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Wreath products with the integers, proper actions
and Hilbert space compression

Yves STALDER∗ and Alain VALETTE

October 13, 2006

A la mémoire de Michel Matthey

Abstract

We prove that the properties of acting metrically properly on some
space with walls or some CAT(0) cube complex are closed by taking
the wreath product with Z. We also give a lower bound for the (equiv-
ariant) Hilbert space compression of H oZ in terms of the (equivariant)
Hilbert space compression of H.

Introduction

A space with walls, as defined by Haglund and Paulin [HP98], is a pair (X,W)

where X is a set and W is a set of partitions of X (called walls) into two
classes, submitted to the condition that any two points of X are separated
by finitely many walls.

The main examples of spaces with walls are given by CAT (0) cube com-
plexes (see [BH99]), i.e. metric polyhedral complexes in which each k-cell
is isomorphic to the Euclidean cube [−1/2, 1/2]k, and the gluing maps are
isometries. Indeed, it is a result of Sageev [Sag95] that hyperplanes in a
CAT (0) cube complex endow the set of vertices with a structure of space
with walls (see [ChN05] and [Nic04] for more on the relation between spaces
with walls and CAT (0) cube complexes).

Our first result is the following:
∗The first-named author gratefully acknowledges supports given by the Swiss FNRS

(grant 20-109130) and the Université de Neuchâtel, where he was employed during the
research presented in this article
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Theorem 0.1 Suppose that a group H acts metrically properly either on
some space with walls, or on some CAT (0) cube complex. Then so does the
restricted wreath product H o Z := (

⊕
ZH) o Z.

Guentner-Kaminker defined the Hilbert space compression and the equiv-
ariant Hilbert space compression for any unbounded metric space (endowed
with a group action in the latter case) [GK04]. Since we will deal with
uniformly discrete1 spaces, the following definitions are equivalent to theirs.

Let (X, d) be a uniformly discrete metric space. We define the Hilbert space
compression of X as the supremum of the numbers α ∈ [0, 1] such that there
exists a Hilbert space H, positive constants C1, C2 and a map f : X → H
with

C1 · d(x, y)α 6 ||f(x)− f(y)|| 6 C2 · d(x, y) ∀x, y ∈ X .

It is denoted by R(X, d) and it is a quasi-isometry invariant of (X, d). If
H is a group acting on (X, d) by isometries, the equivariant Hilbert space
compression of X is the supremum of the numbers α ∈ [0, 1] such that there
exists a Hilbert space H endowed with an action of H by affine isometries,
positive constants C1, C2 and a H-equivariant map f : X → H with

C1 · d(x, y)α 6 ||f(x)− f(y)|| 6 C2 · d(x, y) ∀x, y ∈ X .

It is denoted by RH(X, d). One has trivially RH(X, d) 6 R(X, d).

We may view a group H as a metric space thanks to the word length associ-
ated with some (not necessarily finite) generating subset S. We denote then
by R(H,S) the Hilbert space compression and by RH(H,S) the equivariant
Hilbert space compression. In case H is finitely generated, note that, up to
bilipschitz equivalence, the word metric does not depend on the finite gen-
erating set, so that the compressions do not depend on the choice of a finite
generating set. In this case we write R(H) and RH(H) for the corresponding
compressions. We also use these shorter notations in the general case if there
is no ambiguity about the generating set. It is a remarkable observation of
Gromov (see [CTV, Proposition 4.4] for a proof) that R(H) = RH(H) for
H finitely generated and amenable.

The first examples of finitely generated groups whose Hilbert space com-
pression is different from 0 and 1 appeared recently in [AGS]: Thompson’s

1That is, there exists a constant δ > 0 such that d(x, y) > δ whenever x 6= y.
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group F and the wreath product Z oZ (see Section 4 for more on this). Our
next Theorem allows in particular to construct more examples.

Given a generating set S for H, if Γ = H o Z, we always take Σ = S ∪ {s}
as generating set for Γ, where s is the positive generator of Z.

Theorem 0.2 Let H be a group, with generating set S and let Γ = H o Z.
The non equivariant and equivariant Hilbert space compressions satisfy:

R(H,S) > R(Γ,Σ) >
R(H,S)

R(H,S) + 1
;

RH(H,S) > RΓ(Γ,Σ) > max

{
RH(H,S)− 1

2
,

RH(H,S)

2RH(H,S) + 1

}
.

In order to select the best bound, we mention that one has t−1/2 > t/(2t+

1) if and only if t > (1 +
√

5)/4 ∼= 0.809... (for t ∈ [0, 1]). The above-
mentioned observation by Gromov gives immediately a stronger estimate for
the equivariant compression.

Corollary 0.3 Let H be a finitely generated and amenable group and let
Γ = H o Z. The equivariant Hilbert space compression satisfies:

RH(H) > RΓ(Γ) >
RH(H)

RH(H) + 1
.

The proofs of Theorems 0.1 and 0.2 rest on a similar idea: we expressH oZ as
an HNN-extension in two different ways, which provide two different actions
of H o Z on a tree. In Theorem 0.1 we use the product of these two trees,
while in Theorem 0.2 we appeal to the affine actions naturally associated
with each of these trees (see section 7.4.1 in [CCJ+01]).

1 Preliminaries: wreath products and trees

Let Λ be a group, H a subgroup and ϑ : H → Λ an injective homomorphism.
The HNN-extension with basis Λ and stable letter t relatively to H and ϑ is
defined by HNN(Λ, H, ϑ) =

〈
Λ, t

∣∣ t−1ht = ϑ(h) ∀h ∈ H
〉
.

Our definition of graphs and trees are those of [Ser77]. Given an HNN-
extension Γ = HNN(Λ, H, ϑ), the associated Bass-Serre tree is defined by

V (T ) = Γ/Λ ; E(T ) = Γ/H t Γ/ϑ(H) ; γH = γtϑ(H) ; γϑ(H) = γt−1H ;
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(γH)− = γΛ ; (γH)+ = γtΛ ; (γϑ(H))− = γΛ ; (γϑ(H))+ = γt−1Λ

where, given an edge e, its origin is denoted by e− and its terminal vertex
by e+. It is a tree [Ser77, Theorem 12]. We turn T to an oriented tree by
setting Ar+(T ) = Γ/H, (γH)− = γΛ, (γH)+ = γtΛ and the Γ-action on
T preserves this orientation. Moreover we remark that the oriented tree is
bi-regular: for each vertex of T the outgoing edges are in bijection with Λ/H

and the incoming edges are in bijection with Λ/ϑ(H).

We turn to wreath products. Let G,H be groups. We set

Λ = H(G) =
⊕
g∈G

H = {λ : G→ H with finite support } .

The group G acts on Λ by automorphisms: (g · λ)(x) = λ(g−1x). The
restricted wreath product H oG is the semi-direct product ΛoG, with respect
to the above action. The group H embeds in H o G and will be identified
with its copy indexed by 1G ∈ G. It is easy to see that, given generating sets
of G and H, their union generates H oG.

In case G = Z, one may express H o Z as an HNN-extension in two ways
(we denote by s the positive generator of Z in H oZ and by t+, t− the stable
letters of the HNN-extensions)2:

1. Set Λ+ =
⊕

n>0H and ϑ+ : Λ+ → Λ+ given by ϑ+(λ)0 = 1H and
ϑ+(λ)n = λn−1 for n > 1. One has HNN(Λ+,Λ+, ϑ+) = H o Z and
the isomorphism is given by λ 7→ λ and t+ 7→ s−1;

2. Set Λ− =
⊕

n60H and ϑ− : Λ− → Λ− given by ϑ−(λ)0 = 1H and
ϑ−(λ)n = λn+1 for n 6 −1. One has HNN(Λ−,Λ−, ϑ−) = H o Z and
the isomorphism is given by λ 7→ λ and t− 7→ s;

Given a wreath product H o Z, we will denote by T+, respectively T−, the
Bass-Serre tree associated to the first, respectively second, HNN-extension
above. We take as base points (when necessary) the vertices Λ+ and Λ−.

We collect now some observations about the H o Z-actions on T+ and T−

which will be relevant in the next sections. Set Γ = H o Z and γ = λsn ∈ Γ.
If λ is nontrivial, we set m = min{k ∈ Z : λk 6= 1H} and M = max{k ∈ Z :

λk 6= 1H}. The following lemma is straightforward.
2There is a third way of expressing H oZ as an HNN-extension: set ϑ : Λ→ Λ;ϑ(λ)n =

λn−1. One has HNN(Λ,Λ, ϑ) = H o Z = Λ oϑ Z and the isomorphism is given by λ 7→ λ

and t 7→ s−1. Nevertheless, this expression will be useless in this article.
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Lemma 1.1 If λ = 1, one has dT+(Λ+, γΛ+) = |n| = dT−(Λ−, γΛ−).

Lemma 1.2 If λ 6= 1, the distances dT±(Λ±, γΛ±) are given by formulas:

dT+(Λ+, γΛ+) =

{
|n| if m > n or m > 0

n− 2m if m < n and m < 0
;

dT−(Λ−, γΛ−) =

{
|n| if M 6 n or M 6 0

2M − n if M > n and M > 0
.

In particular, the inequalities dT+(Λ+, γΛ+) > −m, dT−(Λ−, γΛ−) > M ,
dT+(Λ+, γΛ+) > |n| and dT−(Λ−, γΛ−) > |n| hold.

Proof. We prove the second equality, leaving the first one, which is very
similar, to the reader. We remark that γ = λsn = λtn− and that, for any
k ∈ Z, the stabilizer of the vertex tk−Λ− satisfies

Stab(tk−Λ−) = tk−Λ−t
−k
− = skΛ−s

−k =
⊕
i6k

H ,

so that we obtain
λ ∈ Stab(tk−Λ−) ⇐⇒ k >M . (1.3)

Consider now the infinite geodesic c, whose set of vertices is {tk−Λ− : k ∈ Z}.
By equation (1.3), half of it is fixed by λ, while the remainder is not (see
Figure 1). To draw points Λ−, tn−Λ− and γΛ− = λtn−Λ− in Figure 1 (dis-
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JJ









q q q q q
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p p p p p p
tM− Λ− = λtM− Λ−
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λtM−1
− Λ−

tM−1
− Λ−

Figure 1: The geodesics c and λ · c.

tinguish cases M > max(0, n), M 6 0 and M 6 n) will now convince the
reader that the result holds. �

Let us now state a formula computing the length of an element of H o Z,
which is a direct consequence of [Par92, Theorem 1.2]. Note that, even if the
theorem was stated for finitely generated groups, it also applies in our case.
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Proposition 1.4 Keep the above notations. Let γ = λsn ∈ Γ = H o Z. In
case λ = 1, one has |γ| = |n|, while in case λ 6= 1, the length of γ satisfies:

|γ| = LZ(γ) +
∑
i∈Z
|λi| ,

where LZ(γ) denotes the length of the shortest path starting from 0, ending
at n and passing through m and M in the (canonical) Cayley graph of Z.

The length LZ(γ) appearing in Proposition 1.4 can be estimated as follows:

Proposition 1.5 Let γ ∈ Γ = H o Z. The following inequalities hold:

dT±(Λ±, γΛ±) 6 LZ(γ) 6 dT+(Λ+, γΛ+) + dT−(Λ−, γΛ−)

Proof. If γ = sn, the result is obvious. We suppose now γ = λsn with
λ 6= 1. The proof is then a consideration of eight cases which are listed in
the following table:

n m M dT+ dT− LZ dT+ + dT−

> 0 > 0 > n n 2M − n 2M − n 2M

> 0 > 0 6 n n n n 2n

> 0 < 0 > n n− 2m 2M − n 2M − 2m− n 2M − 2m

> 0 < 0 6 n n− 2m n n− 2m 2n− 2m

< 0 < n 6 0 n− 2m −n n− 2m −2m

< 0 > n 6 0 −n −n −n −2n

< 0 < n > 0 n− 2m 2M − n 2M − 2m+ n 2M − 2m

< 0 > n > 0 −n 2M − n 2M − n 2M − 2n

The values of dT±(Λ±, γΛ±) come from Lemma 1.2; those of LZ(γ) are easy
to compute. We now observe that the result is true in the eight cases. �

Combining Propositions 1.4 and 1.5, one obtains immediately:

Corollary 1.6 Let γ = λsn ∈ Γ = H o Z. The following inequalities hold:

dT±(Λ±, γΛ±) +
∑
i∈Z
|λi| 6 |γ| 6 dT+(Λ+, γΛ+) + dT−(Λ−, γΛ−) +

∑
i∈Z
|λi|

2 Metrically proper actions

Let us consider a group G, acting by isometries on a metric space X.
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Definition 2.1 The action is metrically proper if, whenever B is a bounded
subset of X, the set {g ∈ G : g ·B ∩B 6= ∅} is finite.

From now on, we shall write “proper” instead of “metrically proper”. Let us
recall that the action is proper if and only if the following property holds,
for some z ∈ X:

for any R > 0, the set {g ∈ G : d(z, g · z) 6 R} is finite. (Propz)

Let now F = (Xi, di, bi)i∈I be a family of pointed metric spaces (where di
is the metric on Xi and bi ∈ Xi is a base-point), and let p > 1. We call
`p-product of the family the space

`p(F) =

{
x ∈

∏
i∈I

Xi :
∑
i∈I

di(bi, xi)
p < +∞

}
.

It is a metric space with metric δ(x, y) =
(∑

i∈I di(xi, yi)
p
)1/p. We set (bi)i∈I

as base point. Consider now the case (Xi, bi) = (X, b) for all i ∈ I. One has:

`p(I;X, b) := `p(F) =

{
φ : I → X :

∑
i∈I

d(b, φi)
p < +∞

}
.

If a group H acts by isometries on X, the group H oG acts by isometries on
`p(G;X, b) in the following way:{

(λ · φ)g = λg · φg for λ ∈
⊕

g∈GH ;

(g · φ)g′ = φg−1g′ for g ∈ G .
(2.2)

Given G infinite, observe that, even if the action of H is proper, the action
ofH oG on `p(G;X, b) is not. Indeed, G has a global fixed point in `p(G;X, b).

Theorem 0.1 will follow from the following statement.

Proposition 2.3 Let H be a group acting properly on a metric space X,
b ∈ X and p > 1. Then, the action of Γ = H o Z on T+ × T− × `p(Z;X, b),
where the product is endowed with the `p metric, is proper.

Proof. We are going to prove property (Propz) for z = (Λ+,Λ−, (b)i∈Z).
Thus let R > 0 and A = {γ ∈ Γ : d(z, γ · z) 6 R}. Take γ = λsn ∈ A. We
have dT+(Λ+, γΛ+) 6 R, dT−(Λ−, γΛ−) 6 R and

∑
i∈Z d(b, λi · b)p 6 Rp.
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By lemmas 1.1 and 1.2, one has M 6 R, m > −R (if M and m are defined)
and |n| 6 R. Set B = {h ∈ H : d(b, h · b) 6 R}. It is a finite set since the
H-action is proper.

Hence, one has |n| 6 R, λi = 1H for |i| > R and λi ∈ B for |i| 6 R. This
leaves finitely many choices for γ, and proves thus that A is finite. �

Remark 2.4 The space T+ × T− × `p(Z;X, b) is canonically isometric to
the product `p(F) with I = {+,−} ∪ Z and F given by F(+) = (T+,Λ+),
F(−) = (T−,Λ−) and F(i) = (X, b) for i ∈ Z.

Proof of of Theorem 0.1. We recall first that a tree is a CAT(0) cube
complex, hence a space with walls.

It is shown in [CMV04, Section 5] that a `1-product of spaces with (mea-
sured) walls carries the same structure. Hence the conclusion for spaces with
walls by proposition 2.3.

Given a CAT(0) cube complex Y , we denote by Y (k) the set of k-cells in Y .
Take now a family F = (Xi, bi)i∈I of CAT(0) cube complexes with bi ∈ X(0)

i

and set F (0) = (X
(0)
i , bi)i∈I . We are going to construct a subspace X of

`2(F) which is a CAT(0) cube complex.

We define first X(0) = `2(F (0)). Since the distance between two distinct
vertices is at least 1, one has

X(0) =
⊕
i∈I

(X
(0)
i , bi) :=

{
v ∈

∏
i∈I

X
(0)
i : {i ∈ I : vi 6= bi} is finite

}
.

For k > 1, we define then the set of k-cells as

X(k) =

{
c ∈

∏
i∈I(X

(0)
i ∪ . . . ∪X

(k)
i ) :∑

i∈I dim(ci) = k and {i ∈ I : ci 6= bi} is finite

}
.

It is clear that every k-cell, as a subset of `2(F), is isometric to [−1/2, 1/2]k.
If c ∈ X(k), the faces of c are the (k − 1)-cells c′ such that c′j is a face of cj
for some j and c′i = ci for i 6= j. The gluing maps are isometric. Finally,
the space `2(F) inherits the CAT(0) property, so that X is a CAT(0) cube
complex.

Suppose now that H acts on a CAT(0) cube complex Y and take v0 a vertex
of Y . We consider the family F given by I = {+,−}∪Z, F(+) = (T+,Λ+),
F(−) = (T−,Λ−) and F(i) = (Y, v0) for i ∈ Z. The action of H oZ on `2(F)
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is proper by proposition 2.3 and the CAT(0) cube complex X constructed
as above is an invariant subset, so that it is endowed with a proper action
of H o Z too. �

Remark 2.5 The same techniques can be used, if H acts properly on some
Hilbert space H, to prove that H oZ acts properly on the Hilbert direct sum
`2(E(T+)) ⊕ `2(E(T−)) ⊕

⊕
i∈ZH. Hence, we recover the known fact that

Haagerup property is preserved by taking wreath products with Z [CCJ+01,
Proposition 6.1.1 and Example 6.1.6]. The interest of our technique is that
we obtain an explicit proper action of H o Z, knowing a proper action of H.

Remark 2.6 It is known [CMV04, Theorem 1], that a discrete group satis-
fies the Haagerup property if and only if it acts properly on some space with
measured walls. According to Remark 2.5, whenever H acts properly on a
space with measured walls, the same holds for H o Z. Again, our techniques
give an explicit action, as Theorem 0.1 is also valid for spaces with measured
walls.

3 Hilbert space compression: Theorem 0.2

We recall that a map f : X → Y between metric spaces is Lipschitz if there
existsM > 0 such that dY (f(x), f(y)) 6M ·dX(x, y) for all x, y ∈ X. Given
a Lipschitz map f : X → H of a metric space X into a Hilbert space H, we
set3 Rf to be the supremum of the numbers α ∈ [0, 1] such that there exists
D > 0 with D · dX(x, y)α 6 ||f(x)− f(y)|| for all x, y ∈ X.

Given a generating set S of a group H, we recall our convention to take
Σ = S ∪ {s} as generating set for H o Z, where s is the positive generator
of Z. In order to simplify notations, we do not mention explicitly S and Σ,
which we fix throughout this section.

The key result to prove Theorem 0.2 is the following:

Proposition 3.1 Let H be a group (with a generating set S) and Γ = H oZ.
Suppose that maps f : H → H and f± : V (T±) → H± are Lipschitz with
Rf+ = Rf− > 0 and Rf > 0. Consider the map

σ : Γ→ H′ := H+ ⊕H− ⊕
⊕
i∈Z
H ,

3It does not coincide with the asymptotic compression of f defined in [GK04].
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where, given γ = λsn ∈ H o Z, we set σ(γ)± = f±(γΛ±) and σ(γ)i = f(λi)

for i ∈ Z. Then Rσ > Rf ·Rf±/(Rf +Rf±) and Rσ > min{Rf± , Rf − 1
2}.

Moreover, if f is H-equivariant and f± are Γ-equivariant (with respect to
some actions by affine isometries), σ is Γ-equivariant with respect to some
action of Γ on H′ by affine isometries.

Proof. We show first that σ is Lipschitz (the reader could remark that it
is trivial if H is a finitely generated group; however, this case is also covered
by the proof below). Let us take K,K+,K− > 0 such that

||f(h1)− f(h2)|| 6 K · |h−1
1 h2| ∀h1, h2 ∈ H ;

||f±(u)− f±(v)|| 6 K± · dT±(u, v) ∀u, v ∈ V (T±) .

Let x, y ∈ Γ. We set γ = x−1y and write x = ξsp, y = ηsq, γ = λsn in
H o Z = Λ o Z (so that n = q − p and λi = ξ−1

i−pηi−p). One has then(∑
i∈Z
||σ(x)i − σ(y)i||2

) 1
2

6
∑
i∈Z
||f(ξi)− f(ηi)|| 6

∑
j∈Z

K · |λj | 6 K · |γ| .

Corollary 1.6 implies:

||σ(x)± − σ(y)±|| 6 K± · dT±(xΛ±, yΛ±) = K± · dT±(Λ±, γΛ±) 6 K± · |γ| .

Thus, we get finally ||σ(x)− σ(y)|| 6 (K+ +K− +K) · |x−1y|, which proves
that σ is Lipschitz, as desired.

We now turn to the estimation of Rσ, Fix any α, β such that 0 < α < Rf

and 0 < β < Rf± . There exists constants C,C+, C− > 0 such that:

||f(h1)− f(h2)|| > C · |h−1
1 h2|α ∀h1, h2 ∈ H ;

||f±(u)− f±(v)|| > C± · dT±(u, v)β ∀u, v ∈ V (T±) .

We notice first that σ is injective. More precisely, for any x, y ∈ Γ, one has

x 6= y =⇒ ||σ(x)− σ(y)|| > min{C,C+, C−} . (3.2)

Indeed, we express x = ξsp and y = ηsq as above. If p 6= q, we obtain
||σ(x)±− σ(y)±|| > C± · dT±(xΛ±, yΛ±)β > C± and if ξi 6= ηi for some i, we
obtain ||σ(x)i − σ(y)i|| > C · |ξ−1

i ηi|α > C.

Let us take x, y and γ as above. According to Corollary 1.6, one (at least)
of the following cases occurs. We treat them separately. As the case x = y

is trivial, we assume x 6= y, that is |γ| > 1, in what follows.
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(a) Case dT+(Λ+, γΛ+) > 1
3 |γ|: We obtain

||σ(x)− σ(y)|| > ||σ(x)+ − σ(y)+|| > C+ · dT+(xΛ+, yΛ+)β

= C+ · dT+(Λ+, γΛ+)β >
C+

3β
|x−1y|β .

(b) Case dT−(Λ−, γΛ−) > 1
3 |γ|: We obtain the same way

||σ(x)− σ(y)|| > ||σ(x)− − σ(y)−|| >
C−
3β
|x−1y|β .

(c) Case
∑

i∈Z |λi| >
1
3 |γ|: We establish two independent estimates.

First, for all i ∈ Z, one has ||σ(x)i − σ(y)i|| = ||f(ξi) − f(ηi)|| >
C|ξ−1

i ηi|α = C|λi+p|α. Recall that m = min{k ∈ Z : λk 6= 1H} and
M = max{k ∈ Z : λk 6= 1H}. Using the Cauchy-Schwarz inequality
for the third step below and α 6 1 for the fourth one, we obtain

||σ(x)− σ(y)|| >

(∑
i∈Z
||σ(x)i − σ(y)i||2

) 1
2

> C

∑
j∈Z
|λj |2α

 1
2

>
C√

M −m+ 1

M∑
j=m

|λj |α >
C√

M −m+ 1

 M∑
j=m

|λj |

α

By Proposition 1.4, one has |γ| >M −m+ 1, so that we obtain

||σ(x)− σ(y)|| > C√
|γ|

(
1

3
· |γ|

)α
>
C

3α
· |γ|α−

1
2 . (∗)

This is our first estimate for case (c).

Second, we fix any ζ ∈ ]0, 1[ . Then, either there exists k ∈ Z such that
|λk| > (1

3 · |γ|)
ζ , or one has M −m + 1 > (1

3 · |γ|)
1−ζ . We distinguish

the two subcases:

• if there exists k ∈ Z such that |λk| > (1
3 · |γ|)

ζ , we have

||σ(x)− σ(y)|| > ||σ(x)k−p − σ(y)k−p|| > C · |ξ−1
k−pηk−p|

α

= C · |λk|α >
C

3αζ
|γ|αζ ;

• in case M − m + 1 > (1
3 · |γ|)

1−ζ , having LZ(γ) > M − m by
definition, Proposition 1.5 gives

dT+(Λ+, γΛ+) + dT−(Λ−, γΛ−) > LZ(γ) >

(
1

3
· |γ|

)1−ζ
− 1 .

11



Thus, ∃ j ∈ {+,−} such that dTj (Λj , γΛj) > 1
2(1

3 · |γ|)
1−ζ− 1

2 . For
|γ| > 4, there exists K > 0 such that dTj (Λj , γΛj) > K · |γ|1−ζ ,
so that ||σ(x)− σ(y)|| > CjKβ · |x−1y|β(1−ζ) as in cases (a)-(b).

Otherwise, for |γ| 6 3, equation (3.2) gives

||σ(x)− σ(y)|| > (min{C,C+, C−}) · 3−β(1−ζ) · |γ|β(1−ζ) .

Hence, there exists C ′ζ > 0 with ||σ(x)−σ(y)|| > C ′ζ · |x−1y|β(1−ζ).

Consequently, setting mζ = min {αζ, β(1− ζ)}, it comes

||σ(x)− σ(y)|| > min

{
C

3αζ
, C ′ζ

}
· |γ|mζ . (∗∗ζ)

The largest value formζ is obtained for αζ = β(1−ζ), that is ζ = β
α+β .

It gives mζ = αβ
α+β . This is our second estimate for case (c).

As one has β > αβ/(α+ β), combination of cases (a)-(c) gives

||σ(x)− σ(y)|| > C ′′ · |x−1y|
αβ
α+β ∀x, y ∈ Γ

||σ(x)− σ(y)|| > C ′′ · |x−1y|min{β,α− 1
2
} ∀x, y ∈ Γ

for some C ′′ > 0. Hence, we get Rσ > αβ/(α+β) and Rσ > min{β, α− 1
2} for

all α, β satisfying 0 < α < Rf and 0 < β < Rf± . This implies immediately
Rσ > Rf ·Rf±/(Rf +Rf±) and Rσ > min{Rf± , Rf − 1

2}.

To conclude the proof of Proposition 3.1, we pass now to the last statement.
We thus suppose that f is H-equivariant and f± are Γ-equivariant (with
respect to some actions by affine isometries). To establish the Γ-equivariance
of σ, we only have to define a Γ-action (by affine isometries) on ⊕i∈Z H and
check the Γ-equivariance with respect to it.

The Γ-action on
⊕

i∈ZH = `2(Z,H, 0) is defined by equation (2.2). To
check the equivariance, we set γ = λsn and g = µsp with λ, µ ∈ Λ and
n, p ∈ Z. We have (γ · σ(g))i = λi · f(µi−n) and σ(γg)i = f(λiµi−n) and we
get (γ · σ(g))i = σ(γg)i for all i by H-equivariance of f . �

Theorem 0.2 will be obtained by applying Proposition 3.1 with good em-
beddings of the trees T±. We explain now how to embed a tree in a Hilbert
space with high values of the constant “Rf ”. First, the following result can
be obtained by a straightforward adaptation of [GK04, Proposition 4.2].

Proposition 3.3 Let T = (V,E) be a tree. Then R(V ) = 1.

12



More precisely, if we denote by EG the set of geometric (or unoriented) edges
of T and if we fix a base vertex v0, then for any ε ∈ ]0, 1/2[ we may consider
the map

fε : V −→ `2(EG) ; x 7−→
d(v0,x)∑
k=1

kεδek(x) ,

where the ek(x)’s are the consecutive edges on the unique geodesic from x to
v0 and δe is the Dirac mass at e. It is a Lipschitz map with Rfε > 1/2 + ε.
We refer to the proof of [GK04, Proposition 4.2] for this fact.

To prove the “equivariant” part of Theorem 0.2, we need some explicit
equivariant embeddings into Hilbert spaces. Let T = (V,E) be a tree. We
recall from Section 7.4.1 in [CCJ+01] how to embed equivariantly T in a
Hilbert space. We recall that we denote by e 7→ e the “orientation-reversing”
involution on E, and we endow `2(E) with the scalar product:

〈ξ|η〉 =
1

2

∑
e∈E

ξ(e)η(e).

Define a map c : V × V → `2(E) : (x, y) 7→ c(x, y) with

c(x, y) =
∑

e∈(x→y)

δe − δe

where δe is the Dirac mass at e and the summation is taken over coherently
oriented edges in the oriented geodesic from x to y. The map c satisfies, for
every x, y, z ∈ V :

c(x, y) + c(y, z) = c(x, z); (3.4)

‖c(x, y)‖2 = d(x, y). (3.5)

Moreover if a group G acts on T , then for every g ∈ G:

c(gx, gy) = π(g)c(x, y) (3.6)

where π is the permutation representation of G on `2(E).

Fix now a base-vertex v0 ∈ V . Define a map

ιv0 : V → `2(E) : v 7→ c(v0, v)

and, for g ∈ G, an affine isometry αv0(g) of `2(E):

αv0(g)ξ = π(g)ξ + c(v0, gv0).

Using equations (3.4) – (3.6) above, the following lemma is immediate.
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Lemma 3.7 1. For all g, h ∈ G : αv0(gh) = αv0(g)αv0(h), so that αv0

defines an affine isometric action of G on `2(E);

2. the map ιv0 is G-equivariant with respect to the action αv0 on `2(E);

3. one has ||ιv0(x) − ιv0(y)|| =
√
d(x, y) for all x, y ∈ V , so that Rιv0 =

1/2.

It is an immediate consequence that RG(V ) > 1/2.

Proof of Theorem 0.2. The inequalities R(H) > R(Γ) and RH(H) >

RΓ(Γ) are trivial.

One has R(V (T±)) = 1 by Proposition 3.3, so that Proposition 3.1 gives
R(Γ) > R(V (T±)) ·R(H)/(R(V (T±)) +R(H)) = R(H)/(R(H) + 1).

Finally, one has RΓ(V (T±)) > 1/2 by Lemma 3.7, so that we obtain

RΓ(Γ) >
RΓ(V (T±)) ·RH(H)

RΓ(V (T±)) +RH(H)
>

RH(H)

2RH(H) + 1

RΓ(Γ) > min

{
RΓ(V (T±)), RH(H)− 1

2

}
= RH(H)− 1

2

by Proposition 3.1. �

4 Hilbert space compression: examples

We begin this section with known results about the compression of groups
of the form H o Z. Let us first state a generalization of [AGS, Theorem 3.9]
which gives upper bounds for many of them.

Proposition 4.1 Let G be a finitely generated group with growth function
satisfying κ(n) < nk for some k > 0 and let H be a group. We assume the
generating set of H chosen such that the word metric is unbounded. Then,
the Hilbert space compression of Γ = H oG satisfies

R(Γ,Σ) 6
1 + k/2

1 + k
,

where Σ is the union of the generating sets of G and H. In particular, with
G = Z, we get R(H o Z) 6 3/4.
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The proof is a straightforward adaptation of [AGS, Theorem 3.9]4.

Remark 4.2 If H is finitely generated, the hypothesis “the word metric is
unbounded” means exactly that H is infinite.

Lower bounds on compression were found by Tessera [Tes, Corollary 14]. In
particular:

Proposition 4.3 Let H be a finitely generated group. If H has polynomial
growth, one has R(H o Z) > 2/3.

Together, Propositions 4.1 and 4.3 give immediately:

Corollary 4.4 If H is an infinite group with polynomial growth, then one
has R(H o Z) ∈ [2/3, 3/4].

In a similar spirit, Proposition 4.1 and our Theorem 0.2 imply immediately:

Corollary 4.5 Let H be an infinite, finitely generated group.

a) If R(H) = 1, then R(H o Z) ∈ [1/2, 3/4].

b) If R(H) = RH(H) = 1/2, then R(H oZ) ∈ [1/3, 1/2] and RHoZ(H oZ) ∈
[1/4, 1/2] (in particular, if RHoZ(H oZ) < 1/3, thenH is non-amenable).

�

The interest of part (a) in Corollary 4.5 stems from the fact that numer-
ous groups satisfy R(H) = 1: among amenable groups, we mention poly-
cyclic groups and lamplighter groups F o Z with F finite [Tes, Theorem 1];
among (usually) non-amenable groups, we cite hyperbolic groups [BS, Theo-
rem 4.2], groups acting properly co-compactly on finite-dimensional CAT (0)

cube complexes [CaN05], co-compact lattices in connected Lie groups, irre-
ducible lattices in higher rank semi-simple Lie groups [Tes, Theorem 2].

Our excuse for isolating (b) in Corollary 4.5 is a remarkable result by
Arzhantseva, Guba and Sapir [AGS, Theorem 1.8]: for Thompson’s group
F , one has R(F ) = RF (F ) = 1/2.

4The only point to notice is that, since the word length is unbounded on H, for every
b in the ball of radius n in G, we can find an element hb ∈ H such that |hb| = 2n+ 1− |b|.
In [AGS], the hypothesis H = Z is used only to have an explicit formula for hb.
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