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Abstract

Finite volume schemes are commonly used to construct approximate solutions
to conservation laws. In this study we extend the framework of the finite vol-
ume methods to dispersive water wave models, in particular to Boussinesq type
systems. We focus mainly on the application of the method to bidirectional non-
linear, dispersive wave propagation in one space dimension. Special emphasis
is given to important nonlinear phenomena such as solitary waves interactions,
dispersive shock wave formation and the runup of breaking and non-breaking
long waves.

Keywords: finite volume method, dispersive waves, solitary waves, runup,
water waves

1. Introduction

The simulation of water waves in realistic and complex environments is a very
challenging problem. Most of the applications arise from the areas of coastal and
naval engineering, but also from natural hazards assessment. These applications
may require the computation of the wave generation [29, 46], propagation [75],
interaction with solid bodies, the computation of long wave runup [73, 74] and
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even the extraction of the wave energy [68]. Issues like wave breaking, robustness
of the numerical algorithm in wet-dry processes along with the validity of the
mathematical models in the near-shore zone are some basic problems in this
direction [42]. During past years, the classical shallow water equations have
been employed to solve some of these problems [2, 30]:

Ht + (Hu)x = 0,
(Hu)t +

(

Hu2 + g
2H

2
)

x
= gHDx,

(1)

whereH(x, t) := η(x, t)+D(x) is the total water depth, D(x) describes the depth
below the mean sea level while η(x, t) is the free surface elevation, u(x, t) denotes
the depth-averaged fluid velocity and g is the gravity acceleration constant.
Mathematically, equations (1) represent a system of conservation laws describing
the propagation of infinitely long waves with a hydrostatic pressure assumption.
The wave breaking phenomenon is commonly assimilated to the formation of
shock waves (or hydraulic jumps) which is a common feature of hyperbolic
p.d.e’s. Consequently, the finite volume(FV) method has become the method of
choice for these problems due to its excellent intrinsic conservative and shock-
capturing properties [2, 23, 24, 30]. Furthermore the shallow water equations
have been proven in practice to predict accurately the maximum runup of long
waves [41, 44, 71, 73, 74].

On the other hand, various studies have shown that the inclusion of dis-
persive effects is beneficial for the description of long wave propagation and
runup processes [54, 78, 80]. Moreover, J.A. Zelt [80] reported a divergence in
the prediction of the rundown and in the prediction of the reflected wave-train
after the wave climbing on the shore when a dispersionless model is employed.
According to J.A. Zelt, the results of the nonlinear dispersive model considered
in [80] showed better performance compared to (1). During the last fifty years
numerous dispersive models have been proposed for the simulation of long waves
[12, 45, 56, 58, 61, 63, 65].

In this work we will study numerically bidirectional water wave models.
Specifically, we consider the following family of Boussinesq type systems of water
wave theory, introduced in [13], written in nondimensional, unscaled variables

ηt + ux + (ηu)x + a uxxx − b ηxxt = 0,

ut + ηx + uux + c ηxxx − d uxxt = 0,
(2)

where a, b, c, d ∈ R, η = η(x, t), u = u(x, t) are real functions defined for x ∈ R

and t ≥ 0.
For more realistic situations we introduce a modified Boussinesq type system

with variable bottom topography based on Peregrine’s system, [63]. The new
system incorporates a very important property — the invariance under vertical
translations, thus more appropriate for practical applications such as wave runup
on non-uniform shores. In dimensional variables the model reads

Ht +Qx = 0,

Qt + (Q
2

H + g
2H

2)x −
[

H2

3 Qxxt − (13H
2
x − 1

6HHxx)Qt +
1
3HHxQxt

]

= gHDx.

(3)
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where H(x, t) = η(x, t) +D(x), Q(x, t) = H(x, t)u(x, t).
There is a wide range of numerical methods in the literature for computing

approximate solutions to these models. Finite difference (FD) schemes [39, 43,
47], finite element methods [7, 15, 27, 58] and spectral methods [60, 62] have
been proposed. More contemporary discontinuous Galerkin (DG) schemes have
also been adapted with some success to dispersive wave equations [32, 33, 53, 79]
while the application of Finite Volumes (FV) or hybrid FV/FD methods remain
most infrequent for this type of problems. To our knowledge, only a few very
recent works are in this direction [8, 10, 31, 66, 76].

Finite volume method is well known for its accuracy, efficiency and robust-
ness for approximating solutions to conservation laws and in particular to non-
linear shallow water equations (1). The aforementioned bidirectional models
(2) and (3) are rewritten in a conservative form and discretization by the finite
volume method follows. Three different numerical fluxes are employed

• a simple average flux (m-scheme),

• a central flux, (KT-scheme) [51, 59], as a representative of central schemes,

• a characteristic flux (CF-scheme), as a representative of the linearized
Riemann solvers, [35].

along with TVD, UNO andWENO reconstruction techniques, [40, 55, 70]. Time
discretization is based on Runge-Kutta (RK) methods which preserve the total
variation diminishing(TVD) property of the finite volume scheme, [38, 67, 69].
We use explicit RK methods since we work with BBM type systems (2) and not
with KdV equation which is well known to be notoriously stiff. These methods
have been studied thoroughly in the case of nonlinear conservation laws. The
average flux although is known to be unstable for conservation laws is proved
to be very accurate for nonlinear dispersive waves. On other hand finite volume
methods based on the central flux as well as on characteristic flux work equally
well for the numerical simulation of waves even in realistic environments.

The performance of the finite volume method applied to models (2) and to
the new system (3) is studied in a systematic way through a series of numerical
experiments. In particular, in this study we take up on the following points

• accuracy of the finite volume method in the propagation of solitary waves
with very satisfactory results.

• conservation of various invariant quantities during the formation of disper-
sive shocks is studied numerically. The finite element as well as spectral
methods break down for these experiments. The finite volume method
provides very accurate results.

• interactions of solitary waves are computed with high accuracy. It is shown
numerically that Boussinesq type systems describe better overtaking col-
lisions of solitary waves than unidirectional models like KdV-BBM. We
compare our results, whenever possible, with experimental measurements
with very good agreement
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• finite volume method allows to use appropriate techniques to treat the
transition from wet to dry regions and vice versa. These techniques are
applied successfully to systems with dispersive terms modeling runup of
long waves. On the other hand, when the model fails due to wave breaking,
the method allows to use locally the nonlinear shallow water system, thus
enabling us to resolve a wide spectrum of hydrodynamic phenomena using
a single computational framework.

• it is shown numerically the advantage of using dispersive models over
standard nonlinear shallow water equations in computing the wave runup
and, in particular, in capturing the reflected wave. It’s also illustrated by
an example the importance of the system being invariant under vertical
translations.

The paper is organized as follows. In Section 2 Boussinesq type systems
are presented along with some of their basic properties. A new system with
uneven bottom and invariant under vertical translations is derived. In Section
3 the finite volume method is presented for a general framework incorporating
all models.

Section 4 presents a series of numerical experiments for the Boussinesq sys-
tems (2). In this mathematical setting we validate the finite volume method and
measure its accuracy. We study the propagation as well as the interaction of
solitary waves: we consider in particular head-on and overtaking collisions, but
also we present results concerning the small dispersion effect. Finally, in Section
5 the new system with variable bottom, (3) is studied. Numerical simulations of
non-breaking and breaking long wave runup are presented and compared with
experimental data.

2. Mathematical models

We present briefly the mathematical models being considered and some of
their main properties.

2.1. Dispersive models with flat bottom

We consider the following family of Boussinesq type systems of water wave
theory, introduced in [13], which may be written in nondimensional, unscaled
variables

ηt + ux + (ηu)x + auxxx − bηxxt = 0,
ut + ηx + uux + cηxxx − duxxt = 0,

(4)

where η = η(x, t), u = u(x, t) are real functions defined for x ∈ R and t ≥ 0.
Coefficients a, b, c and d are defined as

a =
1

2
(θ2− 1

3
)ν, b =

1

2
(θ2− 1

3
)(1−ν), c =

1

2
(1−θ2)µ, d =

1

2
(1−θ2)(1−µ), (5)

where 0 ≤ θ ≤ 1 and µ, ν ∈ R. The variables in (4) are non-dimensional
and unscaled: x and t are proportional to position along the channel and time,
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respectively, while η(x, t) and u(x, t) are proportional to the deviation of the free
surface above an undisturbed level and to the horizontal velocity of the fluid at
a height y = −1 + θ(1 + η(x, t)), respectively. In terms of these variables the
channel bottom is located at y = −1, (θ = 0), while the free surface corresponds
to θ = 1. Boussinesq systems (4) with b = d conserve the energy functional:

I1(t) =

∫

R

(η2(x, t) + (1 + η(x, t))u2(x, t)− c η2x(x, t)− a u2
x(x, t)) dx, (6)

i.e. I1(t) = I1(0). The system (4) is derived under following assumptions:

ε := A/h0 ≪ 1 , σ := h0/λ ≪ 1 S :=
Aλ2

h3
0

= O(1) ,

where S is the Stokes (or Ursell) number, A is a typical wave amplitude and
λ is a characteristic wavelength. If one takes S = 1 and switches to scaled,
dimensionless variables, one may derive from Euler equations a scaled version
of (4) by appropriate asymptotic expansion in powers of ε, cf. [14]:

ηt + ux + ε(ηu)x + ǫ[auxxx − bηxxt] = O(ε2),
ut + ηx + εuux + ǫ[cηxxx − duxxt] = O(ε2),

(7)

from which we obtain (4) by unscaling and neglecting higher order terms O(ε2).
We list several examples of particular Boussinesq systems of the form (4) that

we will refer to in the sequel. The initial-value problem for all these systems
has been shown to be at least nonlinearly well-posed locally in time, cf. [14].

(i) The ’classical’ Boussinesq system (µ = 0, θ2 = 1/3, i.e. a = b = c = 0,
d = 1/3 in (4)), whose initial-value problem is globally well-posed, [1, 64],

ηt + ux + (ηu)x = 0,
ut + ηx + uux − 1

3uxxt = 0.
(8)

(ii) The BBM-BBM system (ν = µ = 0, θ2 = 2/3, i.e. a = c = 0, b = d = 1/6
in (4)), whose initial-value problem is locally well-posed, [11],

ηt + ux + (ηu)x − 1
6ηxxt = 0,

ut + ηx + uux − 1
6uxxt = 0.

(9)

(iii) The Bona-Smith system (ν = 0, µ = (4 − 6θ2)/3(1 − θ2), i.e. a = 0,
b = d = (3θ2 − 1)/6, c = (2 − 3θ2)/3, 2/3 < θ2 < 1 in (4)), whose initial-
value problem is globally well-posed, cf. [12]. The limiting form of this
system as θ → 1, corresponding to a = 0, b = d = 1/3, c = −1/3, is the
system actually studied by Bona and Smith, [12]. These systems are given
by

ηt + ux + (ηu)x − 3θ2−1
6 ηxxt = 0,

ut + ηx + uux + 2−3θ2

3 ηxxx − 3θ2−1
6 uxxt = 0.

(10)
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The existence of solitary wave solutions to the above systems, in some cases the
uniqueness also, has been proved in [17, 18, 28] and in the case of the Bona-
Smith type systems (10), for each θ2 ∈ (7/9, 1), there exists one solitary wave
in the closed form [17]

η(ξ) = η0 sech
2(λξ),

u(ξ) = B η(ξ),
(11)

with
η0 = 9

2 · θ2−7/9
1−θ2 , cs =

4(θ2−2/3)√
2(1−θ2)(θ2−1/3)

,

λ = 1
2

√

3(θ2−7/9)
(θ2−1/3)(θ2−2/3) , B =

√

2(1−θ2)
θ2−1/3 .

(12)

2.2. Dispersive models with variable bottom
For more realistic applications one should consider Boussinesq systems with

variable bottom. After the pioneering work of Peregrine, [63], who derived the
following Boussinesq type system

ηt + [(D + η)u]x = 0,

ut + gηx + uux − D
2 (Du)xxt − D2

6 uxxt = 0,
(13)

where η(x, t) and u(x, t) are defined as before, D(x) describes the water depth
below its rest position. Many other systems have been derived also, including
systems with improved dispersion characteristics [61], high-order Boussinesq
systems [56] and other generalizations of (4), cf. [58]. Most of these systems
break Galilean invariance and the invariance under vertical translations. This is
a restrictive property especially in the studies of realistic problems like the water
wave runup on non-uniform shorees. We note also that the complete water wave
problem possesses these symmetries [9].

To overcome this deficiency we develop a new system, analogous to the
original Peregrine’s system, [63], which is invariant under vertical translations.
To derive the system we begin with (13) written in dimensionless scaled variables
(in analogy with (7))

ηt + [(D + εη)u]x = 0,

ut + ηx + εuux − σ2
[

D
2 (Du)xxt − D2

6 uxxt

]

= O(ε2, εσ2).
(14)

Then by setting H = D + εη, we obtain

Ht + (Hu)x = 0,
(Hu)t + (εHu2 + 1

2εH
2)x

−σ2
[

HD
2 (Du)xxt − HD2

6 (Du
D )xxt

]

= 1
εHDx +O(ε2, εσ2).

(15)

Observing that
(

Du
D

)

xx
= [2

D2
x

D3 − Dxx

D2 ](Du) − 2Dx

D2 (Du)x + 1
D (Du)xx and that

H = D +O(ε) we have that

Ht + (Hu)x = 0,
(Hu)t + (εHu2 + 1

2εH
2)x

−σ2
[

D2

3 (Du)xxt − (13D
2
x − 1

6DDxx)Dut +
1
3DDx(Du)xt

]

= 1
εHDx +O(ε2, εσ2).

(16)
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By setting Q = Hu, and using again the relation H = D +O(ε) we have

Ht +Qx = 0,
Qt + (εQ2/H + 1

2εH
2)x

−σ2
[

H2

3 Qxxt − (13H
2
x − 1

6HHxx)Qt +
1
3HHxQxt

]

= 1
εHDx +O(ε2, εσ2).

(17)
and in dimensional variables, neglecting the higher order terms at the right-hand
side:

Ht +Qx = 0,
Qt + (Q2/H + g

2H
2)x − P (H,Q) = gHDx.

P (H,Q) = H2

3 Qxxt − (13H
2
x − 1

6HHxx)Qt +
1
3HHxQxt

(18)

where H(x, t) = η(x, t) +D(x), Q(x, t) = H(x, t)u(x, t). We underline that sys-
tem (18) is invariant under vertical translations and therefore more appropriate
for the study of long wave runup. Moreover, the linearization of the system (18)
coincides with the original Peregrine’s system (14) and, therefore, inherits all
its linear dispersive characteristics. On the other hand system (18) cannot be
regarded as a correct asymptotic model to the Euler equations since it contains
terms of the order O(εσ2) and higher. On the other hand, such terms consid-
ered in the correct (small amplitude and long wave) regime are negligible and,
therefore, their contribution will be negligible. Finally we note that ignoring
the dispersive terms P (H,Q) in (18) will lead shallow water equations (1).

We also note that even though Boussinesq systems are not valid in the
near-shore region, in practice they appear to predict well the behavior of small
amplitude waves from moderately deep to shallower waters, cf. [80]. Of course,
more accurate systems in the near-shore zone have been derived such as the Sérre
equations (sometimes referred also as Green-Naghdi equations), cf. [25, 52, 65].
These systems appeared in practice to model better the breaking phenomena in
the near shore zone but recent numerical studies of the Sérre system showed that
unphysical oscillations might appear in analogy with the Boussinesq equations
during the wave breaking and the runup process, [19, 20].

2.3. Source terms

Nonlinear shallow water model (1) and Boussinesq system (3) may be com-
pleted to take into account some dissipative or friction effects which are very
beneficial in describing the wave breaking phenomena. Usually this is done by
including appropriate source or dissipative terms into momentum conservation
equations (1) or (3). Possible choices are the following :

Friction: F (u,H) = −cm g
u|u|
H1/3

, (19)

Viscosity: V (u,H) = µ
∂

∂x

(

H
∂u

∂x

)

, (20)

where cm is the Manning roughness coefficient and µ denotes the kinematic
viscosity of the fluid. The particular form of the source terms is suggested by
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empirical laws, which are generally obtained for steady state flows. Similar
models have been derived from Navier-Stokes system for incompressible flows
with a free surface. More complex friction laws can be also formulated to model
bottom rugosity effects, etc.

3. Numerical schemes

In the present section we generalize the finite volume method to systems
(2) and (3) of dispersive PDEs. In our work we rely on corresponding schemes
for conservation laws. Next we present briefly the finite volume framework for
conservation laws. Based on this framework we introduce finite volume schemes
for the dispersive models.

3.1. Finite volume method for conservation laws

We consider the initial value problem

wt + F (w)x = S(w), x ∈ R, t > 0

w(x, 0) = w0(x),
(21)

where w(x, t) is the state variable, F denotes the flux and S is the source term.
Let T = {xi}, i ∈ Z denotes a partition of R into cells Ci = (xi− 1

2
, xi+ 1

2
) where

xi = (xi+ 1
2
+xi− 1

2
)/2 denotes the midpoint of Ci. Let ∆xi = xi+ 1

2
−xi− 1

2
be the

length of the cell Ci, ∆xi+ 1
2
= xi+1 − xi. Without loss of generality we assume

a uniform partition T , that is ∆xi = ∆xi+ 1
2
= ∆x, i ∈ Z. Let wi denotes the

cell average of w on Ci i.e wi(t) =
1

∆x

∫

Ci
w(x, t) dx. Then a simple integration

of (21) over a cell Ci yields

d

dt
wi(t) +

1

∆x

(

F (w(xi+ 1
2
, t))− F (w(xi− 1

2
, t))
)

=
1

∆x

∫

Ci

S(w(x, t)) dx. (22)

3.1.1. Semidiscrete schemes

We now define the semidiscrete finite volume approximation of w(x, t). Let
χCi

denotes the characteristic function of the cell Ci, we seek a piecewise con-
stant function wh(x, t) =

∑

i∈Z
Wi(t)χCi

(x) with

d
dtWi(t) +

1
∆x

(

Fi+ 1
2
−Fi− 1

2

)

= Si, i ∈ Z,

Wi(0) =
1

∆x

∫

Ci
w(x, 0) dx, i ∈ Z,

(23)

where Fi+ 1
2
= F(WL

i+ 1
2

,WR
i+ 1

2

) is an approximation to F (w(xi+ 1
2
, t)) while Si

approximates the source term Si = Si(Wi) ≈ 1
∆x

∫

Ci
S(w(x, t)) dx. The val-

ues WL
i+ 1

2

,WR
i+ 1

2

are approximations to the point value w(xi+ 1
2
, t) from cells

Ci, Ci+1 respectively and F is a numerical flux function which is monotone and
conservative. The values WL

i+ 1
2

,WR
i+ 1

2

are computed by a reconstruction process

described below (see Section 3.1.3).
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3.1.2. The numerical fluxes

There are many possible choices for the numerical flux function F . In the
present study we choose to work with three following fluxes

Fm(W,V ) = F

(

W + V

2

)

, (24)

FKT (W,V ) =
1

2
{[F (V ) + F (W )]−A(W,V ) [V −W ]} (25)

FCF (W,V ) =
1

2
{[F (V ) + F (W )]−A(W,V ) [F (V )− F (W )]} . (26)

The average flux (24) is the simplest one. It is well known that although this
flux is unstable for nonlinear conservation laws, it is proven very stable and
accurate for nonlinear dispersive models.

The central flux (25) is a Lax-Friedrichs type flux and is a representative of
central schemes [51, 59]. The operator A is related to the characteristic speeds
of the flow and is defined as

A(W,V ) = max [ρ (DF (W )) , ρ (DF (V ))] , (27)

where DF denotes the Jacobian matrix and ρ(A) is the spectral radius of A.
The characteristic flux function (26), [35, 36], is similar to the upwind flux

and the operator A in this case is defined by

A(W,V ) = sign

(

DF

(

W + V

2

))

. (28)

3.1.3. The reconstruction process

The values WL
i+ 1

2

,WR
i+ 1

2

are approximations to w(xi+ 1
2
, t) from cells Ci and

Ci+1 respectively. The simplest possible choice is to take the piecewise constant
approximation in each cell,

WL
i+ 1

2

= Wi, WR
i+ 1

2

= Wi+1. (29)

The resulting semidiscrete finite volume scheme is formally first order accurate
in space.

To construct a higher order scheme in space, the piecewise constant data
is replaced by a piecewise polynomial representation. The main idea here is
to construct higher order approximations to w(xi+ 1

2
, t) using the computed cell

averages Wi. For this purpose the classical MUSCL type (TVD2) linear recon-
struction [48, 77] as well as UNO2, [40] or WENO type reconstructions, [55],
have been developed.

The classical TVD2 type linear reconstruction is given by following formulas:

WL
i+ 1

2

= Wi +
1

2
φ(ri)(Wi+1 −Wi), WR

i+ 1
2

= Wi+1 +
1

2
φ(ri+1)(Wi+2 −Wi+1),

(30)
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where ri = Wi−Wi−1

Wi+1−Wi
, and φ is an appropriate slope limiter, [70]. There exist

many options in choosing a limiter function. Some of the most popular choices
are

• MinMod (MM) limiter: φ(θ) = max(0,min(1, θ)),

• VanLeer (VL) limiter: φ(θ) = θ+|θ|
1+|θ| ,

• Monotonized Central (MC) limiter: φ(θ) = max(0,min((1 + θ)/2, 2, 2θ)),

• Van Albada (VA) limiter: φ(θ) = θ+θ2

1+θ2 .

The last three limiters have been shown to exhibit sharper resolution of dis-
continuities since they do not reduce the slope as severely as (MM) near a
discontinuity. The TVD2 reconstruction is second order accurate except at the
local extrema where it reduces to the first order. A remedy is to consider the
UNO2 type reconstruction.

The UNO2 reconstruction is a linear interpolation which is second order
accurate even at local extrema, [40]. The values WL

i+ 1
2

,WR
i+ 1

2

are defined as

WL
i+ 1

2

= Wi +
1

2
Si, WR

i+ 1
2

= Wi+1 −
1

2
Si+1, (31)

where

Si = m(S+
i , S−

i ), S±
i = di± 1

2
W ∓ 1

2
Di± 1

2
W,

di+ 1
2
W = Wi+1 −Wi, Di+ 1

2
W = m(DiW,Di+1W ),

DiW = Wi+1 − 2Wi +Wi−1, m(x, y) =
1

2
(sign(x) + sign(y))min(|x|, |y|).

Using either (TVD2) or (UNO2) reconstructions the semidiscrete finite volume
scheme (23) is formally second order accurate.

In order to achieve higher order accuracy we also employed WENO type
reconstructions for the values WR

i± 1
2

, WL
i± 1

2

. We implemented 3rd and 5th order

accurate WENO methods (also referred to as WENO3 and WENO5, respec-
tively) as they are described in [55]. For the sake of simplicity we only present
the WENO3 case. In order to compute the approximations WL

i+ 1
2

and WR
i− 1

2

,

we first compute the 3rd order reconstructed values

W
(0)

i+ 1
2

=
1

2
(Wi +Wi+1), W

(1)

i+ 1
2

=
1

2
(−Wi−1 + 3Wi),

W
(0)

i− 1
2

=
1

2
(3Wi −Wi+1), W

(1)

i− 1
2

=
1

2
(Wi−1 +Wi).

We define the smoothness parameters

β0 = (Wi+1 −Wi)
2, β1 = (Wi −Wi−1)

2,
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and the parameters d0 = 2
3 , d1 = 1

3 and d̃0 = d1, d̃1 = d0, along with the weights

ω0 =
α0

α0 + α1
, ω1 =

α0

α0 + α1
,

ω̃0 =
α̃0

α̃0 + α̃1
, ω̃1 =

α̃1

α̃0 + α̃1
,

where αi = di

ǫ+βi
, α̃i = d̃i

ǫ+βi
and ǫ to be a small, positive number (in our

computations we set ǫ = 10−15). Then the reconstructed values are given by
the following formulas

WL
i+ 1

2

=

1
∑

r=0

ωrW
(r)

i+ 1
2

, WR
i− 1

2

=

1
∑

r=0

ω̃rW
(r)

i− 1
2

. (32)

3.1.4. Discretization of source terms

The finite volume discretization of the source term S(w) in (21) depends on
the particular choice. On the other hand the resulting approximation should
preserve the upwind nature and the overall scheme should be well balanced.
One possible discretization of the source term S(w) is given by:

1

∆x

∫

Ci

S(w) dx ≈
Si− 1

2
+ Si+ 1

2

2
, Si+ 1

2
= S

(

WL
i+ 1

2

+WR
i+ 1

2

2

)

. (33)

3.1.5. Fully discrete schemes

Equation (23) is an initial value problem and can be discretized by various
methods. In our case we use a special class of Runge-Kutta methods which
ensure the TVD property of the finite volume scheme, [38, 67, 69].

Let ∆t be the time step and let tn+1 = tn + ∆t, n ≥ 0 be discrete time
levels. Assuming that the approximation at tn, Wn

i , i ∈ Z are known then
Wn+1

i are defined by

Wn+1
i = Wn

i − ∆t

∆x

s
∑

j=1

bj

(

Fn,j

i+ 1
2

−Fn,j

i− 1
2

)

+∆t

s
∑

j=1

bj Sn,j
i ,

Wn,j
i = Wn

i − ∆t

∆x

s
∑

ℓ=1

ajℓ

(

Fn,ℓ

i+ 1
2

−Fn,ℓ

i− 1
2

)

+∆t
s
∑

ℓ=1

ajℓ Sn,ℓ
i ,

(34)

where Fn,j

i+ 1
2

= F(Wn,j
i ,Wn,j

i+1), Sn,j
i = S(Wn,j

i ). The set of constants A =

(ajℓ), b = (b1, . . . , bs) define an s−stage Runge-Kutta method. The following
tableau are examples of explicit TVD RK-methods which are of 2nd and 3rd
order respectively

0 0 0
1 0 1
1
2

1
2

0 0 0 0
1 0 0 1
1
4

1
4 0 1

2
1
6

1
6

2
3

(35)

In our computations we mainly use the three stage 3rd order method.
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3.2. Finite volume schemes for dispersive models

To construct the finite volume schemes for the dispersive models the main
idea is to rewrite governing equations or systems in a conservative like form and
discretize the resulting conservation laws using the aforementioned framework.
One can use any of the numerical fluxes, Fm, FKT , FCF and reconstruction
techniques TVD2, UNO2 or WENO. Temporal discretization is based on the
TVD-Runge-Kutta methods, (35).

3.2.1. Boussinesq systems with flat bottom

Boussinesq system (2) can be rewritten in a conservative like form as follows:

(I −D)vt + [F(v)]x + [G(v)]x = 0, (36)

where v = (η, u)T , F(v) = ((1 + η)u, η + 1
2u

2)T , G(v) = (a uxx, c ηxx), and
D = diag (b ∂2

x, d ∂
2
x). The simplest discretization is based on the average fluxes

Fm for F and Gm for G. For the other two choices of the numerical flux F the
evaluation of Jacobian is needed. Let A denotes the Jacobian of F, then

A =

(

u 1 + η
1 u

)

,

with eigenvalues λi = u±√
1 + η, i = 1, 2. It is readily seen, since F is a hyper-

bolic flux, that A can be decomposed as A = LΛR thus for the characteristic
flux FCF we have with µ = W+V

2 , si = sign(λi), i = 1, 2

A(W,V ) =

( 1
2 (s1 + s2)

1
2

√
1 + µ1(s1 − s2)

s1−s2
2
√
1+µ1

1
2 (s1 + s2)

)

.

For evaluating the numerical fluxes F , G simple cell averages or higher order
approximations such as UNO2 (31) or WENO (32) can be used.

Remark 1. The discretization of the elliptic operator D is based on the stan-
dard centered difference. This is a second order accurate approximation and
it is compatible with the TVD2 and UNO2 reconstructions. For higher order
interpolation we need to modify the elliptic and flux discretization to match the
reconstruction’s order of approximation. Indeed, the finite volume scheme is
modified as

d

dt

[

Vi−1 + 10Vi +Vi+1

12
− (b, d)

Vi+1 − 2Vi +Vi−1

∆x2

]

+
Hi−1 + 10Hi +Hi+1

12
= 0

where Hi =
1
∆x(Fi+ 1

2
− Fi− 1

2
) + 1

∆x(Gi+ 1
2
− Gi− 1

2
), is a fourth order accurate

approximation.
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Remark 2. In the sequel for the discretization of the dispersive term G we use
mainly the average numerical flux Gm defined as Gm

i+ 1
2

= (a, c)Yi+Yi+1

2 , where

Yi = Vi+1−2Vi+Vi−1

∆x2 . In case of higher order WENO reconstructions we use
the average numerical flux based on the reconstructed values of Yi i.e. the flux

Glm
i+ 1

2

= (a, c)
Y

L

i+1
2

+Y
R

i+1
2

2 , where YL
i+ 1

2

and YR
i+ 1

2

are reconstructed values of Yi.

3.2.2. Boussinesq system with variable bottom

We write system (18) in terms of dependent variables v := (H,Q)T in the
following conservative form

[D(v)]t + [F(v)]x = S(v), (37)

where

D(v) =

(

H

(1 + 1
3H

2
x − 1

6HHxx)Q− 1
3HHxQx − H2

3 Qxx

)

(38)

F(v) =

(

Q
Q2

H + g
2H

2

)

, S(v) =

(

0
gHDx

)

. (39)

We consider a uniform mesh and we denote by Hi, Ui and Di the corre-
sponding cell averages. To discretize the dispersive terms in (38) we consider
the following approximations:

1

∆x

∫ x
i+1

2

x
i− 1

2

[

1 +
1

3
(Hx)

2 − 1

6
HHxx

]

Q dx ≈

(

1 +
1

3

(

Hi+1 −Hi−1

2∆x

)2

− 1

6
Hi

Hi+1 − 2Hi +Hi−1

∆x2

)

Qi,

1

∆x

∫ x
i+1

2

x
i− 1

2

1

3
HHxQx dx ≈ 1

3
Hi

Hi+1 −Hi−1

2∆x

Qi+1 −Qi−1

2∆x
(40)

1

∆x

∫ x
i+1

2

x
i− 1

2

1

3
H2Qxx dx ≈ 1

3
H2

i

Qi+1 − 2Qi +Qi−1

∆x2
. (41)

This discretization leads to a linear system with tridiagonal matrix denoted by
Di that can be inverted efficiently. For the time integration the explicit third-
order TVD-RK method, (35) is used. In the numerical experiments we observed
that the fully discrete scheme is stable and preserves the positivity of H during
the runup under mild restriction on the time step ∆t.

Therefore, the semidiscrete problem of (38) - (39) is written as a system of
o.d.e’s in the form

Divit +
1

∆x
(Fi+ 1

2
−Fi− 1

2
) =

1

∆x
Si, (42)
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where Fi+ 1
2
can be chosen as one of the numerical flux functions mentioned in

the previous sections. In the sequel we will use the KT and the CF numerical
fluxes. In this case the Jacobian of F is given by the matrix

A =

(

0 1
gH − (Q/H)2 2Q/H

)

,

and the eigenvalues are λ1,2 = Q/H ±√
gH . Therefore, the CF numerical flux

takes the form

Fi+ 1
2
=

F(vL
i+ 1

2

) + F(vR
i+ 1

2

)

2
−U(µ)

F(vR
i+ 1

2

)− F(vL
i+ 1

2

)

2
(43)

where µ = (µ1, µ2)
T ,

µ1 =
HL

i+ 1
2

+HR
i+ 1

2

2
, µ2 =

√

HL
i+ 1

2

UL
i+ 1

2

+
√

HR
i+ 1

2

UR
i+ 1

2
√

HL
i+ 1

2

+
√

HR
i+ 1

2

and

U(µ) =

(

s2(µ2+c)−s1(µ2−c)
2c

s1−s2
2c

(s2−s1)(µ
2
2−c2)

2c
s1(µ2+c)−s2(µ2−c)

2c

)

, c =
√
gµ1, si = sign(λi).

(44)
In order to guarantee the positivity of the reconstructed values Hi+ 1

2
on the

interfaces of the cells we employ the well balanced hydrostatic reconstruction
algorithm, [6]. Here we briefly recall the great lines of this reconstruction algo-
rithm.

In the cell Ci we compute first the reconstructions vi,r and vi,l at (i+
1
2 )

−

and (i − 1
2 )

+, respectively using either TVD2 or UNO2 with MinMod limiter.
Moreover, we compute in the same way the values ηi,l and ηi,r of the free surface
elevation ηi = Hi − Di. Now we can deduce the values Di,l = Hi,l − ηi,l and
Di,r = Hi,r − ηi,r. Letting Di+ 1

2
= min(Di,r, Di,l) we compute

HR
i+ 1

2

= max(0, Hi,r +Di,r −Di+ 1
2
), HL

i+ 1
2

= max(0, Hi+1,l +Di+1,l −Di+ 1
2
),

(45)
and we deduce conservative reconstructed variables

vL
i+ 1

2

=

(

HL
i+ 1

2

HL
i+ 1

2

ui,r

)

, vR
i+ 1

2

=

(

HR
i+ 1

2

HR
i+ 1

2

ui+1,l

)

. (46)

Then the term Si can be written as Si = SL
i+ 1

2

+ SR
i+ 1

2

+ Sci, where

SL
i+ 1

2

=

(

0
g
2

[

(HL
i+ 1

2

)2 − (Hi,r)
2
]

)

, SR
i+ 1

2

=

(

0
g
2

[

(Hi,l)
2 − (HR

i+ 1
2

)2
]

)
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and

Sci =

(

0

g
Hi,l+Hi,r

2 (zi,l − zi,r)

)

.

Numerical experiments show that the resulting scheme is well-balanced even for
Boussinesq system of equations.

3.2.3. Boundary conditions

In the case of Bona-Smith type systems with flat bottom we consider herein
only the initial-periodic boundary value problem which is known to be well-
posed [3].

In case of the modified Peregrine’s system with an uneven bottom we use
reflective boundary conditions. We note that for the classical Boussinesq sys-
tem posed in a bounded domain I = [b1, b2], one needs to impose boundary
conditions only in one of the two dependent variables, cf. [34]. In the case of re-
flective boundary conditions it is sufficient to take u(b1, t) = u(b2, t) = 0 cf. [5].
In [5] it was also observed that during solitary waves reflection the derivatives
ηx(b1, t) = ηx(b2, t) → 0, while for other wave types these derivatives remained
very small.

In our case we consider analogous reflective boundary conditions taking the
cell averages of u on the first and the last cell to be u0 = uN+1 = 0. We don’t
impose explicitly boundary conditions on H . The reconstructed values on the
first and the last cell are computed using neighboring ghost cells and taking
odd and even extrapolation for u and H respectively. These specific boundary
conditions appeared to reflect incident waves on the boundaries while conserving
the mass.

4. Interactions of solitary waves

For the Boussinesq system (2) we present first results demonstrating the
accuracy of the finite volume scheme. We study the propagation as well as the
interaction of solitary waves. In particular we consider head-on and overtaking
collisions.

4.1. Accuracy test, validation

We consider the initial value problem with periodic boundary conditions for
the Bona-Smith systems (10) with known solitary wave solutions (11) – (12) to
study the accuracy of the finite volume method. We fix θ2 = 8/10 in the system
and an analytic solitary wave of amplitude η0 = 1/2 is used as the exact solution
in [−50, 50] computed up to T = 100. The error is measured with respect to
discrete L2 and L∞ norms, namely we use:

E2
h(k) = ‖Uk‖h/‖U0‖h, ‖Uk‖h =

(

∑

i

∆x|Uk
i |2
)1/2

,

E∞
h (k) = ‖Uk‖h,∞/‖U0‖h,∞, ‖Uk‖h,∞ = max

i
|Uk

i |,
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(a) Average Flux

∆x Rate(E2
h) Rate(E∞

h )

0.5 1.910 1.978
0.25 1.910 1.954
0.125 1.923 1.937
0.0625 1.936 1.941
0.03125 1.946 1.948

(b) TVD2 MinMod

∆x Rate(E2
h) Rate(E∞

h )

0.5 2.042 2.032
0.25 2.033 2.029
0.125 2.026 2.023
0.0625 2.021 2.019
0.03125 2.017 2.016

Table 1: Rates of convergence.
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(a) Evolution of η amplitude
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(b) Evolution of Ih
1

Figure 1: Preservation of the solitary wave amplitude and conservation of the
invariant Ih1 : G

m flux with Minmod limiter

where Uk = {Uk
i }i denotes the solution of the fully-discrete scheme at the time

tk = k∆t. The expected theoretical order of convergence was confirmed for all
finite volume methods we presented above. Two indicative cases are reported in
Table 1 for the average flux and TVD2 implementation with MinMod limiter.

We also check the preservation of the invariant (6) by computing its discrete
counterpart:

Ih1 =
∑

i

∆x

(

η2i + [(1 + ηi)ui]
2 − c

[

ηi+1 − ηi
∆x

]2

− a

[

ui+1 − ui

∆x

]2
)

, (47)

as well as the discrete mass Ih0 = ∆x
∑

i ηi. Figure 1 shows the evolution
of the amplitude and the invariant Ih1 of the solitary wave up to T = 200.
The comparison of various methods is performed. We observe that the UNO2
reconstruction is more accurate while KT and the CF schemes show comparable
performance. We note that the invariant Ih0 = 1.932183566158 conserved the
digits shown for all numerical schemes. In this experiment we took ∆x =
0.1, ∆t = ∆x/2.
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4.2. Head-on collisions

The head-on collision of two counter-propagating solitary waves is charac-
terized by the change of the shape along with a small phase-shift of the waves as
a consequence of the nonlinearity and dispersion. These effects have been stud-
ied extensively before by numerical means using high order numerical methods
such as finite differences, [11], spectral and finite element methods [4, 26, 62]
and experimentally in [21]. In Figure 2 we present the numerical solutions of
the BBM-BBM system (9) and the Bona-Smith system (10) with θ2 = 9/11
(in dimensional and unscaled variables) along with the experimental data from
[21]. The spatial variable is expressed in centimeters while the time in seconds.
The solutions were obtained using the CF-scheme with UNO2 and WENO3
reconstruction using ∆x = 0.05 cm and ∆t = 0.01 s. For this experiment
we constructed solitary waves for Boussinesq systems by solving the respective
o.d.e’s system in the spirit of [15] such that they fit to experimentally generated
solitary waves before the collision. The speeds of the right and left-traveling
solitary waves are cr,s = 0.854 m/s and cl,s = 0.752 m/s respectively.

We observe that Boussinesq models converge to the same numerical solution
with all numerical schemes we tested. A very good agreement with the experi-
mental data is observed. The maximum height predicted by the numerical solu-
tion during the collision process is slightly higher in the case of the BBM-BBM
system but the difference is negligible within the specific experimental scale.
Furthermore, we observe similar underestimation of the maximum amplitude of
colliding waves compared to the experimental data, [21]. This discrepancy might
be explained by a possible ”splash” phenomenon during the collision reported
also earlier by T. Maxworthy, [57]. After the collision we observe that the phase
shift of the solitary waves is the same in both numerical and experimental data,
while the shape of the experimental solitary waves were not stabilized due to
interactions with other small amplitude dispersive waves. We note that after the
head-on collision of the waves small amplitude dispersive tails were developed,
[4, 11, 26].

The discrete mass for the Bona-Smith system is Ih0 = 0.0059904310418 and
for the BBM-BMM system is Ih0 = 0.0059199389479 for all fluxes and recon-
structions used. The variances in Ih1 are mainly due to different types of recon-
struction and not to the choice of numerical fluxes. In Table 2 these values are
reported.

4.3. Overtaking collisions

The overtaking collision of two solitary waves similarly to the head-on col-
lision incorporates nonlinear and dispersive effects. Overtaking collision has
been studied recently in the case of bidirectional models in [4]. The interac-
tion is similar to that of the unidirectional models but it was found that a new
N-shape wavelet is generated during the interaction. This wavelet is of small
amplitude and travels in the opposite direction to solitary waves and its shape
depends on the Boussinesq system in use. Furthermore, as it was observed nu-
merically and experimentally in [21], the interaction of two solitary waves during
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(b) t = 18.80067s
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(c) t = 19.00956s
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(d) t = 19.15087s
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(e) t = 19.19388s
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(f) t = 19.32904s

Figure 2: Head-on collision of two solitary waves: —: BBM-BBM, −−: Bona-
Smith (θ2 = 9/11), •: experimental data of [21]

(a) Bona-Smith

Ih1

m-flux 0.000944236
UNO2 0.00094423
TVD2 0.00094

WENO3 0.00094423

(b) BBM-BBM

Ih1

m-flux 0.00092793
UNO2 0.00092793
TVD2 0.00092

WENO3 0.00092793

Table 2: Preservation of the invariant Ih1 .
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(a) t = 19.84514s
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(b) t = 20.49949s

Figure 2: (Cont’d) Head-on collision of two solitary waves. —: BBM-BBM,
−−: Bona-Smith (θ2 = 9/11), •: experimental data of [21]

an overtaking collision is characterized by a mass exchange and not by a simple
superposition of the solitary pulses. These pulses remain separate retaining two
different maxima contrary to unidirectional models where they merge into a
single pulse momentarily.

To study this interaction we solve numerically the Bona-Smith system (10)
with θ2 = 9/11. Following the same process as before two solitary waves were
generated numerically with speeds c1,s = 1.2 and c2,s = 1.4. We solved the sys-
tem using all fluxes using UNO2 and WENO3 reconstructions with discretiza-
tion parameters ∆x = 0.01, ∆t = 0.005 up to T = 600. During simulations we
were able to observe the generation and propagation of a small N-shape wavelet.
In all computations the invariants were Ih0 = 4.6098804880, Ih1 = 5.116 conserv-
ing the digits shown for all methods. In Figure 3 we present the interaction of
two solitary waves. Figure 4 shows a magnification on the generation of a small
wavelet along with the generation of dispersive tails as an effect of the inelastic
interaction of two waves. In Figure 5 we observe that the overtaking collision
is accompanied by an exchange of mass between pulses while both peaks are
permanently present. The situation is different for unidirectional models where
two pulses merge during a few time-steps to travel as a single pulse. Up to the
graphic resolution we could not observe any difference in numerical solutions
between UNO2 and WENO3 reconstructions.

4.4. Small dispersion effect

In this section we study the small dispersion effects on solitary waves of the
classical Boussinesq system. The motivation for this study is the lack of theory
supporting the breaking phenomena in Boussinesq systems contrary to the KdV
equation. For this reason we employ the Boussinesq system with a = b = c = 0,
d = 10−5 and we take the solitary wave of the Boussinesq systems (8) as an
initial condition. In Figure 6 we present numerical results obtained with CF-
UNO2 and CF-WENO3 schemes. In these experiments we take ∆x = 0.001 and
∆t = ∆x/2. The invariant Ih0 is 1.629096452537 preserving the digits shown
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(b) t = 350
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(c) t = 400
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(d) t = 600

Figure 3: Overtaking collision of two solitary waves of the Bona-Smith system
with θ2 = 9/11.

during all simulations. The invariant Ih1 is not preserved by this model since
the coefficient b is not equal to d. The oscillations generated in the case of the
WENO3 reconstruction were larger compared to those generated by the UNO2
reconstruction. Moreover, a new W-shaped wavelet is generated traveling to the
left. This small wavelet finishes by producing a secondary breaking very similar
to that of the initial solitary wave.

5. Boussinesq system with variable bottom: runup of long waves

The shallow water equations are routinely used to predict a tsunami wave
runup and, subsequently, constitute inundation maps for tsunami hazard ar-
eas. One of the main questions we address in this study is whether the in-
clusion of dispersive effects is beneficial for the description of the wave/shore
interaction. In this section we perform a comparison of numerical solutions to
Boussinesq equations (18), shallow water equations (1) (solved by the same nu-
merical method) and experimental measurements made by C.E. Synolakis [71]
and J.A. Zelt [80]. In these experiments we consider a bottom of the form,
Figure 7,

−D(x) =

{

−x tanβ, x ≤ cotβ,
−1, x > cotβ,
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(a) t = 375
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(d) t = 600

Figure 4: Generation of a wavelet during the overtaking collision of two solitary
waves of the Bona-Smith system with θ2 = 9/11.

In all experiments over a flat bottom, D(x) = D0, we use an approximate
solitary wave solution of the following form:

η0(x) = Assech
2 (λ(x −X0)) , λ =

√

3As

4(1 +As)
,

u0(x) = −cs
η0(x)

D0 + η0(x)
, cs = g

√
6(1 +As)√
3 + 2As

· (1 +As) log(1 +As)−As

As
,

where As denotes the amplitude, cs is the correct speed of the solitary wave
propagation for classical Boussinesq equations and λ is the wavelength of the
KdV soliton.

The first three experiments we tested are described in [71] and deal with the
runup of solitary waves on a shore with a mild slope of 1 : 19.85. The first is a
non-breaking solitary wave with dimensionless and scaled amplitude As/D0 =
0.0185, the second one is a nearly breaking solitary wave with As/D0 = 0.04,
while the third experimental setup is a breaking solitary wave with As/D0 =
0.28.

System (18) has some advantages over other asymptotically equivalent mod-
els with variable bottom. Namely, it shows excellent stability properties even
for nearly breaking waves on the shore. However, for the simulation of strong
breaking events, it is beneficial to include friction or dissipative terms taking
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(d) t = 386

Figure 5: Overtaking collision of two solitary waves of the Bona-Smith system
with θ2 = 9/11: mass exchange process.

into account turbulence generation.
We also considered two experiments from [80] concerning the runup of soli-

tary waves on a shore with steep slope 1 : 2.74. These experiments shed some
light on the differences between dispersive and non-dispersive models.

Finally we consider a non-uniform sloping shore that contains a small pond
demonstrating the capability of the modified Peregrine’s system to handle si-
multaneously and correctly dispersive effects in two basins with different mean
sea levels.

In the sequel t denotes the dimensionless time scaled by the quantity
√

g/D0.
Furthermore, we denote by R the height of the last dry cell at a specific time
instance. In our computations a cell is considered as dry if the total water
depth Hi inside is less than 5 · 10−14. The quantity R will also be referred to
as runup. The maximum runup will be denoted by R∞. In all experiments
the discretization parameters were taken to be equal ∆x = 0.05, ∆t = ∆x/10,
unless otherwise mentioned. Further, we compute in all cases the discrete mass
Ih0 and show the preserved digits. We use the KT and CF schemes combined
with the TVD2 and UNO2 reconstructions. The CF-scheme appeared to be less
dissipative and we emphasize the results of this method.
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(c) CF-UNO2
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(d) CF-WENO3

Figure 6: The small dispersion effect onto classical Boussinesq equations solu-
tions.
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0

Figure 7: Sketch of the problem setup.
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(c) t = 50
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(d) t = 70

Figure 8: Solitary wave runup on a sloping shore: As = 0.0185 case.

5.1. Runup of a solitary wave on a gradual slope β = 2.88◦ with As/D0 = 0.0185

We consider first the simplest case — the runup of a non-breaking solitary
wave. In this experiment we take an initial solitary wave with the amplitude
As = 0.0185, D0 = 1 and X0 = 19.85 in I = [−10, 70] and a mildly sloping shore
1 : 19.85. This specific solitary wave does not break [71] and the solution remains
smooth during the runup and the rundown processes. In Figure 8 we show
several profiles of numerical solutions to Boussinesq and shallow water equations
along with the experimental data of [71]. We observe that both models converge
to the same solution. The runup as well as the rundown in this experiment is
predicted very well. The runup value R for both models is almost the same.
The maximum runup is R∞ ≈ 0.085 for the Boussinesq system, while for NSWE
is R∞ ≈ 0.088. The experimental value reported in [71] is equal to R∞ ≈ 0.078.
In Figure 9 the runup R as a function of time is represented. The discrete mass
is preserved Ih0 = 60.3667671231 conserving the digits shown for both models.

5.2. Runup of a solitary wave on a gradual slope β = 2.88◦ with As/D0 = 0.04

We consider the same sloping shore as before. We study the runup of a
solitary wave with amplitude As = 0.04, placed initially at X0 = 19.85 in
I = [−10, 70]. The solitary wave does not break during the runup phase.
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Figure 9: Runup value R as a function of time: As = 0.0185 case.

Breaking occurs during the rundown process as in experimental observations
[71]. Results of the numerical simulations are presented in Figure 10. In Figure
11 the evolution of the runup value is shown. The maximum runup for the
Boussinesq system is R∞ ≈ 0.20 and R∞ ≈ 0.21 for shallow water system. The
experimental value reported in [71] is R∞ ≈ 0.156.

In Figure 12 we perform a comparison with tide gauge data (free surface
elevation measured in [71]) collected at 32.1 m from the still shoreline position.
We observe again a good agreement between the dispersive and nondispersive
models. The discrete mass is preserved, Ih0 = 60.5210181987 conserving the
digits shown.

5.3. Runup of a solitary wave on a gradual slope (β = 2.88◦) with As = 0.28

Finally we present the stiffest case of a solitary wave with amplitude As =
0.28, placed initially at X0 = 19.85 in I = [−10, 60]. This specific initial condi-
tion is characterized by the wave breaking phenomenon before even reaching the
shoreline. Strictly speaking, in this case Boussinesq model is not valid unless a
wave breaking mechanism is considered, cf. [80].

In order to ensure the stability of the simulation and to study the runup,
instead of smoothing, filtering or adding extra dissipative terms, we simply
exclude the contribution of the term Qxxt in the vicinity of the shoreline (where
Di < 0.3). Wave transition between these two regions appeared to be smooth
as one may witness on Figure 13. After this slight modification, the algorithm
became more robust for large amplitude breaking waves without creating any
unphysical oscillations.

In this experiment friction appeared to play a significant role during the
runup process, contrary to previous cases. The maximum runup computed
without taking into account the friction of the bottom was far away from the
experimentally measured values. For this reason, and only in this specific test
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(c) t = 32
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(d) t = 38
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(e) t = 44
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(f) t = 50

Figure 10: Solitary wave runup on a sloping shore: As = 0.04 case.
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(a) t = 56
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(b) t = 62

Figure 10: (Cont’d) Solitary wave runup on a sloping shore: As = 0.04 case.
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Figure 11: Runup value R as a function of time: As = 0.04 case.
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Figure 12: Free surface elevation at x = 32.1 m.
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(c) t = 20
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(d) t = 25

Figure 13: Solitary wave runup on a sloping shore: As = 0.28 case.

case we included the empirical friction term (19) into the momentum conser-
vation equation (18), with coefficient cm = 2 · 10−4. The friction term is dis-
cretized according to (33). This discretization preserves the positivity of all
numerical schemes we tested. Mass conservation in this experiment was perfect
Ih0 = 51.7504637472 preserving the digits shown.

In Figure 13 we show the propagation of a breaking wave including its runup
and rundown. We observe a significant difference between shallow water sys-
tem and the dispersive model during the wave propagation. Discrepancies are
present in the amplitude and in the phase speed simultaneously. However the
dispersive model solution approximates better measurements of J.A. Zelt [80].
Nevertheless, we have to underline that the runup and rundown are fairly well
described by both models. The maximum runup value according to the disper-
sive and nondispersive models is R∞ ≈ 0.47 which is in the range of [0.42, 0.53]
of the theoretical prediction of C.E. Synolakis, [71]. There is no single experi-
mental value reported for the maximum runup in [71] due to practical difficulties
in generating a solitary wave of such large amplitude. Finally, we mention that
the specific technique of C.E. Synolakis for handling the breaking wave leads to
more accurate results for the rundown process than one presented in [80].
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(c) t = 55
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(d) t = 60
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(e) t = 70
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(f) t = 80

Figure 13: (Cont’d) Solitary wave runup on a sloping shore: As = 0.28 case.
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(a) As = 0.12
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(b) As = 0.2

Figure 14: Runup value R as a function of time.

5.4. Solitary wave runup on a steep slope (β = 20◦)

Now we present two experiments pointing out some further differences in
solutions to dispersive and nondispersive models. These experiments were per-
formed by J.A. Zelt, [80]. We consider two waves in I = [−10, 30] with ampli-
tudes As = 0.12 and As = 0.2 initially located at X0 = 8.85 and X0 = 10.62
respectively. These waves propagate onto a steep sloping shore 1 : 2.74. A very
fine grid of ∆x = 0.01, ∆t = ∆x/100 is used to guarantee the accuracy and
stability of simulations.

As it was observed in [80] both waves do not break during the runup but
the second one generates a strong breaking event during the rundown. Friction
does not play an important role in these experiments. Consequently, no friction
term is included into the models.

Figure 14 shows the runup value R as a function of time. We observe for both
models that there is a phase lag compared to the experimental data. We believe
that this discrepancy can be removed by changing the definition of the last dry
cell. We also observe that shallow water equations over-predict the maximum
runup and the minimum rundown while the Boussinesq model predicts correctly
the extrema in both cases.

Figure 15 shows the rundown of the solitary wave of amplitude As = 0.2
during breaking. One may observe that the experimental data consist of two
curves due to the difficulty in measuring the surface elevation of the breaking
wave due to 3D effects which become important. On Figure 16 the free surface
elevation at a gauge is presented. The gauge is located 8.85 meters away from
the still shoreline position. The reflected wave appears in both cases to be highly
dispersive thus, Boussinesq model provides much better approximation. In the
case As = 0.2 the mass remained equal to Ih0 = 29.770808175 while in the case
case As = 0.12 was Ih0 = 29.4861671693 conserving the digits shown.

5.5. Solitary wave runup on a gradual slope (β = 2.88◦) with a pond

We repeat the experiment of Section 5.2 in I = [−10, 50] with solitary wave
amplitude equal to As = 0.04. However, we modify the bottom by adding a
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(a) t = 15.71
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(b) t = 16.62
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(c) t = 17.32
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(d) t = 22.29

Figure 15: Rundown of the wave with amplitude As = 0.2.
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(a) As = 0.12
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(b) As = 0.2

Figure 16: The amplitude at the wave gauge A
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small pond over the shoreline described by the exponential function 0.1 e−(x+4)2.
The Boussinesq system preserves the correct dispersion characteristics for the
waves reaching the pond. In Figure 17 we present the overall process. It is
worth noting that after the pond was filled a breaking wave was reflected back.
As the wave slides down, a small hydraulic jump appears. In the case of shallow
water system this jump propagates as a shock wave due to hyperbolic character
of equations. On the other hand, the Boussinesq system develops into an Airy
type wave according to its dispersive characteristics. In Figure 18 we show
the solution at two wave gauges located at x = −3.4 and x = 8 for both
the dispersive and nondispersive models. The mass during the simulations is
constantly equal to Ih0 = 40.5198087147.

6. Conclusions

Initially, the finite volume method was proposed by S. Godunov [37] to com-
pute approximate solutions to hyperbolic conservation laws. In the present
study we made a further attempt to generalize this method to the framework
of dispersive p.d.e’s. This type of equations arises naturally in many physical
problems. In the water wave theory dispersive equations have been well known
since the pioneering work of J. Boussinesq [16] and Korteweg-de Vries [49]. Cur-
rently, the so-called Boussinesq-type models become more and more popular as
an operational model for coastal hydrodynamics and other fields of engineering.

We extend the finite volume framework to dispersive models. We tested
several choices of numerical fluxes (average, Kurganov-Tadmor, characteristic),
various reconstruction methods ranging from classical (TVD2, UNO2) to mod-
ern approaches (WENO3, WENO5). Various choices of limiters have been also
tested out. Advantages of specific methods are discussed and some recommen-
dations are outlined.

For operational modeling of the wave runup we derived a modification of
Peregrine’s system [63] which has some advantages over its classical counter-
part. The new system together with proposed novel discretization procedure
are validated by extensive comparisons with experimental data of C.E. Syno-
lakis [71] and J.A. Zelt [80].

We paid a special attention to the comparison of dispersive (Boussinesq)
and nondispersive (Shallow water) models. Nowadays shallow water equations
have become the model of choice for operational tsunami modeling including
the inundation zone estimation [72, 75]. The question of dispersive effects im-
portance arises recurrently in the tsunami wave modeling community [22, 50].
Our results show that shallow water equations are sufficient to predict maxi-
mum runup values. However, the dispersive effects can be beneficial for more
accurate description of long wave propagation, runup and rundown.
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Figure 17: Long wave runup on a shore with a pond.
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Figure 17: (Cont’d): Long wave runup on a shore with a pond.

0 50 100 150
0

0.005

0.01

0.015

0.02

0.025

0.03

t

A

 

 

Boussinesq (CF−UNO2)
Shallow water (CF−UNO2)

(a) Wave gauge at x = −3.4

0 50 100 150
−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

t

A

 

 

Boussinesq (CF−UNO2)
Shallow water (CF−UNO2)

(b) Wave gauge at x = 8

Figure 18: Evolution of the free surface elevation at two wave gauges.
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