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EUROPHYSICS LETTERS 

Europhys. Lett., 10 (51, pp. 483-488 (1989) 

1 November 1989 

Electronic Spectrum of a 2D Quasi-Crystal Related 
to the Octagonal Quasi-Periodic Tiling. 

C. SIRE 
Laboratoire de Physique des Solides-C. N .  R .S. 
1,  place Aristide Briand, 92195 Meudon, France 

(received 26 June 1989; accepted in final form 16 August 1989) 

PACS. 71.20 - Electronic density of states determinations (inc. energy states of liquid 

PACS. 71.25C - Techniques of band-structure calculation (general theory, applications of 
semiconductors). 

group theory, analytic continuation, etc.). 

Abstract. - Recently, a tiling derived from the well-known 2D quasi-periodic octagonal tiling 
has been introduced. In this letter, we show that in the framework of a tight-binding model, the 
electronic spectrum of this nontrivial tiling can be derived. The integrated density of state is 
singular and can be a devil staircase, there can be a finite or infinite number of gaps, whereas 
the measure of the spectrum can be zero or not, all these properties depending on the hopping 
parameters. This transition is explained with a very simple model. 

1. Introduction. 

Since the discovery of quasi-crystals by Schechtman et al. [l], many authors are 
interested in the study of the electronic spectrum in solids with a quasi-periodic structure, in 
one, two or three dimensions. In all dimensions, there are a lot of numerical works, which 
shows that the electronic spectrum of a quasi-crystal has a singular part [2]. The 1D case has 
been intensively studied [3-51, whereas in 2D or 3D, there are very few exact results, except 
for superlattices built from the Fibonacci sequence studied by Ueda and Tsunetsugu [6]. In 
the following, we introduce a tiling closely related to the 2D-octagonal quasi-periodic tiling, 
and study its spectrum. 

2. The labyrinth. 

Recently, a new tiling, we call it the labyrinth, has been introduced[7]. It is built 
univoquely from the quasi-periodic octagonal tiling. More precisely, it can be considered as a 
subset of the octagonal tiling, and conversely. It is built with a kite, a trapezoid and a square 
whose dimensions are functions of a certain parameter a (seer71 for more details). For 
a = 1 + @, we obtain the labyrinth which can be found directly, starting from the octagonal 
quasi-periodic tiling. We show the labyrinth in fig. 1, for different values of a. The origin of 
its name is manifest. We give the two main results which will be useful in the following. The 
coordinates of the vertices of the labyrinth (a  = 1 + @> can be exactly derived and can be 
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a) b )  

Fig. 1. - The labyrinth for different values of a. a) a = 1 + .\/2, b )  a < 1 (here, a = .\/2 - 1). 

written as 

where F(x)  is the closest integer to x and 1, m E 2. It is clear from (1) that the labyrinth has 
an average lattice (which is a square lattice), by taking F(x )  = x. 

Moreover, it can be shown that the labyrinth can be obtained in a different way. Let us 
consider S l ,  a sequence of letters L and S (the aOctonaccin sequence), obtained by means of 
the following recursion formula: 

So=S, S1=L,  S l + e = S 1 + l * S l * S l + l  and Sm=l&S1, 

where * is a symbol for chain concatenation. One can associate a linear chain to S1 (we call it 
RJ by associating a length 1 to a S and a length a to a L,  and symmetrizing it with respect to 
the origin. Now, we build the Euclidean product R,  x R,, and remove all vertices which 
cannot be linked to the origin by means of diagonal bonds (that is nonvertical nor horizontal 
bonds). Finally, if we link nearest neighbours by diagonal bonds, we recover the labyrinth 

Fig. 2. - The labyrinth as it is built in sect. 3-4. The dotted lines represent the underlying Euclidean 
product. 
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(fig. 2). This last method will be very useful in order to derive the electronic properties of 
the 'labyrinth. 

3. The product of two linear chains. 

Let us consider two linear chains of atoms, S1 and S,. One can study the electronic 
spectrum of each chain in the framework of a tight-binding model. We suppose that on Si, 
i = 1,2 ,  the hopping parameter between nearest neighbours can take only two values, si and 
Zi. Of course, this condition is not necessary and the following calculation is not affected by a 
biggest set of values for the hopping terms. Moreover, for Si, we take the diagonal terms of 
the Hamiltonian equal to vi, i = 1,Z. Now, suppose we know the electronic spectrum and the 
wave functions for each linear chain: 

where Ei + vi is in the spectrum of Si ,  and @i,j is the eigenvector value at the site j of Si. By 
doing the product of two such equalities (one for each chain), we obtain 

with 

and the sum holds on the eight nearest neighbours of the site (i,j). We introduced an 
arbitrary constant V whose dimension is an energy, for E to have the same dimension. We 
see that the eight hopping parameters are not independent, since they are functions of only 
six independent ones. So, we can build the spectrum of a lattice with rather complicated 
interactions, provided we can find linear chains whose spectrum is known, starting from 
which the lattice can be built. The same calculation can be done in 3D or with second nearest 
neighbours. 

Let us study two particular cases. The first one is well known, and corresponds to the 
case where we take w1 = v, = V and V = + CQ. Then, we obtain the usual Euclidean product of 
the linear chains. Of course, in that case, the formula (3) for the energy gives E = E l  + E2,'* 
which is a classic result. A more interesting result is obtained when taking vl = v2 = 0. In 
that case, one can see that vertices linked by a vertical or horizontal bond in the Euclidean 
product S1 x Se do not interact any more, since the hopping parameter for such bonds is in 
the set {wlsz, v1Z2, v2s1, vzZ,}. More precisely, if we link together every couple of 
interacting sites on SI x S,, we obtain two superimposed and connected set of vertices, each 
of them being the dual of the other one (fig. 2). If we take one vertex of S1 x Se as the origin, 
we can see that the first lattice contains vertices whose coordinates have the same parity, 
while the other one consists in vertices with coordinates with opposite parity. Even if the 
resulting tiling is not necessarily identical to its dual, they have the same spectrum, since (2) 
and (3) split in two disconnected sets of equations. Nevertheless, there is no reason for a 
simple correspondence between both wave functions. Moreover, the spectrum of each lattice 
is the set {E, E,, El E Sp (SJ, E, E Sp (S,)}, where Sp (Si) is the spectrum of S,. 

In the next section, we show that this calculation can be applied to the labyrinth. 
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4. The electronic spectrum of the labyrinth. 

In (l), let us define p and q by p = 1 + m and q = E - m. Then, the coordinates can be 
expressed in an equivalent way by 

Moreover, it can be shown that the sequence of long and short lengths along the chain 
U =  {Up ,  p E Z} is identical to R,. Thus, the labyrinth consists in the vertices of the 
Epclidean product U x U whose coordinates have the same parity (fig. 2). According to sect. 
3, if we know the spectrum of the linear chain U ,  we also know the electronic spectrum of the 
labyrinth and its dual. So, let us study the spectrum of U. Since U has the same structure as 
R,, which follows the Octonacci sequence, we first study the spectrum of a crystal of 
elementary cell Rl, before taking 1 infinite. Then, our problem becomes very similar to a 
tight-binding model on the Fibonacci chain. We expect to find a trace mapping whose 
iterations will lead to the spectrum. Indeed, very similar calculations as those done in [41 
give the following result. Let the hopping parameter be 1, for a long bond, r, for a short one. 
We define Ml(x) and M&) by 

Then, the energy x is in the spectrum of R1, if )xL(x)I S 1 where 

1 x-l = -Tr ( M J ,  2 

7 
/ 

Q) b )  

l i ’  

Fig. 3. - We show, respectively, the IDOS of the Octonacci chain (up) and the IDOS of the labyrinth, 
for a) r = 0.8 (no gap, finite measure), b) r = 0.6 (some gaps and finite measure) and c)  r = 0.3 (infinity 
of gaps and zero measure). The energy varies between - 2 and 2, since v<  1. 
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and x1 obeys the following recursion formula: 

x1+3 = 4(x1+2)2 xE+1 - ($1  -k x1+2) %+d%+1 - x1+1* (5 ' )  

Taking into account this last result, and the derivation of sect. 3, we are now able to 
calculate the DOS (density of state) for the labyrinth with hopping parameters 1, r, ?, for 
the three kinds of neighbouring sites. In fig. 3, we show the integrated DOS for the 
Octonacci chain and the labyrinth, for three typical values of r. Note that for r close to 1, the 
IDOS of the labyrinth resembles the IDOS of a square lattice, without any visible gap, 
whereas for small values of r, large gaps are appearing and the IDOS is a devil staircase. 
One can be interested in the measure of the spectrum. More precisely, for the Fibonacci 
chain, Kohmoto has found that when the size of the elementary cell increases, the measure 
of the spectrum vanishes like Fi', where F1 is the number of atoms in R1. For the Octonacci 
chain, we obtain a similar result with 

r 
Fig. 4. - 6 and 6' as a function of r (0 e r  < 1) for the #labyrinth,. 

For the labyrinth, we expect the measure of the spectrum to behave like Fi". In fig. 4, the 
dependence of 6 and 6' with r is shown for 0 S r < 1. The first result is that although the DOS of 
the labyrinth is always singular, the measure of the spectrum is nonzero for r > ro with 
ro = 0.4, zero otherwise. Moreover, there is an asymptotic relation between 6 and 6'. Indeed; 
for r close to 0, so that 6is large, each band of R1 is very thin. Therefore, the aproductw of the Fl 
bands gives almost Ff bands in the spectrum, so that the total bands width is about Fi-'. 
Hence, 6' = 6 - 1. Near rot a lot of bands overlap and this estimation is not correct. 

One can illustrate the behaviour of the spectral measure, with a very simple example. 
Consider a real k > 3 ,  and the sets C,  and C defined by 
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C, is a ramified set, and C is a Cantor set. The measure of C, is 2 x 3"lk". It goes to zero 
when n goes to infinity like 3-&, with 6 = In (k)/ln (3) - 1. Thus, the measure of C is zero. 
Moreover, one can cover C, by means of 3" segments of length 2Ik". Thus, the Hausdorff 
dimension of C is found to be lim [- In (3")/ln(2/kn)] = In (3)/ln(k). In general, the p -  

branches Cantor set has Hausdorff dimension ln(p)An(k), and the corresponding 6 is 
In (k)An ( p )  - 1. C can modelize very grossly the spectrum of a 1D quasi-crystal (eventually 
with a different number of branches for an irrational number different from @- 1 or 
(fi + 1)12). In fact, it is known that instead of only one scaling factor k, there are an infinity 
of such ones [8] in the spectrum. Now, starting from C, we can build the two sets C, and C, 
defined by C ,  = {x + y/ x, y E C} and C, = {xy/ x, y E C}. Since C+'is a ramified Cantor set 
with 5 branches, the associated S' is 6' = In (k)/ln (5) - 1, if k > 5, zero otherwise, while the 
Hausdorff dimension is In 5/ln k. Thus, for such a set, even if the IDOS can be shown to be 
singular, the measure can be finite, or zero, if the scaling factor k becomes larger than 5. 
The Result for C, is exactly the same. Thus, we find that the measure of C, and C, becomes 
zero when 6, the exponent related to C, is cYc = In (5)fln (3) - 1. For a more general three- 
branches Cantor set, C, and C, are expected to be two six-branches Cantor sets and 
Se = In (6)fln (3) - 1 = 0.63093. Even if this crude treatment cannot describe rigorously the 
behaviour of the spectrum of Fibonacci or qOctonacci>> chains, it gives a reasonable value for 
cYC, and explains why the measure can be zero or not. 

n-+- 

5. Conclusion. 

In this letter, the excitation spectrum of a 2D quasi-periodic tiling very closely related to 
the standard octagonal tiling is calculated. The density of states is singular. No gap can be 
seen when the hopping parameters are too close to 1. Moreover, the spectrum measure is 
finite for r sufficiently close to 1, and zero when r is smaller than a critical value. Such a 
phenomenon can be explained by a very simple model describing the spectrum as a ramified 
Cantor set. 

* * *  
I am very indebted to R. MOSSERI, J. BELLISSARD and M. DUNEAU for stimulating 

conversations. 
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