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Motivation
The development of wireless ad hoc network-
ing capability together with the decreasing
costs and sizes of the electronical circuits al-
low an increasing using of sensor networks
in building, utilities, industrial, home, agricul-
ture, defense and many other contexts. The
topology of such networks, particularly the
connectiveness and coverage area, are impor-
tant and, sometimes, critical factors. Recently,
many works dealing with topology give inter-
pretations and techniques capable to be applied
on sensor networks. Besides, it is not possible
to control the positions and number of sensors
in many of those networks, which lead us to
study the topology of random sensor networks
by using the Poisson point processes.

Problem Formulation
The principal idea of the problem is that sen-
sors {S1, S2, ..., Sn} have a power suply allow-
ing them to transmit theirs ID’s and maybe
some environmental information (such as tem-
perature, pression, presence/absence of an ele-
ment etc). At the same time, the sensors have
receivers which can identify the transmitted
ID’s of other sensors above a threshold power.
The sensors, knowing theirs ID’s and the ID’s
of the close neighbors, create an information
network.

Physical Features of the System
• The sensors lie over a d-torus T

d
a and the

dimensions of the sensor are considered
too reduced compared to the system, so
the position of the sensor Si is given by
xi ∈ T

d
a = (ui,1, ..., ud,i), ud,k ∈ [0, a];

• A sensor receives the ID’s from all other
sensors closer then a deterministic dis-
tance ǫ, so if ‖xi − xj‖ ≤ ǫ, sensors Si and
Sj are directly connected;

• We use the maximum norm, i.e.,

‖xi − xj‖ = max
k

(ui,k − uj,k)

.

Simplicial Homology
Simplicial complexes are structures com-
posed by elements named simplices, which
can be seen by d-dimensional filled spaces.
Exemples of simplexes are given below:

0−simplex 1−simplex 2−simplex 3−simplex

βd denotes the number of d-dimensional holes.
Particularly, β0, β1 and β2 measure, respec-
tively, the connectiveness, the number of holes
and the number of voids of a complex.

= 1:
=  2β0Two connex components: 

The 3−dimensional being "Blue Point" is trapped, we have one hole:      = 1 β2

The 2−dimensional being "Red Point" is trapped, we have one voidβ1

Results: Mean of k-simplexes, sk, and Euler’s Characteristic, χ

It is possible to calculate the mean of k-simplices given the size of individual coverage ǫ, the density
of sensors λ, the dimension d and the sizes of the d-torus, a:

sk−1 =
λkad

k!
kd

(

ǫk−1
)d

, ǫ < a/3

Below, we present the variation of sk in function of ǫ for a = 100 and λ = 0.10 in two dimensions.
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Let Bd be the Bell’s polynomial. Using the mean of k-simplexes, we can calculate the mean of the
Euler’s Characteristic χ:

χ =
adλe−λǫd

−λǫd
Bd(−λǫd)

The variation of χ in function of λ is presented following, for d = 1, d = 2 and d = 3:
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Conjecture: βi dominance region
Based on simulations and analytical expres-
sions, we can conjecture that, given a density of
points, there are at most two dominating types
of holes.
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Results: Concentration Inequality
Since a compensated Poisson point process can
be seen as a martingale, we can use a concen-
tration inequality to find a superior limit for
P (β0 ≥ c) in two dimensions

Distribution β0: λ=2, R=0.5 and a=10
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Interpreting a Sensor Network
We can represent the topology of a sensor net-
work by its Rips complex, which is obtained
when we consider that whenever k + 1 points
are 2 by 2 closer than ǫ between them, they cre-
ate a k-simplex.
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Random Features of the System
• The number of sensors lying over on T

d
a,

Φ(t), is distributed as poisson with mean
λad, where λ is a constant in the model.
Indeed, λ represent the density of sen-
sors;

• The distribution of the position of each
sensor is independent of the other sensors
and given by

px(X) =
1[0,t](X)

t


