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Abstract 
Composing an application out of independent, 

reusable pieces has been a key challenge since the 

early days of software engineering. In this paper we 

examine some aspects of software architecture. We 

introduce our COSA+ model built in order to 

provide some enhancement in the COSA
1 

one. Our 

main contributions are the new structure given to an 

explicit connector, and the conceptual view of the 

different abstract levels used to define the 

applications architectures. Profits expected from 

these improvements are numerous; mainly we can 

quote the reduction of the production costs and the 

time to market, simplify the maintenance operations, 

and foresee supports for the evolution of the software 

architecture. 

 

1. Introduction 
 

In spite of the remarkable development of 

platforms dedicated to CBSD and Architecture 

Description Languages (ADLs), a certain drawbacks 

still exist and deserve to be investigated and studied. 

Among these we can quote: 

• The description of the attachments and bindings 

among architectural elements (components, 

connectors, and configurations) is a manual task. 

• The developer of an application can connect nay 

arbitrary components by any kind of connectors 

without any semantic check of the resulting links. 

Thus, the checking of the validity and the correction 

of the developed architectures are also manual task 

and left to the knowledge of the developer. 

• The definition and the instantiation of the 

architectural elements are always done at the same 

level; therefore the reusability is reduced. 

To overcome these drawbacks, we propose an 

approach which aims to develop the software 

architectures where the components and connectors 

are of first-class entities and have the same 

importance. So connectors are special-purpose 

components that isolate component interfaces and 

encapsulate all the rules which govern the 

interactions among components. These free 

components to focus only on their functional core 

business such as computations and data storages and 

so on. In addition to and contrary of the classic 

component based models, in our model we consider 

that: (1)- Bindings are special-purpose connectors 

conceived to connect components and their 

underlying component containers (configurations). 

(2)- Attachments are encapsulated inside connectors 

to relieve the application builder of the effort needed 

to define the attachments, the bindings and the 

cheeking task of the coherence of the connected 

elements. (3)- The concept of architecture is defined 

by “logical architecture”, developed by the 

application builder, and its memory image “physical 

architecture” built automatically. Thus, components 

and connectors are assembled in an easy and 

coherent way in the form of an architectural puzzle 

without any effort to describe links among 

components and connectors or between components 

and configuration. Consequently, this approach 

accelerates the development of components, 

improves testability, coherence, maintainability and 

promotes component markets [1]. 

The rest of this paper is organized as follows:  

section 2 presents the various levels of abstraction of 

logical and physical architectures. Section 3 defines 

the different elements and the necessary basic 

concepts in both types of architectures. Section 4 

sketches the application of our approach to the client 

server example; also it gives a comparative study 

with the ADL Acme. Our conclusion as well as our 

future works is presented in section 5. 

 

2. Logical and physical architecture 
 

The architecture form that we have is a flat logical 

image which allows us to see how components and 

connectors are assembled. This image represents the 

logical architecture of the application which is not 

enough to give a direct answer to some important 

questions such as: 

• Which components connected with a given 

component? 

• Who many components are defined inside a 

given composite component (configuration)? 

• Which connectors are connected to a given 

component? 

 
1 

COSA (Component Object based Software Architecture) is Meta 

model for the structural description of software architectures 

developed by MODAL research group at LINA Laboratory, 

University of Nantes, France [6].
 



These questions must be answered in order to 

update and evolve the software architectures. 

Actually, to determine such type of information we 

have to write routines that need to go through all the 

elements of the architecture and calculate the needed 

information. This led us to define another physical 

architectural image which represents the image of the 

logical architecture in memory in a form of a 

directed graph. This image will serve as a support for 

the logical architecture. So, we can find the answer 

of the previous questions in a direct way and without 

any effort sequential access to the logical 

architecture.  
 

2.1 Logical architecture  
 

In our approach we identify three categories of 

stakeholders: Framework Builder, Software 

Architect and Application Builder. Each stakeholder 

acts at a different level of abstraction. In the 

following paragraph, we present three levels of 

abstraction associated with the objectives of each 

category of stakeholders, as indicated in figure 1.  

 

2.1.1 Meta level (M2).  At this level we can find the 

framework builder which describes the fundamental 

concepts used to be instantiated to create the basic 

architectural elements. So the elements of the M2 

level represent types for the elements of the 

architecture level. This typing mechanism is 

expressed by the relation “Instance Of”.  Thus, each 

element of the model is typed by its meta element. 

2.1.2 Architecture level (M1).  This level of 

abstraction represents the elements defined by of 

software architect.  

• The elements of this level are a types of 

components and connectors defined by the meta 

model COSA+. 

• New types of components and connectors can be 

defined from the elements which already exist at 

this level using the inheritance mechanism. 

At this level, the architect defines and organises 

these architectural elements in the form of libraries 

of types of components and connectors like the 

commercial-off-the-shelf (COTS, [2]) in order to 

facilitate their deployment in different 

configurations. Let us note that the principle of reuse 

has to be widely exploited to define these libraries 

and the deployment of connectors must be preserved 

by using declared interfaces which mask the 

management mechanism of the connections. 

 

2.1.3 Applications level (M0).  At this level, we 

suppose that the application builder has libraries of 

types of components and connectors on the shelf at 

M1 level. At first, he/she creates the instances of 

architectural elements which he/she needs, and then, 

he/she installs each connectors instance among the 

corresponding components instance available at this 

application. So, the application is built in an 

incremental way in a form of a Lego Blocks.  

 
Figure 1.  Levels of abstraction in the logical architecture 

 

2.2 Physical architecture 
 

The physical architecture will serve as a support 

to the logical architecture by automatically building 

the image of the existing links between elements 

deployed in architecture. The physical architecture is 

principally conceived using only two levels of 

abstractions which are the following (figure 2). 

 

2.2.1   System level.  At this level, we find a special 

type of elements called Connection Manager (CM) 
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which contains the necessary information used in the 

definition and the construction of the different nodes 

instances needed to build the graph representing the 

physical architecture. 

 

2.2.2 Instance level.  During the installation of 

connectors done by the application builder to 

construct his/her application, the system creates an 

instance of a connection manager for every 

component concerned by this installation if it does 

not already exist. Thus, the instance level of the 

physical architecture takes care of the management 

of all connections among elements of the logical 

architecture instantiated at the application level. 

 
Figure 2.  Abstraction Levels in the physical 

architecture 

3. Basic concepts of architectures 

In this section, we present the various concepts 

and artefacts needed by our approach to construct 

both types of architecture. In a first time we 

introduce the main elements of the logical 

architecture with brief description for components 

and configurations and we give some details about 

connectors since they represent the principle axe of 

our approach. In a second time we introduce the 

basic elements of the physical architecture which are 

the connection manager and topological graph. 

 

3.1 Components  

 
Components represent the elements of the 

computation and the data storage of a software 

system. Each component has one or more interfaces; 

each interface has one or more ports. Ports are the 

connection points between components and their 

environment. Any interaction with a component 

provokes the invocation of a service. A component 

can require services from other components and will 

provide services to the other components. A 

component also has properties, constraints, and can 

have a several implementations. Components are 

instantiated from their types; these types can be 

parameterised with the aim of facilitating their reuse. 

It is functionally clear that components should be 

designed with a high cohesion and low coupling [1], 

[3], [4]. Each component has the following interface: 

Component_TypeName (required_Interf, provided_Interf); 

 

3.2 Configurations  

 

A configuration represents a graph of components 

and connectors and defines the way they are 

interconnected. The notion of a configuration is 

necessary to determine if components are connected 

correctly, i.e. their interfaces are compatible, then the 

corresponding connectors allow a correct 

communication, and the combination of their 

semantic gives an acceptable behaviour. 

Configurations in COSA are first class entities that 

can be instantiated several times and therefore give 

several architectures of a given software. A 

configuration can have zero or several interfaces 

defining ports and services for this configuration. 

Ports are indented to be connected with the ports of 

the internal components and/or ports of the external 

components or configurations. Each configuration 

has the following interface: 

Configuration_TypeName (required_Interf, provided_Interf); 

 

3.3 Connectors 
 

a)-  Definition: Our definition is mainly based on 

that given by Shaw and Garlan who say “Connectors 

mediate interactions among components; that is, they 

establish the rules that govern component interaction 

and specify any auxiliary mechanism required” [5]. 

In COSA [6], a connector is defined by an interface 

and glue, as shown in figure 3. Basically, the 

interface describes the necessary information of the 

connector, including a number of roles and the 

different types of services provided by the connector. 

The roles are the points of interaction of a connector 

with its environment. A role is the interface of a 

connector called to be connected with a port of a 

component or a configuration. Each role has a 

required or provides type of services. The glue 

describes the functionality of the connector and it 

can be a simple protocol connecting the roles or a 

complex protocol having several operations such as 

data format conversion, data transfer, adapting 

services etc. Connectors have also properties and 

constraints [6], [7], [8]. 

 

Figure 3.  The structure COSA connector 

Our contribution at this level consists in 

enhancing the structure of COSA connectors by 

encapsulating the attachment links (figure 4). So, the 

application builder will have to spend no effort in 

connecting connectors with its compatible 

components. Consequently, the task of the developer 

consists only in choosing a suitable type of 

connectors which is compatible with the types of 

components which are expected to be connected.  

Connector_TypeName (List of component interfs) { 

      Roles {List of roles} 

      Services {List of services} 

      Properties {List of properties} 

      Constraints {List of constraints} 

      Glue {The communication protocol}   } 
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Figure 4. The structure COSA+ connector. 

In figure 5 we represent an example with two 

components (A and B) connected with a connector 

(C). In this figure we represent the design of a 

conventional connector defined in COSA or in other 

ADLs as indicated by the inner frame (Old structure 

of a connector) and the design of the new connector 

that we propose as indicated by the outer frame (New 

structure of a connector) in which we encapsulate 

the attachment links among ports and roles, in our 

model we call these links connections. 

b) - Description: According to our hypothesis 

concerning the pyramid of abstraction levels given in 

section 2, the software architect has two ways to 

describe a new connector at the architecture level. 

• Instantiate a new connector from the type exists in 

the level meta level. 

E.g. The instantiation of the connector of the M2 

level gives an empty skeleton filled by the desired 

values to produce the expected type of connectors. In 

the following paragraph we give some details of the 

connector (C) described in figure 5. 

 
Figure 5.  The new structure of connector.  

 

Connector  C   (A.P1, A.P2, B.P’1, B.P’2)  {   

      Roles = {R1, R2, R’1, R’2} 

      …………. 
      Glue = {R1 = R’2, R2 = R’1} 

      Connection = {  A.P1 = C.R1,   A.P2 = C.R2, 

            B.P’1= C.R’1, B.P’2= C.R’2  }        }; 

• Reuse a description existed in the level M1 and 

applies some modifications via the mechanism of 

the inheritance (specialization). 

E.g. This example shows the specialization at the M1 

level of the connector C defined in the previous 

example. So, C is extended by: a new interface X.P, 

two roles R3, R’3, a glue rule R3=R’3, and a 

connection rule. The resulting connector D can be 

used to connect the component X using the port P 

with the component A or B. 

Connector D Extends C (A.P1, A.P2, B.P’1, B.P’2, X.P)  {  

      Roles = {R1, R2, R’1, R’2, R3, R’3} 

      ………. 
      Glue = {R1 = R’2, R2 = R’1, R3 = R’3} 

      Connection =   {  A.P1 = C.R1,   A.P2  = C.R2, 

             B.P’1= C.R’1,  B.P’2= C.R’2,  X.P   = C.R3  }  }; 

 

c) - Installation: The application builder can 

instantiate a connector from its description (type) and 

then install it in the application. So, installing a 

connector means connecting explicitly two or more 

components using this connector. We use the 

following primitives to realize the installation 

operations of elements at the instance level.  

Component (TypeName: ComponentName(interfaces)); 

Connector (TypeName: ConnectorName(interfaces));  

Configuration (TypeName:    ConfigurationName(interfaces)); 

Once the elements to be connected are 

instantiated the connector is installed between the 

components using the following syntax: 

ConnectorName (Compos1.Interfi, Compos2.Interfj …); 

In our approach we consider that the binding links 

as a special-purpose connectors and their installation 

is possible only between a configuration and its inner 

components or between connectors.  

BinderName (Element1.Interfi, Element2.Interfj …); 

 

3.4 Connection Manager (CM) 
 

a)- Definition: this element is an entity of the 

physical architecture associated with exactly one 

component in M0 level of logical architecture. The 

function of each CM is to encapsulate the various 

connections of a component with its environment. 

During the installation of the connectors, a 

topological graph is built in back plan of the logical 

architecture. The nodes of the graph are the created 

CMs and the rows represent the connections between 

components associated with the previous CMs. 

Every CM has the following attributes (figure 6): 

• ComponentName: represents the name of the 

component associate with this CM. 

• TheConnection: this attribute allows us to 

identify all connectors which are connected to the 

component associate with this CM. 

• FatherConnection: is a link which allows the 

connection of a CM associated to an internal 

component (son) with the CM of the configuration 

(father) to which it belongs. This link is directed 

from the CM father to the CM son. 

• BrotherConnection: is a link which allows the 

connection of two CMs of the same level of 

hierarchy. These two CMs are associated with two 

Connector_TypeName (List of component interfs) { 

      Roles {List of roles} 

      …… 
      Glue {The Communication protocol} 

      Connection {List of attachments}  } 
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components which belong to the same hierarchical 

level and are directly connected (figure 7).  

 
Figure 6. CM structure 

b)- Instantiation : The CMs are to be instantiated at 

the M0 level of the physical architecture. So, every 

time we install a connector between two components 

in the logical architecture, we generate a CM at the 

physical architecture associated with each 

component connected by this connector if it does not 

exist. 

c)- Installation: Installing a CM means to create an 

instance and putting it in the graph after filling the 

ComponentName and TheConnection attributes 

witch indicates respectively its associated component 

and the connector that activates its existence. 

d)- Propagation: This mechanism consists of 

calculating and updating a number of links in the 

graph after the installation operation of a CM. This 

mechanism completes the attributes Connection-

Father and ConnectionBrother by establishing links 

between this CM and his father and brothers.  

 

3.5 Topological graph.  During the installation 

operations of the elements a topological graph is 

built automatically. The nodes of the topological 

graph are instances of the CM. These nodes are 

interconnected by rows that represent links of 

membership elements (father and brothers). The 

hierarchies in the graph represent also the levels of 

components. The root node in the graph represents 

the global configuration of the application. The 

applications builder has the possibility to display 

information concerning the topological graph 

without modifying it. We can deploy this graph in 

other applications.  
 

4.   Case study 

Figure 7 shows the hierarchical configuration of a 

simple client-server academic application.  

 
Figure 7. Hierarchical client-server configuration 

 

4.1 Representation of client-server in COSA+  
 

Figure 8 gives the different types used to be 

instantiated in this example. The representation in 

COSA+ of the Client-Server architecture is given by 

figure 9. In figure 10, we present the topological 

graph associated with this example of architecture. 

 
Figure 8. Element types of Client-Server 

 
Figure 9. Element instances of client-server 

Due to space constraints of this paper we give only 

some details about Trpc connector type. 

Connector Trpc (Tclient.sendRequest, Tserver.receiveRequest) { 

      Roles = {caller, callee}; 

      Glue  = {caller = callee}; 
      Connection = {caller = Tclient.sendRequest, 

                                callee = Tserver.receiveRequest };  …..} 

 

4.2 Comparison with the ADL Acme 
 

Based on the study of the previous example, we 

present in this section a simple comparative study 

between proposed architecture model and the ADL 

Acme and in the same time we present the solutions 

for drawbacks introduced in the beginning of this 

paper. This study is based on the following criteria: 

Component {Tclient : Client ; 
                       TconnectManager : connectManager; 

                       TsecurityManager : securityManager; 

                       Tdatabase : dataBase  } 
Connector {TSQLQuery : SQLQuery; 

                     TclearanceRequest : clearanceRequest; 

                     TsecurityQuery : securityQuery); 
                     Tbinding : Binder; 

                     Trpc : Rpc;  } 

Configuration {   
    Tserver : Server =  { 

         SQLQuery (connectManager(dbQueryInft) ,  

                          dataBase(securityManagementIntf); 

         clearanceRequest (connectManager(securityCheckIntf) , 

                          securityManeger(securityAutorization); 

         securityQuery ( securityManager(credentialQuery) ,  
                          dataBase(securityManagementIntf); 

         Binder (Server (receiveRequest),  

                          connectManager(externalSocket); } 
    Tcs_Config : CS  =  { 

         Rpc (Client(sendRequest), Server(receiveRequest))  } 

security- 

Manager 

connect-  

Manager 

data-  

Base 

Server Configuration 

security Query 

Clearance Request 

SQLQuery 

Client 

Rpc 
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CS 

Configuration 

ConnectorManager Type_Name { 
    ComponentName   Associated component name; 

    TheConnection    {List associated connectors}; 

    FatherConnection   {Father CM name}; 

    BrotherConnection   {List of CM brothers name} } Components      Tclient ( sendRequest ) {…} 

   TconnectManager ( externalSocket, securityCheckIntf,  
                       dbQueryInft ) {…} 

   TsecurityManager(securityAutorization, credentialQuery) {..} 

   Tdatabase ( securityManagementIntf, QueryIntf ) {…} 

Connectors      

     TSQLQuery ( TconnectM.dbQueryIntf, 

                       Tdatabase.QueryIntf  ) {…} 
     TclearanceR ( TconnectionManager.securityCheckintf, 

                       TsecurityManager.securityAuthorization ) {…} 

     TsecurityQ (TsecurityManager.credentialQuery,  

                       Tdatabase.securityManagementIntf ) {…} 

     Tbinding ( TconnectioManager.externalSocket,  

                        Tserver.ReceiveRequest ) {…} 

     Trpc ( Tclient.sendRequest, Tserver.receiveRequest ) {…} 

Configurations    

   Tserver (receiveRequest) { 
        IncludeComponent   TconnectM, TsecurityM, Tdatabase; 

        IncludeConnector TSQLQuery, TclearanceR, 

                                        TsecurityQ, Tbinding      } 
   Tcs_config ()   { 

          IncludeCompnent   Tclient, Tserver_Config;  

          IncludeConnector   Trpc      } 



 
Figure 10. Physical architecture of Client-Server 

 

4.2.1. Legibility. If we examine architectures written 

in Acme we find that the definitions of the types and 

their instantiation are merged in the same 

architectural level. In our approach we have made a 

very clear separation between the description phase 

and the instantiation one by putting them in two 

different architectural levels. So, we can note that the 

developed architectures using COSA+ are more 

legible than those developed with Acme. 

4.2.2. Evolution. Via the topological graph we can 

easily replace or add a component in the architecture 

since we have all the connections information 

registered in the connection manager node associated 

to the previous component. We can realise these 

operations without any manual effort on behalf of the 

application builder because there is no need, to write 

the attachment and binding links among elements. 

On the other hand in Acme attachments and bindings 

are being updated all the time manually. 

Consequently we can say that the evolution process 

is easier in COSA+ than that in the ADL Acme. 

4.2.3. Reusability. By firstly defining the types of 

the architectural elements in COSA+ and then 

instantiate these elements   in a second phase 

separately alone or inside their underling component 

container (configuration) via the included primitive. 

In Acme each element can be instantiated only in the 

context of his definition and not outside. So we can 

say that COSA+ model allows better reusability of 

the architectural elements than in the ADL Acme. 

4.2.4. Reliability. In COSA+, attachment links are 

encapsulated in the connectors and Bindings are 

treated as special-purpose connectors. Thus, all 

elements being installed in the application are well 

semantically and correctly connected since 

connectors are only installed among compatible 

component interfaces. This style of automatic 

cheeking is not allowed by Acme because the 

application builder has no mean to check the links 

described manually. Consequently, architectures 

were written in COSA+ are all the time coherent. 

 

5.  Conclusion and future works 

The approach that we have proposed describes a 

model of architecture based on three fundamental 

concepts. The first one is the new structure of a 

connector in which we encapsulate the attachments. 

Such connectors are first-class entities and have 

equal importance like components. We consider 

them as reusable COTS elements; the second concept 

is the special-purpose connector who performs the 

role of the bindings deployed to connect components 

with their configurations; the third concept is the CM 

which represents the nodes of the topological graph 

associated with a given logical architecture. The 

graph is automatically generated according to the 

installation operations of connectors in the 

application. This graph allows a good traceability of 

the hierarchical links between the components of the 

same level and between the components with their 

configuration. This traceability is necessary to realize 

the updating operations and thus facilitate the 

evolution process of architectures. Note that we can 

save the topological graph associated with a given 

configuration in order reuse it with some 

modifications or to deploy it as it is in other 

applications. It seems to us that our approach is a 

supplementary step towards the development of 

large-scale software applications by assembly 

components already initiated by the paradigm CBSD. 

Our future works concern with the impact of this 

approach on the maintenance activity and the 

evolution process of the software architectures.  
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