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Abstract

Surface plasmon waveguides (SPW’s) are metal ridges featuring widths in

the micrometre range and thicknesses of a few tens of nanometres. A focused

ion beam (FIB) has been used to carve micro–scatterers into gold SPW’s

and the near–field distributions around these micro-structures are observed

by means of a Photon Scanning Tunneling Microscope (PSTM). On the basis

of near-field images, we show that a finite length periodic arrangement of
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narrow slits can reflect a surface plasmon mode propagating along a SPW. The

reflection efficiency of the micro–grating is found to depend upon the number

of slits, the period of the grating and the incident wavelength. The optimum

reflection efficiency is obtained for a period of the micro-grating equal to half

the incident wavelength in vacuum. The PSTM images of the plasmon mirrors

taken at different wavelengths allow us to measure the experimental dispersion

curve of the SPW in the near–infrared. From this dispersion curve, we found

that, in analogy with a surface plasmon (SP) excited on extended thin films,

the group velocity of a SPW mode is close to the speed of light. For a given

frequency in the near–infrared, the effective index of the SP mode supported

by a 2.5 µm wide SPW is also found to be significantly larger than the effective

index of an extended thin film SP. Finally, we show that the optical properties

of micro–gratings engraved into a SPW can be qualitatively approached by a

standard Bragg mirror model.
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I. INTRODUCTION

A polariton is an electromagnetic mode related to the oscillations of the polarization

density. At the interface between two media such that the real parts of their frequency

dependent dielectric functions have opposite signs, surface polariton featuring a field dis-

tribution that decays exponentially in both media may occur according to a well–known

dispersion relation [1]. In the case where the material displaying a negative real part of

the dielectric function is a metal, the polarization density oscillation corresponds to oscilla-

tions of the electron gas. The surface polariton is then called a Surface Plasmon Polariton

(SPP) [2,3]. The electromagnetic field associated with a SPP can propagate along the inter-

face to which it is bounded and decreases exponentially in the direction perpendicular to this

interface. This vertical confinement makes SPP’s appealing for the design of optical devices

integrated in coplanar geometry. Until now, two features have hindered the development of

SPP based integrated optics. First, the damping of the electron collective excitations limits

the propagation distances. Second, very little is known about systems able to control the

propagation of SPP.

In order to achieve efficient SPP guiding, two different approaches are currently investi-

gated. The first kind of systems relies on the propagation of SPP modes along finite width

thin metal films. When buried in an homogeneous dielectric medium, these surface plasmon

waveguides (SPW’s) allow the propagation of so-called “long-range” SPP’s over distances

of several millimeters at telecommunication frequencies [4–6] . Such a range of propagation

distances make SPW’s a possible alternative to high refractive index dielectric waveguides

for the fabrication of miniaturized passive optical components such as splitters, filters or

resonant cavities.

When deposited on a dielectric substrate, SPW’s support SPP modes with effective prop-

agation lengths of only few tens of microns in the near–infrared frequency range. Although

in this case the propagation lengths are probably too small to be directly useful for inte-

grated optical devices, this configuration offers the opportunity to observe SPP modes in
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direct space by near–field optical microscopy. For example, a strong lateral field confinement

of SPP modes supported by silver SPW’s has been demonstrated on the basis of Photon

Scanning Tunneling Microscope (PSTM) images [7]. More recently, the PSTM images of

gold SPW have shown that the modal field distributions of SPW modes are created by the

coupling of finite width interface modes and boundary modes supported by the abrupt edges

of the metal strips [8].

The second kind of devices allowing both the lateral confinement and the propagation

control of SPP’s are based on the interaction of surface plasmon with gratings formed with

individual scatterers. Recently, SPP propagation along lines of defects created into a so–

called “plasmonic crystal”, such as an array of gold nano–particles deposited on a gold thin

film, has been reported [9]. Similarly, silica posts texturing an extended silver thin film

have been found to be very efficient to achieve the reflection of a locally launched surface

plasmon [10]. Most of the previous works dealing with the scattering of SPP by periodic

nano-structures have considered surface plasmons excited on extended thin films, i.e. thin

films with lateral dimensions much larger than the wavelength of the surface wave.

In this work, we consider metal strips with typical widths of only a few wavelengths of

the SPW modes and we study the interaction of these SPW modes with micro–structures

engraved by Focused Ion Beam (FIB) milling into the metal strips. Specifically, we consider

gratings made by a finite number of narrow slits texturing a 2.5 µm wide SPW to show that

these micro–gratings can be used as SPP mirrors. The paper is organized as follows. After

a brief description of the experimental setup and the sample fabrication process in section

II, we analyze in section III the PSTM images of a micro–grating recorded at different

observation distances. The back–reflection of a SPW mode by a micro–grating is then

discussed on the basis of these results. In section IV, we study the reflection efficiency of the

micro–gratings as a function of different structural parameters such as the number of slits or

the period of the gratings. Section V is dedicated to the measurement of the phase constant

and the group velocity of a 2.5 µm wide SPW using PSTM images obtained at different

incident wavelengths in the near–infrared frequency range. Finally, we show in section VI

4



that a standard Bragg mirror can model, at least qualitatively, the optical properties of the

micro–gratings acting on SPW. The parameters of the equivalent Bragg mirror are deduced

empirically from the experimental results of the previous sections.

II. EXPERIMENTAL BACKGROUND

Figure 1 shows the scanning electron microscope images of a typical structure considered

in this study. The fabrication of the samples begins with an electron beam lithography pro-

cess performed on an Indium Tin Oxide (ITO) doped glass substrate previously spin–coated

with a layer of polymethylmethacrylate (PMMA) (200 nm thick). After the lithography

stage, the exposed PMMA regions are dissolved and the sample is subsequently coated with

a thermally evaporated gold 55–nm–thick film. This metal film is then lifted–off by dissolv-

ing the non-exposed PMMA areas, in such a way that after the lift-off process the sample

consists of gold patterns deposited on the ITO–doped glass substrate (see Fig. 1(a)). The

micro-structuration of these gold patterns is then performed by using a Dual Beam Strata

235 Focused Ion Beam (FIB). The microstructures we consider in this work consist of grat-

ings made of a finite number of narrow slits (150–nm–wide) engraved into 2.5 µm–wide gold

strips (Fig. 1).

To perform the optical excitation of the microstructured SPW, the sample is first at-

tached with an index matching fluid to the hypotenuse of a right–angle glass prism. A surface

plasmon is then locally launched in the Kretschmann–Raether configuration by means of a

focused beam. As shown schematically on Fig. 1(a), the incident spot is located on the

homogeneous thin film area to which the SPW’s are connected. Thus, the SPW’s excitation

is performed by coupling with an extended thin film surface plasmon and not by direct illu-

mination. An efficient coupling between the thin film surface plasmon and the SPW mode

supported by a metal strip is achieved if the incident spot is located in front of the strip and

if the plane of incidence is parallel to its axis.

The PSTM setup used in this work has been previously described in detail [7]. The PSTM
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relies on the frustration of evanescent fields using a local probe attached to a piezo–tube

and scanned in the close vicinity of the sample surface [11]. In our device, the local probes

are multi–mode optical fiber tips coated with a thin layer of chromium (10 nm) in order to

prevent that a significant amount of radiative light enters the fiber and contributes to the

near–field optical signal [12]. The metal coating also allows the detection of a tunnel current

when a bias voltage is applied between the metal coated tip and the conductive surface

of the sample. The detection of such a tunnel current is used to define the origin for the

measurement of the absolute tip–sample distance since it occurs for the tip in quasi–contact

with the sample surface.

III. SPW MODE BACK-REFLECTION BY A MICRO–GRATING

Two recent experimental studies have shown that either the abrupt discontinuity ending

the extremity of a metal strip [7] or a single narrow groove engraved in an extended thin

silver film [13] can efficiently reflect a SPP. In order to show the effect of the presence of

a micro–grating on the propagation of a SPW mode, we show in figure 2(a) a large scan

PSTM image recorded over a mirror consisting of ten slits milled in a 2.5 µm wide SPW.

The period of the micro-grating is 400nm and the incident light frequency corresponds to

a wavelength in vacuum of λ0=800nm. The micro–grating is located at a distance of 15

µm from the output end of the triangularly shaped area (named taper in the following)

connecting the strip to the extended thin film. Well pronounced interference fringes with

a period of roughly λ0

2
are visible all along the SPW while a two–dimensional standing

wave pattern is observed over the taper. A longitudinal cross–cut of the optical image is

displayed in figure 2(b) and shows more in detail the near–field intensity distribution over

the the SPW. In analogy with a surface plasmon mode supported by an extended thin film

propagating towards positive values of y, the electromagnetic field associated with a SPW

mode is expected to depend upon y as exp (−α + iβ)y where α and β denote respectively

the attenuation and the phase constant of the surface plasmon. However, it can observed on
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fig. 2(b) that the intensity of the SPW mode does not decrease exponentially as it propagates

along the metal strip. Indeed, the optical signal at the center of the SPW increases from

the end of the taper (corresponding to y=4.0 µm on fig. 2(b)) to y=11 µm. Furthermore,

the transverse intensity distribution changes dramatically with y over that range as shown

by the two optical profiles displayed respectively in fig. 2(c) and 2(d). Close to the SPW

input ( fig. 2(c)), the optical profile exhibits a three peaks structure while a large central

peak flanked by two shoulders is observed when the SPW mode has propagated over few

microns (fig. 2(d)). Since it has been shown in a previous study that the SPW modes

are hybrid modes, also called “super–modes”, resulting from the superposition of finite size

interface modes and boundary modes supported by the edges of the metal strip [8], we can

thus assume that the spatial transient we observe on the PSTM image is due to the fact

that these different modes must interact over a distance long enough in order to build–up

the SPW mode.

As shown in fig. 2(b), the near–field intensity vanishes after the micro-structures leading

to the conclusion that the incident SPW mode is mostly back–reflected and scattered by the

grating. The standing wave pattern visible on the PSTM image could then arise from the

interference of the incident SPP with either a back-reflected SPP or a scattered wave. In the

near–infrared frequency range, we can reasonably assume that, in analogy with an extended

thin film SPP, the phase constant of the SPW mode is close to the incident light wave–vector

modulus in vacuum, k0 = 2π
λ0

. Therefore, from the momentum conservation law is derived

that the micro-mirror could generate a scattered field propagating at grazing incidence

regarding that in this experiment the period of the grating is equal to λ0

2
. Moreover, taking

the phase constant of the incoming SPW mode close to k0, the interference of the incident

SPP with either a back–reflected SPP or a contra–propagating scattered wave traveling at

grazing incidence could create a standing wave pattern with a period close to λ0

2
in agreement

with the rough estimate of the oscillations period observed on the PSTM image. In order

to discriminate the origin of the standing wave pattern, we consider successively this two

situations.
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If we suppose that the standing wave pattern arises from the interference of two contra–

propagating SPP’s traveling respectively toward the positive and negative values of y, then

along a line x=constant located at a distance z0 from the air/metal interface supporting the

SPP’s, the intensity of each component δ of the electric field is given by:

Iδ(y, z0) = Eδ,0
2 exp (−2αy − 2kzz0) + Eδ,r

2 exp [2α(y − ym) − 2kzz0]

+2Eδ,0Eδ,r exp (−αym) exp (−2kzz0) cos (2βy + φ) (1)

where α and β are respectively the attenuation and the phase constant of the SPP. Eδ,0 and

Eδ,r are the incident and the reflected amplitudes of the component δ of the electric field and

ym denotes the location of the mirror. The kz component is the positive imaginary part of
√

k2
0 − (β + iα)2 and φ is the dephasing at reflection. For the interference of an incident SPP

and a contra-propagative radiative plane wave traveling parallel to the metal/air interface,

the intensity of the electric field can be written as:

Iδ(y, z0) = Eδ,0
2 exp (−2αy − 2kzz0) + Eδ,r

2 + 2Eδ,0Eδ,r exp (−kzz0) exp (−αy) cos [(β + k0)y + ψ]

(2)

where ψ is a dephasing depending upon k0 and ym. The contrast of the interference fringes

is defined as:

C =
Imax − Imin

Imax + Imin

(3)

where Imax and Imin correspond respectively to the electric field intensity at a given max-

imum and at the following minimum. Assuming that the damping distance of the SPP is

large compared to the standing wave pattern period, the contrast of the interference fringes

due to the two contra–propagating SPP can be obtained from equation ( 1) as:

Csp−sp(y) =
2E0Er exp (−αym)

E2
0 exp (−2αy) + E2

r exp (2α(y − ym))
(4)

If we consider now the interference of an incident SPP and a contra–propagating radiative

wave traveling at grazing incidence, the contrast of the standing wave pattern can be written

from equation (2) as:
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Csp−rad(y, z0) =
2E0Er exp (−kzz0) exp (−αy)

E2
0 exp (−2αy) exp (−2kzz0) + E2

r

(5)

Therefore, from (4) and (5), we can conclude that in the case of two contra–propagating

SPP the contrast of the standing wave pattern does not depend on z0 while this dependence

does exist for the interference of an incident SPP and a radiative wave traveling at grazing

incidence. In fact, if we assume that the reflected amplitude Er is small compared to the

term E2
0 exp (−2αy) exp (−2kzz0), then the contrast Csp−rad increases exponentially with z0.

So, to elucidate the origin of the standing wave pattern observed on the PSTM image, we

have recorded PSTM images of the micro–structured strip for different tip–sample distances.

The images corresponding to z0 =340 nm, 280 nm and 170 nm are shown respectively on

figures 3(b), (c) and (d). The transverse cross-cuts of each image are displayed in figure 3(e).

For the smallest tip–sample distance, the intensity distribution exhibits the three peaks

structure characteristic of a 2.5 µm-wide gold strip illuminated with an incident wavelength

in vacuum of 800 nm [8]. The longitudinal optical profiles corresponding to each value of

z0 are also shown in figure 3(f). By averaging the contrast of up to ten oscillations in each

profile, we have found that the average contrast Cavg equal to 0.30, 0.32 and 0.30 for z0 =

170 nm, 280 nm and 340 nm respectively. Thus, the experimental average contrast of the

standing wave pattern does not depend significantly on the tip–sample distance although

the near-field intensity at a given observation point is divided by a factor of about 5 when

increasing z0 from 170 nm to 340 nm (see figure 3(f)). From this result, we conclude that

the standing wave pattern observed on the PSTM images is created by the interference of

two contra–propagating SPP modes traveling along the metal strip.

IV. REFLECTION EFFICIENCY OF THE MICRO–MIRRORS

The results of the previous section demonstrate the ability of a micro–grating to reflect

a SPW mode. With the aim of characterizing the reflection process by such a mirror, we

investigate in this section the influence on the reflection efficiency of structural parameters

such as the number of slits or the period of the micro-gratings.
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A. Influence of the number of slits

As mentioned above, a single slit engraved in a metal film can reflect a surface plas-

mon [13]. It is then possible that the reflection efficiency of the ten slits micro-grating

considered in the previous paragraph could be obtained as well with mirrors consisting of

a reduced number of slits (Ns). In order to study the evolution of the reflection efficiency

with Ns, we have designed samples with one, three, five and ten slits. For all these samples,

the mirrors are located at a distance of 15 µm from the input of the 2.5–µm–wide SPW,

the width of the slits and the period of the gratings being 150 nm and 400 nm respec-

tively. The optical profiles recorded along an observation line located over the center of each

micro–structured SPW are displayed in figure 4. The interference of the incident SPW mode

with the field scattered by a single slit engraved into the metal strip (see fig. 4(a)) creates

a pattern of non–periodic large amplitude oscillations extending over a distance of more

than 4 µm. A very low contrast standing wave pattern which can be attributed to a weak

back-reflection of the incident SPP, is also visible on the left part of the optical profile. In

spite of the back-reflection and the scattering, the incident SPP is also transmitted through

the slit. Indeed, a rather large near–field intensity is still detected for the observation points

located after the slit (y > 15µm). Since the slit engraved into the SPW consists of an air

gap separating two parts of the metal strip and each part of the metal strip can support a

SPP while no SPP can propagate in air, the transmission of the SPW mode through the slit

can then be viewed as a kind of tunnel effect.

For an increasing number of slits, the amplitude of the SPP transmitted through the

micro–grating vanishes while conversely the contrast of the standing wave pattern increases.

The average contrast Cavg computed over more than 20 oscillations of the different standing

wave patterns is plotted in figure 4(e) as a function of the number of slits. The contrast

reaches an asymptotic value of about 0.26 for the micro-grating consisting of ten slits. Note

that the contrast increases between Ns = 5 and Ns = 10, leading to the conclusion that

the five last slits of the micro-grating with Ns=10 do contribute to the back–reflection of
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the incident SPP. In other words, the hopping of the incident SPP over the successive slits

of the micro–grating is efficient enough to allow the propagation of the SPP through a

micro–structured area with a length of several microns.

The increase of the standing wave pattern contrast is obviously related to a corresponding

increase of the reflection efficiency of the mirror. However, without a reliable modeling of

the metal strip SPP modes, we can only roughly estimate these efficiency. Considering an

incident SPP propagating at a gold/air interface and a mirror located at 15 µm from the

launch site, we can compute the reflection coefficient of the mirror needed for matching

the value of the contrast of the theoretical standing wave pattern with the contrast of the

experimental optical profiles. We define the reflection coefficient of the mirror by r = Er
δ/E

0
δ

where Er
δ and E0

δ denote respectively the amplitude of the reflected and the incident δ

component of the SPP electric field at the location of the mirror. Assuming a similar

reflection coefficient for the transverse and the longitudinal components of the SPP electric

field, a contrast for the computed standing wave pattern of 0.26 is obtained with r equal to

25%.

B. Influence the micro–grating period

Up to now, we have only considered micro-gratings with a period P = 400 nm. With

the aim of studying the influence of the period on the reflection efficiency, we consider now

mirrors with three different periods (350 nm, 400 nm and 500 nm) while keeping a fixed

number of ten slits engraved at a distance of 15 µm from the SPW input. The longitudinal

optical profiles shown in the right part of figure 5 have been recorded over these samples

for two incident wavelengths λ0 = 753 nm (solid line) and λ0 = 800 nm (dashed line) (The

PSTM images recorded with λ0=800nm are shown in the left part of figure 5). A neat

standing wave pattern is observed for the mirrors with P=350 nm and P=400 nm while

mainly the scattering on the mirror is visible when P=500 nm. The low contrast standing

wave patterns in figure 5(f) indicate that, for both wavelengths, the mirror with a period
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of 500 nm reflects very poorly the incident SPW mode. The standing wave pattern being

much more pronounced for P=350 nm and P=400 nm, it is worth to notice that the highest

contrast is obtained for λ0=753 nm if P=350 nm and for λ0=800 nm if P=400 nm. In order

to investigate more in detail the efficiency of the mirror when the ratio P/λ0 is close to 0.5,

the micro–grating with a period P=400 nm has been imaged at six different wavelengths

while only two have been used for P=350 nm and P=500 nm. The average contrast of the

standing wave–pattern obtained for the different period–wavelengths combinations is plotted

as a function of the ratio P/λ0 in figure 6. The curve displayed in figure 6 shows that the

contrast reaches a maximum when the incident wavelength in vacuum is twice the period of

the micro-grating. The highest reflection efficiency of the mirror is expected for the SPP’s

back-reflected by each slit being in phase then we conclude that the effective wavelength of

the SPP mode traveling through in the micro–structured area is very close to λ0.

C. Influence of the incident wavelength

By changing the period of the micro–grating, we have found that the maximum reflection

efficiency of the mirror is obtained for P/λ0 equal to 0.5. To further confirm this result, we

have performed the PSTM imaging of a micro-grating with a fixed period of 400 nm by using

incident wavelengths distributed over the whole tunability range of our Titanium-sapphire

laser (750 nm - 830 nm). In this case, the mirror consists of ten slits engraved at a distance

of 25 µm from the input of the 2.5 µm wide SPW. A typical PSTM image of this mirror

obtained with λ0 = 800 nm is shown in figure 7(a). As expected, a well pronounced standing

wave pattern is visible on the near–field image. A cross–cut of this image taken along the axis

x = 0 is shown in figure 7(b) (solid line). Unlike the standing wave pattern resulting from

the interference of two contra–propagating SPP’s (see equation (1)), we observe that the

amplitude of the oscillations decreases dramatically when the observation point approaches

the mirror. In fact, according to equation (2), such a damping occurs when an incident

SPP interferes with a radiative wave. However, we have shown in section III that the
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standing wave pattern in the PSTM images of the micro–gratings arises from surface–waves

interferences. Furthermore, unlike what is expected when a SPP interferes with a radiative

wave, the amplitude of the oscillations in figure 7(b) is not damped monotonically with the

propagation distance. Indeed, it is found to be rather constant for y < 5 µm (see dashed line

in figure 7(b)). From these observations, we deduce that the damping of the standing wave

pattern amplitude is not due to the interference of a SPP and a radiative wave but on the

other hand, such a damping is not expected for two contra–propagating SPP’s. To overcome

this apparent contradiction, it is worth to notice that in our case we are not considering

SPP excited on an extended thin film but the hybrid SPW modes. The damping could then

be related to the intrinsic properties of these modes, i.e the back–reflected hybrid SPW

mode has to propagate over a minimal “threshold” distance in order to arise as the result of

the reflection, produced by each slit of the mirror, of each SPP component involved in the

incident hybrid SPW. In the absence of a reliable modeling of these modes, this hypothesis

is difficult to verify. However, it is consistent with the fact that, at the input of the SPW,

such a spatial transient is necessary to operate the transition from the incident extended

thin film SPP and the SPW mode (see fig. 2). Note also that the damping of the standing

wave pattern is less pronounced when the mirror is engraved at a smaller distance from the

SPW input (see for example fig 4(d)) indicating that the field distribution of the incident

SPW mode at the location of the mirror influences the back–reflection process.

Although not fully understood, the damping of the standing wave pattern oscillations is

not an obstacle to the spectroscopic study of the mirror efficiency on the basis of the PSTM

images. Indeed, one can see on figure 7(c) that the contrast of the oscillations is rather

constant for observation points located at a distance large enough from the mirror. Thus,

by averaging this contrast over the five first micrometers (y < 5 µm) of each optical profile

recorded with different incident wavelength, we obtain the curve plotted in figure 8. The

fitting of the experimental data exhibits a parabolic shape with a maximum corresponding

to an incident wavelength in vacuum of λ0 =800 nm. Thus, in agreement with the previous

experiment, we find that the maximum reflection efficiency is obtained for the wavelength
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λ0 equal to twice the period of the micro–grating. This result suggests once again that

the phase constant of the field traveling through the micro–structured area is very close to

k0 = 2π
λ0

.

V. DISPERSION CURVE OF THE SPW MODE

The integration of micro–mirrors in SPW may have interest for SPP routing purposes

for example, but beyond these practical applications micro–mirrors can also be used to

characterize the fundamental physical properties of metal strip SPP. The general form of

the electric field of a SPW mode propagating along the y axis can be written as:

~E(x, y, z) = ~E0(x, z) exp (−α + iβ)y (6)

where α and β denote respectively the attenuation and the phase constant of the SPP. The

PSTM images of the micro–structured SPW’s allow the measurement of these two constants

simultaneously. Indeed by averaging up to 60 columns of a 512×512 pixels PSTM SPW

image (see for example figure 7(a)), a mean longitudinal optical profile can be obtained.

From such a profile, one can measure the period d of the standing wave pattern and the 1/e

damping distance Lsp of the background intensity and then compute the attenuation and

the phase constants according to the relations α = 1/(2Lsp) and β = π/d.

The reflection efficiency of the micro–mirror is large enough over the tunability range of

our laser to provide a well–defined standing wave pattern that allows an accurate measure-

ment of the period d and thus the computation of the phase constant β. The experimental

dispersion curve of the SPW mode phase constant is shown on figure 9. The light line defined

by β = ω/c and the dispersion curve of an extended gold/air interface surface plasmon are

also displayed on this figure. The phase constant of the surface plasmon has been computed

according to the well–known relation βSP = ℜ(ω
c

√

ε(ω)
ε(ω)+1

) where ℜ and ε(ω) denote respec-

tively the real part and the complex dielectric function of gold [3]. The values of ε(ω) used

for the computation of βSP are experimental values measured by ellipsometry. Over the
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frequency range considered, the complex refractive index of gold has been found to be given

by n̂ = 0.32+ i(8.66×λ0−2.05), where λ0 is the incident wavelength in vacuum expressed in

micrometer. It can be seen on figure 9 that, at a given frequency, the phase constant of the

SPW mode is significantly larger compared to the one of a SPP launched on an extended

thin film. Note that, in spite of the absence of crossing between the two dispersion curves,

an efficient coupling between the two kinds of surface plasmon is observed [8]. Such an

efficiency must be related to an overlap of the two kinds of surface plasmon resonance due

to their respective linewidths.

The group velocity, defined by vg = dω/dk, is commonly interpreted as the average

velocity of a pulse [14]. However, both the shape and the amplitude of a pulse can be affected

by the propagation into a dissipative and/or dispersive medium such that the concept of

group velocity may lose its physical significance in this situation [15]. Nevertheless, even for

a dispersive medium, the group velocity remains physically meaningful if the duration of the

pulse is sufficiently long such that its spectrum has a significant amplitude only over a very

narrow range of frequency. Thus, at a given frequency, the local slope of the dispersion curve

of a surface plasmon can still be interpret as a pulse velocity for long enough excitations.

With this restriction in mind, we can measure the average velocity of a pulse propagating

along a metal strip directly from the experimental dispersion curve shown in fig.(9). For

example, at a frequency corresponding to a wavelength of 800 nm in vacuum, we found a

group velocity of vg=2.9×108 ms−1. For this range of frequency, the group velocity of a

plasmon polariton excited at the surface of an extended thin gold film is also very close to

the speed of light. It is then worth to notice that surprisingly, unlike what has been found for

the damping distance [16], the finite width of the metal strip (only three times the incident

wavelength) does not influence significantly the group velocity of the SPW mode.
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VI. ANALOGY WITH A BRAGG MIRROR

A standard Bragg mirror is a stack of layers made of materials with different optical

refractive index. For the SPP modes propagating along a metal strip, the micro–grating

creates a periodic refractive index contrast such that, to some extent, a micro–grating can

be viewed as a SPP Bragg mirror. The goal of this last section is to determine empirically the

structural parameters of an equivalent one–dimensional Bragg mirror (EBM) which models

qualitatively the optical properties of the micro–gratings engraved in a SPW.

The EBM is supposed to be illuminated in normal incidence by a radiative wave with a

wave–vector equal to the phase constant of the SPW mode. This phase constant is known

from the experimental dispersion curve discussed in the previous section. The EBM is made

of two materials (A) and (B) modeling respectively the air gap of the slits and the pieces

of the metal strip located in between two successive slits (figure 10(a)). The thickness of

each layer in the EBM is taken equal to the dimension of the corresponding structures

in the micro–gratings. For example, for a micro–grating with a period P=400 nm, the

thickness of materials (A) and (B) are respectively 150 nm (width of the slits) and 250 nm

(inter-slit distance). The EBM is fully characterized if the optical refractive indexes of each

material are specified. These indexes are determined empirically using the experimental

results discussed previously.

We have shown in section III that the reflection efficiency of the micro–gratings saturates

for a rather small number of slits. Indeed, the contrast of the standing wave pattern changes

by only 15 % when switching from a mirror with Ns=5 to Ns=10 (see fig. 4(f)). This result

arises from the dramatic damping of the incident SPP as it propagates through the micro–

structured area of the metal strip. In order to simulate this damping in the EBM model,

the air gaps engraved in the SPW are modeled by an absorbing material (material (A))

with a complex refractive index n̂A = nA + iκA . Unlike the air gaps, the metal strip pieces

located between two successive slits can support a SPP mode and then are represented by

a real refractive index material in the EBM model. By changing both the period of the
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micro–grating and/or the incident frequency, we have found that the maximum reflection

efficiency of the mirror is obtained for an incident wavelength in vacuum equal to two times

the period of the grating. As mentioned before, this suggests that the phase constant of the

SPP field traveling through the mirror is very close to k0. As a consequence, for the EBM

model, the real part of refractive index of both materials (A) and (B) should be chosen very

close to 1.0. Material (B) simulates a medium supporting a SPP. A SPP being an evanescent

wave, it’s phase constant β is larger than k0 leading to an effective index neff = β/k0 larger

than 1.0 for the medium supporting the SP. In order to satisfy the two aforementioned

conditions, we chose an optical refractive index for material (B) equal to nB=1.01. Since

material (A) models the air gaps in the SPW, nA is taken equal to 1.0. In order to estimate

the extinction coefficient of (A), the EBM reflectivity has been computed as a function of

the number of layers Ns of material (A) for a several values of κA. The curve plotted in

figure 10(a) has been obtained with κA=0.3. We found that, in qualitative agreement with

the experimental curve of fig. 4(f), the reflectivity of the EBM saturates at Ns=10. The

curve displayed in figure 10(b) shows the reflectivity of the EBM (Ns=10) computed for

frequencies corresponding to the tunability range of our laser. As expected, the maximum

reflectivity is obtained for a wavelength (λ0=803 nm) almost equal to double the period of

the EBM. The EBM reflectivity curve exhibits a parabolic shape which is one more time in

qualitative agreement with the experimental results (fig. 8). The calculation of the EBM

reflectivity has been performed with a refractive index of the input and output medium

equal to 1.07 which is the effective index corresponding to the SPW mode as computed

using the experimental dispersion curve shown in figure 9. It is then worth to notice that,

in order to obtain a qualitative agreement with the experimental results, the SPP traveling

inside the micro–structured area is modeled with an effective index (nB=1.01) different from

the effective index of the SPW mode propagating along the homogeneous (non–structured)

SPW although in both cases we consider SPP at a gold/air interface. A possible explanation

for such a difference could be that, in analogy with localized surface plasmon of metallic

nano–particles, the geometry of the system supporting the SPP plays a key role. For the
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homogeneous SPW, the SPP mode propagates along a metal strip with a length much larger

that it’s width. On the contrary, inside the micro–structured area, the SPP is supported

by pieces of the metal strip with a dimension along the propagation direction much smaller

than the SPW width.

With the aim of checking the reliability of our empirical model, we consider finally the

influence of the period P on the reflectivity of the EBM. Similarly to the experimental

situation, we have simulated three different periods P = 350 nm, P = 400 nm and P = 500

nm, by taking the inter-slit distance respectively equal to 200 nm, 250 nm and 350 nm. The

reflectivity of the EBM computed for the wavelengths considered experimentally for each

period is plotted as a function of the ratio P/λ0 in figure 10(d). Although small differences

with the experimental curve (fig. 6) can be observed, we found that, qualitatively, the EBM

models accurately the influence of the period on the SPP back–reflection efficiency of the

micro–gratings.

VII. CONCLUSION

In summary, we have analyzed in detail the integration of micro–mirrors into surface

plasmon waveguides. A PSTM has been used to map the near–field optical intensity dis-

tribution of a SPP propagating along a metal strips with a width of 2.5µm where finite

length gratings of slits have been engraved by FIB milling. The PSTM images of the micro–

gratings show a well pronounced standing wave pattern. This standing wave pattern has

been found to arise from the interference of two contra–propagating SPP since the contrast

of the interference fringes does not depend upon the distance between the observation plane

and the surface of the sample.

By considering micro–gratings with an increasing number of periods, we have shown that

the reflection efficiency of the mirrors saturates for a rather low number of about ten slits.

This saturation is due to the dramatic damping of the incident SPW mode as it propagates

through the micro–grating. Using three different periods, we have found that the optimum
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mirrors efficiency is obtained for an incident wavelength in vacuum equal to twice the period

of the grating. This result has been confirmed by the spectroscopic study of the reflection

efficiency performed over the whole tunability range of our laser (753 nm - 830 nm) for a

mirror with a period of 400 nm.

An accurate measurement of the standing wave pattern period has been used to obtain

the experimental dispersion curve of the SPW mode phase constant. On the basis of this

dispersion curve, we have found that, in the near–infrared, the effective index of the SPW

mode we consider is about neff =1.07 and that the group velocity is close to the speed of light

in vacuum. Finally, we have demonstrated that the optical properties of the micro–gratings

integrated into SPW can be modeled, at least qualitatively, by mean of an equivalent Bragg

mirror. From this analogy we conclude that, in principle, the micro–gratings implanted in

metal strips act on SPW modes as Bragg mirrors although the SPP Bragg mirrors studied

in this paper might have specific properties such as the influence of the micro–gratings

geometry on the effective index of SPP propagating through the zone where the slits are

engraved.
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FIGURES

µmµm 2.5 
10

(a) (b)

FIG. 1. Scanning electron microscope (SEM) images of a typical structure used in this study.

(a) The sample consists of a gold pattern (thickness 55 nm) fabricated by electron–beam lithography

and deposited on an indium-tin oxide doped glass substrate. The black ellipse shows the location

of the totally reflected focused light beam (incident from the substrate) used for the excitation of

the surface plasmon. (b) A FIB is used to a engrave micro–gratings into each metal strips. The

micro–grating shown here consists of ten parallel slits of same width (150 nm). In this case, the

period of the pattern is 400 nm.
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(b)

(c) (d)

(a)(1)

(2)

FIG. 2. (a) Large scan PSTM image of a micro–structured SPW. (b) Longitudinal cross–cut of

the near–field image along the dashed line in (a). (c) and (d) Transverse cross–cuts of the PSTM

image taken along the dotted lines (1) and (2) shown in (a) respectively.
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FIG. 3. (a) SEM image of the sample used to investigate the influence of the tip–sample distance

on the standing wave pattern contrast. The incident wavelength is 800 nm and the period of the

grating is 400 nm. (b), (c), (d) Small scans PSTM images of the standing wave pattern obtained

for tip–sample distances of respectively 340 nm, 280 nm and 170 nm. The white dashed perimeter

in fig. 3(a) shows approximately the scanning area. (e) Transverse cross–cuts of the PSTM images

(solid: 170 nm, dashed: 280 nm, dashed-dotted:340 nm). (f) Longitudinal cross–cuts of the PSTM

images (solid: 170 nm, dashed: 280 nm, dashed-dotted: 340 nm).
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(c) (d)

(e)

FIG. 4. PSTM optical profiles recorded over micro–gratings with an increasing number of slits

Ns. (a) Ns=1, (b) Ns=3, (c)Ns=5, (d) Ns=10. (e) Plot of the standing wave pattern average

contrast versus the number of slits, Ns. The dashed line is a least square polynomial fitting of the

experimental values (dots).
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P=350nm

P=400nm

P=500nm

= 800 nm

= 753 nm

= 800 nm

FIG. 5. (a), (c), (e) PSTM images of SPP propagating along a metal strip (width=2.5µm)

textured by micro-gratings with different periods, P=350nm, 400nm and 500nm. The incident

wavelength in vaccum is 800nm. (b) (resp. (d),(f)) Cross–cut of the PSTM images of the micro–

grating with P=350nm ( resp. P= 400 nm, P= 500nm). The dashed (resp. solid) line corresponds

to an incident wavelength of 800 nm (resp. 753 nm).
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P=500nm

P=350nm

FIG. 6. Average contrast of the standing wave pattern versus the ratio of the period of the

grating (P ) to incident wavelength in vacuum (λ0). The experimental points distributed around

P/λ0 = 0.5 are obtained with a micro–grating period P of 400 nm.
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FIG. 7. (a) PSTM image of a ten slits micro–grating (P = 400 nm). The mirror is engraved

at a distance of 25 µm of the SPW input. The incident wavelength is λ0 = 800 nm. (b) (solid)

Longitudinal cross–cut of the PSTM image, (dashed) Amplitude of the standing wave pattern

oscillations. Note the damping of the amplitude as the observation point approaches the mirror.

(c) Contrast of the oscillations in the cross–cut shown in (b).
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FIG. 8. Spectroscopic behavior of the standing wave pattern contrast corresponding to the

PSTM images of the micro–structured SPW shown in figure 7. Dots are experimental values, the

dashed line is a fit of the experimental data.
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FIG. 9. Experimental dispersion curve of the SPW mode phase constant. The reported fre-

quency range corresponds to wavelengths in vacuum varying from 760 nm to 830 nm . SP (dashed):

Computed dispersion curve of a surface plasmon excited at a gold/air interface. The dielectric func-

tion of gold used for the calculation of the dispersion curve has been measured by ellipsometry. LL

(Dashed–dotted): Light line in air.
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FIG. 10. (a) Scheme of equivalent Bragg Mirror (EBM) for modeling the optical properties of

the SPP mirrors integrated into SPW. The EBM is made of two materials (A) and (B) modeling

respectively the air gaps and the metallic parts of the micro–grating. Material (A) has been taken

as an absorbing material in order to simulate the scattering losses of the incident SPW mode on

the slits of the micro–grating. (b) Saturation of the EBM reflectivity for an increasing number of

layers Ns. The period of the EBM is 400 nm, the thickness of layers (A) and (B) are respectively

150 nm and 250 nm and the incident wavelength is 800 nm in vacuum. The indexes of the input

and out media are equal to the effective index of the SPW mode (1.07). The indexes of material

(A) and (B) are respectively (1.0+i0.3) and 1.01. (c) Evolution of the EBM reflectivity with the

incident wavelength. For this computation the EBM period is 400 nm and Ns=10. (d) Reflectivity

of the EBM as a function of the period P (Ns=10).
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