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FINITE VOLUME SCHEMES FOR DISPERSIVE WAVE

PROPAGATION AND RUNUP

DENYS DUTYKH∗, THEODOROS KATSAOUNIS, AND DIMITRIOS MITSOTAKIS

Abstract. Finite volume schemes are commonly used to construct approximate solu-
tions to conservation laws. In this study we extend the framework of the finite volume
methods to dispersive water wave models, in particular to Boussinesq type systems. We
focus mainly on the application of the method to bidirectional nonlinear, dispersive wave
propagation in one space dimension. Special emphasis is given to important nonlinear
phenomena such as solitary waves interactions, dispersive shock wave formation and the
runup of breaking and non-breaking long waves.

1. Introduction

The simulation of water waves in realistic and complex environments is a very challenging
problem. Most of the applications arise from the areas of coastal and naval engineering,
but also from natural hazards assessment. These applications may require the computation
of the wave generation [DD07, KDD07], propagation [TG97], interaction with solid bodies,
the computation of long wave runup [TS94, TS98] and even the extraction of the wave
energy [Sim81]. Issues like wave breaking, robustness of the numerical algorithm in wet-
dry processes along with the validity of the mathematical models in the near-shore zone
are some basic problems in this direction [HP79]. During past years, the classical shallow
water equations have been employed to solve some of these problems [AC99, DPD10]:

Ht + (Hu)x = 0,
(Hu)t +

(

Hu2 + g
2
H2
)

x
= gHDx,

(1.1)

where H(x, t) := η(x, t)+D(x) is the total water depth, D(x) describes the depth below the
mean sea level while η(x, t) is the free surface elevation, u(x, t) denotes the depth-averaged
fluid velocity and g is the gravity acceleration constant. Mathematically, equations (1.1)
represent a system of conservation laws describing the propagation of infinitely long waves
with a hydrostatic pressure assumption. The wave breaking phenomenon is commonly
assimilated to the formation of shock waves (or hydraulic jumps) which is a common
feature of hyperbolic p.d.e’s. Consequently, the finite volume(FV) method has become
the method of choice for these problems due to its excellent intrinsic conservative and
shock-capturing properties [AC99, DK03, DKK08, DPD10]. Furthermore the shallow water
equations have been proven in practice to predict accurately the maximum runup of long
waves [HH70, Syn87, TS94, TS98, KS98, CFVCP04].
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On the other hand, various studies have shown that the inclusion of dispersive effects
is beneficial for the description of long wave propagation and runup processes [Zel91,
WKGS95, LR02]. Moreover, J.A. Zelt [Zel91] reported a divergence in the prediction
of the rundown and in the prediction of the reflected wave-train after the wave climbing on
the shore when a dispersionless model is employed. According to J.A. Zelt, the results of
the nonlinear dispersive model considered in [Zel91] showed better performance compared
to (1.1). During the last fifty years numerous dispersive models have been proposed for
the simulation of long waves [Ser53, Per67, BS76, Nwo93, KCKD00, MBS03, Mit09].

In this work we will study numerically bidirectional water wave models. Specifically, we
consider the following family of Boussinesq type systems of water wave theory, introduced
in [BCS02], written in nondimensional, unscaled variables

ηt + ux + (ηu)x + a uxxx − b ηxxt = 0,

ut + ηx + uux + c ηxxx − d uxxt = 0,
(1.2)

where a, b, c, d ∈ R, η = η(x, t), u = u(x, t) are real functions defined for x ∈ R and t ≥ 0.
For more realistic situations we introduce a new Boussinesq type system with variable

bottom topography based on Peregrine’s system, [Per67]. The new system incorporates a
very important property — the invariance under vertical translations, thus more appropri-
ate for practical applications such as wave runup on non-uniform shores. In dimensional
variables the model reads

Ht +Qx = 0,

Qt + (Q
2

H
+ g

2
H2)x −

[

H2

3
Qxxt − (1

3
H2

x − 1
6
HHxx)Qt +

1
3
HHxQxt

]

= gHDx,
(1.3)

where H(x, t) = η(x, t) +D(x), Q(x, t) = H(x, t)u(x, t).
There is a wide range of numerical methods in the literature for computing approximate

solutions to these models. Finite difference (FD) schemes [KWC+98, JFBM06, HMK+09],
finite element methods [BDM07, Mit09, DM08, AVSS09] and spectral methods [PD01,
Ngu08] have been proposed. More contemporary discontinuous Galerkin (DG) schemes
have also been adapted with some success to dispersive wave equations [YS02, LSY04,
ES06, ESB06] while the application of Finite Volumes (FV) or hybrid FV/FD methods
remain most infrequent for this type of problems. To our knowledge, only a few very recent
works are in this direction [BB01, EIK05, BS08, TP09, SM09].

Finite volume method is well known for its accuracy, efficiency and robustness for ap-
proximating solutions to conservation laws and in particular to nonlinear shallow water
equations (1.1). The aforementioned bidirectional models (1.2) and (1.3) are rewritten in
a conservative form and discretization by the finite volume method follows. Three different
numerical fluxes are employed

• a simple average flux (m-scheme),
• a central flux, (KT-scheme) [NT90, KT00], as a representative of central schemes,
• a characteristic flux (CF-scheme), as a representative of the linearized Riemann
solvers, [GKC96],
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along with TVD, UNO and WENO reconstruction techniques, [Swe84, HO87, LOC94].
Time discretization is based on Runge-Kutta (RK) methods which preserve the total vari-
ation diminishing(TVD) property of the finite volume scheme, [SO88, GST01, SR02]. We
use explicit RK methods since we work with BBM type systems (1.2) and not with KdV-
type systems which is well known to be notoriously stiff, [Mit09]. These methods have been
studied thoroughly in the case of nonlinear conservation laws. The average flux although
is known to be unstable for conservation laws is proved to be very accurate for nonlinear
dispersive waves. On the other hand finite volume methods based on the central flux as
well as on characteristic flux work equally well for the numerical simulation of waves even
in realistic environments.

The performance of the finite volume method applied to models (1.2) and to the new
system (1.3) is studied in a systematic way through a series of numerical experiments. Our
main focus is the evaluation, in terms of accuracy, efficiency and robustness of second order
finite volume methods compared to high order schemes. In particular, in this study we
take up on the following points

• accuracy of the finite volume method in the propagation of solitary waves with very
satisfactory results.

• conservation of various invariant quantities during the formation of dispersive shocks
is studied numerically. The finite element as well as spectral methods break down
for these experiments. The finite volume method provides very accurate results.

• interactions of solitary waves are computed with high accuracy. It is shown numer-
ically that Boussinesq type systems describe better overtaking collisions of solitary
waves than unidirectional models like KdV-BBM. We compare our results, when-
ever possible, with experimental measurements with very good agreement.

• finite volume method allows to use appropriate techniques to treat the transition
from wet to dry regions and vice versa. These techniques are applied successfully to
systems with dispersive terms modeling runup of long waves. On the other hand,
when the model fails due to wave breaking, the method allows to use locally the
nonlinear shallow water system, thus enabling us to resolve a wide spectrum of
hydrodynamic phenomena using a single computational framework.

• it is shown numerically the advantage of using dispersive models over standard
nonlinear shallow water equations in computing the wave runup and, in particular,
in capturing the reflected wave. It’s also illustrated by an example the importance
of the system being invariant under vertical translations.

The paper is organized as follows. In Section 2 Boussinesq type systems are presented
along with some of their basic properties. A new system with uneven bottom and invariant
under vertical translations is derived. In Section 3 the finite volume method is presented
for a general framework incorporating all models.

Section 4 presents a series of numerical experiments for the Boussinesq systems (1.2). In
this mathematical setting we validate the finite volume method and measure its accuracy.
We study the propagation as well as the interaction of solitary waves: we consider in par-
ticular head-on and overtaking collisions, but also we present results concerning the small
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dispersion effect. Finally, in Section 5 the new system with variable bottom, (1.3) is stud-
ied. Numerical simulations of non-breaking and breaking long wave runup are presented
and compared with experimental data.

2. Mathematical models

We present briefly the mathematical models being considered and some of their main
properties.

2.1. Dispersive models with flat bottom. We consider the following family of Boussi-
nesq type systems of water wave theory, introduced in [BCS02], which may be written in
nondimensional, unscaled variables

ηt + ux + (ηu)x + auxxx − bηxxt = 0,
ut + ηx + uux + cηxxx − duxxt = 0,

(2.1)

where η = η(x, t), u = u(x, t) are real functions defined for x ∈ R and t ≥ 0. Coefficients
a, b, c and d are defined as

a =
1

2
(θ2 − 1

3
)ν, b =

1

2
(θ2 − 1

3
)(1− ν), c =

1

2
(1− θ2)µ, d =

1

2
(1− θ2)(1− µ), (2.2)

where 0 ≤ θ ≤ 1 and µ, ν ∈ R. The variables in (2.1) are non-dimensional and unscaled:
x and t are proportional to position along the channel and time, respectively, while η(x, t)
and u(x, t) are proportional to the deviation of the free surface above an undisturbed level
and to the horizontal velocity of the fluid at a height y = −1 + θ(1 + η(x, t)), respectively.
In terms of these variables the channel bottom is located at y = −1, (θ = 0), while the free
surface corresponds to θ = 1. Boussinesq systems (2.1) with b = d conserve the energy
functional:

I1(t) =

∫

R

(η2(x, t) + (1 + η(x, t))u2(x, t)− c η2x(x, t)− a u2
x(x, t)) dx, (2.3)

i.e. I1(t) = I1(0) for t ≥ 0. System (2.1) is derived under the following assumptions:

ε := A/h0 ≪ 1 , σ := h0/λ ≪ 1 S :=
Aλ2

h3
0

= O(1) ,

where S is the Stokes (or Ursell) number, A is a typical wave amplitude of fluid of depth h0

and λ is a characteristic wavelength. If one takes S = 1 and switches to scaled, dimension-
less variables, one may derive from Euler equations a scaled version of (2.1) by appropriate
asymptotic expansion in powers of ε, cf. [BCS02]:

ηt + ux + ε(ηu)x + ε[auxxx − bηxxt] = O(ε2),
ut + ηx + εuux + ε[cηxxx − duxxt] = O(ε2),

(2.4)

from which we obtain (2.1) by unscaling and neglecting higher order terms O(ε2).
We list several examples of particular Boussinesq systems of the form (2.1) that we will

refer to in the sequel. The initial-value problem for all these systems has been shown to
be at least nonlinearly well-posed locally in time, cf. [BCS04].
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(i) The ’classical’ Boussinesq system (µ = 0, θ2 = 1/3, i.e. a = b = c = 0, d = 1/3 in
(2.1)), whose initial-value problem is globally well-posed, [Ami84, Sch81],

ηt + ux + (ηu)x = 0,
ut + ηx + uux − 1

3
uxxt = 0.

(2.5)

(ii) The BBM-BBM system (ν = µ = 0, θ2 = 2/3, i.e. a = c = 0, b = d = 1/6 in (2.1)),
whose initial-value problem is locally well-posed, [BC98],

ηt + ux + (ηu)x − 1
6
ηxxt = 0,

ut + ηx + uux − 1
6
uxxt = 0.

(2.6)

(iii) The Bona-Smith system (ν = 0, µ = (4 − 6θ2)/3(1 − θ2), i.e. a = 0, b = d =
(3θ2 − 1)/6, c = (2 − 3θ2)/3, 2/3 < θ2 < 1 in (2.1)), whose initial-value problem
is globally well-posed, cf. [BS76]. The limiting form of this system as θ → 1,
corresponding to a = 0, b = d = 1/3, c = −1/3, is the system actually studied by
Bona and Smith, [BS76]. These systems are given by

ηt + ux + (ηu)x − 3θ2−1
6

ηxxt = 0,

ut + ηx + uux +
2−3θ2

3
ηxxx − 3θ2−1

6
uxxt = 0.

(2.7)

The existence of solitary wave solutions to the above systems, in some cases the uniqueness
also, has been proved in [Che00, Che98, DM04] and in the case of the Bona-Smith type
systems (2.7), for each θ2 ∈ (7/9, 1), there exists one solitary wave in closed form, [Che98]

η(ξ) = η0 sech
2(λξ),

u(ξ) = B η(ξ),
(2.8)

with

η0 =
9
2
· θ2−7/9

1−θ2
, cs =

4(θ2−2/3)√
2(1−θ2)(θ2−1/3)

,

λ = 1
2

√

3(θ2−7/9)
(θ2−1/3)(θ2−2/3)

, B =
√

2(1−θ2)
θ2−1/3

.
(2.9)

2.2. Dispersive models with variable bottom. For more realistic applications one
should consider Boussinesq systems with variable bottom. In his pioneering work Peregrine,
[Per67], derived the following Boussinesq type system

ηt + [(D + η)u]x = 0,

ut + gηx + uux − D
2
(Du)xxt − D2

6
uxxt = 0,

(2.10)

where η(x, t) and u(x, t) are defined as before and D(x) describes the water depth below
its rest position. Many other systems have been derived also, including systems with
improved dispersion characteristics [Nwo93], high-order Boussinesq systems [MBS03] and
other generalizations of (2.1), cf. [Mit09]. Most of these systems break Galilean invariance
and the invariance under vertical translations. This is a restrictive property especially in
the studies of realistic problems like the water wave runup on non-uniform shores. We note
also that the complete water wave problem possesses these symmetries, [BO82].
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To overcome this deficiency we develop a new system, analogous to the original Pere-
grine’s system, [Per67], which is invariant under vertical translations. To derive the system
we begin with (2.10) written in dimensionless scaled variables (in analogy with (2.4))

ηt + [(D + εη)u]x = 0,

ut + ηx + εuux − σ2
[

D
2
(Du)xxt − D2

6
uxxt

]

= O(ε2, εσ2).
(2.11)

Then by setting H = D + εη, we obtain

Ht + ε(Hu)x = 0,
(Hu)t + (εHu2 + 1

2ε
H2)x

−σ2
[

HD
2
(Du)xxt − HD2

6
(Du

D
)xxt

]

= 1
ε
HDx +O(ε2, εσ2).

(2.12)

Observing that
(

Du
D

)

xx
= [2D2

x

D3 − Dxx

D2 ](Du)−2Dx

D2 (Du)x+
1
D
(Du)xx and that H = D+O(ε)

we have that

Ht + ε(Hu)x = 0,
(Hu)t + (εHu2 + 1

2ε
H2)x

−σ2
[

D2

3
(Du)xxt − (1

3
D2

x − 1
6
DDxx)Dut +

1
3
DDx(Du)xt

]

= 1
ε
HDx +O(ε2, εσ2).

(2.13)

By setting Q = Hu, and using again the relation H = D +O(ε) we have

Ht + εQx = 0,
Qt + (εQ2/H + 1

2ε
H2)x

−σ2
[

H2

3
Qxxt − (1

3
H2

x − 1
6
HHxx)Qt +

1
3
HHxQxt

]

= 1
ε
HDx +O(ε2, εσ2).

(2.14)

In dimensional variables, neglecting the higher order terms at the right-hand side we obtain

Ht +Qx = 0,
Qt + (Q2/H + g

2
H2)x − P (H,Q) = gHDx.

P (H,Q) = H2

3
Qxxt − (1

3
H2

x − 1
6
HHxx)Qt +

1
3
HHxQxt

(2.15)

where H(x, t) = η(x, t) +D(x), Q(x, t) = H(x, t)u(x, t). We underline that system (2.15)
is invariant under vertical translations and therefore more appropriate for studying long
wave runup. Moreover, the linearization of the system (2.15) coincides with the original
Peregrine’s system (2.11) and therefore, inherits all its linear dispersive characteristics. On
the other hand system (2.15) cannot be regarded as a correct asymptotic model to the Euler
equations since it contains terms of the order O(εσ2). However, such terms considered in
the correct (small amplitude and long wave) regime are negligible, hence their contribution
will be negligible. Finally we note that ignoring the dispersive terms P (H,Q) of system
(2.15) we obtain the shallow water equations (1.1).

We also note that even though Boussinesq systems are not valid in the near-shore re-
gion, in practice they appear to predict well the behavior of small amplitude waves from
moderately deep to shallower waters and for smooth flows, cf. [Zel91]. Of course, more
accurate systems in the near-shore zone have been derived such as the Sérre equations
(sometimes referred also as Green-Naghdi equations), cf. [Ser53, LB09, DM10]. These
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systems appeared in practice to model better the breaking phenomena in the near shore
zone but recent numerical studies of the Sérre system showed that unphysical oscillations
might appear in analogy with the Boussinesq equations during the wave breaking and the
runup process, [CBB06, CBB07].

2.3. Source terms. Nonlinear shallow water model (1.1) and Boussinesq system (1.3)
may be completed to take into account some dissipative or friction effects which are very
beneficial in describing the wave breaking phenomena. Usually this is accomplished by
including appropriate source or dissipative terms into momentum conservation equations
(1.1) or (1.3). Possible choices are the following :

Friction: F (u,H) = −cm g
u|u|
H1/3

, (2.16)

Viscosity: V (u,H) = µ
∂

∂x

(

H
∂u

∂x

)

, (2.17)

where cm is the Manning roughness coefficient and µ denotes the kinematic viscosity of
the fluid. The particular form of the source terms is suggested by empirical laws, which
are generally obtained for steady state flows. Similar models have been derived from then
Navier-Stokes system for incompressible flows with a free surface. More complex friction
laws can be also formulated to model bottom rugosity effects, etc.

3. Numerical schemes

In the present section we generalize the finite volume method to systems (1.2) and (1.3)
of dispersive PDEs. In our work we rely on corresponding schemes for conservation laws.
Next we present briefly the finite volume framework for conservation laws. Based on this
framework we introduce finite volume schemes for the dispersive models.

3.1. Finite volume method for conservation laws. We consider the initial value prob-
lem

wt + F (w)x = S(w), x ∈ R, t > 0

w(x, 0) = w0(x),
(3.1)

where w(x, t) is the state variable, F denotes the flux and S is the source term. Let
T = {xi}, i ∈ Z denotes a partition of R into cells Ci = [xi− 1

2

, xi+ 1

2

] where xi = (xi+ 1

2

+

xi− 1

2

)/2 denotes the midpoint of Ci. Let ∆xi = xi+ 1

2

− xi− 1

2

be the length of the cell

Ci, ∆xi+ 1

2

= xi+1 − xi. Without loss of generality we assume a uniform partition T ,

that is ∆xi = ∆xi+ 1

2

= ∆x, i ∈ Z. Let wi denotes the cell average of w on Ci i.e

wi(t) =
1
∆x

∫

Ci
w(x, t) dx. Then a simple integration of (3.1) over a cell Ci yields

d

dt
wi(t) +

1

∆x

(

F (w(xi+ 1

2
, t))− F (w(xi− 1

2
, t))
)

=
1

∆x

∫

Ci

S(w(x, t)) dx. (3.2)
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3.1.1. Semidiscrete schemes. We now define the semidiscrete finite volume approximation
of w(x, t). Let χCi

denotes the characteristic function of the cell Ci, we seek a piecewise
constant function wh(x, t) =

∑

i∈Z Wi(t)χCi
(x) with

d
dt
Wi(t) +

1
∆x

(

Fi+ 1

2

− Fi− 1

2

)

= Si, i ∈ Z,

Wi(0) =
1
∆x

∫

Ci
w(x, 0) dx, i ∈ Z,

(3.3)

where Fi+ 1

2

= F(WL
i+ 1

2

,WR
i+ 1

2

) is an approximation to F (w(xi+ 1

2

, t)) while Si approximates

the source term Si = Si(Wi) ≈ 1
∆x

∫

Ci
S(w(x, t)) dx. The values WL

i+ 1

2

,WR
i+ 1

2

are approxi-

mations to the point value w(xi+ 1

2

, t) from cells Ci, Ci+1 respectively and F is a numerical

flux function which is consistent and monotone. The values WL
i+ 1

2

,WR
i+ 1

2

are computed by

a reconstruction process described below (see Section 3.1.3).

3.1.2. The numerical fluxes. There are many possible choices for the numerical flux func-
tion F . In the present study we choose to work with three following fluxes

Fm(W,V ) = F

(

W + V

2

)

, (3.4)

FKT (W,V ) =
1

2
{[F (V ) + F (W )]−A(W,V ) [V −W ]} , (3.5)

FCF (W,V ) =
1

2
{[F (V ) + F (W )]−A(W,V ) [F (V )− F (W )]} . (3.6)

The average flux (3.4) is the simplest one. It is well known that although this flux is
unstable for nonlinear conservation laws, it is proven very stable and accurate for nonlinear
dispersive models.

The central flux (3.5) is a Lax-Friedrichs type flux and is a representative of central
schemes [KT00, NT90]. The operator A is related to the characteristic speeds of the flow
and is defined as

A(W,V ) = max [ρ (DF (W )) , ρ (DF (V ))] , (3.7)

where DF denotes the Jacobian matrix and ρ(A) is the spectral radius of A.
The characteristic flux function (3.6), [GKC96, GKC01], is similar to the upwind flux

and the operator A in this case is defined by

A(W,V ) = sign

(

DF

(

W + V

2

))

. (3.8)

3.1.3. The reconstruction process. The values WL
i+ 1

2

,WR
i+ 1

2

are approximations to w(xi+ 1

2

, t)

from cells Ci and Ci+1 respectively. The simplest possible choice is to take the piecewise
constant approximation in each cell,

WL
i+ 1

2

= Wi, WR
i+ 1

2

= Wi+1. (3.9)

The resulting semidiscrete finite volume scheme is formally first order accurate in space.
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To construct a higher order scheme in space, the piecewise constant data is replaced by
a piecewise polynomial representation. The main idea here is to construct higher order
approximations to w(xi+ 1

2

, t) using the computed cell averages Wi. For this purpose the

classical MUSCL type (TVD2) linear reconstruction [Kol75, vL79] as well as UNO2, [HO87]
or WENO type reconstructions, [LOC94], have been developed.

The classical TVD2 linear reconstruction is given by the following formulas:

WL
i+ 1

2

= Wi +
1

2
φ(ri)(Wi+1 −Wi), WR

i+ 1

2

= Wi+1 −
1

2
φ(ri+1)(Wi+2 −Wi+1), (3.10)

where ri =
Wi−Wi−1

Wi+1−Wi
, and φ is an appropriate slope limiter, [Swe84]. There are many options

for a limiter function. Some of the most usual choices are

• MinMod (MM) limiter: φ(θ) = max(0,min(1, θ)),

• VanLeer (VL) limiter: φ(θ) = θ+|θ|
1+|θ| ,

• Monotonized Central (MC) limiter: φ(θ) = max(0,min((1 + θ)/2, 2, 2θ)),

• Van Albada (VA) limiter: φ(θ) = θ+θ2

1+θ2
.

The last three limiters have been shown to exhibit sharper resolution of discontinuities
since they do not reduce the slope as severely as (MM) near a discontinuity. The TVD2
reconstruction is second order accurate except at the local extrema where it reduces to the
first order. A remedy is to consider the UNO2 type reconstruction.

The UNO2 reconstruction is a linear interpolation which is second order accurate even
at local extrema, [HO87]. The values WL

i+ 1

2

,WR
i+ 1

2

are defined as

WL
i+ 1

2

= Wi +
1

2
Si, WR

i+ 1

2

= Wi+1 −
1

2
Si+1, (3.11)

where

Si = m(S+
i , S

−
i ), S±

i = di± 1

2

W ∓ 1

2
Di± 1

2

W,

di+ 1

2

W = Wi+1 −Wi, Di+ 1

2

W = m(DiW,Di+1W ),

DiW = Wi+1 − 2Wi +Wi−1, m(x, y) =
1

2
(sign(x) + sign(y))min(|x|, |y|).

Using either (TVD2) or (UNO2) reconstructions the semidiscrete finite volume scheme
(3.3) is formally second order accurate.

In order to achieve higher order accuracy we also employ WENO type reconstructions
for the values WR

i± 1

2

, WL
i± 1

2

. We implemented 3rd and 5th order accurate WENO methods

(also referred to as WENO3 and WENO5, respectively) as they are described in [LOC94].
For the sake of simplicity we only present the WENO3 case. In order to compute the
approximations WL

i+ 1

2

and WR
i− 1

2

, we first compute the 3rd order reconstructed values

W
(0)

i+ 1

2

=
1

2
(Wi +Wi+1), W

(1)

i+ 1

2

=
1

2
(−Wi−1 + 3Wi),

W
(0)

i− 1

2

=
1

2
(3Wi −Wi+1), W

(1)

i− 1

2

=
1

2
(Wi−1 +Wi).
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We define the smoothness parameters

β0 = (Wi+1 −Wi)
2, β1 = (Wi −Wi−1)

2,

and the parameters d0 =
2
3
, d1 =

1
3
and d̃0 = d1, d̃1 = d0, along with the weights

ω0 =
α0

α0 + α1
, ω1 =

α0

α0 + α1
, ω̃0 =

α̃0

α̃0 + α̃1
, ω̃1 =

α̃1

α̃0 + α̃1
,

where αi =
di

ǫ+βi
, α̃i =

d̃i
ǫ+βi

and ǫ to be a small, positive number (in our computations we

set ǫ = 10−15). Then the reconstructed values are given by the following formulas

WL
i+ 1

2

=

1
∑

r=0

ωrW
(r)

i+ 1

2

, WR
i− 1

2

=

1
∑

r=0

ω̃rW
(r)

i− 1

2

. (3.12)

3.1.4. Discretization of source terms. The finite volume discretization of the source term
S(w) in (3.1) depends on the particular choice. On the other hand the resulting approxi-
mation should preserve the upwind nature and the overall scheme should be well balanced.
One possible discretization of the source term S(w) is given by:

1

∆x

∫

Ci

S(w) dx ≈
Si− 1

2

+ Si+ 1

2

2
, Si+ 1

2

= S

(

WL
i+ 1

2

+WR
i+ 1

2

2

)

. (3.13)

3.1.5. Fully discrete schemes. Equation (3.3) is an initial value problem and can be dis-
cretized by various methods. In our case we use a special class of Runge-Kutta methods
which ensure the TVD property of the finite volume scheme, [SO88, GST01, SR02].

Let ∆t be the time step and let tn+1 = tn+∆t, n ≥ 0 be discrete time levels. Assuming
at tn the approximations {W n

i }, i ∈ Z are known then W n+1
i are defined by

W n+1
i = W n

i − ∆t

∆x

s
∑

j=1

bj

(

Fn,j

i+ 1

2

−Fn,j

i− 1

2

)

+∆t

s
∑

j=1

bj Sn,j
i ,

W n,j
i = W n

i − ∆t

∆x

s
∑

ℓ=1

ajℓ

(

Fn,ℓ

i+ 1

2

− Fn,ℓ

i− 1

2

)

+∆t
s
∑

ℓ=1

ajℓ Sn,ℓ
i ,

(3.14)

where Fn,j

i+ 1

2

= F(W n,j
i ,W n,j

i+1), Sn,j
i = S(W n,j

i ). The set of constants A = (ajℓ), b =

(b1, . . . , bs) define an s−stage Runge-Kutta method. The following tableau are examples
of explicit TVD RK-methods which are of 2nd and 3rd order respectively

0 0 0
1 0 1
1
2

1
2

0 0 0 0
1 0 0 1
1
4

1
4

0 1
2

1
6

1
6

2
3

(3.15)

In our computations we mainly use the three stage 3rd order method.
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3.2. Finite volume schemes for dispersive models. To construct the finite volume
schemes for the dispersive models the main idea is to rewrite the governing equations or
systems in a conservative like form and discretize the resulting conservation laws using the
aforementioned framework. One can use any of the numerical fluxes, Fm, FKT , FCF and
reconstruction techniques TVD2, UNO2 or WENO. Temporal discretization is based on
the TVD-Runge-Kutta methods, (3.15).

3.2.1. Boussinesq systems with flat bottom. Boussinesq systems (1.2) can be rewritten in
a conservative like form as follows:

(I−D)vt + [F(v)]x + [G(v)]x = 0, (3.16)

where v = (η, u)T , F(v) = ((1 + η)u, η + 1
2
u2)T , G(v) = (a uxx, c ηxx)

T , and D =
diag (b ∂2

x, d ∂
2
x). The simplest discretization is based on the average fluxes Fm for F and

Gm for G. For the other two choices of the numerical flux F the evaluation of a Jacobian
is needed. Let A denotes the Jacobian of F, then

A =

(

u 1 + η
1 u

)

,

with eigenvalues λi = u ±√
1 + η, i = 1, 2. It is readily seen, since F is a hyperbolic flux,

that A can be decomposed as A = LΛR thus for the characteristic flux FCF we have with
µ = W+V

2
, si = sign(λi), i = 1, 2

A(W,V ) =

(

1
2
(s1 + s2)

1
2

√
1 + µ1(s1 − s2)

s1−s2
2
√
1+µ1

1
2
(s1 + s2)

)

.

For evaluating the numerical fluxes F , G simple cell averages or higher order approxima-
tions such as UNO2 (3.11) or WENO (3.12) can be used.

Remark 1. The discretization of the elliptic operator D is based on the standard centered

difference. This is a second order accurate approximation and it is compatible with the

TVD2 and UNO2 reconstructions. For higher order interpolation we modify the elliptic

and flux discretization. Indeed, the finite volume scheme is modified as

d

dt

[

Vi−1 + 10Vi +Vi+1

12
− (b, d)

Vi+1 − 2Vi +Vi−1

∆x2

]

+
Hi−1 + 10Hi +Hi+1

12
= 0,

where Hi =
1
∆x

(Fi+ 1

2

− Fi− 1

2

) + 1
∆x

(Gi+ 1

2

− Gi− 1

2

), resulting in a high order accurate ap-

proximation. Thus in the WENO3 case a global third order accuracy is observed, while for

WENO5 interpolation, we profit only locally by the 5th order accuracy of the reconstruction,

cf. Section 4.1.

Remark 2. In the sequel for the discretization of the dispersive term G we use mainly the

average numerical flux Gm defined as Gm
i+ 1

2

= (a, c)1
2
(Yi +Yi+1), where Yi =

1
∆x2 (Vi+1 −

2Vi+Vi−1). In case of higher order WENO reconstructions we use the average numerical
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flux based on the reconstructed values of Yi i.e. the flux Glm
i+ 1

2

= (a, c)1
2
(YL

i+ 1

2

+ YR
i+ 1

2

),

where YL
i+ 1

2

and YR
i+ 1

2

are reconstructed values of Yi.

3.2.2. Boussinesq system with variable bottom. We write system (2.15) in terms of depen-
dent variables v := (H,Q)T in the following conservative form

[D(vt)] + [F(v)]x = S(v), (3.17)

where

D(vt) =

(

Ht

(1 + 1
3
H2

x − 1
6
HHxx)Qt − 1

3
HHxQxt − H2

3
Qxxt

)

, (3.18)

F(v) =

(

Q
Q2

H
+ g

2
H2

)

, S(v) =

(

0
gHDx

)

. (3.19)

We consider a uniform mesh and we denote by Hi, Ui and Di the corresponding cell
averages. To discretize the dispersive terms in (3.18) we consider the following approxima-
tions:

1

∆x

∫ x
i+1

2

x
i−1

2

[

1 +
1

3
(Hx)

2 − 1

6
HHxx

]

Q dx ≈
(

1 +
1

3

(

Hi+1 −Hi−1

2∆x

)2

− 1

6
Hi

Hi+1 − 2Hi +Hi−1

∆x2

)

Qi,

1

∆x

∫ x
i+1

2

x
i− 1

2

1

3
HHxQx dx ≈ 1

3
Hi

Hi+1 −Hi−1

2∆x

Qi+1 −Qi−1

2∆x
, (3.20)

1

∆x

∫ x
i+1

2

x
i− 1

2

1

3
H2Qxx dx ≈ 1

3
H2

i

Qi+1 − 2Qi +Qi−1

∆x2
. (3.21)

The aforementioned discretizations lead to a linear system with tridiagonal matrix denoted
by L that can be inverted efficiently by a variation of Gauss elimination for tridiagonal
systems with computational complexity O(d), d-being the dimension of the system. We
note that on the dry cells the matrix becomes diagonal since Hi is zero on dry cells. For the
time integration the explicit third-order TVD-RK method, (3.15) is used. In the numerical
experiments we observed that the fully discrete scheme is stable and preserves the positivity
of H during the runup under a mild restriction on the time step ∆t.

Therefore, the semidiscrete problem of (3.18) - (3.19) is written as a system of o.d.e’s in
the form

Livit +
1

∆x
(Fi+ 1

2

− Fi− 1

2

) =
1

∆x
Si, (3.22)

where Li is the i−th row of matrix L and Fi+ 1

2

can be chosen as one of the numerical flux

functions mentioned in the previous sections. In the sequel we will use the KT and the CF



FINITE VOLUME SCHEMES FOR DISPERSIVE WAVES 13

numerical fluxes. In this case the Jacobian of F is given by the matrix

A =

(

0 1
gH − (Q/H)2 2Q/H

)

,

and the eigenvalues are λ1,2 = Q/H ±
√
gH. Therefore, the CF numerical flux takes the

form

Fi+ 1

2

=
F(VL

i+ 1

2

) + F(VR
i+ 1

2

)

2
−U(µ)

F(VR
i+ 1

2

)− F(VL
i+ 1

2

)

2
, (3.23)

where µ = (µ1, µ2)
T are the Roe average values,

µ1 =
HL

i+ 1

2

+HR
i+ 1

2

2
, µ2 =

√

HL
i+ 1

2

UL
i+ 1

2

+
√

HR
i+ 1

2

UR
i+ 1

2
√

HL
i+ 1

2

+
√

HR
i+ 1

2

and

U(µ) =

(

s2(µ2+c)−s1(µ2−c)
2c

s1−s2
2c

(s2−s1)(µ2
2−c2)

2c
s1(µ2+c)−s2(µ2−c)

2c

)

, c =
√
gµ1, si = sign(λi). (3.24)

In order to guarantee the positivity of the reconstructed values Hi+ 1

2

on the cell interfaces

we employ the well balanced hydrostatic reconstruction algorithm, [ABB+04]. Here we
briefly recall the great lines of this reconstruction algorithm.

In the cell Ci we compute first the reconstructions Vi,r and Vi,l at (i+
1
2
)− and (i− 1

2
)+,

respectively using either TVD2 or UNO2 with MinMod limiter. Moreover, we compute in
the same way the values ηi,l and ηi,r of the free surface elevation ηi = Hi−Di. Now we can
deduce the values Di,l = Hi,l − ηi,l and Di,r = Hi,r − ηi,r. Letting Di+ 1

2

= min(Di,r, Di,l)
we compute

HR
i+ 1

2

= max(0, Hi,r +Di,r −Di+ 1

2

), HL
i+ 1

2

= max(0, Hi+1,l +Di+1,l −Di+ 1

2

), (3.25)

and we deduce conservative reconstructed variables

VL
i+ 1

2

=

(

HL
i+ 1

2

HL
i+ 1

2

ui,r

)

, VR
i+ 1

2

=

(

HR
i+ 1

2

HR
i+ 1

2

ui+1,l

)

. (3.26)

Then the term Si can be written as Si = SL
i+ 1

2

+ SR
i+ 1

2

+ Sci, where

SL
i+ 1

2

=

(

0
g
2

[

(HL
i+ 1

2

)2 − (Hi,r)
2
]

)

, SR
i+ 1

2

=

(

0
g
2

[

(Hi,l)
2 − (HR

i+ 1

2

)2
]

)

and

Sci =

(

0

g
Hi,l+Hi,r

2
(Di,l −Di,r)

)

.

Numerical experiments show that the resulting scheme is well-balanced even for Boussinesq
system of equations.
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3.2.3. Boundary conditions. In the case of Bona-Smith type systems with flat bottom we
consider herein only the initial-periodic boundary value problem which is known to be
well-posed [ADM09].

In case of the modified Peregrine’s system with an uneven bottom we use reflective
boundary conditions. We note that for the classical Boussinesq system posed in a bounded
domain I = [b1, b2], one needs to impose boundary conditions only in one of the two
dependent variables, cf. [FP05]. In the case of reflective boundary conditions it is sufficient
to take u(b1, t) = u(b2, t) = 0 cf. [AD]. In [AD] it was also observed that during solitary
waves reflection the derivatives ηx(b1, t) = ηx(b2, t) → 0, while for other wave types these
derivatives remained very small.

In our case we consider analogous reflective boundary conditions taking the cell averages
of u on the first and the last cell to be u0 = uN+1 = 0. We don’t impose explicitly boundary
conditions on H . The reconstructed values on the first and the last cell are computed using
neighboring ghost cells and taking odd and even extrapolation for u and H respectively.
These specific boundary conditions appeared to reflect incident waves on the boundaries
while conserving the mass.

4. Interactions of solitary waves

For the Boussinesq system (1.2) we present initially results demonstrating the accuracy
of the finite volume scheme. We study the propagation as well as the interaction of solitary
waves. In particular we consider head-on and overtaking collisions.

4.1. Accuracy test, validation. We consider the initial value problem with periodic
boundary conditions for the Bona-Smith systems (2.7) with known solitary wave solutions
(2.8) – (2.9) to study the accuracy of the finite volume method. We fix θ2 = 8/10 in the
system and an analytic solitary wave of amplitude η0 = 1/2 is used as the exact solution
in [−50, 50] computed up to T = 200. The error is measured with respect to discrete L2

and L∞ scaled norms E2
h, E∞

h , namely

E2
h(k) = ‖u− Uk‖h/‖U0‖h, ‖u− Uk‖h =

(

∑

i

∆x|u(xi)− Uk
i |2
)1/2

,

E∞
h (k) = ‖u− Uk‖h,∞/‖U0‖h,∞, ‖u− Uk‖h,∞ = max

i
|u(xi)− Uk

i |,

where Uk = {Uk
i }i denotes the solution of the fully-discrete scheme at the time tk = k∆t.

The expected theoretical order of convergence was confirmed for all finite volume meth-
ods presented above.Three indicative cases, demonstrating the order of convergence, are
reported in Table 1 : a) for the average flux, b) for the KT flux with TVD2 reconstruction
using the minmod limiter and c) for CF flux with WENO3 reconstruction. The order of
convergence for the WENO5 method cannot be obtained since a 4th order discretization
is used for the elliptic operator.
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(a) Average Flux

∆x Rate(E2
h) Rate(E∞

h )

0.5 1.910 1.978
0.25 1.910 1.954
0.125 1.923 1.937
0.0625 1.936 1.941
0.03125 1.946 1.948

(b) KT-TVD2(MinMod)

∆x Rate(E2
h) Rate(E∞

h )

0.5 2.042 2.032
0.25 2.033 2.029
0.125 2.026 2.023
0.0625 2.021 2.019
0.03125 2.017 2.016

(c) CF-WENO3

∆x Rate(E2
h) Rate(E∞

h )

0.5 2.976 2.975
0.25 3.017 3.022
0.125 3.031 3.044
0.0625 3.042 3.059
0.03125 3.051 3.073

Table 1. Rates of convergence.

We also check the preservation of the invariant (2.3) by computing its discrete counter-
part:

Ih1 =
∑

i

∆x

(

η2i + [(1 + ηi)ui]
2 − c

[

ηi+1 − ηi
∆x

]2

− a

[

ui+1 − ui

∆x

]2
)

, (4.1)

as well as the discrete mass Ih0 = ∆x
∑

i ηi. Figure 1 shows the evolution of the amplitude
and the invariant Ih1 of the solitary wave up to T = 200. The comparison of various
methods is performed. We observe that the UNO2 reconstruction is more accurate while
KT and the CF schemes show comparable performance. (We note that the invariant Ih0 =
1.932183566158 conserved the digits shown for all numerical schemes. In this experiment
we took ∆x = 0.1, ∆t = ∆x/2.) Figure 1 (a) and (c) show the evolution of the amplitude
of the analytical solitary wave of the Bona-Smith system (θ2 = 8/10) and of the solitary
wave produced by the solution of the analogous ordinary differential equations system of
the classical Boussinesq system respectively. In the case of the classical Boussinesq system
we took cs = 1.2 and we used the method described in [DM08].

The well balanced property of the finite volume schemes is also verified numerically. We
consider a uniform shore, cf. Section 5, including a wet and dry region. The bottom is
also modified by adding a small parabolic type hump located at x = 40. We tested the
steady state preservation of all fluxes and possible reconstruction techniques. The results
are similar in all cases. In Figure 2 we present the case of FC flux along with UNO2.

4.2. Head-on collisions. The head-on collision of two counter-propagating solitary waves
is characterized by the change of the shape along with a small phase-shift of the waves
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(a) Evolution of η amplitude (Bona-Smith)
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(b) Evolution of Ih1 (Bona-Smith)
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(c) Evolution of η amplitude (classical Boussinesq)

Figure 1. Preservation of the solitary wave amplitude and conservation of
the invariant Ih1 : G

m flux with Minmod limiter

as a consequence of the nonlinearity and dispersion. These effects have been studied
extensively before by numerical means using high order numerical methods such as finite
differences, [BC98], spectral and finite element methods [ADM10, DDLMM07, PD01] and
experimentally in [CGH+06]. In Figure 3 we present the numerical solutions of the BBM-
BBM system (2.6) and the Bona-Smith system (2.7) with θ2 = 9/11 (in dimensional and
unscaled variables) along with the experimental data from [CGH+06]. The spatial variable
is expressed in centimeters while the time in seconds. The solutions were obtained using
the CF-scheme with UNO2 and WENO3 reconstruction using ∆x = 0.05 cm and ∆t = 0.01
s. For this experiment we constructed solitary waves for Boussinesq systems by solving
the respective o.d.e’s system in the spirit of [BDM07] such that they fit to experimentally
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Figure 2. Steady state preservation

generated solitary waves before the collision. The speeds of the right and left-traveling
solitary waves are cr,s = 0.854 m/s and cl,s = 0.752 m/s respectively.

We observe that Boussinesq models converge to the same numerical solution with all nu-
merical schemes we tested. A very good agreement with the experimental data is observed.
The maximum height predicted by the numerical solution during the collision process is
slightly higher in the case of the BBM-BBM system but the difference is negligible within
the specific experimental scale. Furthermore, we observe similar underestimation of the
maximum amplitude of the colliding waves compared to the experimental data, [CGH+06].
This discrepancy might be explained by a possible ”splash” phenomenon during the colli-
sion reported also earlier by T. Maxworthy, [Max76]. After the collision we observe that
the phase shift of the solitary waves is the same in both numerical and experimental data,
while the shape of the experimental solitary waves were not stabilized due to interactions
with other small amplitude dispersive waves. We note that after the head-on collision of
the waves small amplitude dispersive tails were developed, [BC98, ADM10, DDLMM07].

The discrete mass for the Bona-Smith system is Ih0 = 0.0059904310418 and for the
BBM-BMM system is Ih0 = 0.0059199389479 for all fluxes and reconstructions used. The
variances in Ih1 are mainly due to different types of reconstruction and not to the choice of
numerical fluxes. In Table 2 these values are reported.

4.3. Overtaking collisions. The overtaking collision of two solitary waves similarly to
the head-on collision incorporates nonlinear and dispersive effects. Overtaking collision
has been studied recently in the case of bidirectional models in [ADM10]. The interaction
is similar to that of the unidirectional models but it was found that a new N-shape wavelet
is generated during the interaction. This wavelet is of small amplitude and travels in
the opposite direction to solitary waves and its shape depends on the Boussinesq system
in use. Furthermore, as it was observed numerically and experimentally in [CGH+06],
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(a) t = 18.29993s
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(b) t = 18.80067s
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(c) t = 19.00956s
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(d) t = 19.15087s
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(e) t = 19.19388s
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Figure 3. Head-on collision of two solitary waves: —: BBM-BBM, −−:
Bona-Smith (θ2 = 9/11), •: experimental data of [CGH+06]
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(a) t = 19.84514s
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Figure 3. (Cont’d) Head-on collision of two solitary waves. —: BBM-
BBM, −−: Bona-Smith (θ2 = 9/11), •: experimental data of [CGH+06]

(a) Bona-Smith

Ih1

m-flux 0.000944236
UNO2 0.00094423
TVD2 0.00094
WENO3 0.00094423

(b) BBM-BBM

Ih1

m-flux 0.00092793
UNO2 0.00092793
TVD2 0.00092
WENO3 0.00092793

Table 2. Preservation of the invariant Ih1 .

the interaction of two solitary waves during an overtaking collision is characterized by a
mass exchange and not by a simple superposition of the solitary pulses. These pulses
remain separate retaining two different maxima contrary to unidirectional models where
they merge into a single pulse momentarily.

To study this interaction we solve numerically the Bona-Smith system (2.7) with θ2 =
9/11. Following the same process as before two solitary waves were generated numerically
with speeds c1,s = 1.2 and c2,s = 1.4. We solved the system using all fluxes using UNO2
and WENO3 reconstructions with discretization parameters ∆x = 0.01, ∆t = 0.005 up
to T = 600. During simulations we were able to observe the generation and propagation
of a small N-shape wavelet. In all computations the invariants were Ih0 = 4.6098804880,
Ih1 = 5.116 conserving the digits shown for all methods.

In Figure 4 we present the interaction of two solitary waves. Figure 5 shows a magnifi-
cation on the generation of a small wavelet along with the generation of dispersive tails as
an effect of the inelastic interaction of two waves. In Figure 6 we observe that the overtak-
ing collision is accompanied by an exchange of mass between pulses while both peaks are
permanently present. The situation is different for unidirectional models where two pulses
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(c) t = 400
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Figure 4. Overtaking collision of two solitary waves of the Bona-Smith
system with θ2 = 9/11.

merge during a few time-steps to travel as a single pulse. Up to the graphic resolution
we could not observe any difference in numerical solutions between UNO2 and WENO3
reconstructions.

4.4. Small dispersion effect. In this section we study the small dispersion effects on
solitary waves of the classical Boussinesq system. The motivation for this study is the
lack of theory supporting the breaking phenomena in Boussinesq systems contrary to the
KdV equation. For this reason we employ the Boussinesq system with a = b = c = 0,
d = 10−5 and we take the solitary wave of the Boussinesq systems (2.5) as an initial
condition. In Figure 7 we present numerical results obtained with CF-UNO2 and CF-
WENO3 schemes. In these experiments we take ∆x = 0.001 and ∆t = ∆x/2. The
invariant Ih0 is 1.629096452537 preserving the digits shown during all simulations. The
invariant Ih1 is not preserved by this model since the coefficient b is not equal to d. The
oscillations generated in the case of the WENO3 reconstruction were larger compared
to those generated by the UNO2 reconstruction. Moreover, a new W-shaped wavelet is
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Figure 5. Generation of a wavelet during the overtaking collision of two
solitary waves of the Bona-Smith system with θ2 = 9/11.

generated traveling to the left. This small wavelet finishes by producing a secondary
breaking very similar to that of the initial solitary wave.

5. Boussinesq system with variable bottom: runup of long waves

The shallow water equations are routinely used to predict a tsunami wave runup and,
subsequently, constitute inundation maps for tsunami hazard areas. One of the main
questions we address in this study is whether the inclusion of dispersive effects is beneficial
for the description of the wave/shore interaction. In this section we perform a comparison
of numerical solutions to Boussinesq equations (2.15), shallow water equations (1.1) (solved
by the same numerical method) and experimental measurements made by C.E. Synolakis
[Syn87] and J.A. Zelt [Zel91]. In these experiments we consider a bottom of the form,
Figure 8,

−D(x) =

{

−x tan β, x ≤ cot β,
−1, x > cot β,
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(d) t = 386

Figure 6. Overtaking collision of two solitary waves of the Bona-Smith
system with θ2 = 9/11: mass exchange process.

In all experiments over a flat bottom, D(x) = D0, we use an approximate solitary wave
solution of the following form:

η0(x) = Assech
2 (λ(x−X0)) , u0(x) = −cs

η0(x)

D0 + η0(x)
, (5.1)

λ =

√

3As

4(1 + As)
, cs =

√
g

√
6(1 + As)√
3 + 2As

·
√

(1 + As) log(1 + As)−As

As

, (5.2)

where As denotes the amplitude, cs is the correct speed of the solitary wave propagation
for classical Boussinesq equations.

The first three experiments we tested are described in [Syn87] and deal with the runup
of solitary waves on a shore with a mild slope of 1 : 19.85. The first is a non-breaking
solitary wave with dimensionless and scaled amplitude As/D0 = 0.0185, the second one is
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Figure 7. The small dispersion effect onto classical Boussinesq equations
solutions.

β

D H

0

Figure 8. Sketch of the problem setup.
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a nearly breaking solitary wave with As/D0 = 0.04, while the third experimental setup is
a breaking solitary wave with As/D0 = 0.28.

System (2.15) has some advantages over other asymptotically equivalent models with
variable bottom. Namely, it shows excellent stability properties even for nearly breaking
waves on the shore. However, for the simulation of strong breaking events, it is beneficial
to include friction or dissipative terms taking into account turbulence generation.

We also considered two experiments from [Zel91] concerning the runup of solitary waves
on a shore with steep slope 1 : 2.74. These experiments shed some light on the differences
between dispersive and non-dispersive models.

Finally we consider a non-uniform sloping shore that contains a small pond demon-
strating the capability of the modified Peregrine’s system to handle simultaneously and
correctly dispersive effects in two basins with different mean sea levels.

In the sequel t denotes the dimensionless time scaled by the quantity
√

g/D0. Further-
more, we denote by R the height of the last dry cell at a specific time instance. In our
computations a cell is considered as dry if the total water depth Hi inside is less than
5 · 10−14. The quantity R will also be referred to as runup. The maximum runup will be
denoted by R∞. In all experiments the discretization parameters were taken to be equal
∆x = 0.05, ∆t = ∆x/10, unless otherwise mentioned. Further, we compute in all cases the
discrete mass Ih0 and show the preserved digits. We use the KT and CF schemes combined
with the TVD2 and UNO2 reconstructions. The CF-scheme appeared to be less dissipative
and we emphasize the results of this method.

5.1. Runup of a solitary wave on a gradual slope β = 2.88◦ with As/D0 = 0.0185.
We consider first the simplest case — the runup of a non-breaking solitary wave. In this
experiment we take an initial solitary wave with the amplitude As = 0.0185, D0 = 1
and X0 = 19.85 in I = [−10, 70] and a mildly sloping shore 1 : 19.85. This specific
solitary wave does not break [Syn87] and the solution remains smooth during the runup
and the rundown processes. In Figure 9 we show several profiles of numerical solutions to
Boussinesq and shallow water equations along with the experimental data of [Syn87]. We
observe that both models converge to the same solution. The runup as well as the rundown
in this experiment is predicted very well. The runup value R for both models is almost the
same. The maximum runup is R∞ ≈ 0.085 for the Boussinesq system, while for NSWE
is R∞ ≈ 0.088. The experimental value reported in [Syn87] is equal to R∞ ≈ 0.078. In
Figure 10 the runup R as a function of time is represented. The discrete mass is preserved
Ih0 = 60.3667671231 conserving the digits shown for both models.

5.2. Runup of a solitary wave on a gradual slope β = 2.88◦ with As/D0 = 0.04.
We consider the same sloping shore as before. We study the runup of a solitary wave with
amplitude As = 0.04, placed initially at X0 = 19.85 in I = [−10, 70]. The solitary wave
does not break during the runup phase. Breaking occurs during the rundown process as in
experimental observations [Syn87]. Results of the numerical simulations are presented in
Figure 11. In Figure 12 the evolution of the runup value is shown. The maximum runup
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(d) t = 70

Figure 9. Solitary wave runup on a sloping shore: As = 0.0185 case.

for the Boussinesq system is R∞ ≈ 0.20 and R∞ ≈ 0.21 for shallow water system. The
experimental value reported in [Syn87] is R∞ ≈ 0.156.

In Figure 13 we perform a comparison with tide gauge data (free surface elevation
measured in [Syn87]) collected at 32.1 m from the still shoreline position. We observe
again a good agreement between the dispersive and nondispersive models. The discrete
mass is preserved, Ih0 = 60.5210181987 conserving the digits shown.

5.3. Runup of a solitary wave on a gradual slope (β = 2.88◦) with As = 0.28.
Finally we present the stiffest case of a solitary wave with amplitude As = 0.28, placed
initially at X0 = 19.85 in I = [−10, 60]. This specific initial condition is characterized
by the wave breaking phenomenon before even reaching the shoreline. Strictly speaking,
in this case Boussinesq model is not valid unless a wave breaking mechanism is consid-
ered, cf. [Zel91]. In this case the approximate solitary wave given by formulas (5.1)-(5.2)
with As = 0.28 it is outside the range of validity of the specific system. We proceed by
constructing numerically a more accurate solitary wave following the cleaning procedure of
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Figure 10. Runup value R as a function of time: As = 0.0185 case.

[BC98]. (Note that since the linearized system (2.15) coinsides with the linearized classi-
cal Boussinesq system we conclude that there exist classical solitary wave solutions of at
least small amplitude, cf. [DM08]). We constructed a solitary wave with As

∼= 0.28 with
∆x = 0.1 and ∆x = 0.05 while ∆t = ∆x/10.

Specifically, we consider the interval [−200, 200], and the initial condition η0(x) =
0.5 exp(−(x−150)2/25), u0 = 0 (with reflective boundary conditions). The initial condition
is resolved into two solitary waves traveling in opposite directions. We observed that the
left-traveling solitary wave at t = 88 was separated enough from the rest of the solution.
This solitary wave is isolated by keeping the numerical solution in the interval [−200,−151]
and setting it equal to zero to the rest of the interval. The solution is then translated to
the right at X0 = 19.85 and we let it propagate. We observe that the clean solitary wave
propagates like the analytical solution of the Bona-Smith system with analogous behavior
between the TVD2 and UNO2 reconstruction. In Figure 14 we present the results for the
KT scheme since the results of the CF scheme are completely analogous and no difference
can be observed. In Figure 14 (a) the rightward traveling waves were reflected by the right
boundary.

In order to ensure the stability of the simulation and to study the runup, instead of
smoothing, filtering or adding extra dissipative terms, we simply exclude the contribution
of the term Qxxt in the vicinity of the shoreline (where Di < 0.3). Wave transition between
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(c) t = 32
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(d) t = 38
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(e) t = 44
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(f) t = 50

Figure 11. Solitary wave runup on a sloping shore: As = 0.04 case.
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(b) t = 62

Figure 11. (Cont’d) Solitary wave runup on a sloping shore: As = 0.04 case.
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Figure 12. Runup value R as a function of time: As = 0.04 case.

these two regions appeared to be smooth as one may witness on Figure 15. After this
slight modification, the algorithm became more robust for large amplitude breaking waves
without creating any unphysical oscillations.

In this experiment friction appeared to play a significant role during the runup process,
contrary to previous cases. The maximum runup computed without taking into account
the friction of the bottom was far away from the experimentally measured values. For this
reason, and only in this specific test case we included the empirical friction term (2.16)
into the momentum conservation equation (2.15), with coefficient cm = 2 · 10−4. The
friction term is discretized according to (3.13). This discretization preserves the positivity
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Figure 13. Free surface elevation at x = 32.1 m.

of all numerical schemes we tested. Mass conservation in this experiment was perfect
Ih0 = 51.7504637472 preserving the digits shown.

In Figure 15 we show the propagation of a breaking wave including its runup and run-
down. We observe a significant difference between shallow water system and the dispersive
model during the wave propagation. Discrepancies are present in the amplitude and in
the phase speed simultaneously. However the dispersive model solution approximates bet-
ter the measurements of J.A. Zelt [Zel91]. Nevertheless, we have to underline that the
runup and rundown are fairly well described by both models. The maximum runup value
according to the dispersive and nondispersive models is R∞ ≈ 0.47 which is in the range
of [0.42, 0.53] of the theoretical prediction of C.E. Synolakis, [Syn87]. There is no single
experimental value reported for the maximum runup in [Syn87] due to practical difficulties
in generating a solitary wave of such large amplitude. Finally, we mention that the specific
technique for handling the breaking wave leads to more accurate results for the rundown
process than one presented in [Zel91].

5.4. Solitary wave runup on a steep slope (β = 20◦). Now we present two experiments
pointing out some further differences in solutions to dispersive and nondispersive models.
These experiments were performed by J.A. Zelt, [Zel91]. We consider two waves in I =
[−10, 30] with amplitudes As = 0.12 and As = 0.2 initially located at X0 = 8.85 and
X0 = 10.62 respectively. These waves propagate onto a steep sloping shore 1 : 2.74. A
very fine grid of ∆x = 0.01, ∆t = ∆x/100 is used to guarantee the accuracy and stability
of simulations.

As it was observed in [Zel91] both waves do not break during the runup but the second
one generates a strong breaking event during the rundown. Friction does not play an
important role in these experiments. Consequently, no friction term is included into the
models.
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Figure 14. Generation of a solitary wave with As
∼= 0.28 applying cleaning
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(d) t = 25

Figure 15. Solitary wave runup on a sloping shore: As = 0.28 case.

Figure 16 shows the runup value R as a function of time. We observe for both models that
there is a phase lag compared to the experimental data. We believe that this discrepancy
can be removed by changing the definition of the last dry cell. We also observe that shallow
water equations over-predict the maximum runup and the minimum rundown while the
Boussinesq model predicts correctly the extrema in both cases.

Figure 17 shows the rundown of the solitary wave of amplitude As = 0.2 during breaking.
One may observe that the experimental data consist of two curves due to the difficulty in
measuring the surface elevation of the breaking wave due to 3D effects which become
important. On Figure 18 the free surface elevation at a gauge is presented. The gauge
is located 8.85 meters away from the still shoreline position. The reflected wave appears
in both cases to be highly dispersive thus, the Boussinesq model provides a much better
approximation. In the case As = 0.2, the mass remained equal to Ih0 = 29.770808175, while
in the case case As = 0.12, Ih0 = 29.4861671693 conserving the digits shown.
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(f) t = 80

Figure 15. (Cont’d) Solitary wave runup on a sloping shore: As = 0.28 case.
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(b) As = 0.2

Figure 16. Runup value R as a function of time.
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(c) t = 17.32
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Figure 17. Rundown of the wave with amplitude As = 0.2.
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Figure 18. The amplitude at the wave gauge A

5.5. Solitary wave runup on a gradual slope (β = 2.88◦) with a pond. We repeat
the experiment of Section 5.2 in I = [−10, 50] with solitary wave amplitude equal to
As = 0.05. However, we modify the bottom by adding a small pond over the shoreline
described by the exponential function 0.1 e−(x+4)2 . The Boussinesq system preserves the
correct dispersion characteristics for the waves reaching the pond. In Figure 19 we present
the overall process. It is worth noting that after the pond was filled a breaking wave was
reflected back. As the wave slides down, a small hydraulic jump appears. In the case of
shallow water system this jump propagates as a shock wave due to hyperbolic character
of equations. On the other hand, the Boussinesq system develops into an Airy type wave
according to its dispersive characteristics. In Figure 20 we show the solution at two wave
gauges located at x = −3.4 and x = 8 for both the dispersive and nondispersive models.
The mass during the simulations is constantly equal to Ih0 = 40.5198087147.

6. Conclusions

In the present study we extend the finite volume framework, developed for hyperbolic
conservations laws, to approximate solutions of dispersive wave equations. This type of
equations arises naturally in many physical problems. In the water wave theory dispersive
equations have been well known since the pioneering work of J. Boussinesq [Bou71] and
Korteweg-de Vries [KdV95]. Currently, the so-called Boussinesq-type models become more
and more popular as an operational model for coastal hydrodynamics and other fields of
engineering.

We extend the finite volume framework to dispersive models. We tested several choices
of numerical fluxes, various reconstruction methods ranging from classical MUSCL type to
modern approaches such as WENO. Various choices of limiters have been also tested out.
Advantages of specific methods are discussed and some suggestions are outlined.

For operational modeling of the wave runup we derived a new system which has some
advantages over its classical counterpart. The new system together with proposed novel
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Figure 19. Long wave runup on a shore with a pond.
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Figure 19. (Cont’d): Long wave runup on a shore with a pond.
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Figure 20. Evolution of the free surface elevation at two wave gauges.
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discretization procedure are validated by extensive comparisons with experimental data of
C.E. Synolakis [Syn87] and J.A. Zelt [Zel91].

We paid a special attention to the comparison of dispersive (Boussinesq) and nondis-
persive (shallow water) models. Nowadays shallow water equations have become the
model of choice for operational tsunami modeling including the inundation zone estima-
tion [TG97, SBT+08]. The question of dispersive effects importance arises recurrently in
the tsunami wave modeling community [KML05, DT07]. Our results show that shallow
water equations are sufficient to predict maximum runup values. However, the dispersive
effects can be beneficial for more accurate description of long wave propagation, runup and
rundown.
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