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Boulevard du Triomphe, 1050 Brussels, Belgium
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Abstract. A parametric down conversion source pumped by a
monochromatic laser will produce frequency entangled photon pairs. We
demonstrate this by an experiment in which five-dimensional frequency
entanglement is manipulated at telecommunication wavelengths using
commercially available components such as electro-optic phase modula-
tors and narrowband frequency filters. A theoretical intuition for this
approach is developed by introducing the notion of frequency bin entan-
glement. We conclude by showing that using this method one can in
principle violate the CHSH, the CGLMP, and a new – as yet unnamed
– Bell inequalities.
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1 Introduction

Entanglement is one of the most fascinating aspects of quantum mechanics,
useful both for fundamental tests of physical principles and for applications
such as Quantum Key Distribution (QKD). Many different kinds of photonic
entanglement have been produced, including entanglement in polarization [1,2],
momentum [3], angular momentum [4], time-energy [5,6,7] and its discretized
version called time bins [8,9]. In the present work we show how energy – or
equivalently frequency – entangled photons can be manipulated directly in the
frequency domain.

Previous work on time-energy entanglement was mainly based on Franson’s
original proposal [10] which is based on three key ideas. First, a continuous
pump laser produces time entangled photon pairs: the emission time of each
photon is uncertain, but both photons are emitted simultaneously. Second, one
uses measurements that resolve the time of arrival of the photons. This leads to
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the concept of time bin: two photons whose arrival time cannot be distinguished
by the detectors belong to the same time bin. Third, different time bins are
made to interfere by using unbalanced Mach-Zehnder interferometers. Together,
these ideas provide a powerful platform to investigate and manipulate quantum
entanglement, yielding seminal works such as long distance violation of Bell
inequalities [7] and entanglement based QKD [11].

Here we use the same time-energy degree of freedom as in [5,6,7,8,9,10,11],
but the way it is manipulated is very different. However at the conceptual level
there is an instructive parallel between our approach and that of Franson. First,
a narrowband pump laser produces frequency entangled photon pairs: the fre-
quency of each photon is uncertain, but the sum of the frequencies is well defined.
Second, we use narrowband filters that resolve the frequency of the detected pho-
tons. This leads to the concept of frequency bin: two photons whose frequency is
so close that they cannot be distinguished are said to lie in the same frequency
bin. Third, different frequency bins are made to interfere by using electro-optic
phase modulators.

Our approach is inspired by, or related to, several earlier proposals for manip-
ulating qubits in the frequency domain [12,13,14,15,16,17,18]. The experimental
techniques we use follow closely those of QKD systems in which the quantum
information is encoded in frequency sidebands of an attenuated coherent state
[12,13,14,15]. Such systems allow efficient transmission of quantum information
at telecommunication wavelengths and constitute a commercial alternative to
time bin based QKD. The quantum state can be manipulated with either inten-
sity [12,13] or phase [14] modulators. Here we transpose the setup of [14] to the
entangled photon case, thereby showing how phase modulators can manipulate
frequency entangled photons. In view of the proven success of this method for
QKD, we believe this is a very promising approach for manipulating entangled
photons, particularly in the context of long distance quantum communication at
telecommunication wavelengths.

In the following we first describe our experiment and give the principle of our
method. After presenting our experimental results, we discuss how, using this
approach, one should be able to violate Bell inequalities.

2 Experimental Setup

Our experiment is schematized in Fig. 1. Photon pairs are generated by paramet-
ric down conversion in a 4 cm long Periodically Poled Lithium Niobate (PPLN)
waveguide (HC Photonics). PPLN waveguides have emerged as the preferred
photon pair source at telecommunication wavelengths because of their extremely
high spectral brightness [19,20]. The narrowband pump (Sacher Lasertechnik,
20s-linewidth ≈ 2 MHz, λp = 776.1 nm, Pp ≈ 2 mW) is removed with a
drop filter F insuring more than 30 dB isolation. The pairs, distributed around
λ0 = 1552.2 nm = 2πc/ω0, are sent through a Polarization Controller (PC) and
then separated with a polarization maintaining 3dB-coupler. Interesting cases oc-
cur when the photon pair is split: one photon is sent to Alice (A) and the other
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Fig. 1. Experimental setup. The quasi-monochromatic pump laser (PUMP) creates
photon pairs in the periodically poled lithium niobate waveguide (PPLN) and is then
removed by a filter (F). A fiber polarization controller (PC) is used to align the polariza-
tion of the photons with the active axis of electro-optic phase modulators (PMA,B). The
frequency bins are then selected by narrowband filters (FA,B), whose typical transmis-
sion spectrum is shown in inset. The photons are detected by avalanche photo-diodes
(APDA,B). The phase modulators are driven by a 18 GHz radio frequency generator
(RF GEN) whose output is controlled by variable attenuators (VA,B) and a phase
shifter (∆).

to Bob (B). At the output of the coupler, the photons pass through electro-
optic Phase Modulators (PMA,B) (EOSPACE, 25 GHz bandwidth, 2.5 dB loss)
to which are applied sinusoidally varying voltages at frequency Ω/2π = 18 GHz
(chosen to provide 20 dB isolation between each frequency bin), with amplitudes
VA,B and phases α, β whose difference ∆ = α−β can be controlled. The induced
time dependent optical phases φA(t) = a cos(Ωt−α) and φB(t) = b cos(Ωt−β),
where a = πVA/Vπ, b = πVB/Vπ, and Vπ is the half-wave voltage of the modu-
lators, lead to the unitary transformations

|ω〉 →
∑

p

|ω + pΩ〉Up(c, θ), (1)

where Up(c, θ) = Jp(c)e
ip(θ−π/2), c = a or b, θ = α or β, and Jp is the pth-order

Bessel function of the first kind. The photons are then sent through narrowband
tunable filters (FA,B) (AOS GmbH, FWHM ≈ 18 pm, 20 (40) dB isolation at
9 (18) GHz, tuning range ≈ 400 pm) centered on angular frequencies ωA,B – in
our case taken near the degeneracy point ω0. The use of such narrowband filters
together with a spectrally bright PPLN source of entangled photons has been
reported previously in the context of four-photon experiments [21,20]. Finally the
photons are detected by two Avalanche Photo-Diodes (APDA,B) (id Quantique)
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and a time-to-amplitude converter performs a coincidence measurement. The
maximum coincidence rate was approximately 0.5 Hz.

3 Theoretical Modelisation and Experimental Results

A parametric down conversion source pumped by a monochromatic beam pro-
duces an entangled state (subscripts A and B refer to Alice and Bob’s photon)

|Φ〉 =

∫
dω|ω0 + ω〉A|ω0 − ω〉B, (2)

in which the total energy of the photon pair is well defined, but the energy of
each photon is uncertain. The narrowband filters select the photons belonging
to a small frequency interval. We view all the photons selected by a given filter
as belonging to a specific frequency bin. The effect of the filters can be idealized
by the state

|Ψ〉 =
∑

k

|ω0 + kΩ〉A|ω0 − kΩ〉B, (3)

which would correspond to the case of infinitely narrow filters equally spaced in
frequency.

Note that the amount of entanglement in Eq. (2) would appear to be infinite.
In practice it is approximately given by the ratio of the linewidth of the pairs
to the linewidth of the pump laser and can in principle reach very high values,
for instance 4 THz / 2 MHz = 2 106 in our case. Note also that for simplicity of
notation we have not normalized Eqs. (2, 3). This does not affect our predictions
as we are in fact interested in the ratios of the probabilities of finding photon A
at one frequency and photon B at another frequency. Note finally that taking the
Fourier transform of Eqs. (2, 3) would yield a description of the state in terms
of time entanglement: the time of arrival of each photon is uncertain, but the
difference between the time of arrival of Alice and Bob’s photon is well defined.

According to Eq. (1), the phase modulators realize interferences between fre-
quency bins separated by integer multiples of Ω. They thus play the same con-
ceptual role as the Mach-Zehnder interferometers in Franson’s scheme which
realize interferences between different time bins. Using Eqs. (1, 3), one can read-
ily compute the entangled state after the phase modulation

|Ψ〉 →
∑
n,d

|ω0 + (n + d)Ω〉A|ω0 − nΩ〉B cnd(a, b, α, β), (4)

with cnd(a, b, α, β) =
∑

p Up(a, α)Ud−p(b, β). Because of the symmetries of Eqs.
(1, 3), the probability P (n + d,−n|a, b, α, β) of A and B detecting photons at
angular frequencies ωA = ω0 +(n+ d)Ω and ωB = ω0 −nΩ depends only on the
sum of the frequencies ωA + ωB = 2ω0 + dΩ (but not on n) and on the phase
difference ∆ (but not on α + β):

P (d|a, b, ∆) = P (n + d,−n|a, b, α, β) = |cnd(a, b, α, β)|2. (5)
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Fig. 2. Theoretical predictions for the probability P (d|a, a, 0) of detecting photons with
the sum of the frequencies given by 2ω0 + dΩ for d = 0, 1, 2, when a = b and ∆ = 0

As illustration, the predictions of Eq. (5) are plotted in Fig. 2 when ∆ = 0 as a
function of the modulation amplitudes a = b (taken to be equal) for d = 0, 1,
2. The amount of entanglement that is manipulated by the phase modulators,
i.e. the number of frequency bins that interfere together, is approximately given
by the number of values of d for which Eq. (5) takes a significant value, and
increases when a, b increase.

In Fig. 3, we compare the prediction of Eq. 5 to our experimental results
obtained when the phase ∆ is scanned, with a ≈ b ≈ 1.3. This value is chosen
so that P (d = 0|a, a, 0) almost vanishes, leading to significant d �= 0 contribu-
tions. The experimental visibility of interferences is approximately V = 88%.
We have also measured coincidence rates when d = 1 or 2. From these curves
one can deduce that we are manipulating at least five-dimensional entanglement
– otherwise the curve for d = 2 should be flat.

Two remarks about Fig. 3 are in order. First, we believe that noise and limited
visibility are mainly due to drift of pump laser frequency and imperfect polariza-
tion control. Second, when changing ∆, because of reflections and interferences
in the RF circuit, the amplitudes a and b also changed by up to 30%. This effect
was carefully measured, and the curves in Fig. 3 take this into account. (This is
why the theoretical curves are not perfectly symmetric with respect to ∆ = π).

4 Towards Bell Tests

We now discuss how our system can be used to realize quantum non local-
ity experiments. Note that each measurement in principle produces an infinite
number of possible outcomes, corresponding to the frequency bin in which the
photon is found. (Of course in practice this is limited by the bandwidth of the
photon pairs). For this reason it seems more appropriate to consider Bell inequal-
ities adapted to high dimensional systems, such as the CGLMP inequality [22],
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Fig. 3. Theoretical predictions (curves) and experimental measurements (symbols) of
the coincidence probability P (d|a, b, ∆) when a ≈ b ≈ 1.3 and the phase ∆ is scanned,
for d = 0, 1, 2. Experimentally, P is the normalized coincidence rate, i.e. the ratio
of true coincidences to accidental coincidences divided by this ratio for d = 0 when
modulation is off. The acquisition time per point was constant, corresponding to a
number of recorded coincidences approximately equal to 103P .

rather than Bell inequalities for two dimensional systems such as the Clauser-
Horn-Shimony-Holt (CHSH) inequality [23]. We compare both cases below.

The three Bell expressions we will consider can all be written as a combination
of four terms

S = C(A1B1) + C(B2A1) + C(B1A2) − C(B2A2), (6)

where C(AiBj), C(BjAi) are the generalized correlators when Alice chooses mea-
surement setting Ai and Bob chooses measurement setting Bj . By measurement
setting we mean a choice of amplitude a (or b) and phase α (or β). The corre-
lators are chosen so that −1 ≤ C(AB), C(BA) ≤ +1, and so that local hidden
variable (LHV) theories all satisfy SLHV ≤ 2.

Let us first consider how the outcomes can be grouped to yield the CHSH
expression. We associate with frequency bin ωA = ω0 + (n + d)Ω the variable
x = (−1)n+d, i.e. x = +1 (−1) if n + d is even (odd); and similarly we associate
with frequency bin ωB = ω0 − nΩ the variable y = (−1)n. The value of the
correlator is taken to be the product CCHSH = xy. In terms of the original
variables n, d it can be written as CCHSH(AB) = P (d = 0 mod2|AB) − P (d =
1 mod2|AB) = CCHSH(BA).

A second approach is to use the CGLMP inequality. The infinite dimensional
limit of the inequality given in [22,24] corresponds to choosing CCGLMP (AB) =
P (d ≥ 0|AB)−P (d < 0|AB) and CCGLMP (BA) = P (d ≤ 0|AB)−P (d > 0|AB).
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A third approach is to define the correlators as

CEQ(AB) = P (d = 0|AB) − P (d �= 0|AB) = CEQ(BA). (7)

Inserting these different choices of correlators in Eq. (6) yields three inequivalent
Bell expressions. To our knowledge the one based on CEQ has not been consid-
ered before in the literature, but it arose naturally from the symmetries of the
present problem.

In Fig. 4 we compare how much the correlations Eq. (5) can violate each of
these inequalities. We choose for simplicity the modulation amplitudes a1, a2, b1,
b2 to be equal and numerically optimize the phases α1, α2, β1, β2. Surprisingly
we find that the CGLMP expression yields the smallest violation even though it
was introduced specifically for high dimensional systems. We attribute this to the
fact that the set of measurements explored in the present work is too restricted.
On the other hand the largest violation is obtained for the new inequality based
on the correlators CEQ.

We have not computed how much the data given in Fig. 3 would violate the
above Bell inequalities. The reason is that, as mentioned above, when changing
the phase α of Alice’s phase modulator, we simultaneously changed the ampli-
tude and phase of Bob’s phase modulator. This violates the no-signalling condi-
tions necessary for investigating quantum non locality. Nevertheless, we expect
that our setup can significantly violate the above Bell inequalities. Indeed the
amount of noise reported in Fig. 3 should yield a Bell expression approximately
equal to the maximum value times the visibility V (= 0.88), which for a = 1.3 is
well above the LHV bound of 2.
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Fig. 4. Theoretical predictions for the violation of the CHSH, the CGLMP, and the
EQ Bell inequalities as a function of the amplitude of the modulation a. The settings
were chosen to be of the form a1 = a2 = b1 = b2 = a and the phases α1,2 and β1,2 were
numerically optimized.
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5 Conclusion

In summary we have demonstrated the manipulation of high dimensional fre-
quency bin entanglement. In view of the proven success [12,13,14,15] of frequency
encoding for long distance QKD, this seems a promising technique for quantum
communication tasks. Future work will focus on studying the Bell inequalities
discussed in the text, and demonstrating entanglement based QKD.

We acknowledge support from the European Union under project QAP (con-
tract 015848), from the Belgian Science Policy under project IAP-P6/10 (Pho-
tonics@be), from the French Agence Nationale de la Recherche under project
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of the French Centre National de la Recherche Scientifique.
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