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RENORMALIZATION AND ASYMPTOTIC EXPANSION OF
DIRAC’S POLARIZED VACUUM

PHILIPPE GRAVEJAT, MATHIEU LEWIN, AND ERIC SERE

ABSTRACT. We perform rigorously the charge renormalization of the so-called
reduced Bogoliubov-Dirac-Fock (rBDF) model. This nonlinear theory, based
on the Dirac operator, describes atoms and molecules while taking into ac-
count vacuum polarization effects. We consider the total physical density ppp,
including both the external density of a nucleus and the self-consistent polar-
ization of the Dirac sea, but no ‘real’ electron. We show that p,, admits an
asymptotic expansion to any order in powers of the physical coupling constant
aph, provided that the ultraviolet cut-off behaves as A ~ e37(1=2Z3)/20pn 5, 1,
The renormalization parameter 0 < Z3 < 1 is defined by Z3 = app/a where
a is the bare coupling constant. The coefficients of the expansion of p,,, are
independent of Z3, as expected. The first order term gives rise to the well-
known Uehling potential, whereas the higher order terms satisfy an explicit
recursion relation.

© 2010 by the authors. This paper may be reproduced, in its entirety, for non-
commercial purposes.
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1. INTRODUCTION AND MAIN RESULT

Renormalization is an essential tool in Quantum Electrodynamics (QED) [8] 2,
19]. The purpose of this paper is to perform rigorously the charge renormalization
of a nonlinear approximation of QED, the reduced Bogoliubov-Dirac-Fock (rBDF)
theory that was studied before in [14 [15] 18| 17, 16 12]. This model, based on the
Dirac operator, describes atoms and molecules while taking into account vacuum
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polarization effects. It does not need any mass renormalization, hence it is a theory
simple enough for an investigation of charge renormalization in full detail.

Before turning to our specific Dirac model, let us quickly recall the spirit of
renormalization. A physical theory usually aims at predicting physical observables
in terms of the parameters in the model. Sometimes, interesting quantities are
divergent and it is necessary to introduce cut-offs. For electrons the parameters are
their mass m and their charge e (or rather the coupling constant o = €?). Predicted
physical quantities are then functions F(m,a,A) where A is the regularization
parameter. Mass and charge are also physical observables and renormalization
occurs when their values predicted by the theory are different from their ‘bare’
values:

(1.1) Mph = Mpn(m, ®, A) #m and/or apn = apn(m, a, A) # a.

In this case the parameters m and a are not observable in contrast with mp, =
mpn(m, a, A) and apn = apn(m, a, A) which have to be set equal to their experi-
mental values. The relation (II]) has to be inverted, in order to express the bare
parameters in terms of the physical ones:

(1.2) m = m(Mph, Qph, A) a = a(mph, Aph, A).

This allows to express any observable quantity F' as a function F of the physical
parameters and the cut-off A:

(1.3) F(mph, apn, A) = F(m(mpn, apn, A) , a(mpn, apn, A) , A)

A possible definition of renormalizability is that all such observable quantities have
a limit when A — oo, for fixzed mpn and app.
Important difficulties can be encountered when trying to complete this program:

e The physical quantities mpy, and apn might be nonexplicit functions of o
and m. The corresponding formulas can then only be inverted perturba-
tively to any order (usually in ). This is the case in QED [8] 2, [19]. In the
model studied in this paper we have mpn = m and apn # «, hence only the
charge has to be renormalized. Furthermore oy, is an explicit function of
m, a and A (see (L) later). Renormalizing our model is therefore a much
easier task than in full QED.

e Even when the bare parameters are explicit functions of the physical ones,
these relations can make it impossible to take the limit A — oo while keeping
mpn and apy fized. As we will explain, in our model (2/37m)apn log A < 1.
To deal with this problem, we let A depend on ap and we investigate the
asymptotics in the limit apn — 0.

We now turn to the description of our model. The Bogoliubov-Dirac-Fock theory
is the Hartree-Fock approximation of QED when photons are neglected [18,[17]. The
associated reduced theory is obtained by further neglecting the so-called exchange
term. In both models, the system is described by a Hartree-Fock (quasi-free) state
in Fock space, which is completely characterized by its one-body density matrix P
(an orthogonal projector for pure states), acting on the one-body space. The state
P contains both the ‘real’ electrons of the system (that of an atom for instance)
and the ‘virtual’ electrons of the Dirac sea, which all interact with each other
self-consistently. Therefore, there are always infinitely many particles and P is
infinite-rank.
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When the exchange term is neglected, a ground state at zero temperature is
(formally) a solution of the following self-consistent equation:

(1.4) P = X(—co (D) +6
' D =D°+alpp_1ja —v) *|z[ 7"

Here DY = - (—iV) + 3 is the free Dirac operator [27] acting on the Hilbert space
$ = L?(R% C*). For the sake of simplicity we have chosen units in which the
speed of light is ¢ = 1 and, as the model does not need any mass renormalization,
we have taken m = 1 for the mass of the electrons. The second term in the formula
of D is the Coulomb potential induced by both a fixed external density of charge v
(modelling for instance a smeared nucleus) and the self-consistent density pp_; /o
of the system (see below). In ([4]), « is the bare coupling constant that will be
renormalized later and p € (—1,1) is a chemical potential which is chosen to fix the
desired total charge of the system. We have added in (IL4]) the possibility of having
a density matrix 0 < § < xy, (D) at the Fermi level, as is usually done in reduced
Hartree-Fock theory [26]. So the operator P is not necessarily a projector but we
still use the letter P for convenience. Later we will restrict ourselves to the case of
P being an orthogonal projector.

Equation ([[4) is well-known in the physical literature. A model of the same
form (including an exchange term) was proposed by Chaix and Iracane in [3]. Also,
similar equations are found in relativistic Density Functional Theory, usually with
additional empirical exchange-correlation terms and classical terms accounting for
the interactions with photouns, see, e.g., [11, Eq. (6.2)] and [10, Eq. (62)]. Dirac
already considered in [7] the first order term obtained from (4] in an expansion
in powers of a.

Let us now explain the exact meaning of pp_1/3. The charge density of an
operator A : $ — $ with integral kernel A(x,y)so is formally defined as pa(z) =
S A(x,7)0,0 = Trea(A(z, x)). In usual Hartree-Fock theory, the charge density
is pp(x). However, as there are infinitely many particles, this does not make sense
here. In (I4), the subtraction of half the identity is a convenient way to give a
meaning to the density, independently of any reference. One has formally

pp1y2l@) = pope (2) = 5 X by (@ o (@)

i>1

where {¢; };>1 is an orthonormal basis of P$) and {¢; };>1 is an orthonormal basis
of (1 — P)$. As was explained in [I8], subtracting 1/2 to the density matrix P of
the Hartree-Fock state makes the model invariant under charge conjugation.
When there is no external field, v = 0, Equation (4] has an obvious solution for
any p € (—1,1), the Hartree-Fock state made of all electrons with negative energy:

P =P :=X(_000)(D,

in accordance with Dirac’s ideas [4} [5,[6]. Indeed ppo_1/2 =0, as is seen by writing
in the Fourier representation

(PO —1/2)(p) = — 22D

2/1+ |p|?

and since the Dirac matrices are trace-less. This shows the usefulness of the sub-
traction of half the identity to P, since the free vacuum P° now has a vanishing
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density. For a general state P, we can use this to write (formally):
(1.5) pPp-1/2 = PpP-1/2 — Pp°—_1/2 = PP—PO-

When P belongs to a suitable class of perturbations of P° (for instance when P— P°
is locally trace-class), the density pp_po is a well-defined mathematical object. We

will give below natural conditions which garantee that P — P° has a well-defined
density in our context.

In the presence of an external field, v # 0, Equation (L4) has no solution in
any ‘reasonable’ Banach space [15] and it is necessary to introduce an ultraviolet
regularization parameter A. The simplest method (although probably not optimal
regarding regularity issues [12]) is to impose a cut-off at the level of the Hilbert
space, that is to replace $ by

98 := {f € L(R%CY), supp(f) € B(0;A)}
and to solve, instead of (I4)), the regularized equation in $A:

1 6 P = X(—oo,u) (D) + 5

( ' ) D =TI, (DO—FOé(pP,PE —I/)*|x|71) IIp

where I, is the orthogonal projector onto £, in § = L?(R3; C*).
Existence of solutions to (LGl was proved in [I5] for 4 = 0 and in [12] for u # 0.

The precise statement is the followingﬁ

Theorem 1 (Existence of self-consistent solutions to (L6l), [15 [12]). Assume that
a>0,A>0and p € [—1,1] are given. Let v in the so-called Coulomb space:

ci= {1+ [ WrHmPaE < oo}

Then, Equation (6] has at least one solution P such that
(L7)  P—PY€63(Hr), PLP—PY)PLE€Gi(Hr), pppo €CNLIRY).
All such solutions share the same density pp_po .

In (I7), 61(Ha) and G3(Ha) are respectively the spaces of trace-class and
Hilbert-Schmidt operators [25] on $),, and P? = 1 — P%. The method used in
[15, [12] was to identify solutions of (LG with minimizers of the so-called reduced
Bogoliubov-Dirac-Fock energy which is nothing but the formal difference between
the reduced Hartree-Fock energy of P and that of the reference state P2. Note
that due to the uniqueness of pp_po the mean-field operator D is also unique and
only 4 can differ between two solutions of (L6).

Let us mention that it is natural to look for a solution of (L) such that P — P°
is a Hilbert-Schmidt operator on $,. If P is a projector, the Shale-Stinespring
theorem [24] then tells us that P yields a Fock representation equivalent to that of
P°. Even when P is not a projector, it will be associated with a unique Bogoli-
ubov mixed state in the Fock space representation of P%. This is a mathematical

1T6 be more precise, in [I2] Theorem 1], only the existence and uniqueness of minimizers of the
reduced BDF functional are stated. Elementary arguments based on convexity allow to deduce
Theorem [Il from the results of [12].
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formulation of the statement that P should not be too far from P°. Indeed, if P is
an orthogonal projector, one has (see [14, Lemma 2] and [16, Lemma 1])

P — P° € &5(94)

p2_p } = PY(P— P°)P) € &1(Ha) and pp_po € CN L*(R?),

therefore, in this case, (1) is just equivalent to the Shale-Stinespring condition
P—P° € Gy(H).

The property P (P — PY)PY € &1($H4) allows us to define the total ‘charge’ of
the system by (see [14])

Trpo (P — P°) :=Tr P°(P - P°)P° + Tr PO(P—P°)PY.

When P is a projector, the above quantity is always an integer which is indeed
nothing but the relative index of the pair (P, PY), see [14, [I]. Varying p allows to
pick the desired total charge. Indeed, if v is small enough and i = 0, then one has
|P— P°|| <1 and the relative index vanishes: Trpo (P — P°) = 0.

It is very important to realize that solutions of (LG are singular mathematical
objects. This fact is precisely at the origin of charge renormalization. In [I2]
Theorem 1], the following was proved:

Theorem 2 (Nonperturbative charge renormalization formula [12]). Assume that
a>0,A>0and p € (—1,1) are given. If v € CN L' (R3), then pp_po € L*(R?)
and it holds

/ v — Trpo (P — P?)
1.8 - _po = 2B
(18) ASV »/l‘@ Pp—pt 14+ aBy

In this formula, By is an explicit function of the ultraviolet cut-off A (see the
comments after (2.4) and (BI0)), which behaves like

2 5 2log2

By = 3—7TlogA—9—7T+ 3
Let us emphasize that (L8] is non perturbative and holds for all & > 0 and all
p € (—1,1). Theorem 2 shows that the operator P—PY is in general not trace-class:
if P— P € &1($a), then it must hold Trpo (P — PY) = Tr(P — P°) = [o4 pp_po.
In our model we have two possible definitions of the charge of the system: f]R3 v—
Trpo (P — P%) and [s(v — pp_po). In practice it is the electrostatic field induced

+O(1/A3).

by the nucleus (together with the vacuum polarization density) which is measured,
hence it is more natural to define the charge by means of the density. By (L)), the
total Coulomb potential is, at infinity,

| S —pppo)  1r2mr (Jsv = Trpa (P = PY))

au—p _p0 ) kx — ~ o =
v =prr)* S B "

Let us assume for simplicity that we put in the vacuum (u = 0) a nucleus containing
Jgs v = Z protons and which is small enough in the sense that ||, < 1. Then
Trpo (P — P%) = 0 by [15, Theorem 3] and we see that at infinity the potential

induced by the nucleus is not aZ/|x| as expected, but rather apnZ/|x| where

1 J—
1+aBy

(1.9) aph = Z3a, with Z3 = 1 —apnBa.
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The charge renormalization constant Z3 is well known in QElﬂ [8,2,19]. The value
of a is not observable, oy is the real physical constant since we always observe the
nucleus together with the vacuum polarization density. Its experimental value is
apn >~ 1/137.

In our theory we must fix o, and not a. Using (I9) we can express any physical
quantity in terms of apn and A only. Unfortunately it holds apnBa < 1 hence it
makes no sense to take A — oo while keeping apn fixed (this is the so-called Landau
pole [20]) and one has to look for a weaker definition of renormalizability. The cut-
off A which was first introduced as a mathematical trick to regularize the model
has actually a physical meaning. Because of the above constraint apn,Ba < 1, a
natural scale occurs beyond which the model does not make sense. Fortunately,
this scale is of the order ¢37/2%eh  a huge number for oy, ~ 1/137.

It is more convenient to change variables and take as new parameters apn and
Z3 = 1 — apnBa, with the additional constraint that 0 < Z3 < 1. The new
parameter Z3 is now independent of oy, and the natural question arises whether
predicted physical quantities will depend very much on the chosen value of 0 <
Z3 < 1. The purpose of this paper is to prove that the asymptotics of any physical
quantity in the regime apn < 1 is actually independent of Z3 to any order in app,
which is what we call asymptotic renormalizability. Note that fixing Z3 € (0,1)
amounts to take A ~ Ce37(1=Z3)/20pn 5 1

Instead of looking at all possible physical observables, it is convenient to define
a renormalized density ppn. Following [I5], we define it by the relation

(1.10) QphPph = O‘(V - pP—PE)

in such a way that D = D° — appppn * |2| 1. This procedure is similar to wave-
function renormalization. By uniqueness of pp_po we can see ppy as a function of
apn, v, i and A (or Zs). For the sake of clarity we will not emphasize the depen-
dence in v and p which will be fixed quantities. Also we will use the same notation
Pph(aph, A) or pph(apn, Z3), depending on the context. The self-consistent equation
for ppn was derived in [I5] and it is mentioned below in Section
From now on, we will assume that
uw=0.

For small external densities v, this means that we will be looking at the vacuum
polarization in the presence of the nucleus, without considering any real electron
(that is, ppn is the renormalized density of the nucleus containing both the bare
density v and the vacuum polarization density pp_po). We will explain in Section
that one can expand ppn = ppn(apn, A) as follows:

o0
(1.11) pon(@pn, A) = (pn)" v a

n=0
where {v,.a}n C L?(R3) NC is a sequence depending only on the external density
v and the cut-off A. This sequence is defined below in Section 2l The series (.11
has a positive radius of convergence, which is however believed to shrink to zero
when A — oo.

Assuming 7 decays fast enough (see condition (ILI2])), we will prove that for any
fixed n, the limit v, A — v, exists in L?(R3) N C. This is what is usually meant

2The renormalization constant Z3 should not be confused with the nuclear charge Z = fR3 V.
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by renormalizability in QED: each term of the perturbation series in powers of the
physical apn has a limit when the cut-off is removed. The sequence {v,}, is the
one which is calculated in practice [2] 13}, [T}, [I0]. One has for instance vy = v and

1 2 1 V(y)
1 2 1/2 2|z —ylt
T = dt (t° —1 =+ = —=—dy
vixlal 37‘/1 ( ) [t2 HJ /Rse le —y|

the Uehling potential [28] 23]. All the others v, can be calculated by induction in
terms of vy, ..., vp—1, as is explained below in Section

The next natural question is to understand the link between the well-defined,
cut-off dependent, series (ILII) and the formal series > - (aph)"vn. Recall that
apnBa < 1 by construction, so it is in principle not allowed to take the limit A — oo
while keeping apy, fixed: we rather want to think of Z3 =1 — o Ba as being fixed.
The main result in this paper is the following

Theorem 3 (Asymptotic renormalization of the nuclear charge density). Consider
a function v € L*(R®) N C such that

(1.12) / log(1 + |k))?NT2D(k)|?dk < oo
R3

for some integer N. Let ppn(capn, Z3) be the unique physical density defined by
([TI0) with p =0, Z3 =1 — apnBa and apn = Zsa.

Then, for every 0 < e < 1, there exist two constants C(N,e,v) and a(N,¢€,v),
depending only on N, € and v, such that one has

N
pon(@ph, Z3) — Y vn(apn)"

n=0

(1.13) < C(N,€v) a !

L2(R3)NC

for all 0 < apn < a(N,e,v) and all e < Z3 < 1 —e.

The interpretation of Theorem B is that the renormalized density ppn(cpn, Z3)
is asymptotically (meaning up to any fixed order N) given by the formal series
ZnZO(aPh)nVn’ uniformly in the renormalization parameter Zs in the range € <
Z3 < 1 — €. Therefore, for a very large range of cut-offs, essentially

CleSETr/2ozph <AL 0263(1—6)7r/2ozph

the result is independent of A and it is given by the formal series ), - (apn)" vy
Our formulation of renormalizability is more precise than the requirement that each
vp, A converges. It also leads to the formal perturbation series in a very natural way.
A natural question is to ask for the convergence of the perturbation series
> ns0(apn)"vp. It was argued by Dyson in [9] that it is probably divergent, but we
are unable to transform his argument into a rigorous mathematical proof. We will
make more comments on the series » -, - (apn)"vn at the end of next section.

Remark 1. We will provide explicit formulas for the sequence {v,} later in Section
@ We will in particular see in the proof that under Assumption ([[LI12), one has
v € LA(R3)NC for all 0 < n < N. Therefore the approzimation series of order N

appearing in (LI3), Zﬁ;o(aph)n%, is a well-defined function of L*(R3) NC.

Remark 2. The space L?>(R3*)NC is the natural space which occurs in this theory.
In particular the Coulomb norm is nothing but the classical electrostatic energy
which appears in the reduced BDF energy functional. Our result can be extended to
Sobolev spaces H*(R?) provided v is smooth enough.
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Remark 3. It would be interesting to extend this result to the case of atoms with
‘real’ electrons. This amounts to taking p sufficiently close to 1 at the same time
as apn s small. However this case is more difficult than what is done here: an
additional expansion of the electronic charge density in powers of apy is needed.

The proof of Theorem Bl (given in Section Bl below) is divided into two steps. We
first estimate the difference (see Lemma [B.T])

(1.14) < CL (N, &, v)(apn)V !

L2(R3)NC

N
ppn(apn, A) = > vna(apn)”
n=0

for a constant C (N, ¢,v) depending only on N, € and v, and under the assumption
that € < Z3 =1 — apnBa < 1 — €. This amounts to expanding the solution of the
self-consistent equation (L.6) up to the Nth order in cpn while controlling the error
term uniformly in A. Then we show in Lemma that

CQ(N, I/)
(115) VO §n§ N, ||V"7A_Vn||L2(R3)ﬁC < W
for a constant C3(N,v) depending only on N and v, leading to the bound
N N
Co(N 1— N+1
(116) > via(ap)” = 3 vnlop)” < (o V1 0 )
n=0 n=0 L2(R3)NC € ( _6)

since by assumption (B) N~ < (apn/e)V 17", The main result then follows
from (LI4) and (LIG]). All these bounds strongly use the explicit recursion relations
defining the sequences {v,, A} and {1, }, as well as tedious estimates on the nonlinear
terms appearing in these relations.

The rest of the paper is organized as follows. In Section 2l we define the sequences
{Un,a} and {v,} by their respective recursion formulas and we discuss some prop-
erties of the latter. In particular, in Theorem Ml we give a simple estimate on
[vnl 12®sync- In Section BB we present estimates on the different terms appearing
in the recursion formulas. Of particular interest will be the density 11 A giving rise
to the Uehling potential. In Fourier space, we have 1y z(k) = Up(k)v(k) for an
explicit function U (k) which is studied in Section Bl The proofs of Theorems @l
and [3] are respectively provided in Sections 4] and Some other technical proofs
are provided in Appendices [Al [Bl and

Acknowledgment. The authors are grateful to Christian Brouder for interesting
comments. M.L. would like to thank Jan Derezinski and Jan Philip Solovej for
stimulating discussions.

2. THE TWO SEQUENCES {v, A} AND {v,}

In this section we derive formulas for {v, o} and {v,,}, and we make some com-
ments on the latter.

2.1. Definition of {v, A} and {v,}. We start with the self-consistent equation
(6] with cut-off, assuming p = 0. Note that in the regime of interest in Theorem
Bl we have o = apn/Zs < apn/e. When art/621/6 ||, < 1, it is known that
0 ¢ o(D) hence 6 = 0 in (L), see [I5, Theorem 3] and [12, Lemma 11]. Therefore
assuming a(v, N, €) < e(w!/62'1/6 |y|,)~1 in Theorem 3, we automatically have that
§ =0 and P = P? is unique.
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The idea is then to expand the self-consistent equation
(2.1) P =X (—o0,0)1Ia (DO +alpp_po —v)* |I|71)HA

in powers of a by means of the resolvent formula. This method was already used
in [I4] to prove existence and uniqueness of solutions. We define

n

1 ° 1 1 1
92.9) Foa(pgsoin)i=p | — | —— TT(T0p % — 1Ty ——— ) d
(2.2) Fpa(pas i) = p QW/—OODO+Z77H( AT AD0+”7) U

Jj=1

where we recall that IT5 is the orthogonal projector onto $, in L?*(R?,C*) and
U1y ey o, € C. We will always use the simplified notation Fy, o (1) := Fpa(p, ..y )
and vp := F 1 (U1p(o2a)). Note that by Furry’s theorem Fy; 4 = 0 for all j, see
[14, p. 547]. We also introduce

Fa(p) =Y Fualp).
n=3

The self-consistent equation (2.I)) may then be written in terms of the density
in Fourier space [14} [15], as

~

(23)  ppop (k) = —aBa(k) (57— (K) — DA (k) + Fa (a(v — pp_po))

where the function By (k) is given by

1 Za(|k]) z2—24/3
(2.4) Ba(k) = ;/0 (1—22)(1 + [k[2(1 — 22)/4) *

B [P0 sy
2 Jo V14 AZ — |k|z/2

with Zx(r) = (V1+ A2—4/1+ (A —r)?)/r, see [12]. The formula for B, (k) is well-
known (but in most previous works the second term was ignored, see for instance
211).

Defining Up (|k|) = Ba — Ba(k) where By = B (0) and 0 < Ua(]k|) < Ba with
Ua(2A) = By, we get the renormalized equation

dz

(2.5) (1 — apnUn)Bph + Fa(apnppn) = 7a

with the renormalized coupling constant apy := /(1 + aBjy) and the renormalized
density apnppn = a(v — pg) (see [15]). For convenience, we will denote by Uy the
operator of multiplication by the function U (|k|) in the Fourier domain. Hence we
can write the self-consistent equation (2.3 in direct space as

(2.6) (1 — apnlda) pph + Fa(aphppn) = va-

We now expand the unique solution ppn = ppn(cpn, A) of (Z6) in powers of apn.
Writing a formal series

(2.7) ppn = > _(Qpn)"Vn.

n=0
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we find that the functions v, o must satisfy the following recurrence relation
Vo,A = VA,

via = Upva,
(2.8)

WV

n
Un A =UrVp—1,A + E E Fj,A(an,A,-'-,an,A), Vn > 2.

j=3 ni+-tnj=n—j

Note that the operator Uy is bounded by U(2A) = Ba on $, and that, as we will
see later in Corollary B.I} each Fj 5 is continuous on C? with values in L2 N C. The
sequence {v, A} is thus well-defined in L? N C. Using estimates from [I4] it can be
proven that the series ([21) has a finite radius of convergence in L? NC, but this is
not needed for the moment and we can stay at a formal level in this section.

We can now formally pass to the limit as A — oo and define by induction a
sequence {v,} by

Vg = U,

v =Uv,

n
Vn:Z/{Vn,l_,—i-Z Z Fj(umy,...,unjy), Vn > 2.
Jj=3 ni+--+nj=n—j

where the F}; are defined similarly as the F; o with II, removed and  is the operator
of multiplication by the function U(|k|) in the Fourier domain, defined by

. A —2%/3
12— 52 \/4+r2(r2—2)lo Vad+r+r
92 3mr3 & N/ R

2.2. On the series {v,}. The recursion formula ([29) defining {v,,} contains two
terms. The first term Uv,,—; is a simple multiplication operator in Fourier space,
by the function U(|k|) which diverges at infinity. The second term involves the
nonlinear functions Fj’s. If only the first term with I/ were present, the series
Zn>0 U (apn)™ would only converge when the Fourier transform 7 has a compact
support, the radius of convergence depending on the size of this support. If only the
nonlinear terms were present, the series would have a finite radius of convergence
by the estimates of [14] and of Section

However when the two terms are combined, the situation is much more compli-
cated. The nonlinear terms act like convolutions in Fourier space, hence even if U
has a compact support in the Fourier domain, the support of 7,, will probably grow
with n. A careful study of the mixed effect of the multiplication by the divergent
function U and the nonlinearities seems rather difficult. We will prove the following
estimate:
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Theorem 4 (Estimate on {v,, }n>1). There exist universal constants A and K such
that

211) [ +U)"™ " v pone
ma

< {0+ 0" e (K og(m) % 1+ 207355

forallA>21, meNand0O<n<m.
Even if we assume that v decays fast enough in Fourier space, for instance
V=0, (LU V|pane < C

the above estimate (Z.II) does not imply that the series > -, vn(apn)” is con-
vergent for apn small enough. Although our estimate (ZI1) is certainly far from
optimal, as we have already mentionned, it is expected that the series does not
converge in any appropriate sense [9].

It is sometimes argued that the series could be Borel summable. The Borel
transform is defined by

n
B(t) = Z %Vn.

n>=0
If B(t) is a convergent series (for an appropriate norm) having a holomorphic ex-
tension to a domain containing the positive real line, such that

Blapy) := / B(t)e "o dt
0

makes sense in an appropriate neighborhood of apn, = 0, one may see B(aph)
as the physical density, whose series Zn>0(aph)"l/n is only asymptotic. Proving
such results mathematically is hard, even for the model studied in this paper. Our
estimate (2IT) does not even allow to define the Borel transform B(t) in L2(R3)NC.

But Borel summability is not the only tool to construct a physical density pro-
viding the correct asymptotic series. For the model studied in the present paper,
we have several natural families of functions of apn, the cut-off densities

(2.12) Pph (aph, 063(1_23)”/2%1‘)

obtained by minimizing the reduced BDF energy with a cut-off A = Cle3(1=Z3)7/20pn
and using the relation (LI0). Each such density [2I2) has (for fixed C and 0 <
Z3 < 1) the required asymptotic series in apn by Theorem [B] and it solves the
self-consistent equation (L6 with the corresponding cut-off A. Furthermore this
solution has the benefit of being well-defined even when ayy is not small, allowing
for the description of nonperturbative physical events.

The rest of the paper is devoted to the proofs of Theorems [3] and [l

3. SOME PRELIMINARY RESULTS

In this section we state two preliminary results that will be useful in the proof of
our main results, Theorems Bl and @l The corresponding lengthy calculations will
be provided later in Appendices [Al [B] and

Notation. In the whole paper we use the notation E(r) = (1 + |r|>)'/? for r € R?
orr € R.
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3.1. The Uehling multiplier U. The operator U, defined previously as the mul-
tiplication by the function U in the Fourier domain, plays a major role in the
definition of the sequence {v,}. In this section, we provide precise estimates quan-
tifying the convergence of Up towards U when A — oo, which will be very useful
in the proof of Theorem

Proposition 3.1. Let A > 1 and denote by Uy, the function defined on Ry by

[ Ba—Ba(r) when 0 <r < 2A,
(3.1) Ua(r) _{ 0 otherwise.

Then, for all r € Ry it holds limAﬁoo Ua(r) = U(r). Moreover, for ko = 157/2,
Up — 1 1
< m+3 { }
H 1+U el o I T By BE2A)
Finally, one has for a universal constant k1 (given in Lemma [B1l below)
(3.3) V0 < r < 24, 0<Ux(r) € 111(1 + U(T)).
Proposition Bl is proved in Appendix [Bl Note that the uniform estimate (3.2))

will later yield our estimate (IIH]) on vy, o — vy, (see Lemma[5.2). More properties
of U and Uy are provided later in Appendix [Al

(3.2)

s

3.2. The nonlinear terms F,, » and F,. In this section, we provide estimates
on the functions F;, » and F),, which will be one main ingredient in the proof of
Theorem Bl We recall that Fy, o = Fz, = 0 by Furry’s theorem (see [I4] p. 547]).
In order to state our main result, we introduce the functions

- (6) (6 +1) 1
3.4 M I I H ’ % HNJ dn
(3:4) "A( )= |:27T/ Do—i—m ( i* || D0—|—in) }

forany n >3, u= (1, ,jin) €C" and € = (€1, ,en41) € {—1,0,1}"FL. Here,
we have used the notation

(3.5) o :=m, ni":=1-my and O :=1=1{ +0{".

The main result of this section is the following

Proposition 3.2 (Estimates on Fy; y). Let m € N, A > 1 and e € {-1,0,1}"".
Assume that n > 3. Then, there exist universal constants C and K such that

C™"(K1]
36 o+ ;,A<u>!!mmc<%ﬂ|| LUl

for all p = (1, -+, un) € C™. Here, n(e) = 1, if at least one €; is equal to —1, and
n(e) =0 otherwise.

By 22), 34) and @33, wecanwrlteF( 1)*F,\andF( R
Therefore the following is a byproduct of (BII)

Corollary 3.1. Let m >0, A > 1 and n > 3 an odd integer. Then,

(3.7) max {10 +U)" Fun ()] pape s 10U+ U™ Fa)l e }

"(Klogn)™ H I +U) ™ sl
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for any p = (1, ,pun) € C™. Here, C and K refer to the universal constants
given by Proposition [3.24. In particular, the functions F, o and F, are continuous
on C"™ with values in L>NC.

Recall Fy, = Fa, o = 0 hence only the case of n being an odd integer is relevant.
The estimates of Proposition [3.2] are an adaptation of ideas of [I4], in which similar
bounds were computed (see, e.g., Lemmas 15 and 16 in [I4]). Notice however that
the projector Iy was never mentionned in [I4] since A was a fixed number. We
focus here on the limit A — oo and we need to quantify the dependence on A of
the estimates on the functions F}; ;. The proof of Proposition [3:2] is provided below
in Appendix The factor (K logn)™ comes from (A1) of Lemma [A.3] and the
constant K is also the one appearing in Theorem [

4. PROOF OF THEOREM [4]

This section is devoted to the proof of our estimate (ZII]) on the nth order
density v,,. The definition of v, o being very similar to that of v, our proof also
provides the following

Proposition 4.1 (Estimates on v, o). There exists A > 0 such that
(D) O+ v e
<A max {(1+ U)" v 2ne, (K log(m))

mn
2

+1
J+ 2l )
foranyA>1, meNand 0 <n<m.
We postpone the proof of Proposition [4.1] and first complete that of Theorem [4]

Proof of Theorem [} We split the proof into three steps. First, we estimate by
means of [B7), the following norms: Jp, n := ||(1 +U)" " | L2c-

Step 1. Let m € N and denote
Pr(t) =Y Jmnt"™.
n=0

The polynomial P, (t) satisfies for any t >0
(4.2) P (t) < (14t + )11+ U™Vl L2ne + Qu(tPm (L)),
where (C and K are the constants of Proposition [3.2)

(4.3) Om(u) :==u+ Z CI(Klogj)™ Jul.

j=3
Let us assume first that n = 0,1, 2. By (29), we then have v, = U"v, hence
(4.4) Yn =0,1,2, Jmn = [|L+U)" " U V|| L2ne < |14+ U)" V|| L2Ac-
We now turn to the case n > 3. By (2)), we have
I < (L +U)" " Uvp-1|L2nc

+ 0> > [ U™ " Faja (Vng s+ 5 Vnogia ) ll220cs

3<2j+1<n 2j+1
n=n—25—1
k=1
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hence, by Corollary [31]
T <N +U™ [ pone + >0 >, ¥

3<2j+1<n 2j+1
ng=n—25—1
k=1
2j+1
x (Klog(2j + 1)) TT 10 +2)™ v, e
k=1

Since ||(1 +U)" ", llc < ||(1+U)™" " vy, || L2nc, We arrive at the inequality

n J
(4.5) T < Jmn-1+ Yy _CH(Klog)™™" Y ( 1T Jm,nk>.
k=1

J=3

e

ny=n—j
1

Combining (@A) with (43]), we obtain
P(t) < 1+t + )11+ U™ v 12nc + tPn(t)

+Zm:2n:cjtj(Klogj)m_" > (ﬁ‘]’"’""tnk)'

n=3 j=3
ng=n—j
1

M

By Fubini’s theorem, it holds

(4.6) Pp(t) < L+t + )1 +U) ™| p2ne + tPm(t)

m m—j J
+ Z CItI (K log j)™ 4 Z ( H Jm,nktnk) ;

Jj=3 p=0

Noticing that
m—j i _
> % (Mwmt) < Putt?
=0 k=1
? > nk=p
k=1

we deduce [£2) from [6]). This completes the proof of Step Il In the second step
of the proof of Theorem ] we compute suitable bounds on Q,, near the origin.

Step 2. Let m > 3. There exists a positive constant A(C, K), depending on C and
K, but not on m, such that

_ _AlCK)
@0 Quly <2 forany 0 <u < Uni= Gy oo
By the definition @3] of Q,,, we have
mo R i Cu \J
Qn(u) < u+ ;ca(mg(])) v’ S ut (K log(m)) ; (Klogm> !

hence when 2Cu < K logm and 2C3(K log(m))™ 3u? < 1, it holds Q,,(u) < 2u.
This ends the proof of Step

Step 3. Conclusion of the proof of Theorem [}
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Since the coefficients J,, , are non negative, the function ¢ — tP,,(t) is either
identically equal to 0 (then (2Z.II)) is straightforward), or increasing on R*. In the
second case, it tends to oo as t — oo, and there exists a unique 7}, > 0 such that

(4.8) Ty Po(Ti) = Unp.

Two situations may then occur. If Tp,, > 1/4, by (@2) and @7),
Poa(t) < 2(1+ U™ || 20¢ + 2t Po(t)

for all 0 <t < 1/4. Hence P, (t) < 4[[(1 +U)™v|| 2nc and

1
Jm,n < 4an(Z> < 4n+1||(1 +u)mV||LZQc.

Otherwise T,, < 1/4 and in this case we can deduce from ([£2), (L) and (@8] that
Un/Tm <2||(1+U)"v| r2Ac + 2U,,. This gives
Ty > U .
Al +U)™v]|L2ne
Combining with (£.8) again, we are led to

Un gntl min
Jm,'n, X T7777;L+1 § U—;Tll”(l +Z/{) V”L;’_FJ;C'
Estimate (210 then follows from (7). O

We now turn to the proof of Proposition {1l

Proof of Proposition[{-1l The proof is almost identical. Denoting J3 ,, := [|(1 +
U)™ vy, A||12ne and introducing the polynomial function PA(t) given by

m

PA(t) =D Jh at",

n=0
we deduce from the definition ([Z.8)), and from 33) and (B7) that
(4.9) Pp(t) < (14 st + w7 (1+U) V]| 20 + (k1 = DEPR(E) + Qu(tP (1)),
for all ¢ > 0. Estimate ([@I) then follows by applying to (@3] the arguments of
Steps 2l and Bl of the proof of Theorem [l O
5. PROOF OF THEOREM [3]

This last section is devoted to the proof of our main estimate (I.I3]). The proof
relies on the identity

(5.1)
Pph = VA + aphUApph — Z 051237];’+1F2n+1)A(pph7 N 5pph) _ 05113\/]vj+1GN+1,A7
3<2n+1<N
where we denote
1 e 1
5.2 GNlAZZp —/ — X
(52) i 27 J oo D° — apnppn x| - |71 4 in

N+1

1 1
X H (HA(pph*m)HAm)dn>.

Jj=1
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The formula (E1) follows from Cauchy’s formula applied to (26). As mentioned
in the introduction, the proof of (I3 naturally splits into two steps: we first
establish that, under the assumptions of TheoremB], the error term

(5.3) Ry (aph, A) == ppn(apn, A Z W

is controlled by a factor ozﬁfrl (up to some multiplicative constant depending only
on N, v and €). In a second step we estimate the differences vy, p — v, and deduce
([TI3). More precisely, the remainder Ry satisfies the following

Lemma 5.1. Let N e N and 0 < e < 1. Assume that e < Z3 =1 —opnBar <1 —¢
and Ny = [|(1 +U)N T v|| p2ne < 00. Then, there exist two constants C(m, e, Ny)
and a(N, e, Ny), depending only on N, € and Ny, such that

(5.4) |Bx (s, d)|| , < COV e Nw) a2,

for all 0 < apn < a(N, e, Nn).
As for the differences v, o — vy, we have the

Lemma 5.2. Let A > 1 and N € N. Assume that Ny = |(14+U)N 1| 2ne < 00.
Then, there exists a constant C(N,Ny), depending only on N and Ny, such that

C(N NN)
5.5 ‘ WA — Vn < : ,
( ) 1% A 1% 120¢ (1 +BA)N+1—7I
forall0<n < N.

Combining Lemmas [5.1] and [5.2] we can complete the proof of Theorem

Proof of Theorem[3. Our assumption (LI2)) (together with (A.3])) means that Ay :
(1 +U)N Ty p2ne < co. Tt follows from (B3) that

N N
pon(ph, A) — Z Vn(apn)" = Ry (apn, A) + Z (V"J\ - Vn) (apn)™.
n=0 n=0
Hence by (54) and (&3,

(5.6)

for any number apn sufficiently small. In our setting we have Ba > €/apn and the
result follows. O

N

< C(N, e, Nx)adi™ + C(N, Ny) Z

pon(apn) Zvn ph} W’

It therefore remains to show Lemmas [5.1] and

Proof of Lemma[5 1l Let us introduce the notation

(5.7) rn(apn) = (apn) "N Ry (apn)-

We want to establish a bound on ry independently of apn. By (B.3), this requires
to estimate ppn and v, A (which was already done in Proposition E.T)).

The first step of the proof will be to bound ppn independently of ap,. Let us
recall that a ground state for the reduced Bogoliubov-Dirac-Fock model satisfies

lepnppnlle = llalpg = Vlle < allvlle
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(see [I5, Eq. (33)]). Since apn = Zza, this provides

(5.8) lppnlle < Zg HIvlle < e M|vlle
Note that we however do not have any a priori bound in L?(R?). Inserting (5.3))
and (7)) in (510 and using (28], we get
N(N+2)
(5.9) rN = OzphUATN —I—Z/{AVN,A + GN+1,A + Z Oz];]:N_l X
k=N+1
X Z Z FQHJrLA(WPU to 7wp2n+l)5
3<2n+1<N pi+-+pany1=k—2n—1
where w, = vpa for 0 <p < N, and wy41 = rn. It rests to estimate all the terms
of the right-hand side of (5.9).
For the first term, we recall that apn|Ua| < apnBa =1 — Z3 < 1 — ¢, therefore
(5.10) lapharn|zzne < (1 = €)lrnllL2ne-

The second term can be controlled by using ([8:3) and (£1]), which provide a positive
constant C'(N, Ny), depending only on N and Ny, such that

(5.11) [Unvnallrzne < sall(L+U)vnallzne < C(N,Ny).
As for the function G414, we first recall that
(5.12)

T52% 1 m52%
(1= T amlvle )IP°] < | D° — apnppn + W‘ < (1+ =—am vl ) 1D

for all ap, < m1/6271/6¢ |y " (see [I5, p. 4495]). Hence, the operator D° —
QtphPph * | - |_1 is invertible and, in particular, G 1,a is well-defined. Notice also
that (512) yields for any oy, < 7~ 1/62717/6¢ |y| !

1 1 3
S1D°1 < |D° = apnppn « W‘ <SID°.

When N > 5, we argue exactly as in Steps [Il and Bl of the proof of Proposition
B2 and deduce that there exists a constant C(N'), depending only on N, such that

(5.13) IGN-+1.allz2ne < COV)lppnllc™ -
When N < 4, our argument is different. We expand Gy 41,4 as before, writting
GN41,A = —Oph Z Faji1,0(pphs -+ 5 ppn) + Ge -
N+1<2j+1<5
In view of (B7) and (EI3) (for N = 5), this leads to

2j+1
|GN+1.4llL2ne < Capn S leenllZ T+ llopnllé
N+1<25+1<5

In both cases, we obtain
1GN+1.all2ne < C(N) max {|lppnlle™, llopnllé}

for any apn < 1, so that, by (8],

vl v
(5.14) 1GN+1,allE2ne < C(N) max {Tcﬂa 6—66 < C(N, N e).
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Finally, we consider the terms aggm_ngnJrLA(wpl, o+ Wpy,,,) Of the sum in the
right-hand side of (5.9). By (B1), we have
2n+1
Hag];N_lF‘QnJrl,A(wpl; e 7wp2n+l)HL2mC g O2n+1|aph|k7N71 H ||ij ||C
j=1

When p; < N, we deduce from (I that there exists a constant C'(N, Ny) such
that |lwp, ¢ < C(N,Ny). On the other hand, when p; = N +1 for some j, we can
bound one of the norms |lwy,||c by ||7n||c, and the other ones by using (@.I), (5.3)

and (&8) to get
llwp,lle = lopn| P | BN || < C(N, Ny, €)lapn] ™,
for apy < 1. This leads to
logis ™ o a (@ @) e < OOV Niv, ©)lapn [+ max{|rx e, 1},
for app < 1. Combining with (.9), (G.I0), (5.I1) and (5.14), we conclude that

||TN||L2|"WC g O(NvNNve) + (1 —€e+ O(NvNNa€)|aph|3) maX{HTNHC; 1}7

for apy sufficiently small. Therefore, the norm |ry| 2~ is bounded independently
of apn for apn small enough, which ends the proof of Lemma [5.1] O

We finally prove Lemma

Proof of Lemma[i3 Given any n € {0,1,2}, it follows from recursion relations

23) and (29) that
UnA — Un =Uva —U"v =UY (VA — u) + (U}( —U").
Therefore, given any N > n and 0 < p < N + 1 — n, we deduce from (B3] that
(1 +U)P(vn,a —va)llLzne < AT +U TP (A = V)| L2Ac
+nal L+ U)" P U = Uy e

Next, we recall that x = D1 g(0,24), S0 that, since U(2A) = Ba,
(5.16)

(5.15)

Miove < Lpraanss = 1 e
(1+U2A))N+ p (1+ By)N+ p

For the second term in the right-hand side of ([.15]), we use (3:2) and write
’ Up-U

1+ U)N+2n>p
o { gy a0 0™ e
Since (1 + Bp)N 1777 < (1 + Bo)N T < C(N)E(2A), we obtain

CN)

r2nc (14 Bpy)N+1-n-p
Combining with (&.158) and (&Id), we are led to

@+ Uy — v

(142" P~ (Un = UV]| L2re <

H (1 4 M)N-i—l

L oo

VHL2mc

N+4—n—p
< Rqg

@ +2070nn = w) (1 4+ 20+

V||L2OC'

C(N,Nn)
rinc (14 By)N+1i-n—p’

(5.17) W1+WH%A—MJ

forN>nand0<p<< N+1—n.
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We next turn to the case of n > 3. Given any N > n, we assume that (5I7)
holds for alln <k —1and 0 < p < N + 1 —n, and prove it by induction for n = k
and 0 < p < N +1—k. Using ([Z8) and (29), we first infer that

(5'18) H(l +M)p(yk,/\ - Vk)HLzmc < H(l +U)puA(Vk_17A — Vk_l)HLZQC
HA+UP U = U] o+ D > H(1+u)p><

3<2j+1<k 2j+1
> ke=k—2j—1
1

X (F2j+1,A(Vk1,A7' o 7yk2j+1,1\) _F2j+1 (Vk:17' o 7yk2j+1)>‘ L2mc-

We next estimate the first term in the right-hand side of (5I8) using (3:3)) and our
assumption. This provides

(5.19) |1 +U)PUs(vk-1.4 — vi—1)ll2ne < mall(A+UP T 1.8 — ve-1) || f2e
_ o)
= (1+BA)N+1fkfp

[@ )™ ] o -

For the second term, we argue as in the proof of (BI7), using (3:2) and @ZII)):

(5.20)
Upr—-U _
100+ s~ Ul < || IO+
C(N,Nn)

= (1+BA)N+1fkfp'

Finally, we turn to the terms in the sums of the right-hand side of (@I8]). On the
one hand, we deduce from (B4) that

. ) _ (=1,1,---,1) (0,—1,1,---,1) (0,---,0,—1)
Fojrin — Faji1 = —F2j+1,A - F2j+1,A - F2j+1,A :

Hence, since p < N+ 1—k < N + 1 — kg, we can apply (8.6 and (@I to obtain

(5.21)
H(l + Z/{)p (F2j+1,A (Vkl,Av e 7Vk2]‘+1,/\) - F2j+1 (Vkl,A; R Vk2j+1,1\)) ‘

L2nc

2j+1
C(N) _ C(N,Nn)
< AL/t H (L +2U)N TRy, alle < N
=1

On the other hand, the multilinearity of the function Fb;;; provides

F2j+1 (Vk11A5 t 7Vk2j+11A) - F2j+1 (Vku T 7Vk2j+1)
= F2j+1 (Vkl,A — Vky s Vg Ay "t 7Vk2]‘+1,/\) + F2j+1 (VklaVkQ,A — Vkyy o ;Vk2j+1,A)

+"'+F2j+1(yk1ayk2a"' y Vkajs Vkajy1, A _Vk2j+1)'
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Therefore, we infer similarly from B.6]) and (1)) that

(5.22)
H(l +u)p (F2j+1 (I/kl,./\7 e 7Vk2j+1,./\) - F2j+l (ykl,/\u e 7yk2j+1,1\))‘ 12AC
2j+1
SCW) Z 1L+ U Wrgn = vi,) |l H [+ 2Pl H 11+ 20)Pw ||
q=1 l<q >q
2j+1
T (L By TR (14 Ba) VR
As a conclusion, we derive from (BIJ), (5.19), (20), (2I) and (E22) that
1 1
P —
H(l U (Ve V’“)Hmmc < C(N,Nw) ((1 BN R A1/24) ’

Since (1 + Bo)NHt1=F=P < (1 + Bp)N*! < C(N)AY?4, this completes the proof of
GID) for n = k.

Notice the constant C'(N,Ny) deteriorates when n increases. However, this is
not a problem since n is limited to the set {0,---, N}. Estimate (&3] then follows
from (5I7]), considering the case p = 0. This concludes the proof of Lemma[5.2l O

APPENDIX A. AUXILIARY RESULTS ON THE UEHLING MULTIPLIER U

A.1. Elementary properties of U. We gather in this section some important
properties of U, which will be useful for the proof of Lemma[A3]in the next section.

Lemma A.1. The function U defined in (210) is a non-negative, non-decreasing,
smooth function on Ry such that
2

r 2
(Al) U(T) T:O E and U(T) r:oo a IOg T.
Its derivative U’ is positive on (0,00), and it holds
2 2
! = " =
(A.2) U'(r) o B and U"(r) e g

Moreover, we have

2 2
(A.3) vr € RT, (1+log B(r)) < 14+ U(r) < 1+ 5~ log E(r).

157
Proof of LemmalA. ]l For the convenience of the reader, let us recall the integral
and the explicit formulas (ZI0) of U:

P2 rlo2 4
(A.4) U(r) /O 22

Tar )y 1y mem

1252 m(r2_2)log<¢4+—7~z+r>

972 33 Vitre—r
Most of the statements of Lemma [A]] are direct consequences of (A4). As for

(A3)), we estimate, using (A4,

r? ! 2z 1 r? 2
Ulr) < — —————dz=—1 (1 —) < —log E(r).
(r) 127/0 e z=g-log (1+ 5, log B(r)
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For the lower bound, we notice similarly that
2 2

1 4
T z T
U(r 27/ (22——)dz=7,
) 47T(1+%) 0 3 157r(1+%)
for r € R4, so that

2472
157

(A.5) Vo < r < 1, %(1 +log E(r)) <
T

On the other hand, we can also write

<1+U(r).

2 1 2 2 2 2 4
4 2

Ulr) > z dz = <(1+T—) log(l—l—T—)—T——T—),

6mJo 1+ 2(1—2) 3wt 2 2) 28

thus when r» > 1

2

1 r 71
1+U(r) > 3—ﬂ_log(1+§>+1—6—ﬂ_ 23—7T(1+10gE(r)).

The lower bound in (A23]) then follows from (A). O
A useful consequence of Lemma [AT]is the following
Lemma A.2. Let ® be the function defined on Ry by
U'(r)
P(r) = ————
) 1+U(r)’
There exist three positive numbers T_, Ty and Py such that the function @ is
an increasing diffeomorphism from (0,T-) onto (0,®q), respectively a decreasing
diffeomorphism from (T4, 00) onto (0, D), and @’1((0, @0)) =(0,T-) U (T, 00).
Moreover, we have
2r 1

(A.6) D(r) o Tor and ®(r) ~

r—oo rlogr’

Proof of Lemmal4.2 From LemmalA 1]l we see that the function ® is well-defined,
smooth on R, and satisfies (AL6)). Then we compute for r > 0:
_U"(r(A+U(r) —U'(r)?

- (1+U(r))? '

By (A) and (A2), we thus have ®'(0) = & and ®'(r) ~y_oo —1/(r?logr).
Since ®(0) = 0 and ®(r) — 0 as r — oo by (A1) and (A2), there exist a,b,d > 0
such that ® is an increasing diffeomorphism from (0,a) onto (0,9), respectively a
decreasing diffeomorphism from (b, c0) onto (0,d). The function ® is positive on
[a,b], so that m = min{®(t),a < ¢t < b} > 0. Lemma [A.2] follows by introducing
&y = min{m/2,d}, and T_ < T, the two positive numbers such that ®(7_) =
®(T,) = . O

o'(r)

A.2. A useful bound involving U. We use here results from the previous section
to derive a bound useful for the proof of Proposition

Lemma A.3. There exists a universal constant K > 0 such that

< Klogn ﬁ (1 + U(|vj|))

J=1

(A7) 1+U ‘ Zn: v;
j=1

for alln > 1, and all (vy,--- ,v,) € (R3)™.
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If we allow K to depend on n, the optimal constant in the above inequality
satisfies K,, — 1/3m when n — oo, as can be seen from the proof. The factor logn
in (A7) is therefore optimal with regard to the large-n dependence.

Proof of Lemma[A.3 By Lemma[Ad] it holds

}:W) 1+U(Zhﬂ) 1+U(ZQ)
=1 j=1 j=1
< — max o = J,.

fLa+oto) o) o fa+u)

j=1 j=1

1+U(

3
N

It is clear that taking vy = -+ = v, = v shows that the maximum of the left-
hand side of (A) is actually J,. Next, we take t; = ... = t,, = 7, in (A.])) with
Tn = /167/(nlogn). Using (A2), we see that J, = (logn)/3w for n > 1. We
will show that actually it holds J,, ~ (logn)/(37) when n — co. In the rest of the
proof, we assume n > ng is such that J,, > 1.

Let us consider a maximizing sequence {(tgp )t ))}pEN for the variational
problem defining J,,. If the sequence is unbounded, then by Lemma [AT]

1+U (n maxj{t;p)})
J, < lim

pree 1+U(maxj{t§-p)}) -

which contradicts J,, > 1 for n > ng. Therefore (¢, ...t} is bounded in (R4 )".
In this case the variational problem on the right-hand side of ([(A-8]) has a maximizer,
which satisfies the equation

U
U'(ty) j
A9) VI<k<n,  ®t) = -
(A-9) " (be) = 7 T Uty

Assume now that ®; > ®p. By Lemma [A2] we have t;, > T_ and 2?21 t; < Ty,
for all 1 < k < n, hence n < T4 /T—. In particular, for n > T, /T—, it must hold
0 < & < ®. Note if ®; = 0, we infer from Lemma [A 1l that t; = --- = ¢, = 0,
so that J, = 1, a contradiction. Therefore, by Lemma [A.2] there exist exactly two
numbers 0 < 7, < T_ and T,, > T4 such that ®(7,,) = ®(T},) = ®;. By (A9)), the
unique possible maximizer is (7, - ,7,), where 7, = T, /n € (0,7_) is such that

(A.10) O(1,) = D(nTy).
The corresponding value of J,, is
1+ U(nm,)
L+ U(ma))™
By (AI0), we must have 7, — 0 as n — oo. Combining (AT0) with (AL), it

follows that ®(n7,) ~ 27,/(157) — 0. By Lemmal[A2land since nt, = T}, > T4, it
holds nr, — oo. Using (A.6) again, we deduce that n7, log(n,) ~n—o0o 157/(27,),

hence finally 7, ~ 1/157/(nlogn). Inserting in (AJ) and (A11)), we finally arrive
at Jp ~ (logn)/(3w). This ends the proof of Lemma [A.3] O

(A.11) Ty =
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APPENDIX B. PROOF OF PROPOSITION [3.1]

We start by showing the following lemma which provides estimates on U — Uy
on [0,2A].

Lemma B.1. Let A > 1. For k1 = 258/, one has

.
(B.1) Y0 <7 < 24, |Up(r) — U(r)] <H12E(A)
Proof of Lemmal[BJl Recall that (see (2.10) and (B.1)))
r2 P poo (a2
(B.2) Un(r) - U(r) = / — T - e W
A W1+ (1 - 22) 27 Jo E(A) - %
1 [=m 2 -z
+ _/ S dZ,
zat) (1 =221+ F (1= 22))
for 0 < r < 2A and where
E(A)—EA-7) 2A —r
B. Z = = < .
(B3) Alr) r EMN) + B(A—7) ~ E(A)

We will estimate all the terms of the right-hand side of (B:2). The first term is
treated as follows, for all 0 < r < 2A:

r2 [ P = r A r
s T
47 . %(1 — 22) 6 E(A) 6mE(A)
Using (B3) and |z| < E(z), we bound the second term by

2 2

(B.4)

3
r

(B5) 5

Za(r) 4 = rZ(r) r
rz % S rZa(r) < ’
o  EW)-%F dr(BE(A) — “A0) 7 2rE(A)
for 0 < r < 2A. In order to estimate the last term of the right-hand side of (B.2),
we d1st1ngulsh the regions 0 < r < A/2 and A/2 < r < 2A. We calculate

‘/Ew 32_? ° gg/m dz :glog(l—ZAA(T))'
Za(ry (1 —=22)(1 4+ (1 = 22)) 3Jzymy 1—2 3 1

E(A)

On the other hand, by (B.3)),
-2 r(24 = )(A + E(A)) 6r
= A TEM T EGR- ) -nEM) +ABG 1) T ER)

as soon as 0 < r < A/2. Hence using log(1 4+ z) < x we infer the bound

2 _ 2z
B6) Wo<r<A/2 L /EW il dz’ <
T Jzawy (1= 22)(1+ (1 - 22)) TE(A)

For A/2 < r < 2A, we write similarly as before

I

4 A

2z d
‘ /E<A> 5 dz‘g 3 / T B By + E(A)
zam (L= 21+ 21— 22) |~ 37 [z o

and deduce the estimate

2 _ 2
B.7) vA/2<r<2\, L /E(“ i dz
T Jzae) (1=22)(1+ (1 - 2%))




24 P. GRAVEJAT, M. LEWIN, AND E. SERE

Estimate (B follows from (B4)), (B:5), (B.6) and (B7), together with (B.2]). This
ends the proof of Lemma [B.1] O

We now use Lemma [B.] to finish the proof of Proposition Bl The pointwise
convergence of Uy when A — oo is a direct consequence of (B). For (3:2)), we first

use (A3) and (BI) to obtain

Ua(r) = U(r) 157y m+1 E(r)
<r <24, ot | S — :
sr 1+ U(r))m+ ’“( 2 ) 9E(A)(1 + log E(r))m+1
Optimizing = — % on [0, 2A] yields
E(r)

< max {1 B2A) }
T+ Tog By < M W T Tog BRAY I
Since E(2z) < 2E(x) for any x > 0, we are led to
Ua(r) = U(r) 157y m+1 1 1
1| S k| , :
1+ U(r))m+t “1( 2 ) A { (1 + log B(2A))m+1 E(2A)}
On the other hand, U is non-decreasing on R, hence, using (A3)) we infer
Ua(r) = U(r) U(r)
A+ U™+ A+ U(r)m
Using (B.S), we finally obtain

(B.8) ’

Vr > 2A,

S (wTw)m 1+ logg@A))m'

Up—-U 157\ m+1 1 1
B.9 AT g (2 , .
(B-9) A+ 0+ ||, . "””1( 2 ) max{ (1 + log E(2A))™ E(2A)}
We now recall that
A
1 (& 22 —24/3
B.10 By = — ——d
(B-10) A 7r/0 122

so that, for A > 1,
2

BN dz 2 4
By < = dz = —log [E(A)(A + E(A))] < — log E(2A).
37 Jo 1—=2 37 37
Combining with (B.9), we finally derive ([8.2]). We end the proof of Proposition [31]
by noting that ([B.3)) follows directly from the definition of Uy and (B.IJ). O

APPENDIX C. PROOF OF PROPOSITION

We may define F; , (1) by duality as follows

/ CFE A (1) = Te(Q5 40),
RS

for any smooth function ¢, and where

n

1 ° 1 (¢;) 1 (e;00) 1
€ [ - H J 3 _H Jj+1 )d .
A 27T/,OOD0+1'77H( A M]*|x| A DO )

j=1
We will use, like in [I4, p. 547], the inequality

(C.1) ITr(Q7 Q)| = /R3 wa(Q/Z,TC(p,p))dp </D@!Q/Z,7C(p,p)\dp-

The main idea is to derive a bound of the last integral in (C)) in terms of the
norms | (1 +U)""¢| 2 and |(1 +U)""¢] ;2 ¢/, which provides an estimate of the
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form (@4), by duality. The proof will depend whether we estimate the inte-
gral in the right-hand side of (CI)) by the norm [(1+44)~"™(]|., or by the norm
|(14+U)~™(] . For this reason, we split it into three steps.

Step 1. There exists a universal constant Cy such that for alln > 5

©2)  fa+wr ,:,Awwcs“’l%ﬂ U

for GHNZ (M17"' 7Mn) ecn.

We estimate Q) AC(p, p) as follows:

(C.3)
@otton < — s [ an [ [ (OG-0l 00) ¢
( R3 R’f
= (e5+1)
x (f (P)1@5+1(p; p]+1)|f1 (p +1))
j=1 "
% (£ n)ICon = P ) ) dpr - dp,

where p; = p; x|+ |7, and for any 8 > 0, f(é) wf\é)/(nz + E?)8, with 771(\6) =1,if

€# —1, and wj(\fl)(-) =1}.)>a. Applying the following corollary of (A.T)

n—1

(1+U(p —pa))™ < (Klogn)™(1+U(p —p))" [[ (1 + Up; = pjs))™

Jj=1

to (C3), we are led to estimating

1@y < o ogmy [~ TL 0747 ivwa)

— 0 1

x f?*”(—iv» (£ (V) @)1 (=iV) )
where 1h; = (1 4+ U)™|@;| for 1 < j < n, and € = (1+U)~™|C|. Since n+1 > 6, we
deduce from Holder’s inequality in Schatten spaces [25], and the fact that |- ||, <
I lls., as soon as 1 < r < g < oo, that

S =iV )y ()

o )dn.

We now use the Kato-Seiler-Simon inequality (see [22] and [25], Thm 4.1]),

_ 1 w [Z(T
(C.4) /W @5 AC(p,p)ldp < - (K logn) /_OO (j_l

(ej+1)
x fi ( Zv)’ I

D (=iv)e@) i) (i)

6

©9) W2 IVl < o
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to bound all the terms of the product in the right-hand side of (C4). This provides

|2y =) <A @i i@l i)
1 1 Gq 1 Si2 4 Si2
! (e) (¢')
< 1Pl e || f1 1 ;
g e [0, 157

for any € and € in {—1,0,1}, and any h € L5(R3). In particular, by the critical
Sobolev inequality, we obtain for any function h in H!(R3),
i

4

< A|Vh
o, SAIVAL

3

12

(C.6) ]

1)@ (=iv)|

1

12

for some universal constant A. Given any ¢ > 2 and 8 > 6/q, we then check that

1
§72ﬁ du 1 §72ﬁ du
< q _— q [
< E(n) ( ) E(n) (/u|>1 |u|2ﬁq>

ra E(u)h
4.7T %*Qﬁ
(2ﬁq—3) E(n)«,

Q=

N

©n |5

La

Q=

for € # —1, while similarly,

= ) it i)

The definition of the functions 1; gives

e |

(C.9) A+ U)" V5] e = dm [(L+U)"
which, combined with (C4), (C.8), (C1) and (CJ), leads to

n

j=1

/°° . 1 1 yme dn
X mln{ T —1} P
0 E(n)z Az E(n)~—= -

for some universal constant A. When n. = 0, we have fooo E(n)~+tD/24n <
IS E(n)~2 dn, whereas, for n. = 1,

/Oomin{ 1 i} di <i/oo—dn -i-L
0 Em: A3 JEMm?E " Az Jo E(n)s  20%

Inequality (C.2) then follows with Cy = A/2+ A [~ E(n)~5/2dn.

/R3 Q5 AC(p,p)ldp < A™FY (K logn)™ [[(1+U) "¢

Step 2. There exists a universal constant Cy such that, forn =3 orn =5,

Co)" (K logn)™ 1+
©10) QU )]y < CEEE T 1 sy

j=1

for all p= (pa,--+ ,pn) €C™.
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The proof is similar to the proof of (C2). Since n/6 + 1/2 > 1, we can now
estimate Q¢ AC(p, p) by

(C.11) /|Q AC(p,p)ldp < %/ (le TS (—iV)\

X
Ge

X

n—2
V@Y )| T A7 GV @7 (i)
j=2

Ge

d
o )i

where the functions f [gé), 1; and € are defined as in Step[Il Using Holder’s inequality
and (CH)), we can bound each norm in the right-hand side of (CI1)) similarly to
(CH6). This provides, for instance,

<A @ £ )| | iv)E@) T (i)

6

(e2) (- (e3)(_; (€2) (es)
SR IGIT IS o] IR P Vil (N Vil B
and
(ent1) GO } < 1 (ént1) (e1)
£ @I v < g Wil [0 147,

Combining with ([C7), (C.8) and (C9), we obtain

/|@ e p)ldp < A (K log )™ L+ 20|, [T+ U™ %
Jj=1

" /°° . { 1 1 }n—f dn
min ,— — T
0 E(ﬁ) A E(n)362+1_7
for a universal constant A. Since

/°° dn /°° dn
3n—2 1 < 70
o Em7s T Jo E@m)S
for n. = 0, whereas, for n. = 1,
o 1 1 d 6
/ min{ , } / 1 =
0 E(n)7 A7 A7 E(n)s
we obtain (CI0) with Co = 64 + Afo n)~7/Sdn.

Step 3. Let n = 3. There exists a universal constant C3 such that

C’zb—l|

K1 3
(C.12) [0+ U Fs )], < M TL 0t 20

j=1

for all = (M17M27M3) € Cs'

The proof of (CI2) follows ideas from [14, Section 4.3.4]. Contrarily to Steps [l

and [2 it relies on an explicit computation of Q/gA\( (p,p) by means of the residuum
formula for the integral with respect to the variable 7. Indeed, it holds

(C.13) TGl = S Q).

se{—1,1}*
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Here, the quantity Qg:ig‘(p,p) vanishes if § = +(1,1,1,1), whereas, when § =
(1,—1,—1,—1), it refers to the expression

/65\ 2 P1p—p1) (e 0
Q3 AC b,p 27T /]1{3 /]R?’ /]R?’ )E( )+E(pl) A (p1>P_(p1)><

A
XM) ) (pa) P (p )¥w(i4’( )P (ps)E(s—p)dp dpa dps,
E(p) + E(p2) E(p) + E(ps)
where P{(p) = (E(p) + (a.p + 3))/2E(p). The expression of Qg’j\C(p,p) is similar
when § contains exactly one §; = 1, respectively exactly one ; = —1. On the other

hand, for 6 = (1,1, —1,—1), the function Q;:i((p,p) is given by

Q) = s [ [ ] A 0P @G = pl o) P )

X |Ba(p1 — p2) | (92) P2 (p2) 3 (D2 — p3)|ms™ (93) P (p3)C (p3 — p)

1
) (<E<p> + E(p2)(E(pr) + E(p2) (E(pr) + E(ps)

1
+ ) dp1 dp2 dps.

(E(p) + E(p2))(E(p) + E(p3))(E(p1) + E(ps))

—

We next estimate Qg:i((p,p) as above. For instance, when ¢ = (1,—-1,—1, 1),
since E(p + q) < E(p) + E(q) for any (p,q) € R3, we can compute

b P (p)pi(p — pl)PO(p1)|
|Q5A¢(p,p)| < @)p /R3 /}R3 /}R3 dpldPQdPS Eptp)?

><7T(E2 ( 1) |902(p1 _p2)| 7T(Ea)( 2) |<,03(p2 _p3)| 7T(E4)( 3) |C(p3 _p)l 7T(€1)( )
AV B E(p)r Y T Ep)2E(ps): Y E(ps)2E(p)s Y

so that, using (A7) as above,

(C.14)
(e2) (e3)
@53y < (10z3)™ M, |2 (= 19) @) A (= iV)
Se
(e3) (€4) (€4) (e1)
X 2% (—iV)s(z )22 (—iV) A% (—iV)(() A% (=iv)|
6(‘, 66
where

—— _pilp — )l
My, (p,q) = TP |PY (p)P°(q)].

The operator My, was estimated in Lemma 14 of [I4] by [M,[s, < Al|Ver]/L2,
where A is some universal constant. By the definition of ¢, we obtain

(C.15) [ Mo, |g, < AmA[(L+U)" palc-
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As for the other terms in the right-hand side of (C.14), we argue as before and, by
(CI4) and (CI3), we obtain

= A(K log 3)™ e .
€10 [ 1@<t pldp < SEZER 02 e TT 10410 e

Jj=1

where A denotes some universal constant. All the terms in the right-hand side of
(C13) are similar to the one corresponding to 6 = (1,—1,—1,—1). In particular,
(CI18) holds when Qg’j\( is replaced by Q5 ,(. By duality, this completes the proofs
of (CI2) and of Step Bl This ends the proof of Proposition 3.2 O
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