
HAL Id: hal-00472321
https://hal.science/hal-00472321v1

Submitted on 12 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards an Approach for Building Reliable
Architectures

Abdelkrim Amirat, Mourad Oussalah, Tahar Khammaci

To cite this version:
Abdelkrim Amirat, Mourad Oussalah, Tahar Khammaci. Towards an Approach for Building Reliable
Architectures. IEEE International Conference on Information Reuse and Integration (IEEE IRI’07),
Aug 2007, United States. pp.467-472. �hal-00472321�

https://hal.science/hal-00472321v1
https://hal.archives-ouvertes.fr

Towards an Approach for Building Reliable Architectures

Abdelkrim Amirat, Mourad Oussalah, and Tahar Khammaci

Laboratoire LINA CNRS FRE 2729, Université de Nantes

2, Rue de la Houssinière, BP 92208,

44322 Nantes Cedex 03, France

{Abdelkrim.Amirat, Mourad.Oussalah, Tahar.Khammaci} @Univ-Nantes.fr

Abstract
Composing an application out of independent,

reusable pieces has been a key challenge since the

early days of software engineering. In this paper we

examine some aspects of software architecture. We

introduce our COSA+ model built in order to

provide some enhancement in the COSA
1

one. Our

main contributions are the new structure given to an

explicit connector, and the conceptual view of the

different abstract levels used to define the

applications architectures. Profits expected from

these improvements are numerous; mainly we can

quote the reduction of the production costs and the

time to market, simplify the maintenance operations,

and foresee supports for the evolution of the software

architecture.

1. Introduction

In spite of the remarkable development of

platforms dedicated to CBSD and Architecture

Description Languages (ADLs), a certain drawbacks

still exist and deserve to be investigated and studied.

Among these we can quote:

• The description of the attachments and bindings

among architectural elements (components,

connectors, and configurations) is a manual task.

• The developer of an application can connect nay

arbitrary components by any kind of connectors

without any semantic check of the resulting links.

Thus, the checking of the validity and the correction

of the developed architectures are also manual task

and left to the knowledge of the developer.

• The definition and the instantiation of the

architectural elements are always done at the same

level; therefore the reusability is reduced.

To overcome these drawbacks, we propose an

approach which aims to develop the software

architectures where the components and connectors

are of first-class entities and have the same

importance. So connectors are special-purpose

components that isolate component interfaces and

encapsulate all the rules which govern the

interactions among components. These free

components to focus only on their functional core

business such as computations and data storages and

so on. In addition to and contrary of the classic

component based models, in our model we consider

that: (1)- Bindings are special-purpose connectors

conceived to connect components and their

underlying component containers (configurations).

(2)- Attachments are encapsulated inside connectors

to relieve the application builder of the effort needed

to define the attachments, the bindings and the

cheeking task of the coherence of the connected

elements. (3)- The concept of architecture is defined

by “logical architecture”, developed by the

application builder, and its memory image “physical

architecture” built automatically. Thus, components

and connectors are assembled in an easy and

coherent way in the form of an architectural puzzle

without any effort to describe links among

components and connectors or between components

and configuration. Consequently, this approach

accelerates the development of components,

improves testability, coherence, maintainability and

promotes component markets [1].

The rest of this paper is organized as follows:

section 2 presents the various levels of abstraction of

logical and physical architectures. Section 3 defines

the different elements and the necessary basic

concepts in both types of architectures. Section 4

sketches the application of our approach to the client

server example; also it gives a comparative study

with the ADL Acme. Our conclusion as well as our

future works is presented in section 5.

2. Logical and physical architecture

The architecture form that we have is a flat logical

image which allows us to see how components and

connectors are assembled. This image represents the

logical architecture of the application which is not

enough to give a direct answer to some important

questions such as:

• Which components connected with a given

component?

• Who many components are defined inside a

given composite component (configuration)?

• Which connectors are connected to a given

component?

1

COSA (Component Object based Software Architecture) is Meta

model for the structural description of software architectures

developed by MODAL research group at LINA Laboratory,

University of Nantes, France [6].

These questions must be answered in order to

update and evolve the software architectures.

Actually, to determine such type of information we

have to write routines that need to go through all the

elements of the architecture and calculate the needed

information. This led us to define another physical

architectural image which represents the image of the

logical architecture in memory in a form of a

directed graph. This image will serve as a support for

the logical architecture. So, we can find the answer

of the previous questions in a direct way and without

any effort sequential access to the logical

architecture.

2.1 Logical architecture

In our approach we identify three categories of

stakeholders: Framework Builder, Software

Architect and Application Builder. Each stakeholder

acts at a different level of abstraction. In the

following paragraph, we present three levels of

abstraction associated with the objectives of each

category of stakeholders, as indicated in figure 1.

2.1.1 Meta level (M2). At this level we can find the

framework builder which describes the fundamental

concepts used to be instantiated to create the basic

architectural elements. So the elements of the M2

level represent types for the elements of the

architecture level. This typing mechanism is

expressed by the relation “Instance Of”. Thus, each

element of the model is typed by its meta element.

2.1.2 Architecture level (M1). This level of

abstraction represents the elements defined by of

software architect.

• The elements of this level are a types of

components and connectors defined by the meta

model COSA+.

• New types of components and connectors can be

defined from the elements which already exist at

this level using the inheritance mechanism.

At this level, the architect defines and organises

these architectural elements in the form of libraries

of types of components and connectors like the

commercial-off-the-shelf (COTS, [2]) in order to

facilitate their deployment in different

configurations. Let us note that the principle of reuse

has to be widely exploited to define these libraries

and the deployment of connectors must be preserved

by using declared interfaces which mask the

management mechanism of the connections.

2.1.3 Applications level (M0). At this level, we

suppose that the application builder has libraries of

types of components and connectors on the shelf at

M1 level. At first, he/she creates the instances of

architectural elements which he/she needs, and then,

he/she installs each connectors instance among the

corresponding components instance available at this

application. So, the application is built in an

incremental way in a form of a Lego Blocks.

Figure 1. Levels of abstraction in the logical architecture

2.2 Physical architecture

The physical architecture will serve as a support

to the logical architecture by automatically building

the image of the existing links between elements

deployed in architecture. The physical architecture is

principally conceived using only two levels of

abstractions which are the following (figure 2).

2.2.1 System level. At this level, we find a special

type of elements called Connection Manager (CM)

Meta Level - M2

Class Level - M1

Connector

Class C

Connector

Class D

Component

Class B

Component

Class A

Instance Of

Instance Level - M0 Instance Of

Connector Cn1

Component C2

Component C1

Connector Cn2

Instance Of

ArchitecturalElement

+name

Interface

+name

+elements 0..10..*

+owner 0..*

Component ConnectorConfiguration

0..*

0..*
+detail

0..1

Glue

+glue 0..1

An extract of

COSA +

……
……

Library of Types

Application

which contains the necessary information used in the

definition and the construction of the different nodes

instances needed to build the graph representing the

physical architecture.

2.2.2 Instance level. During the installation of

connectors done by the application builder to

construct his/her application, the system creates an

instance of a connection manager for every

component concerned by this installation if it does

not already exist. Thus, the instance level of the

physical architecture takes care of the management

of all connections among elements of the logical

architecture instantiated at the application level.

Figure 2. Abstraction Levels in the physical

architecture

3. Basic concepts of architectures

In this section, we present the various concepts

and artefacts needed by our approach to construct

both types of architecture. In a first time we

introduce the main elements of the logical

architecture with brief description for components

and configurations and we give some details about

connectors since they represent the principle axe of

our approach. In a second time we introduce the

basic elements of the physical architecture which are

the connection manager and topological graph.

3.1 Components

Components represent the elements of the

computation and the data storage of a software

system. Each component has one or more interfaces;

each interface has one or more ports. Ports are the

connection points between components and their

environment. Any interaction with a component

provokes the invocation of a service. A component

can require services from other components and will

provide services to the other components. A

component also has properties, constraints, and can

have a several implementations. Components are

instantiated from their types; these types can be

parameterised with the aim of facilitating their reuse.

It is functionally clear that components should be

designed with a high cohesion and low coupling [1],

[3], [4]. Each component has the following interface:

Component_TypeName (required_Interf, provided_Interf);

3.2 Configurations

A configuration represents a graph of components

and connectors and defines the way they are

interconnected. The notion of a configuration is

necessary to determine if components are connected

correctly, i.e. their interfaces are compatible, then the

corresponding connectors allow a correct

communication, and the combination of their

semantic gives an acceptable behaviour.

Configurations in COSA are first class entities that

can be instantiated several times and therefore give

several architectures of a given software. A

configuration can have zero or several interfaces

defining ports and services for this configuration.

Ports are indented to be connected with the ports of

the internal components and/or ports of the external

components or configurations. Each configuration

has the following interface:

Configuration_TypeName (required_Interf, provided_Interf);

3.3 Connectors

a)- Definition: Our definition is mainly based on

that given by Shaw and Garlan who say “Connectors

mediate interactions among components; that is, they

establish the rules that govern component interaction

and specify any auxiliary mechanism required” [5].

In COSA [6], a connector is defined by an interface

and glue, as shown in figure 3. Basically, the

interface describes the necessary information of the

connector, including a number of roles and the

different types of services provided by the connector.

The roles are the points of interaction of a connector

with its environment. A role is the interface of a

connector called to be connected with a port of a

component or a configuration. Each role has a

required or provides type of services. The glue

describes the functionality of the connector and it

can be a simple protocol connecting the roles or a

complex protocol having several operations such as

data format conversion, data transfer, adapting

services etc. Connectors have also properties and

constraints [6], [7], [8].

Figure 3. The structure COSA connector

Our contribution at this level consists in

enhancing the structure of COSA connectors by

encapsulating the attachment links (figure 4). So, the

application builder will have to spend no effort in

connecting connectors with its compatible

components. Consequently, the task of the developer

consists only in choosing a suitable type of

connectors which is compatible with the types of

components which are expected to be connected.

Connector_TypeName (List of component interfs) {

 Roles {List of roles}

 Services {List of services}

 Properties {List of properties}

 Constraints {List of constraints}

 Glue {The communication protocol} }

Instance

Level

System

Level

CM1 CM2
Link

Connection
Manager Class

Instance Of

Figure 4. The structure COSA+ connector.

In figure 5 we represent an example with two

components (A and B) connected with a connector

(C). In this figure we represent the design of a

conventional connector defined in COSA or in other

ADLs as indicated by the inner frame (Old structure

of a connector) and the design of the new connector

that we propose as indicated by the outer frame (New

structure of a connector) in which we encapsulate

the attachment links among ports and roles, in our

model we call these links connections.

b) - Description: According to our hypothesis

concerning the pyramid of abstraction levels given in

section 2, the software architect has two ways to

describe a new connector at the architecture level.

• Instantiate a new connector from the type exists in

the level meta level.

E.g. The instantiation of the connector of the M2

level gives an empty skeleton filled by the desired

values to produce the expected type of connectors. In

the following paragraph we give some details of the

connector (C) described in figure 5.

Figure 5. The new structure of connector.

Connector C (A.P1, A.P2, B.P’1, B.P’2) {

 Roles = {R1, R2, R’1, R’2}

 ………….
 Glue = {R1 = R’2, R2 = R’1}

 Connection = { A.P1 = C.R1, A.P2 = C.R2,

 B.P’1= C.R’1, B.P’2= C.R’2 } };

• Reuse a description existed in the level M1 and

applies some modifications via the mechanism of

the inheritance (specialization).

E.g. This example shows the specialization at the M1

level of the connector C defined in the previous

example. So, C is extended by: a new interface X.P,

two roles R3, R’3, a glue rule R3=R’3, and a

connection rule. The resulting connector D can be

used to connect the component X using the port P

with the component A or B.

Connector D Extends C (A.P1, A.P2, B.P’1, B.P’2, X.P) {

 Roles = {R1, R2, R’1, R’2, R3, R’3}

 ……….
 Glue = {R1 = R’2, R2 = R’1, R3 = R’3}

 Connection = { A.P1 = C.R1, A.P2 = C.R2,

 B.P’1= C.R’1, B.P’2= C.R’2, X.P = C.R3 } };

c) - Installation: The application builder can

instantiate a connector from its description (type) and

then install it in the application. So, installing a

connector means connecting explicitly two or more

components using this connector. We use the

following primitives to realize the installation

operations of elements at the instance level.

Component (TypeName: ComponentName(interfaces));

Connector (TypeName: ConnectorName(interfaces));

Configuration (TypeName: ConfigurationName(interfaces));

Once the elements to be connected are

instantiated the connector is installed between the

components using the following syntax:

ConnectorName (Compos1.Interfi, Compos2.Interfj …);

In our approach we consider that the binding links

as a special-purpose connectors and their installation

is possible only between a configuration and its inner

components or between connectors.

BinderName (Element1.Interfi, Element2.Interfj …);

3.4 Connection Manager (CM)

a)- Definition: this element is an entity of the

physical architecture associated with exactly one

component in M0 level of logical architecture. The

function of each CM is to encapsulate the various

connections of a component with its environment.

During the installation of the connectors, a

topological graph is built in back plan of the logical

architecture. The nodes of the graph are the created

CMs and the rows represent the connections between

components associated with the previous CMs.

Every CM has the following attributes (figure 6):

• ComponentName: represents the name of the

component associate with this CM.

• TheConnection: this attribute allows us to

identify all connectors which are connected to the

component associate with this CM.

• FatherConnection: is a link which allows the

connection of a CM associated to an internal

component (son) with the CM of the configuration

(father) to which it belongs. This link is directed

from the CM father to the CM son.

• BrotherConnection: is a link which allows the

connection of two CMs of the same level of

hierarchy. These two CMs are associated with two

Connector_TypeName (List of component interfs) {

 Roles {List of roles}

 ……
 Glue {The Communication protocol}

 Connection {List of attachments} }

 P1 P’1
 R1 R’1

 R2 R’2
 P2 P’2

Component

(A)

Component

(B)

New structure

of a connector
Old structure

of a connector

Connector (C) Attachment

Legend:
 Pi : Port i

 Rj : Role j

components which belong to the same hierarchical

level and are directly connected (figure 7).

Figure 6. CM structure

b)- Instantiation : The CMs are to be instantiated at

the M0 level of the physical architecture. So, every

time we install a connector between two components

in the logical architecture, we generate a CM at the

physical architecture associated with each

component connected by this connector if it does not

exist.

c)- Installation: Installing a CM means to create an

instance and putting it in the graph after filling the

ComponentName and TheConnection attributes

witch indicates respectively its associated component

and the connector that activates its existence.

d)- Propagation: This mechanism consists of

calculating and updating a number of links in the

graph after the installation operation of a CM. This

mechanism completes the attributes Connection-

Father and ConnectionBrother by establishing links

between this CM and his father and brothers.

3.5 Topological graph. During the installation

operations of the elements a topological graph is

built automatically. The nodes of the topological

graph are instances of the CM. These nodes are

interconnected by rows that represent links of

membership elements (father and brothers). The

hierarchies in the graph represent also the levels of

components. The root node in the graph represents

the global configuration of the application. The

applications builder has the possibility to display

information concerning the topological graph

without modifying it. We can deploy this graph in

other applications.

4. Case study

Figure 7 shows the hierarchical configuration of a

simple client-server academic application.

Figure 7. Hierarchical client-server configuration

4.1 Representation of client-server in COSA+

Figure 8 gives the different types used to be

instantiated in this example. The representation in

COSA+ of the Client-Server architecture is given by

figure 9. In figure 10, we present the topological

graph associated with this example of architecture.

Figure 8. Element types of Client-Server

Figure 9. Element instances of client-server

Due to space constraints of this paper we give only

some details about Trpc connector type.

Connector Trpc (Tclient.sendRequest, Tserver.receiveRequest) {

 Roles = {caller, callee};

 Glue = {caller = callee};
 Connection = {caller = Tclient.sendRequest,

 callee = Tserver.receiveRequest }; …..}

4.2 Comparison with the ADL Acme

Based on the study of the previous example, we

present in this section a simple comparative study

between proposed architecture model and the ADL

Acme and in the same time we present the solutions

for drawbacks introduced in the beginning of this

paper. This study is based on the following criteria:

Component {Tclient : Client ;
 TconnectManager : connectManager;

 TsecurityManager : securityManager;

 Tdatabase : dataBase }
Connector {TSQLQuery : SQLQuery;

 TclearanceRequest : clearanceRequest;

 TsecurityQuery : securityQuery);
 Tbinding : Binder;

 Trpc : Rpc; }

Configuration {
 Tserver : Server = {

 SQLQuery (connectManager(dbQueryInft) ,

 dataBase(securityManagementIntf);

 clearanceRequest (connectManager(securityCheckIntf) ,

 securityManeger(securityAutorization);

 securityQuery (securityManager(credentialQuery) ,
 dataBase(securityManagementIntf);

 Binder (Server (receiveRequest),

 connectManager(externalSocket); }
 Tcs_Config : CS = {

 Rpc (Client(sendRequest), Server(receiveRequest)) }

security-

Manager

connect-

Manager

data-

Base

Server Configuration

security Query

Clearance Request

SQLQuery

Client

Rpc

Binder

CS

Configuration

ConnectorManager Type_Name {
 ComponentName Associated component name;

 TheConnection {List associated connectors};

 FatherConnection {Father CM name};

 BrotherConnection {List of CM brothers name} } Components Tclient (sendRequest) {…}

 TconnectManager (externalSocket, securityCheckIntf,
 dbQueryInft) {…}

 TsecurityManager(securityAutorization, credentialQuery) {..}

 Tdatabase (securityManagementIntf, QueryIntf) {…}

Connectors

 TSQLQuery (TconnectM.dbQueryIntf,

 Tdatabase.QueryIntf) {…}
 TclearanceR (TconnectionManager.securityCheckintf,

 TsecurityManager.securityAuthorization) {…}

 TsecurityQ (TsecurityManager.credentialQuery,

 Tdatabase.securityManagementIntf) {…}

 Tbinding (TconnectioManager.externalSocket,

 Tserver.ReceiveRequest) {…}

 Trpc (Tclient.sendRequest, Tserver.receiveRequest) {…}

Configurations

 Tserver (receiveRequest) {
 IncludeComponent TconnectM, TsecurityM, Tdatabase;

 IncludeConnector TSQLQuery, TclearanceR,

 TsecurityQ, Tbinding }
 Tcs_config () {

 IncludeCompnent Tclient, Tserver_Config;

 IncludeConnector Trpc }

Figure 10. Physical architecture of Client-Server

4.2.1. Legibility. If we examine architectures written

in Acme we find that the definitions of the types and

their instantiation are merged in the same

architectural level. In our approach we have made a

very clear separation between the description phase

and the instantiation one by putting them in two

different architectural levels. So, we can note that the

developed architectures using COSA+ are more

legible than those developed with Acme.

4.2.2. Evolution. Via the topological graph we can

easily replace or add a component in the architecture

since we have all the connections information

registered in the connection manager node associated

to the previous component. We can realise these

operations without any manual effort on behalf of the

application builder because there is no need, to write

the attachment and binding links among elements.

On the other hand in Acme attachments and bindings

are being updated all the time manually.

Consequently we can say that the evolution process

is easier in COSA+ than that in the ADL Acme.

4.2.3. Reusability. By firstly defining the types of

the architectural elements in COSA+ and then

instantiate these elements in a second phase

separately alone or inside their underling component

container (configuration) via the included primitive.

In Acme each element can be instantiated only in the

context of his definition and not outside. So we can

say that COSA+ model allows better reusability of

the architectural elements than in the ADL Acme.

4.2.4. Reliability. In COSA+, attachment links are

encapsulated in the connectors and Bindings are

treated as special-purpose connectors. Thus, all

elements being installed in the application are well

semantically and correctly connected since

connectors are only installed among compatible

component interfaces. This style of automatic

cheeking is not allowed by Acme because the

application builder has no mean to check the links

described manually. Consequently, architectures

were written in COSA+ are all the time coherent.

5. Conclusion and future works

The approach that we have proposed describes a

model of architecture based on three fundamental

concepts. The first one is the new structure of a

connector in which we encapsulate the attachments.

Such connectors are first-class entities and have

equal importance like components. We consider

them as reusable COTS elements; the second concept

is the special-purpose connector who performs the

role of the bindings deployed to connect components

with their configurations; the third concept is the CM

which represents the nodes of the topological graph

associated with a given logical architecture. The

graph is automatically generated according to the

installation operations of connectors in the

application. This graph allows a good traceability of

the hierarchical links between the components of the

same level and between the components with their

configuration. This traceability is necessary to realize

the updating operations and thus facilitate the

evolution process of architectures. Note that we can

save the topological graph associated with a given

configuration in order reuse it with some

modifications or to deploy it as it is in other

applications. It seems to us that our approach is a

supplementary step towards the development of

large-scale software applications by assembly

components already initiated by the paradigm CBSD.

Our future works concern with the impact of this

approach on the maintenance activity and the

evolution process of the software architectures.

6. References

[1] Crnkovic, I., and Larsson M., Building Reliable

Component-Based Systems, Artech House, July 2002.

[2] Anderson, T., Feng, M., Riddle, S., and Romanovsky,

A. “Protective Wrapper Development: A Case Study”. 2nd

Int. Conference on COTS-based Software Systems

(ICCBSS’03). Ottawa, Canada. Feb., 2003. LNCS Volume

2580 pp. 1-14 Springer-Verlag 2003.

[3] Garlan, D., Monroe, R.T., and Wile, D. “Acme:

Architectural Description Component-Based Systems,

Foundations of Component-Based Systems”. Cambridge

University Press, 2000, pp. 47-68.

[4] Garlan, D. “Software Architecture and Object-Oriented

Systems”. IPSJ Object-Orieted Symposium, August 2000,

Tokyo, Japan.

[5] Shaw, M., and Garlan, D. Software Architecture:

Perspectives on an Emerging Discipline. Prentice-Hall,

Upper Saddle River, N.J., ISBN 0131829572, 1996.

[6] Adel Smeda, Mourad Oussalah, and Tahar

Khammaci, A Multi-Paradigm Approach to Describe

Complex Software System, WSEAS Transaction on

Computers, Volume 3, No.4, October 2004, pp.936-941.

[7] Medvidovic, N. and Taylor, R.N. “A Classification

and Comparison Framework for Software Architecture

Description Language”. IEEE Transactions on Software

Engineering Vol. 26, No1, January 2000.

[8] Mehta N.R., Medvidovic N., and Phadke S., “Towards

a Taxonomy of Software Connectors”, ICSE’00, Ireland

CM Client

CM CS

CM Server

CM

connectManager

CM
dataBase

CM
securityManager

Legend: Father Link

 Brother Link

