number
of cells to monitor. To better understand, let us consider again
the example of Fig. 1. Assume thatm5 needs to give a cell to
one of its neighbors, i.e., tom4 or m6. Also assume thatm4

andm6 cannot receive any cell due to a cover number between
Topt− θ andTopt + θ. m5 is in a deadlock situation. During a
deadlock situation,m5 sets a flag to1 in the beacon it regularly
sends (cf. line19 in Algorithm 1). SinceLEAV E = 0 for

Algorithm 3 Check_Neigh(mi, α)

1: force cell leaving← FALSE
2: if α = 0 then
3: α← rand()
4: end if
5: α← α− 1
6: if α = 0 then
7: for all mj ∈ Γ(mi) do
8: if flag(mj)=1 then
9: force cell leaving← TRUE

10: end if
11: end for
12: end if
13: Return forcecell leaving

m4 and m6, they meet condition of line6 in Algorithm 1.
Check Neigh is called bym4 andm6 in line 7 in Algorithm 1
but is described in Algorithm 3. This function is called with
two parametersmi (let us saym4) the id of the IN andα. If
α = 0 when CheckNeigh is called, a new random positive
integer is used (cf. line3 in Algorithm 3). This function returns
a boolean calledforce cell leaving which is set to FALSE
at the beginning of the function. The numberα is decreased
by 1. If the value ofα is 0, and one or more of the neighbor
m4 has a flag set to1, force cell leaving is set to TRUE (cf.
lines 6− 12 in Algorithm 3). This is the case in our example
sincem5 is in a deadlock. On the other hand, ifα > 0 or
no neighbor has a flag set to1, force cell leaving is left to
FALSE.

The return value of CheckNeigh (TRUE or FALSE) is used
in line 7 in Algorithm 1. If Check Neigh returns TRUE, a
cells has to be delegated, and LEAVE is set to1 (cf. line 8
in Algorithm 1). On the other hand, if CheckNeigh returns
FALSE, LEAVE is left to 0 (cf. line 11 in Algorithm 1). In
this case, the IN will re-enter Algorithm 1 with the previous
value of α. Yet, in Fig. 1, if m4 triggers a smaller value of
α thanm6, it can leave a cell tom3 and then receives a cell
from m5 which will leave the deadlock condition. It is worth
noting that using the remaining value ofα increases fairness.
Indeed, if m5 has more cells to delegate,m6 will probably
have a smaller (remaining) value ofα thanm4.

IV. PERFORMANCEANALYSIS

Cover performances are evaluated through the WSNet simu-
lator [13]. Since by construction, coverage is always provided
and reading frequency respected, we mainly focus on the
quality of IN load balancing. Due to the fact that TNs may
be mobile, the number of TNs in a cell can not be bounded.
Therefore, the parameterθ is set to1 since the average number
of TNs in a cell isN/C < 1 (cf. Table II). Although such
a value for θ slows down the system and constraints cell
exchanges at maximum, it allows the evaluation of the COVER
protocol’s robustness in extreme situations.

We consider a square field of1008m×1008m divided into
36 × 36 cells of edgel = 28m. We evaluate the evolution of
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TABLE II
SIMULATION SETTINGS.

Parameter Value
network areaL 1, 008m × 1, 008m
size of cellsl 28 m × 28m
Number of cells =C 1, 296

NUmber of TNs =N 250

mobility models STA, BRO, RWP, REB
simulation duration 500s

the network under the following mobility models of the TNs:

• STA: (for static) positions of TNs are uniformly and
randomly chosen. This model is only used for compar-
ison purpose. It also helps highlighting the algorithm’s
performances under stable conditions.

• BRO: (for random walk mobility) TNs choose a direction
between north, south, east, and west and move toward it
for 1s at the speed of1m/s. Targets stop then for2s and
repeat the process. This model may illustrate movement
of cars in a city like New York City.

• RWP: (for random way point) TNs travel from a starting
point to a randomly chosen destination at a randomly
chosen speed between[0.1; 5]m/s. When it reaches its
destination, it pauses for2s before randomly choosing a
new destination. This model may illustrate worst move-
ment case of animals in large space.

• REB: (for rebound) TNs draw a random angle between
[0, 2π] and a speed between[0.1; 5]m/s. When they reach
a border, they bounce with the same angle. Unlike in
RWP, here, TNs are more likely to be spread out in the
field.

These mobility models were chosen due to their character-
istics [14] such as:

• Memory-less, to avoid INs from learning the mobility
pattern and thus to simulate worst case. Note that if INs
can estimate the mobility pattern or if the TNs follow a
group mobility models, the performance of the algorithm
can be increased. This investigation is left to future works.

• Different node distribution. This characteristic helps us
to evaluate the performance of the algorithm when TNs
are not uniformly distributed.

Infrastructure nodes run Cover at everyt seconds, wheret
is randomly and uniformly chosen at each step in the interval
[0.9; 1.1] in order to break synchronization and to have an up-
to-date coverage. Simulation parameters are summarized in
Table II.

Simulation results are divided into three parts. Section IV-A
is dedicated to the evaluation of the zone coverage along time
for different mobility models. Results show that the shape of
the zones strongly depends on the mobility pattern of the
TNs. Section IV-B focuses on the quality of distributions
of the cover and zone numbers. Results reveal that Cover
exhibits good performances as the distribution of TNs per
IN follows a normal distribution around the average. They
also show that more than50% of the INs cover the optimum

number of TNsTopt. This reveals the good cell distribution
per IN. Finally, Section IV-C shows the evolution of the zone
and cover numbers per IN along time to measure the quality
of the load balancing. Simulations show that our algorithm
evenly distributes the number of TNs per IN. Furthermore, it
is shown up that Cover balances the number of TNs per IN
independently from the mobility of the TNs. Moreover, Cover
is highlighted to adapt very quickly to changes due to the
mobility of TNs (in less than 10 rounds). We also show that
there is a tradeoff between the zone number and the number
of TNs per IN. All the gotten results are discussed in detail
in the following.

A. Zone coverage evaluation

We first evaluate the zone coverage evolution along time. At
initialization, all INs have the same zone number (or almost
the same for uneven topologies). Targets are randomly and
uniformly distributed over the field. Fig. 3 shows the evolution
of zone shapes for different mobility models at different sim-
ulation times. Different grayscales denote different coverage
zones (one per IN,9 INs).

STA
(a) 10s (b) 160s (c) 320s (d) 500s

BRO
(e) 10s (f) 160s (g) 320s (h) 500s

RWP
(i) 10s (j) 160s (k) 320s (l) 500s

REB
(m) 10s (n) 160s (o) 320s (p) 500s

Fig. 3. Example of zone evolution with9 INs depending on simulation time.
The zone shape evolves with time and is related to the mobility pattern.

When TNs are static and uniformly distributed, Fig. 3 shows
that the zone distribution is close to the initial one. We can
also see that after160s, the zone distribution reaches its final
shape. In the RWP model, the IN in the middle of the field
has a small number of cells. This can be explained as follows.
In the RWP model, TNs are concentrated in the middle of
the field [15], [16]. Therefore, in order to balance its cover
number, the corresponding IN gives a large part of its cells to
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other nodes. On the other hand, zone distributions for the BRO
and the REB mobility models are more likely to be spread out
over the field.

B. TN distribution

In this section, we plot the distribution of TNs for two
different numbers of INs (30 and 70) and for the four different
mobility models. The distribution is computed after 500s of
simulation and we run 30 simulations for each graph. The
simulation setup gives the following indications: the average
number of TNs per IN is∼8.33 for 30 INs and∼3.5 for
70 INs, while the average numbers of cells per IN are,
respectively,∼43.2 and∼18.5.

Distribution of the cover number: Fig. 4 shows the
distribution of TNs per IN. In each case, the distribution is
close to a normal distribution. Note that more than50% of the
INs cover the average number of TNs. Thus, Cover performs
well independently from the mobility of TNs.

We also conducted a number of simulations to check the
dependency of the number of INs. The results are shown in
Fig. 5(a). As we can see, Cover fairly balances the number
of TNs per IN, whatever the number of INs and the mobility
pattern followed by the TNs.

Distribution of the zone number: Fig. 6 plots the dis-
tribution of cells per IN. The results show that, as expected,
the performance of our algorithm is increased when the TNs
are static. Fig. 6 shows that the zone number distribution
approaches a normal distribution around the average number,
except for RWP. For this latter case, the result is related to
the one provided in Section IV-A, where the IN in the middle
of the field has a smaller number of cells, and that INs in
the border of the field have a larger zone number. When the
number of INs increases, this behavior is alleviated because the
number of INs in the middle of the field increases, which can
reduce the cover number of the INs. However, this behavior is
expected in our algorithm since Cover does not try to balance
the cover zone in priority. It first adapts to TNs mobility.
Since TNs do not end up in a uniform distribution, the same
applies to the zone numbers. However, Fig. 5(b) shows that the
average number of cells per IN corresponds to the theoretical
average. Further investigations are needed to provide a better
trade-off between the two metrics. Finding this tradeoff isleft
to future works.

C. Evolution of zone and cover numbers

In this section, we plot the evolution of the cover number
and zone number of INs over time. Results provided in
Fig. 7 show that our algorithm always tries to maintain the
number of TNs close to the average and also show that under
stable condition, convergence is fast. In these simulations, we
consider 80 INs, which leads to 3 TNs per IN and 16.2 cells
per IN in average. It is important to notice here that Fig. 7
shows the evolution of the cover number and zone number for
a specific INs (randomly chosen).

At the beginning of the simulation, the number of cells
for a specific INmi is equal to the average value (due to
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Fig. 4. Distribution of the cover number for different number of INs (30
and 70) for different mobility model. The number of TNs per INs isvery
close to a normal distribution which shows the efficiency of the algorithm for
load-balancing.

simulation setup) butT (mi) can be greater or lower thanTopt.
In Figure 7(a) when TNs are static andT (mi) < Topt, we can
see thatT (mi) increases until it reaches the average value
in less than 10 seconds (10 rounds). At the same time, the
number of cells also increases. This shows that our algorithm
tries to evenly distribute the number of TNs per IN instead
of maintaining the number of zone per IN. This behavior
explains the results provided in Section IV-B, which shows
the distribution of zone per IN. When TNs are mobile,T (mi)
can vary; therefore, cells are exchanged between INs and their
neighbors. Figures 7(b), 7(c) and 7(d) show that the maximum
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Fig. 5. Cover number and Zone number w.r.t. the number of INs. (95%
confidence interval). We also plot the theoretical value. The number of TNs
per INs is close to the optimal theoretical value for all the mobility pattern.

number of TNs per INs is6 and the minimum is0 (for the
specific observed IN) and that the algorithm tries to evenly
distribute the number of TNs per INs.

Fig. 7 also shows that our algorithm presents fast reaction
when the number of TNs vary, although exchanged cells does
not necessarily contain TNs.

V. RELATED WORK

Area coverage has been investigated in the literature for
a while. However, existing solutions have been designed to
cover static points/targets. There are mainly three categories
of works that focus on coverage optimization in the literature:
1) random deployment of sensors: which consists in a huge
number of sensors being randomly deployed with activity
scheduling or power control techniques being used to reduce
the network density [17], [18]; 2) off-line computation of
sensor placements: which is based on network performance,
connectivity and area coverage [19], [20], [21]. The works
presented in these papers give an overview of possible off-
line node placements and their coverage performances; and
3) sensor repositioning scheme: which mainly focuses on the
sensor (re)positioning or online placement [22], [23]. Some
similar approaches to Cover also take advantage of node
mobility to enhance the network connectivity [24] but in
these approaches, the mobility of target nodes is known and
controlled. For the interested reader, a complete state of the
art has been provided by Younis and Akkaya [25].

The literature shows different type of coverage depending
on the application requirements. In the sequel, we only focus
on coverage involving mobile devices (sensor repositioning
scheme) since in our algorithm INs are mobile and are used
for coverage purpose. Coverage requirement provided in the
literature can be divided into three main categories.

• In the full coverage problem, sensors have to maximized
the covered area. The work proposed in [22] and [23]
uses virtual force based movement to increase the covered
area. By using a combination of mutually opposing
forces, each mobile node maximizes its coverage.

• In barrier coverage problem [26], sensors have to form
a barrier that detects any events crossing the barrier. A
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Fig. 6. Distribution of the zone number per INs for different mobility models.

barrier is defined as a segment between two points of the
sensor field between which the sensors have to be evenly
distributed. The work proposed in [27] uses virtual forces
to relocate sensors.

• In the points of interests coverage, only some specific
points of the sensor field need monitoring. [28] consider
points coverage. In these papers, the authors propose an
algorithm to periodically monitor some specific points.

In this paper, we focused on a different coverage issue
that is the coverage of mobile targets by mobile infrastruture
nodes. As in the case of point of interest coverage, mobile
targets have to be covered by the mobile infrastructure nodes.
Moreover, since targets are moving, a full coverage is needed
to cover all possible location. Since our infrastructure nodes
are mobile, we also consider online deployment issues. These
requirements and assumptions lead to a complex coverage
problem that we think is part of a new category of coverage
strategies.
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Fig. 7. Evolution of the cover and zone numbers over time for a specific
IN. In this simulation, we consider80 INs and a simulation time of500s.
Optimal value of TNs per IN is∼ 3 and average value of Cells per IN is
∼ 16.

VI. SUMMARY AND OUTLOOK

In this paper, we presented Cover, a distributed algorithm for
adaptive infrastructure deployment in two-tiered intermittently
connected networks. Infrastructure nodes track mobile target
nodes while respecting the reading frequency requirement and
keeping a (close to) optimal ratio of the number of targets per
infrastructure node. We showed through theoretical analysis
and extensive simulations that our algorithm converges when
the target nodes are fixed and that the number of target nodes
per infrastructure node is close to the optimum at any time
independently of the mobility pattern of the target nodes.

Next steps of this work include different assumptions re-
garding the communication stack used in each node. We will
also investigate ways to reduce the number of infrastructure
nodes and propose loose algorithms that allow some parts
of the area to be temporarily uncovered if empty. This will
imply the combination of coverage techniques such as barrier

coverage and sweep coverage. Other interesting issues to
investigate are when assumptions are hardened. Indeed, so
far, we assume that every TN of a cellc is read when a
IN crossesc. However, the data transmission may not be
immediate. Future works will thus include how IN speed
should be decreased to ensure the proper reading of every
TN, while still ensuring frequency reading requirements.
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