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Abstract. We propose an implementation of covert attention mecha-
nisms with spiking neurons. Spiking neural models describe the activity
of a neuron with precise spike-timing rather than firing rate. We inves-
tigate the interests offered by such a temporal code for low-level vision
and early attentional process. This paper describes a spiking neural net-
work which achieves saliency extraction and stable attentional focus of a
moving stimulus. Experimental results obtained using real visual scene
illustrate the robustness and the quickness of this approach.
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1 Introduction

Understanding the neural mechanisms underlying early attentional processes
can open novel ways of solving some artificial vision problems. Neurobiology
and cognitive psychology produce evidence for an early information selection:
the brain handles only a small part of the visual scene at a time. Spiking neu-
ral networks offer interesting properties since they seem to capture important
characteristics of biological neuron with relatively simple models. We propose a
bio-inspired spiking neural network (SNN) which selects such a small visual area
and focuses on it, using saliency extraction. The focusing mechanism relies on
the spatio-temporal continuity of the stimulus and is robust to small movements.

The different approaches used for modeling visual attention and the motiva-
tions leading to place this work in a bio-inspired framework are explained in 1.1.
The properties of the different spiking neural models that can be used in the
present context are detailled in 1.2. The network set up to extract saliencies
and focus on a moving stimulus is described in Sect. 2 and experimental results
are given in Sect. 3. The experimental validation and the obtained results are
given in Sect. 3. The spike coding used in this network is discussed in Sect. 4.
Section 5 concludes this paper.

1.1 Modeling Visual Attention and Saliency

Visual attention is a sequential mechanism: the brain concentrates only on
a small region at a time as change blindness experiments demonstrate (see
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O’Regan [1] for example). It is often said that the complexity of the visual
world exceeds the brain ability to process a whole visual scene. This hypothesis
can be questioned regarding the unmatched computational power of the brain’s
massively parallel architecture. This sequential process may have been kept by
evolution because it brings some benefits. The questions of what these benefits
are and whether they are relevant for artificial vision are seldom addressed and
have no simple answer. However, for instance, a sequential process endows the
system with what Tsotsos calls an “hypothesize-and-test” mechanism [2] leading
to inferential abilities that could have been the target of the natural selection
process.

The spatial attention is expressed by two mechanisms : overt and covert at-
tention. Overt attention refers to situation where the eye makes a saccade to
focus a saliency. It is opposed to covert attention, which involves no saccadic
moves, addressed in this paper. The attentional process selects a part of the
visual input and is a top-down process, i.e. involving task-dependent or context-
dependent influences. Pre-attention is a similar process, but in a bottom-up
(BU) or data-driven manner. The rest of this paper deals only with BU pro-
cesses: there is no assumption on learning or categorizing objects. A specific
region of a visual scene, selected by a pre-attentional process, is referred to as
a saliency. The saliencies are then gathered on saliency map whose existence
is commonly accepted but remains unproven [3]. Many models describe visual
attention mechanisms and a significative part rely on saliencies. Saliency-based
models can be separated in three main approaches: psychological models, image
processing systems and bio-inspired approaches.

Computational models set up by psychologists are closely linked to experi-
mental data, trying to explain or predict the behavior resulting from neuropsy-
chological disorders [4]. Whereas these goals diverge from computational ones,
some findings are interesting: Treisman [5] and Wolfe [6] have proved the exis-
tence of visual features. These features are the different modalities of vision:
color, luminance, movement, orientation, curvature, among others. Treisman
proposed a theory [5] in which features are extracted in a parallel way dur-
ing the pre-attentive stage and then combined on a saliency map. Psychological
models help to build a theory of perception although these models cannot be
part of an artificial perceptual system dealing with real world situation.

Salient regions can also be seen as ”meaningful” descriptors of an image. This
formulation leads the image processing community to propose other ways for
extracting saliency points. Image processing models use information theory (local
complexity or unpredictability, [7]) or pixel distribution (local histograms, [8]).
Such descriptors are used to recognize known objects or object classes and give
their best performance in controlled environments. Image processing systems can
handle real world data but they are often constrained by strong hypothesis and
are not suited for generic situation or open environment.

The bio-inspiration way aims at bringing together natural solutions and com-
putational efficiency. Realistic biological or psychological models try to reproduce
or explain every observation. Image processing systems seek efficient solutions
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and are well suited for specific situations. On the contrary, bio-inspired models
seek a compromise and try to capture only key properties. Itti and Koch [9] pro-
posed an image processing based model inspired by low-level biological visual
processing. There are many other bio-inspired models (described in [10]) which
rely on similar principles and share the notion of a saliency map. The existence
of a saliency map neural correlate is broadly discussed [3]. We use the following
definition of a saliency: a region in a visual scene which is locally contrasted
in terms of visual features and globally rare in the visual scene. Bio-inspired
approaches offer a good framework for designing efficient and robust methods
for extracting saliencies. In a bio-inspired framework, visual attention problems
can be addressed at two levels. At a system level, Bayesian approaches model
or reproduce a global behavior. At the opposite, at a unit level, neural-based
approaches specify the local properties enabling the emergence of a global be-
havior. These two approaches follow different methods, explicative model for the
former and global analysis for the latter, but can benefit from each other.

We experiment the contribution of a neural-based system, with simple spiking
models, not suited for precise modelling but adequate for real-time computation.
We choose to investigate the explicative models of bio-inspired visual attention
rather than the descriptive ones.

1.2 Spiking Neural Networks

Maass [11] described spiking neurons as the ”third generation” of neural mod-
els. Spiking neurons capture fundamental aspect of the neural functionality: the
ability to code the information as discrete events whereas the underlying equa-
tion are reasonably simple. A spiking neuron unit [12, 13] models the variation of
the membrane potential and fires a spike if the membrane crosses the threshold.
The main difference between a spiking unit and a classical sigmoid unit reside
in the way of handling time. The membrane potential Vi of neuron i is driven by
a differential equation and takes into account the precise time of the incoming
spikes. The learning ability of spiking neural networks are actively investigated
[14–17].

A single spiking neuron can exhibit two behaviors: it can either integrate the
information over a predefined temporal window or act as a synchrony detector,
i.e. emitting spikes when inputs are condensed in a small period of time.

2 Model Description

We use a Leaky Integrate-and-Fire (LIF) model characterized by the following
equation:

{

τ V̇i = gleak(Vi − Eleak) + PSPi(t) + I(t), if V ≤ ϑ

spike and reset V otherwise
(1)

where τ is the membrane time constant, gleak is the membrane leak conductance,
ϑ is the threshold and Eleak is the membrane resting potential [13]. I(t) represents
the influence of an external input current (as in Chap. 4.1.1 of [13]). The PSP(t)
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Fig. 1. Architecture of a set of feed-forward connected neural maps, which extract
saliencies from an input image and focus on the most salient region. The image is
processed both at low spatial frequencies (LSF) and high spatial frequencies (HSF).

is the synaptic input function, describing the influence of incoming spikes on
membrane potential. Among the different PSP models that can reflect complex
synaptic variations (as in [18, 19]), we have chosen a simple one for achieving
fast computation. Thus we use a PSP model without synaptic conductance (as
in [20]). Formally, incoming PSPs from neuron j are denoted by:

Sj(t) =
∑

f

δ(t − t
(f)
j + dj) (2)

where δ(x) is the Dirac distribution, with δ(x) = 0 for x 6= 0 and
∫

∞

−∞
δ(x)dx = 1,

t
(f)
j is the spike emission time and dj the synaptic delay. Since we use a model

without synaptic conductance, the influence of incoming PSPs on membrane
potential is given by the simple relation:

PSPi(t) =
∑

j

wi,jSj(t) (3)

These computations was handled in a clock-based sequential simulator which
not distributed. This simulator process only the active neurons, i.e. neurons
integrating PSPs [21].

The SNN represented on Fig. 1 is a set of neural maps (2D neural layer) which
is divided in two main pathways for processing high and low spatial frequencies.
Visual modalities of an input image are decomposed with neural filters, explained
in Sect. 2.1, and we combine all the obtained visual modalities on the Saliency
map, detailed in Sect. 2.2. This combination relies on the temporal processing
of spiking neurons, low spatial frequencies being gathered on PreAc map (on
Fig. 1), which pre-activates the Saliency map neurons. The Focus map selects
the most intense saliency as the focus of attention is described in Sect. 2.3.
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2.1 Neural Filter

The input image is translated in spike trains and the network handles luminance
and color information. Each neuron of the Input map (Fig. 1) is associated with
the corresponding pixel, i.e. the pixel luminance determines the input term I(t)
of the corresponding neuron. For a LxM image, there are eight MxM neural
maps and six L

2 xM
2 neural maps (see Fig. 1).

Neurons on the Input map project on both the LSF and HSF pathways
through connection masks as illustrated on Fig. 2. These masks are static weight
matrices with delay and define a generic projection from one neural map to
another. The weight matrix values are similar to convolution kernel used in image
processing. We use difference of Gaussian (DoG) and four Gabor orientated
kernels as connection masks between Input map and maps in both HSF and
LSF pathways.

This network achieves an image filtering similar to a classical kernel convo-
lution. However the “convolution” realized by PSPs propagation through con-
nection masks is applied in an order depending on the input value, i.e. the most
important filter coefficient being processed first. Furthermore, the lowest input
values are not processed: due to the discrete nature of spiking neurons, only
above threshold information is propagated into the network (depending on gleak

and I(t) values). This functional filtering and the fact that our implementation
processes only the neurons receiving PSPs lead to a fast execution (see Sect. 3).

Fig. 2. A neuron (in green or light grey) emits a spike and sends PSPs to all red (or
dark grey) neurons. The weight of each PSP is given by the weight matrix, represented
on the right. The weight matrix values are similar to convolution kernel used in image
processing. Here, a difference of Gaussian.

2.2 Saliency Map

The Saliency map (Fig. 1) gathers all information from visual features on dif-
ferent spatial frequencies. The Saliency map neurons are tuned to implement
synchrony detectors, i.e. they emit spikes only if PSPs are gathered in a small
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time window. Thus, saliencies are emerging from saliency map only if a spa-
tial location generates spikes on different neural maps coding for different visual
features.

A saliency point is represented by a spike emited by a neuron of the Saliency
map. Thus saliencies are temporally coded and arise in hierarchical order. The
neuron corresponding to the most salient location is the first to emit a spike,
and so on. Others bio-inspired approaches extract visual features, combining
them on a saliency map, eventually using a Winner-Takes-All (WTA) algorithm
to choose the most intense saliency. To find the second saliency, the previous
saliency must be inhibited and the whole computation is to be started again. On
the contrary, the present implementation uses a recurrent map for implementing
selection process and the experimental results show that this kind of network
implements a fast and implicit WTA.

2.3 Covert Attention

When a saliency is detected, the output spikes from saliency map are sent to the
self-connected Focus map, see Fig. 1. This self-connection mask is a DoG, which
excites adjacent neighbours and inhibits distant ones. This self-connection needs
the Saliency map spikes to keep a stable activity and is not sufficient to maintain
a constant activity alone. As the saliency moves, the activity on the Focus map
follows as long as the saliency stays in the positive part of the DoG [22].

3 Experimental results

Real world images were used for the evaluation of this SNN. We used a Sony
EVID31 pan-tilt camera for the acquisition and a Khepera robot as the moving
stimulus. A 30 frames sequence has been recorded (see Fig. 3). During this
sequence, the network focused on the moving stimulus and let the focus change
quickly when the camera made a saccade. Note that this saccadic move was
driven externally and does not rely on the activity of the network.

The frames are 760x570 pixels wide images and are reduced to 76x56 pixels
for the input of the SNN. As one pixel of the input frame corresponds to one
neuron, the network was composed of ∼53,000 neurons (L = 76 and M = 56).
In this set of experiment, we only used the luminance information.

The first frame was presented to the network for 20 integration steps. This
bootstrap stage let the network activity emerge and the spikes propagate through
each neural maps. At the 20th integration step, the Focus map emited spikes.
Each frame was then presented during N integration steps. The results for dif-
ferent N values are shown in Fig. 4 and 5.

To check the performance of the SNN, we computed the euclidean distance
between the stimulus centroid and the centroid of the activity as an error mea-
sure. Stimulus centroid was computed as the centroid of the stimulus pixel, for a
given frame. The activity centroid is defined as the centroid of all emitted spikes
by the focus map during the N integration steps of the image presentation.
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Fig. 3. Representation of the input video sequence. The mobile stimulus (a Khepera
robot) moves from left to right. As it reappears, after being hidden behind the books,
the camera makes a saccade from frame A to frame B for focusing the stimulus.

Fig. 4. Error level for the 30 frames video sequence.
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Figure 4 shows that the error decreased when the network had more time
(integration steps) to process each frame. The error level decreased rapidly when
there is a sufficient number of computation steps per frame. One can notice that
the error is still very low for only 3 integration steps per frame. This is an
interesting result especially given the computation time which are shown on
Fig. 5.

Fig. 5. Left : Runtime of our program, including building and ending process, is in-
dicated by the green curve. Overall activity load of the network is displayed by the
red curve, as the total number of spikes emitted by the network. Right : time taken to
process one frame, given the number of integration steps per frame.

All the results presented on Fig. 5 have been obtained with an desktop Intel
Core2Duo (1.86GHz). The total run time and the overall activity evolves linearly
as the number of steps per frame increases, as shown on left part of Fig. 5. The
time needed to process a frame is very promising (Fig 5, right), as with 3 inte-
gration steps per frame, the network process ∼20 frames/second. These results
confirm that SNN are suitable for visual computation in a real-time framework.

4 Discussion

Thorpe [23] shows that monkeys and humans were able to detect the presence
of animals in a visual scene in an extremely short time, leaving neurons just
enough time to fire a single spike. Information is condensed in the precise time
of each spike and the relative latency between the spikes. This first spike code
can been used to recognize a previously learned pattern in real world images [24,
25] or to characterize natural images [26]. The network described in this paper
uses spike train for detecting the spatio-temporal continuity of a stimulus, which
is not possible with a unique first spike.
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5 Conclusion

In this contribution, we build a SNN able to compute saliencies and to focus on
the most important one. Thanks to the coincidence detector properties of the
Saliency map spiking neurons, we show that this SNN can extract saliencies. The
implementation of a covert attention process rely on the temporal computation
of the spiking neuron. This network was evaluated on real data (a video sequence)
and was able to focus on a moving target. The mesured computation time shows
that this network is suitable for a real-time application.
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