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RENORMALIZATION AND ASYMPTOTIC EXPANSION OF

DIRAC’S POLARIZED VACUUM

PHILIPPE GRAVEJAT, MATHIEU LEWIN, AND ÉRIC SÉRÉ

Abstract. We perform rigorously the charge renormalization of the so-called
reduced Bogoliubov-Dirac-Fock (rBDF) model. This nonlinear theory, based
on the Dirac operator, describes atoms and molecules while taking into ac-
count vacuum polarization effects. We consider the total physical density ρph
including both the external density of a nucleus and the self-consistent polar-
ization of the Dirac sea, but no ‘real’ electron. We show that ρph admits an
asymptotic expansion to any order in powers of the physical coupling constant

αph, provided that the ultraviolet cut-off behaves as Λ ∼ e3π(1−Z3)/2αph ≫ 1.
The renormalization parameter 0 < Z3 < 1 is defined by Z3 = αph/α where
α is the bare coupling constant. The coefficients of the expansion of ρph are
independent of Z3, as expected. The first order term gives rise to the well-
known Uehling potential, whereas the higher order terms satisfy an explicit
recursion relation.

c© 2010 by the authors. This paper may be reproduced, in its entirety, for non-
commercial purposes.
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1. Introduction and main result

Renormalization is an essential tool in Quantum Electrodynamics (QED) [8, 2,
19]. The purpose of this paper is to perform rigorously the charge renormalization
of a nonlinear approximation of QED, the reduced Bogoliubov-Dirac-Fock (rBDF)
theory that was studied before in [14, 15, 18, 17, 16, 12]. This model, based on the
Dirac operator, describes atoms and molecules while taking into account vacuum
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polarization effects. It does not need any mass renormalization, hence it is a theory
simple enough for an investigation of charge renormalization in full detail.

Before turning to our specific Dirac model, let us quickly recall the spirit of
renormalization. A physical theory usually aims at predicting physical observables
in terms of the parameters in the model. Sometimes, interesting quantities are
divergent and it is necessary to introduce cut-offs. For electrons the parameters are
their massm and their charge e (or rather the coupling constant α = e2). Predicted
physical quantities are then functions F (m,α,Λ) where Λ is the regularization
parameter. Mass and charge are also physical observables and renormalization
occurs when their values predicted by the theory are different from their ‘bare’
values:

(1.1) mph = mph(m,α,Λ) 6= m and/or αph = αph(m,α,Λ) 6= α.

In this case the parameters m and α are not observable in contrast with mph =
mph(m,α,Λ) and αph = αph(m,α,Λ) which have to be set equal to their experi-
mental values. The relation (1.1) has to be inverted, in order to express the bare
parameters in terms of the physical ones:

(1.2) m = m(mph, αph,Λ) α = α(mph, αph,Λ).

This allows to express any observable quantity F as a function F̃ of the physical
parameters and the cut-off Λ:

(1.3) F̃ (mph, αph,Λ) = F
(
m(mph, αph,Λ) , α(mph, αph,Λ) , Λ

)

A possible definition of renormalizability is that all such observable quantities have
a limit when Λ → ∞, for fixed mph and αph.

Important difficulties can be encountered when trying to complete this program:

• The physical quantities mph and αph might be nonexplicit functions of α
and m. The corresponding formulas can then only be inverted perturba-
tively to any order (usually in α). This is the case in QED [8, 2, 19]. In the
model studied in this paper we have mph = m and αph 6= α, hence only the
charge has to be renormalized. Furthermore αph is an explicit function of
m, α and Λ (see (1.9) later). Renormalizing our model is therefore a much
easier task than in full QED.

• Even when the bare parameters are explicit functions of the physical ones,
these relations can make it impossible to take the limit Λ → ∞ while keeping
mph and αph fixed. As we will explain, in our model (2/3π)αph log Λ 6 1.
To deal with this problem, we let Λ depend on αph and we investigate the
asymptotics in the limit αph → 0.

We now turn to the description of our model. The Bogoliubov-Dirac-Fock theory
is the Hartree-Fock approximation of QED when photons are neglected [18, 17]. The
associated reduced theory is obtained by further neglecting the so-called exchange
term. In both models, the system is described by a Hartree-Fock (quasi-free) state
in Fock space, which is completely characterized by its one-body density matrix P
(an orthogonal projector for pure states), acting on the one-body space. The state
P contains both the ‘real’ electrons of the system (that of an atom for instance)
and the ‘virtual’ electrons of the Dirac sea, which all interact with each other
self-consistently. Therefore, there are always infinitely many particles and P is
infinite-rank.
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When the exchange term is neglected, a ground state at zero temperature is
(formally) a solution of the following self-consistent equation:

(1.4)

{
P = χ(−∞,µ) (D) + δ
D = D0 + α(ρP−1/2 − ν) ∗ |x|−1.

Here D0 = α · (−i∇)+ β is the free Dirac operator [27] acting on the Hilbert space
H := L2(R2,C4). For the sake of simplicity we have chosen units in which the
speed of light is c = 1 and, as the model does not need any mass renormalization,
we have taken m = 1 for the mass of the electrons. The second term in the formula
of D is the Coulomb potential induced by both a fixed external density of charge ν
(modelling for instance a smeared nucleus) and the self-consistent density ρP−1/2

of the system (see below). In (1.4), α is the bare coupling constant that will be
renormalized later and µ ∈ (−1, 1) is a chemical potential which is chosen to fix the
desired total charge of the system. We have added in (1.4) the possibility of having
a density matrix 0 6 δ 6 χ{µ}(D) at the Fermi level, as is usually done in reduced
Hartree-Fock theory [26]. So the operator P is not necessarily a projector but we
still use the letter P for convenience. Later we will restrict ourselves to the case of
P being an orthogonal projector.

Equation (1.4) is well-known in the physical literature. A model of the same
form (including an exchange term) was proposed by Chaix and Iracane in [3]. Also,
similar equations are found in relativistic Density Functional Theory, usually with
additional empirical exchange-correlation terms and classical terms accounting for
the interactions with photons, see, e.g., [11, Eq. (6.2)] and [10, Eq. (62)]. Dirac
already considered in [7] the first order term obtained from (1.4) in an expansion
in powers of α.

Let us now explain the exact meaning of ρP−1/2. The charge density of an
operator A : H → H with integral kernel A(x, y)σ,σ′ is formally defined as ρA(x) =∑4

σ=1 A(x, x)σ,σ = TrC4(A(x, x)). In usual Hartree-Fock theory, the charge density
is ρP (x). However, as there are infinitely many particles, this does not make sense
here. In (1.4), the subtraction of half the identity is a convenient way to give a
meaning to the density, independently of any reference. One has formally

ρP−1/2(x) = ρP−P⊥

2

(x) =
1

2

∑

i>1

|ϕ−
i (x)|2 − |ϕ+

i (x)|2

where {ϕ−
i }i>1 is an orthonormal basis of PH and {ϕ+

i }i>1 is an orthonormal basis
of (1 − P )H. As was explained in [18], subtracting 1/2 to the density matrix P of
the Hartree-Fock state makes the model invariant under charge conjugation.

When there is no external field, ν ≡ 0, Equation (1.4) has an obvious solution for
any µ ∈ (−1, 1), the Hartree-Fock state made of all electrons with negative energy:

P = P 0
− := χ(−∞,0)(D

0),

in accordance with Dirac’s ideas [4, 5, 6]. Indeed ρP 0
−
−1/2 ≡ 0, as is seen by writing

in the Fourier representation

(P 0
− − 1/2)(p) = − α · p+ β

2
√
1 + |p|2

and since the Dirac matrices are trace-less. This shows the usefulness of the sub-
traction of half the identity to P , since the free vacuum P 0

− now has a vanishing
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density. For a general state P , we can use this to write (formally):

(1.5) ρP−1/2 = ρP−1/2 − ρP 0
−
−1/2 = ρP−P 0

−

.

When P belongs to a suitable class of perturbations of P 0
− (for instance when P−P 0

−

is locally trace-class), the density ρP−P 0
−

is a well-defined mathematical object. We

will give below natural conditions which garantee that P − P 0
− has a well-defined

density in our context.
In the presence of an external field, ν 6= 0, Equation (1.4) has no solution in

any ‘reasonable’ Banach space [15] and it is necessary to introduce an ultraviolet
regularization parameter Λ. The simplest method (although probably not optimal
regarding regularity issues [12]) is to impose a cut-off at the level of the Hilbert
space, that is to replace H by

HΛ := {f ∈ L2(R3;C4), supp(f̂) ⊂ B(0; Λ)}
and to solve, instead of (1.4), the regularized equation in HΛ:

(1.6)

{
P = χ(−∞,µ) (D) + δ

D = ΠΛ

(
D0 + α(ρP−P 0

−

− ν) ∗ |x|−1
)
ΠΛ

where ΠΛ is the orthogonal projector onto HΛ in H = L2(R3;C4).
Existence of solutions to (1.6) was proved in [15] for µ = 0 and in [12] for µ 6= 0.

The precise statement is the following1:

Theorem 1 (Existence of self-consistent solutions to (1.6), [15, 12]). Assume that
α > 0, Λ > 0 and µ ∈ [−1, 1] are given. Let ν in the so-called Coulomb space:

C :=

{
f :

∫

R3

|k|−2|f̂(k)|2dk <∞
}
.

Then, Equation (1.6) has at least one solution P such that

(1.7) P − P 0
− ∈ S2(HΛ), P 0

±(P − P 0
−)P

0
± ∈ S1(HΛ), ρP−P 0

−

∈ C ∩ L2(R3).

All such solutions share the same density ρP−P 0
−

.

In (1.7), S1(HΛ) and S2(HΛ) are respectively the spaces of trace-class and
Hilbert-Schmidt operators [25] on HΛ, and P 0

+ = 1 − P 0
−. The method used in

[15, 12] was to identify solutions of (1.6) with minimizers of the so-called reduced
Bogoliubov-Dirac-Fock energy which is nothing but the formal difference between
the reduced Hartree-Fock energy of P and that of the reference state P 0

−. Note
that due to the uniqueness of ρP−P 0

−

the mean-field operator D is also unique and

only δ can differ between two solutions of (1.6).
Let us mention that it is natural to look for a solution of (1.6) such that P −P 0

−

is a Hilbert-Schmidt operator on HΛ. If P is a projector, the Shale-Stinespring
theorem [24] then tells us that P yields a Fock representation equivalent to that of
P 0
−. Even when P is not a projector, it will be associated with a unique Bogoli-

ubov mixed state in the Fock space representation of P 0
−. This is a mathematical

1To be more precise, in [12, Theorem 1], only the existence and uniqueness of minimizers of the
reduced BDF functional are stated. Elementary arguments based on convexity allow to deduce
Theorem 1 from the results of [12].
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formulation of the statement that P should not be too far from P 0
−. Indeed, if P is

an orthogonal projector, one has (see [14, Lemma 2] and [16, Lemma 1])

P − P 0
− ∈ S2(HΛ)

P 2 = P

}
=⇒ P 0

±(P − P 0
−)P

0
± ∈ S1(HΛ) and ρP−P 0

−

∈ C ∩ L2(R3),

therefore, in this case, (1.7) is just equivalent to the Shale-Stinespring condition
P − P 0

− ∈ S2(HΛ).

The property P 0
±(P − P 0

−)P
0
± ∈ S1(HΛ) allows us to define the total ‘charge’ of

the system by (see [14])

TrP 0
−

(P − P 0
−) := Tr P 0

−(P − P 0
−)P

0
− + Tr P 0

+(P − P 0
−)P

0
+.

When P is a projector, the above quantity is always an integer which is indeed
nothing but the relative index of the pair (P, P 0

−), see [14, 1]. Varying µ allows to
pick the desired total charge. Indeed, if ν is small enough and µ = 0, then one has∣∣∣∣P − P 0

−

∣∣∣∣ < 1 and the relative index vanishes: TrP 0
−

(P − P 0
−) = 0.

It is very important to realize that solutions of (1.6) are singular mathematical
objects. This fact is precisely at the origin of charge renormalization. In [12,
Theorem 1], the following was proved:

Theorem 2 (Nonperturbative charge renormalization formula [12]). Assume that
α > 0, Λ > 0 and µ ∈ (−1, 1) are given. If ν ∈ C ∩ L1(R3), then ρP−P 0

−

∈ L1(R3)

and it holds

(1.8)

∫

R3

ν −
∫

R3

ρP−P 0
−

=

∫

R3

ν − TrP 0
−

(P − P 0
−)

1 + αBΛ
.

In this formula, BΛ is an explicit function of the ultraviolet cut-off Λ (see the
comments after (2.4) and (B.10)), which behaves like

BΛ =
2

3π
log Λ− 5

9π
+

2 log 2

3π
+O(1/Λ2).

Let us emphasize that (1.8) is non perturbative and holds for all α > 0 and all
µ ∈ (−1, 1). Theorem 2 shows that the operator P−P 0

− is in general not trace-class:
if P − P 0

− ∈ S1(HΛ), then it must hold TrP 0
−

(P −P 0
−) = Tr(P − P 0

−) =
∫
R3 ρP−P 0

−

.

In our model we have two possible definitions of the charge of the system:
∫
R3 ν−

TrP 0
−

(P − P 0
−) and

∫
R3(ν − ρP−P 0

−

). In practice it is the electrostatic field induced

by the nucleus (together with the vacuum polarization density) which is measured,
hence it is more natural to define the charge by means of the density. By (1.8), the
total Coulomb potential is, at infinity,

α(ν − ρP−P 0
−

) ∗ 1

|x| ∼
|x|→∞

α

∫
R3(ν − ρP−P 0

−

)

|x| =

α
1+αBΛ

(∫
R3 ν − TrP 0

−

(P − P 0
−)
)

|x| .

Let us assume for simplicity that we put in the vacuum (µ = 0) a nucleus containing∫
R3 ν = Z protons and which is small enough in the sense that ||ν||C ≪ 1. Then

TrP 0
−

(P − P 0
−) = 0 by [15, Theorem 3] and we see that at infinity the potential

induced by the nucleus is not αZ/|x| as expected, but rather αphZ/|x| where

(1.9) αph = Z3α , with Z3 =
1

1 + αBΛ
= 1− αphBΛ.
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The charge renormalization constant Z3 is well known in QED2 [8, 2, 19]. The value
of α is not observable, αph is the real physical constant since we always observe the
nucleus together with the vacuum polarization density. Its experimental value is
αph ≃ 1/137 .

In our theory we must fix αph and not α. Using (1.9) we can express any physical
quantity in terms of αph and Λ only. Unfortunately it holds αphBΛ < 1 hence it
makes no sense to take Λ → ∞ while keeping αph fixed (this is the so-called Landau
pole [20]) and one has to look for a weaker definition of renormalizability. The cut-
off Λ which was first introduced as a mathematical trick to regularize the model
has actually a physical meaning. Because of the above constraint αphBΛ < 1, a
natural scale occurs beyond which the model does not make sense. Fortunately,
this scale is of the order e3π/2αph , a huge number for αph ≃ 1/137.

It is more convenient to change variables and take as new parameters αph and
Z3 = 1 − αphBΛ, with the additional constraint that 0 < Z3 < 1. The new
parameter Z3 is now independent of αph and the natural question arises whether
predicted physical quantities will depend very much on the chosen value of 0 <
Z3 < 1. The purpose of this paper is to prove that the asymptotics of any physical
quantity in the regime αph ≪ 1 is actually independent of Z3 to any order in αph,
which is what we call asymptotic renormalizability. Note that fixing Z3 ∈ (0, 1)
amounts to take Λ ≃ Ce3π(1−Z3)/2αph ≫ 1.

Instead of looking at all possible physical observables, it is convenient to define
a renormalized density ρph. Following [15], we define it by the relation

(1.10) αphρph = α
(
ν − ρP−P 0

−

)

in such a way that D = D0 − αphρph ∗ |x|−1. This procedure is similar to wave-
function renormalization. By uniqueness of ρP−P 0

−

we can see ρph as a function of

αph, ν, µ and Λ (or Z3). For the sake of clarity we will not emphasize the depen-
dence in ν and µ which will be fixed quantities. Also we will use the same notation
ρph(αph,Λ) or ρph(αph, Z3), depending on the context. The self-consistent equation
for ρph was derived in [15] and it is mentioned below in Section 2.

From now on, we will assume that

µ = 0.

For small external densities ν, this means that we will be looking at the vacuum
polarization in the presence of the nucleus, without considering any real electron
(that is, ρph is the renormalized density of the nucleus containing both the bare
density ν and the vacuum polarization density ρP−P 0

−

). We will explain in Section

2 that one can expand ρph = ρph(αph,Λ) as follows:

(1.11) ρph(αph,Λ) =

∞∑

n=0

(αph)
nνn,Λ

where {νn,Λ}n ⊂ L2(R3) ∩ C is a sequence depending only on the external density
ν and the cut-off Λ. This sequence is defined below in Section 2. The series (1.11)
has a positive radius of convergence, which is however believed to shrink to zero
when Λ → ∞.

Assuming ν̂ decays fast enough (see condition (1.12)), we will prove that for any
fixed n, the limit νn,Λ → νn exists in L2(R3) ∩ C. This is what is usually meant

2The renormalization constant Z3 should not be confused with the nuclear charge Z =
∫
R3 ν.
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by renormalizability in QED: each term of the perturbation series in powers of the
physical αph has a limit when the cut-off is removed. The sequence {νn}n is the
one which is calculated in practice [2, 13, 11, 10]. One has for instance ν0 = ν and

ν1 ∗ |x|−1 =
1

3π

∫ ∞

1

dt (t2 − 1)1/2
[
2

t2
+

1

t4

] ∫

R3

e−2|x−y|t ν(y)

|x− y| dy,

the Uehling potential [28, 23]. All the others νn can be calculated by induction in
terms of ν0, ..., νn−1, as is explained below in Section 2.

The next natural question is to understand the link between the well-defined,
cut-off dependent, series (1.11) and the formal series

∑∞
n=0(αph)

nνn. Recall that
αphBΛ < 1 by construction, so it is in principle not allowed to take the limit Λ → ∞
while keeping αph fixed: we rather want to think of Z3 = 1−αphBΛ as being fixed.
The main result in this paper is the following

Theorem 3 (Asymptotic renormalization of the nuclear charge density). Consider
a function ν ∈ L2(R3) ∩ C such that

(1.12)

∫

R3

log(1 + |k|)2N+2|ν̂(k)|2dk <∞

for some integer N . Let ρph(αph, Z3) be the unique physical density defined by
(1.10) with µ = 0, Z3 = 1− αphBΛ and αph = Z3α.

Then, for every 0 < ǫ < 1, there exist two constants C(N, ǫ, ν) and a(N, ǫ, ν),
depending only on N , ǫ and ν, such that one has

(1.13)

∣∣∣∣∣

∣∣∣∣∣ρph(αph, Z3)−
N∑

n=0

νn(αph)
n

∣∣∣∣∣

∣∣∣∣∣
L2(R3)∩C

6 C(N, ǫ, ν) αN+1
ph

for all 0 6 αph 6 a(N, ǫ, ν) and all ǫ 6 Z3 6 1− ǫ.

The interpretation of Theorem 3 is that the renormalized density ρph(αph, Z3)
is asymptotically (meaning up to any fixed order N) given by the formal series∑

n>0(αph)
nνn, uniformly in the renormalization parameter Z3 in the range ǫ 6

Z3 6 1− ǫ. Therefore, for a very large range of cut-offs, essentially

C1e
3ǫπ/2αph 6 Λ 6 C2e

3(1−ǫ)π/2αph

the result is independent of Λ and it is given by the formal series
∑

n>0(αph)
nνn.

Our formulation of renormalizability is more precise than the requirement that each
νn,Λ converges. It also leads to the formal perturbation series in a very natural way.

A natural question is to ask for the convergence of the perturbation series∑
n>0(αph)

nνn. It was argued by Dyson in [9] that it is probably divergent, but we
are unable to transform his argument into a rigorous mathematical proof. We will
make more comments on the series

∑
n>0(αph)

nνn at the end of next section.

Remark 1. We will provide explicit formulas for the sequence {νn} later in Section
2. We will in particular see in the proof that under Assumption (1.12), one has
νn ∈ L2(R3)∩ C for all 0 6 n 6 N . Therefore the approximation series of order N

appearing in (1.13),
∑N

n=0(αph)
nνn, is a well-defined function of L2(R3) ∩ C.

Remark 2. The space L2(R3)∩ C is the natural space which occurs in this theory.
In particular the Coulomb norm is nothing but the classical electrostatic energy
which appears in the reduced BDF energy functional. Our result can be extended to
Sobolev spaces Hs(R3) provided ν is smooth enough.
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Remark 3. It would be interesting to extend this result to the case of atoms with
’real’ electrons. This amounts to taking µ sufficiently close to 1 at the same time
as αph is small. However this case is more difficult than what is done here: an
additional expansion of the electronic charge density in powers of αph is needed.

The proof of Theorem 3 (given in Section 5 below) is divided into two steps. We
first estimate the difference (see Lemma 5.1)

(1.14)

∣∣∣∣∣

∣∣∣∣∣ρph(αph,Λ)−
N∑

n=0

νn,Λ(αph)
n

∣∣∣∣∣

∣∣∣∣∣
L2(R3)∩C

6 C1(N, ǫ, ν)(αph)
N+1

for a constant C1(N, ǫ, ν) depending only on N , ǫ and ν, and under the assumption
that ǫ 6 Z3 = 1 − αphBΛ 6 1 − ǫ. This amounts to expanding the solution of the
self-consistent equation (1.6) up to the Nth order in αph while controlling the error
term uniformly in Λ. Then we show in Lemma 5.2 that

(1.15) ∀0 6 n 6 N, ||νn,Λ − νn||L2(R3)∩C 6
C2(N, ν)

(BΛ)N+1−n

for a constant C2(N, ν) depending only on N and ν, leading to the bound

(1.16)

∣∣∣∣∣

∣∣∣∣∣
N∑

n=0

νn,Λ(αph)
n −

N∑

n=0

νn(αph)
n

∣∣∣∣∣

∣∣∣∣∣
L2(R3)∩C

6 (αph)
N+1C2(N, ν)(1 − ǫN+1)

ǫN+1(1− ǫ)

since by assumption (BΛ)
−N−1+n 6 (αph/ǫ)

N+1−n. The main result then follows
from (1.14) and (1.16). All these bounds strongly use the explicit recursion relations
defining the sequences {νn,Λ} and {νn}, as well as tedious estimates on the nonlinear
terms appearing in these relations.

The rest of the paper is organized as follows. In Section 2 we define the sequences
{νn,Λ} and {νn} by their respective recursion formulas and we discuss some prop-
erties of the latter. In particular, in Theorem 4, we give a simple estimate on
||νn||L2(R3)∩C. In Section 3 we present estimates on the different terms appearing

in the recursion formulas. Of particular interest will be the density ν1,Λ giving rise
to the Uehling potential. In Fourier space, we have ν̂1,Λ(k) = UΛ(k)ν̂(k) for an
explicit function UΛ(k) which is studied in Section 3.1. The proofs of Theorems 4
and 3 are respectively provided in Sections 4 and 5. Some other technical proofs
are provided in Appendices A, B and C.

Acknowledgment. The authors are grateful to Christian Brouder for interesting
comments. M.L. would like to thank Jan Dereziński and Jan Philip Solovej for
stimulating discussions.

2. The two sequences {νn,Λ} and {νn}
In this section we derive formulas for {νn,Λ} and {νn}, and we make some com-

ments on the latter.

2.1. Definition of {νn,Λ} and {νn}. We start with the self-consistent equation
(1.6) with cut-off, assuming µ = 0. Note that in the regime of interest in Theorem
3, we have α = αph/Z3 6 αph/ǫ. When απ1/6211/6 ||ν||C < 1, it is known that
0 /∈ σ(D) hence δ = 0 in (1.6), see [15, Theorem 3] and [12, Lemma 11]. Therefore
assuming a(ν,N, ǫ) 6 ǫ(π1/6211/6 ||ν||C)−1 in Theorem 3, we automatically have that
δ = 0 and P = P 2 is unique.



CHARGE RENORMALIZATION 9

The idea is then to expand the self-consistent equation

(2.1) P = χ(−∞,0)ΠΛ

(
D0 + α(ρP−P 0

−

− ν) ∗ |x|−1
)
ΠΛ

in powers of α by means of the resolvent formula. This method was already used
in [14] to prove existence and uniqueness of solutions. We define

(2.2) Fn,Λ(µ1, ..., µk) := ρ


 1

2π

∫ ∞

−∞

1

D0 + iη

n∏

j=1

(
ΠΛ µj ∗

1

|x| ΠΛ
1

D0 + iη

)
dη




where we recall that ΠΛ is the orthogonal projector onto HΛ in L2(R3,C4) and
µ1, ..., µn ∈ C. We will always use the simplified notation Fn,Λ(µ) := Fn,Λ(µ, ..., µ)
and νΛ := F−1(ν̂1B(0,2Λ)). Note that by Furry’s theorem F2j,Λ ≡ 0 for all j, see
[14, p. 547]. We also introduce

FΛ(µ) :=
∑

n>3

Fn,Λ(µ).

The self-consistent equation (2.1) may then be written in terms of the density
in Fourier space [14, 15], as

(2.3) ρ̂P−P 0
−

(k) = −αBΛ(k)(ρ̂P−P 0
−

(k)− ν̂Λ(k)) + F̂Λ

(
α(ν − ρP−P 0

−

)
)

where the function BΛ(k) is given by

(2.4) BΛ(k) =
1

π

∫ ZΛ(|k|)

0

z2 − z4/3

(1− z2)(1 + |k|2(1− z2)/4)
dz

+
|k|
2π

∫ ZΛ(|k|)

0

z − z3/3√
1 + Λ2 − |k|z/2

dz

with ZΛ(r) =
(√

1 + Λ2−
√
1 + (Λ − r)2

)
/r, see [12]. The formula for BΛ(k) is well-

known (but in most previous works the second term was ignored, see for instance
[21]).

Defining UΛ(|k|) = BΛ − BΛ(k) where BΛ = BΛ(0) and 0 6 UΛ(|k|) 6 BΛ with
UΛ(2Λ) = BΛ, we get the renormalized equation

(2.5)
(
1− αphUΛ

)
ρ̂ph + F̂Λ(αphρph) = ν̂Λ

with the renormalized coupling constant αph := α/(1 + αBΛ) and the renormalized
density αphρph = α(ν − ρQ) (see [15]). For convenience, we will denote by UΛ the
operator of multiplication by the function UΛ(|k|) in the Fourier domain. Hence we
can write the self-consistent equation (2.5) in direct space as

(2.6)
(
1− αphUΛ

)
ρph + FΛ(αphρph) = νΛ.

We now expand the unique solution ρph = ρph(αph,Λ) of (2.6) in powers of αph.
Writing a formal series

(2.7) ρph =
∑

n>0

(αph)
nνn,Λ
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we find that the functions νn,Λ must satisfy the following recurrence relation

(2.8)





ν0,Λ = νΛ,

ν1,Λ = UΛνΛ,

νn,Λ = UΛνn−1,Λ +

n∑

j=3

∑

n1+···+nj=n−j

Fj,Λ

(
νn1,Λ, ..., νnj ,Λ

)
, ∀n > 2.

Note that the operator UΛ is bounded by U(2Λ) = BΛ on HΛ and that, as we will
see later in Corollary 3.1, each Fj,Λ is continuous on Cj with values in L2 ∩ C. The
sequence {νn,Λ} is thus well-defined in L2 ∩ C. Using estimates from [14] it can be
proven that the series (2.7) has a finite radius of convergence in L2 ∩ C, but this is
not needed for the moment and we can stay at a formal level in this section.

We can now formally pass to the limit as Λ → ∞ and define by induction a
sequence {νn} by

(2.9)





ν0 = ν,

ν1 = Uν,

νn = Uνn−1, +

n∑

j=3

∑

n1+···+nj=n−j

Fj

(
νn1,, ..., νnj ,

)
, ∀n > 2.

where the Fj are defined similarly as the Fj,Λ with ΠΛ removed and U is the operator
of multiplication by the function U(|k|) in the Fourier domain, defined by

U(r) := lim
Λ→∞

UΛ(r) =
r2

4π

∫ 1

0

z2 − z4/3

1 + r2(1−z2)
4

dz(2.10)

=
12− 5r2

9πr2
+

√
4 + r2

3πr3
(r2 − 2) log

(√
4 + r2 + r√
4 + r2 − r

)
.

2.2. On the series {νn}. The recursion formula (2.9) defining {νn} contains two
terms. The first term Uνn−1 is a simple multiplication operator in Fourier space,
by the function U(|k|) which diverges at infinity. The second term involves the
nonlinear functions Fj ’s. If only the first term with U were present, the series∑

n>0 νn(αph)
n would only converge when the Fourier transform ν̂ has a compact

support, the radius of convergence depending on the size of this support. If only the
nonlinear terms were present, the series would have a finite radius of convergence
by the estimates of [14] and of Section 3.2.

However when the two terms are combined, the situation is much more compli-
cated. The nonlinear terms act like convolutions in Fourier space, hence even if ν̂
has a compact support in the Fourier domain, the support of ν̂n will probably grow
with n. A careful study of the mixed effect of the multiplication by the divergent
function U and the nonlinearities seems rather difficult. We will prove the following
estimate:
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Theorem 4 (Estimate on {νn}n>1). There exist universal constants A and K such
that

(2.11)
∣∣∣∣(1 + U)m−nνn

∣∣∣∣
L2∩C

6 An+1 max

{
‖(1 + U)mν‖L2∩C ,

(
K log(m)

)mn
2 ‖(1 + U)mν‖n+1

L2∩C

}
,

for all Λ > 1, m ∈ N and 0 6 n 6 m.

Even if we assume that ν decays fast enough in Fourier space, for instance

∀n > 0, ||(1 + U)nν||L2∩C 6 Cn,

the above estimate (2.11) does not imply that the series
∑

n>0 νn(αph)
n is con-

vergent for αph small enough. Although our estimate (2.11) is certainly far from
optimal, as we have already mentionned, it is expected that the series does not
converge in any appropriate sense [9].

It is sometimes argued that the series could be Borel summable. The Borel
transform is defined by

B(t) =
∑

n>0

tn

n!
νn.

If B(t) is a convergent series (for an appropriate norm) having a holomorphic ex-
tension to a domain containing the positive real line, such that

B̃(αph) :=

∫ ∞

0

B(t)e−
t

αph dt

makes sense in an appropriate neighborhood of αph = 0, one may see B̃(αph)
as the physical density, whose series

∑
n>0(αph)

nνn is only asymptotic. Proving
such results mathematically is hard, even for the model studied in this paper. Our
estimate (2.11) does not even allow to define the Borel transform B(t) in L2(R3)∩C.

But Borel summability is not the only tool to construct a physical density pro-
viding the correct asymptotic series. For the model studied in the present paper,
we have several natural families of functions of αph, the cut-off densities

(2.12) ρph
(
αph, Ce

3(1−Z3)π/2αph
)

obtained by minimizing the reduced BDF energy with a cut-off Λ = Ce3(1−Z3)π/2αph

and using the relation (1.10). Each such density (2.12) has (for fixed C and 0 <
Z3 < 1) the required asymptotic series in αph by Theorem 3, and it solves the
self-consistent equation (1.6) with the corresponding cut-off Λ. Furthermore this
solution has the benefit of being well-defined even when αph is not small, allowing
for the description of nonperturbative physical events.

The rest of the paper is devoted to the proofs of Theorems 3 and 4.

3. Some preliminary results

In this section we state two preliminary results that will be useful in the proof of
our main results, Theorems 3 and 4. The corresponding lengthy calculations will
be provided later in Appendices A, B and C.

Notation. In the whole paper we use the notation E(r) = (1 + |r|2)1/2 for r ∈ R3

or r ∈ R.
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3.1. The Uehling multiplier U . The operator U , defined previously as the mul-
tiplication by the function U in the Fourier domain, plays a major role in the
definition of the sequence {νn}. In this section, we provide precise estimates quan-
tifying the convergence of UΛ towards U when Λ → ∞, which will be very useful
in the proof of Theorem 3.

Proposition 3.1. Let Λ > 1 and denote by UΛ, the function defined on R+ by

(3.1) UΛ(r) =

{
BΛ −BΛ(r) when 0 6 r 6 2Λ,
0 otherwise.

Then, for all r ∈ R+ it holds limΛ→∞ UΛ(r) = U(r). Moreover, for κ0 = 15π/2,

(3.2) ∀m > 0,

∣∣∣∣
∣∣∣∣

UΛ − U

(1 + U)m+1

∣∣∣∣
∣∣∣∣
L∞

6 κm+3
0 max

{ 1

(1 +BΛ)m
,

1

E(2Λ)

}
.

Finally, one has for a universal constant κ1 (given in Lemma B.1 below)

(3.3) ∀0 6 r 6 2Λ, 0 6 UΛ(r) 6 κ1
(
1 + U(r)

)
.

Proposition 3.1 is proved in Appendix B. Note that the uniform estimate (3.2)
will later yield our estimate (1.15) on νn,Λ − νn (see Lemma 5.2). More properties
of U and UΛ are provided later in Appendix A.

3.2. The nonlinear terms Fn,Λ and Fn. In this section, we provide estimates
on the functions Fn,Λ and Fn, which will be one main ingredient in the proof of
Theorem 3. We recall that F2n,Λ = F2n = 0 by Furry’s theorem (see [14, p. 547]).
In order to state our main result, we introduce the functions

(3.4) F ǫ
n,Λ(µ) = ρ

[
1

2π

∫ ∞

−∞

1

D0 + iη

n∏

j=1

(
Π

(ǫj)
Λ µj ∗

1

|x|Π
(ǫj+1)
Λ

1

D0 + iη

)
dη

]
,

for any n > 3, µ = (µ1, · · · , µn) ∈ Cn and ǫ = (ǫ1, · · · , ǫn+1) ∈ {−1, 0, 1}n+1. Here,
we have used the notation

(3.5) Π
(1)
Λ := ΠΛ, Π

(−1)
Λ := 1−ΠΛ and Π

(0)
Λ := 1 = Π

(1)
Λ +Π

(−1)
Λ .

The main result of this section is the following

Proposition 3.2 (Estimates on F ǫ
n,Λ). Let m ∈ N, Λ > 1 and ǫ ∈ {−1, 0, 1}n+1.

Assume that n > 3. Then, there exist universal constants C and K such that

(3.6)
∣∣∣∣(1 + U)mF ǫ

n,Λ(µ)
∣∣∣∣
L2∩C

6
Cn(K logn)m

Λn(ǫ)/24

n∏

j=1

||(1 + U)mµj ||C ,

for all µ = (µ1, · · · , µn) ∈ Cn. Here, n(ǫ) = 1, if at least one ǫj is equal to −1, and
n(ǫ) = 0 otherwise.

By (2.2), (3.4) and (3.5), we can write F
(1,··· ,1)
n,Λ = Fn,Λ and F

(0,··· ,0)
n,Λ = Fn.

Therefore the following is a byproduct of (3.6):

Corollary 3.1. Let m > 0, Λ > 1 and n > 3 an odd integer. Then,

(3.7) max
{
||(1 + U)mFn,Λ(µ)||L2∩C , ||(1 + U)mFn(µ)||L2∩C

}

6 Cn(K logn)m
n∏

j=1

||(1 + U)mµj ||C ,
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for any µ = (µ1, · · · , µn) ∈ Cn. Here, C and K refer to the universal constants
given by Proposition 3.2. In particular, the functions Fn,Λ and Fn are continuous
on Cn with values in L2 ∩ C.

Recall F2k = F2k,Λ = 0 hence only the case of n being an odd integer is relevant.
The estimates of Proposition 3.2 are an adaptation of ideas of [14], in which similar
bounds were computed (see, e.g., Lemmas 15 and 16 in [14]). Notice however that
the projector ΠΛ was never mentionned in [14] since Λ was a fixed number. We
focus here on the limit Λ → ∞ and we need to quantify the dependence on Λ of
the estimates on the functions F ǫ

n,Λ. The proof of Proposition 3.2 is provided below

in Appendix C. The factor (K logn)m comes from (A.7) of Lemma A.3 and the
constant K is also the one appearing in Theorem 4.

4. Proof of Theorem 4

This section is devoted to the proof of our estimate (2.11) on the nth order
density νn. The definition of νn,Λ being very similar to that of νn, our proof also
provides the following

Proposition 4.1 (Estimates on νn,Λ). There exists A > 0 such that

(4.1)
∣∣∣∣(1 + U)m−nνn,Λ

∣∣∣∣
L2∩C

6 An+1 max
{
‖(1 + U)mν‖L2∩C ,

(
K log(m)

)mn
2 ‖(1 + U)mν‖n+1

L2∩C

}
,

for any Λ > 1, m ∈ N and 0 6 n 6 m.

We postpone the proof of Proposition 4.1 and first complete that of Theorem 4.

Proof of Theorem 4. We split the proof into three steps. First, we estimate by
means of (3.7), the following norms: Jm,n := ‖(1 + U)m−nνn‖L2∩C .

Step 1. Let m ∈ N and denote

Pm(t) :=

m∑

n=0

Jm,nt
n.

The polynomial Pm(t) satisfies for any t > 0

(4.2) Pm(t) 6
(
1 + t+ t2)‖(1 + U)mν‖L2∩C +Qm(tPm(t)),

where (C and K are the constants of Proposition 3.2)

(4.3) Qm(u) := u+
m∑

j=3

Cj(K log j)m−juj .

Let us assume first that n = 0, 1, 2. By (2.9), we then have νn = Unν, hence

(4.4) ∀n = 0, 1, 2, Jm,n = ‖(1 + U)m−nUnν‖L2∩C 6 ‖(1 + U)mν‖L2∩C.

We now turn to the case n > 3. By (2.9), we have

Jm,n 6 ‖(1 + U)m−nUνn−1‖L2∩C

+
∑

362j+16n

∑

2j+1∑

k=1

nk=n−2j−1

‖(1 + U)m−nF2j+1

(
νn1 , · · · , νn2j+1

)
‖L2∩C ,
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hence, by Corollary 3.1,

Jm,n 6 ‖(1 + U)m−n+1νn−1‖L2∩C +
∑

362j+16n

∑

2j+1∑

k=1

nk=n−2j−1

C2j+1×

× (K log(2j + 1))m−n

2j+1∏

k=1

‖(1 + U)m−nνnk
‖C.

Since ‖(1 + U)m−nνnk
‖C 6 ‖(1 + U)m−nkνnk

‖L2∩C , we arrive at the inequality

(4.5) Jm,n 6 Jm,n−1 +

n∑

j=3

Cj(K log j)m−n
∑

j∑

k=1

nk=n−j

( j∏

k=1

Jm,nk

)
.

Combining (4.4) with (4.5), we obtain

Pm(t) 6 (1 + t+ t2)‖(1 + U)mν‖L2∩C + tPm(t)

+
m∑

n=3

n∑

j=3

Cjtj(K log j)m−n
∑

j∑

k=1

nk=n−j

( j∏

k=1

Jm,nk
tnk

)
.

By Fubini’s theorem, it holds

(4.6) Pm(t) 6 (1 + t+ t2)‖(1 + U)mν‖L2∩C + tPm(t)

+

m∑

j=3

Cjtj(K log j)m−j

m−j∑

p=0

∑

j∑

k=1

nk=p

( j∏

k=1

Jm,nk
tnk

)
,

Noticing that
m−j∑

p=0

∑

j∑

k=1

nk=p

( j∏

k=1

Jm,nk
tnk

)
6 Pm(t)j ,

we deduce (4.2) from (4.6). This completes the proof of Step 1. In the second step
of the proof of Theorem 4 we compute suitable bounds on Qm near the origin.

Step 2. Let m > 3. There exists a positive constant A(C,K), depending on C and
K, but not on m, such that

(4.7) Qm(u) 6 2u, for any 0 6 u 6 Um :=
A(C,K)

(K log(m))m/2
.

By the definition (4.3) of Qm, we have

Qm(u) 6 u+

m∑

j=3

Cj(K log(j))m−juj 6 u+ (K log(m))m
m∑

j=3

( Cu

K logm

)j
,

hence when 2Cu 6 K logm and 2C3(K log(m))m−3u2 6 1, it holds Qm(u) 6 2u.
This ends the proof of Step 2.

Step 3. Conclusion of the proof of Theorem 4.
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Since the coefficients Jm,n are non negative, the function t 7→ tPm(t) is either
identically equal to 0 (then (2.11) is straightforward), or increasing on R+. In the
second case, it tends to ∞ as t→ ∞, and there exists a unique Tm > 0 such that

(4.8) TmPm(Tm) = Um.

Two situations may then occur. If Tm > 1/4, by (4.2) and (4.7),

Pm(t) 6 2‖(1 + U)mν‖L2∩C + 2tPm(t)

for all 0 6 t 6 1/4. Hence Pm(t) 6 4‖(1 + U)mν‖L2∩C and

Jm,n 6 4nPm

(1
4

)
6 4n+1‖(1 + U)mν‖L2∩C .

Otherwise Tm 6 1/4 and in this case we can deduce from (4.2), (4.7) and (4.8) that
Um/Tm 6 2‖(1 + U)mν‖L2∩C + 2Um. This gives

Tm >
Um

4‖(1 + U)mν‖L2∩C
.

Combining with (4.8) again, we are led to

Jm,n 6
Um

T n+1
m

6
4n+1

Un
m

‖(1 + U)mν‖n+1
L2∩C .

Estimate (2.11) then follows from (4.7). �

We now turn to the proof of Proposition 4.1.

Proof of Proposition 4.1. The proof is almost identical. Denoting JΛ
m,n := ‖(1 +

U)m−nνn,Λ‖L2∩C and introducing the polynomial function PΛ
m(t) given by

PΛ
m(t) :=

m∑

n=0

JΛ
m,nt

n,

we deduce from the definition (2.8), and from (3.3) and (3.7) that

(4.9) PΛ
m(t) 6

(
1 + κ1t+ κ21t

2)‖(1 + U)mν‖L2∩C + (κ1 − 1)tPΛ
m(t) +Qm(tPΛ

m(t)),

for all t > 0. Estimate (4.1) then follows by applying to (4.9) the arguments of
Steps 2 and 3 of the proof of Theorem 4. �

5. Proof of Theorem 3

This last section is devoted to the proof of our main estimate (1.13). The proof
relies on the identity
(5.1)

ρph = νΛ + αphUΛρph −
∑

362n+16N

α2n+1
ph F2n+1,Λ(ρph, · · · , ρph)− αN+1

ph GN+1,Λ,

where we denote

(5.2) GN+1,Λ := ρ

(
1

2π

∫ ∞

−∞

1

D0 − αphρph ∗ | · |−1 + iη
×

×
N+1∏

j=1

(
ΠΛ

(
ρph ∗

1

| · |
)
ΠΛ

1

D0 + iη

)
dη

)
.
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The formula (5.1) follows from Cauchy’s formula applied to (2.6). As mentioned
in the introduction, the proof of (1.13) naturally splits into two steps: we first
establish that, under the assumptions of Theorem 3, the error term

(5.3) RN (αph,Λ) := ρph(αph,Λ)−
N∑

n=0

νn,Λα
n
ph.

is controlled by a factor αN+1
ph (up to some multiplicative constant depending only

on N , ν and ǫ). In a second step we estimate the differences νn,Λ − νn and deduce
(1.13). More precisely, the remainder RN satisfies the following

Lemma 5.1. Let N ∈ N and 0 < ǫ < 1. Assume that ǫ 6 Z3 = 1− αphBΛ 6 1− ǫ
and NN := ‖(1 + U)N+1ν‖L2∩C <∞. Then, there exist two constants C(m, ǫ,NN )
and a(N, ǫ,NN), depending only on N , ǫ and NN , such that

(5.4)
∥∥∥RN (αph,Λ)

∥∥∥
L2∩C

6 C(N, ǫ,NN ) αN+1
ph ,

for all 0 6 αph 6 a(N, ǫ,NN).

As for the differences νn,Λ − νn, we have the

Lemma 5.2. Let Λ > 1 and N ∈ N. Assume that NN := ‖(1+U)N+1ν‖L2∩C <∞.
Then, there exists a constant C(N,NN ), depending only on N and NN , such that

(5.5)
∥∥∥νn,Λ − νn

∥∥∥
L2∩C

6
C(N,NN )

(1 +BΛ)N+1−n
,

for all 0 6 n 6 N .

Combining Lemmas 5.1 and 5.2, we can complete the proof of Theorem 3.

Proof of Theorem 3. Our assumption (1.12) (together with (A.3)) means thatNN :=
‖(1 + U)N+1ν‖L2∩C <∞. It follows from (5.3) that

ρph(αph,Λ)−
N∑

n=0

νn(αph)
n = RN (αph,Λ) +

N∑

n=0

(
νn,Λ − νn

)
(αph)

n.

Hence by (5.4) and (5.5),
(5.6)
∥∥∥ρph(αph)−

N∑

n=0

νnα
n
ph

∥∥∥
L2∩C

6 C(N, ǫ,NN )αN+1
ph +C(N,NN )

N∑

n=0

αn
ph

(1 +BΛ)N+1−n
,

for any number αph sufficiently small. In our setting we have BΛ > ǫ/αph and the
result follows. �

It therefore remains to show Lemmas 5.1 and 5.2.

Proof of Lemma 5.1. Let us introduce the notation

(5.7) rN (αph) := (αph)
−N−1RN (αph).

We want to establish a bound on rN independently of αph. By (5.3), this requires
to estimate ρph and νn,Λ (which was already done in Proposition 4.1).

The first step of the proof will be to bound ρph independently of αph. Let us
recall that a ground state for the reduced Bogoliubov-Dirac-Fock model satisfies

‖αphρph‖C = ‖α(ρQ − ν)‖C 6 α‖ν‖C
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(see [15, Eq. (33)]). Since αph = Z3α, this provides

(5.8) ‖ρph‖C 6 Z−1
3 ‖ν‖C 6 ǫ−1‖ν‖C.

Note that we however do not have any a priori bound in L2(R3). Inserting (5.3)
and (5.7) in (5.1) and using (2.8), we get

(5.9) rN = αphUΛrN + UΛνN,Λ +GN+1,Λ +

N(N+2)∑

k=N+1

αk−N−1
ph ×

×
∑

362n+16N

∑

p1+···+p2n+1=k−2n−1

F2n+1,Λ(ωp1 , · · · , ωp2n+1),

where ωp = νp,Λ for 0 6 p 6 N , and ωN+1 = rN . It rests to estimate all the terms
of the right-hand side of (5.9).

For the first term, we recall that αph|UΛ| 6 αphBΛ = 1− Z3 6 1− ǫ, therefore

(5.10) ‖αphUΛrN‖L2∩C 6 (1 − ǫ)‖rN‖L2∩C .

The second term can be controlled by using (3.3) and (4.1), which provide a positive
constant C(N,NN ), depending only on N and NN , such that

(5.11) ‖UΛνN,Λ‖L2∩C 6 κ1‖(1 + U)νN,Λ‖L2∩C 6 C(N,NN ).

As for the function GN+1,Λ, we first recall that
(5.12)
(
1− π

1
6 2

11
6

ǫ
αph ||ν||C

)
|D0| 6

∣∣∣D0 − αphρph ∗
1

| · |
∣∣∣ 6

(
1 +

π
1
6 2

11
6

ǫ
αph ||ν||C

)
|D0|

for all αph < π−1/62−11/6ǫ ||ν||−1
C (see [15, p. 4495]). Hence, the operator D0 −

αphρph ∗ | · |−1 is invertible and, in particular, GN+1,Λ is well-defined. Notice also

that (5.12) yields for any αph < π−1/62−17/6ǫ ||ν||−1
C

1

2
|D0| 6

∣∣∣D0 − αphρph ∗
1

| · |
∣∣∣ 6 3

2
|D0|.

When N > 5, we argue exactly as in Steps 1 and 2 of the proof of Proposition
3.2, and deduce that there exists a constant C(N), depending only on N , such that

(5.13) ‖GN+1,Λ‖L2∩C 6 C(N)‖ρph‖N+1
C .

When N 6 4, our argument is different. We expand GN+1,Λ as before, writting

GN+1,Λ = −αph

∑

N+162j+165

F2j+1,Λ(ρph, · · · , ρph) +G6,Λ.

In view of (3.7) and (5.13) (for N = 5), this leads to

‖GN+1,Λ‖L2∩C 6 Cαph


 ∑

N+162j+165

‖ρph‖2j+1
C + ‖ρph‖6C


 .

In both cases, we obtain

‖GN+1,Λ‖L2∩C 6 C(N)max
{
‖ρph‖N+1

C , ‖ρph‖6C
}
,

for any αph 6 1, so that, by (5.8),

(5.14) ‖GN+1,Λ‖L2∩C 6 C(N)max

{
||ν||N+1

C

ǫN+1
,
||ν||6C
ǫ6

}
6 C(N,NN , ǫ).
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Finally, we consider the terms αk−m−1
ph F2n+1,Λ(ωp1 , · · · , ωp2n+1) of the sum in the

right-hand side of (5.9). By (3.7), we have

∥∥αk−N−1
ph F2n+1,Λ(ωp1 , · · · , ωp2n+1)

∥∥
L2∩C

6 C2n+1|αph|k−N−1
2n+1∏

j=1

‖ωpj
‖C .

When pj 6 N , we deduce from (4.1) that there exists a constant C(N,NN ) such
that ‖ωpj

‖C 6 C(N,NN ). On the other hand, when pj = N +1 for some j, we can
bound one of the norms ‖ωpj

‖C by ‖rN‖C , and the other ones by using (4.1), (5.3)
and (5.8) to get

‖ωpj
‖C = |αph|−pj‖RN‖ 6 C(N,NN , ǫ)|αph|−pj ,

for αph 6 1. This leads to
∥∥αk−N−1

ph F2n+1,Λ(ωp1 , · · · , ωp2n+1)
∥∥
L2∩C

6 C(N,NN , ǫ)|αph|2n+1 max{‖rN‖C, 1},
for αph 6 1. Combining with (5.9), (5.10), (5.11) and (5.14), we conclude that

‖rN‖L2∩C 6 C(N,NN , ǫ) +

(
1− ǫ+ C(N,NN , ǫ)|αph|3

)
max{‖rN‖C, 1},

for αph sufficiently small. Therefore, the norm ||rN ||L2∩C is bounded independently
of αph for αph small enough, which ends the proof of Lemma 5.1. �

We finally prove Lemma 5.2.

Proof of Lemma 5.2. Given any n ∈ {0, 1, 2}, it follows from recursion relations
(2.8) and (2.9) that

νn,Λ − νn = Un
ΛνΛ − Unν = Un

Λ

(
νΛ − ν

)
+
(
Un
Λ − Un)ν.

Therefore, given any N > n and 0 6 p 6 N + 1− n, we deduce from (3.3) that

‖(1 + U)p(νn,Λ − νn)‖L2∩C 6 κn1‖(1 + U)n+p(νΛ − ν)‖L2∩C

+nκn−1
1 ‖(1 + U)n+p−1

(
UΛ − U)ν‖L2∩C .

(5.15)

Next, we recall that ν̂Λ = ν̂1B(0,2Λ), so that, since U(2Λ) = BΛ,
(5.16)

∣∣∣∣(1 + U)n+p(νΛ − ν)
∣∣∣∣
L2∩C

6

∣∣∣∣(1 + U)N+1ν
∣∣∣∣
L2∩C

(1 + U(2Λ))N+1−n−p
=

∣∣∣∣(1 + U)N+1ν
∣∣∣∣
L2∩C

(1 +BΛ)N+1−n−p
.

For the second term in the right-hand side of (5.15), we use (3.2) and write

‖(1+U)n+p−1
(
UΛ − U)ν‖L2∩C 6

∣∣∣∣
∣∣∣∣

UΛ − U

(1 + U)N+2−n−p

∣∣∣∣
∣∣∣∣
L∞

∣∣∣∣(1 + U)N+1ν
∣∣∣∣
L2∩C

6 κN+4−n−p
0 max

{ 1

(1 +BΛ)N+1−n−p
,

1

E(2Λ)

} ∣∣∣∣(1 + U)N+1ν
∣∣∣∣
L2∩C

.

Since (1 +BΛ)
N+1−n−p 6 (1 +BΛ)

N+1 6 C(N)E(2Λ), we obtain
∥∥∥(1 + U)p(νn,Λ − νn)

∥∥∥
L2∩C

6
C(N)

(1 +BΛ)N+1−n−p

∣∣∣∣(1 + U)N+1ν
∣∣∣∣
L2∩C

.

Combining with (5.15) and (5.16), we are led to

(5.17)
∥∥∥(1 + U)p(νn,Λ − νn)

∥∥∥
L2∩C

6
C(N,NN )

(1 +BΛ)N+1−n−p
,

for N > n and 0 6 p 6 N + 1− n.
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We next turn to the case of n > 3. Given any N > n, we assume that (5.17)
holds for all n 6 k − 1 and 0 6 p 6 N + 1− n, and prove it by induction for n = k
and 0 6 p 6 N + 1− k. Using (2.8) and (2.9), we first infer that

(5.18)
∥∥(1 + U)p(νk,Λ − νk)

∥∥
L2∩C

6
∥∥(1 + U)pUΛ(νk−1,Λ − νk−1)

∥∥
L2∩C

+
∥∥(1 + U)p(UΛ − U)νk−1

∥∥
L2∩C

+
∑

362j+16k

∑

2j+1∑

ℓ=1

kℓ=k−2j−1

∥∥∥(1 + U)p×

×
(
F2j+1,Λ

(
νk1,Λ, · · · , νk2j+1,Λ

)
− F2j+1

(
νk1 , · · · , νk2j+1

))∥∥∥
L2∩C

.

We next estimate the first term in the right-hand side of (5.18) using (3.3) and our
assumption. This provides

(5.19) ‖(1 + U)pUΛ(νk−1,Λ − νk−1)‖L2∩C 6 κ1‖(1 + U)p+1(νk−1,Λ − νk−1)
∥∥
L2∩C

6
C(N)

(1 +BΛ)N+1−k−p

∣∣∣∣(1 + U)N+1ν
∣∣∣∣
L2∩C

.

For the second term, we argue as in the proof of (5.17), using (3.2) and (2.11):

‖(1 + U)p(UΛ − U)νk−1‖L2∩C 6

∣∣∣∣
∣∣∣∣

UΛ − U

(1 + U)N+2−k−p

∣∣∣∣
∣∣∣∣
L∞

∣∣∣∣(1 + U)N+2−kνk−1

∣∣∣∣
L2∩C

(5.20)

6
C(N,NN )

(1 +BΛ)N+1−k−p
.

Finally, we turn to the terms in the sums of the right-hand side of (5.18). On the
one hand, we deduce from (3.4) that

F2j+1,Λ − F2j+1 = −F (−1,1,··· ,1)
2j+1,Λ − F

(0,−1,1,··· ,1)
2j+1,Λ − · · · − F

(0,··· ,0,−1)
2j+1,Λ .

Hence, since p 6 N + 1− k 6 N + 1− kℓ, we can apply (3.6) and (4.1) to obtain

(5.21)∥∥∥(1 + U)p
(
F2j+1,Λ

(
νk1,Λ, · · · , νk2j+1,Λ

)
− F2j+1

(
νk1,Λ, · · · , νk2j+1,Λ

))∥∥∥
L2∩C

6
C(N)

Λ1/24

2j+1∏

ℓ=1

‖(1 + U)N+1−kℓνkℓ,Λ‖C 6
C(N,NN )

Λ1/24
.

On the other hand, the multilinearity of the function F2j+1 provides

F2j+1

(
νk1,Λ, · · · , νk2j+1,Λ

)
− F2j+1

(
νk1 , · · · , νk2j+1

)

= F2j+1

(
νk1,Λ − νk1 , νk2,Λ, · · · , νk2j+1,Λ

)
+ F2j+1

(
νk1 , νk2,Λ − νk2 , · · · , νk2j+1,Λ

)

+ · · ·+ F2j+1

(
νk1 , νk2 , · · · , νk2j , νk2j+1,Λ − νk2j+1

)
.



20 P. GRAVEJAT, M. LEWIN, AND É. SÉRÉ

Therefore, we infer similarly from (3.6) and (4.1) that

∥∥∥(1 + U)p
(
F2j+1

(
νk1,Λ, · · · , νk2j+1,Λ

)
− F2j+1

(
νk1,Λ, · · · , νk2j+1,Λ

))∥∥∥
L2∩C

(5.22)

6 C(N)

2j+1∑

q=1

∥∥(1 + U)p(νkq ,Λ − νkq
)
∥∥
C

∏

ℓ<q

∥∥(1 + U)pνkℓ,Λ

∥∥
C

∏

ℓ>q

∥∥(1 + U)pνkℓ

∥∥
C

6

2j+1∑

q=1

C(N,NN )

(1 + BΛ)N+1−kq−p
6

C(N,NN )

(1 +BΛ)N+1−k−p
.

As a conclusion, we derive from (5.18), (5.19), (5.20), (5.21) and (5.22) that
∥∥∥(1 + U)p(νk,Λ − νk)

∥∥∥
L2∩C

6 C(N,NN )

(
1

(1 +BΛ)N+1−k−p
+

1

Λ1/24

)
,

Since (1 +BΛ)
N+1−k−p 6 (1 +BΛ)

N+1 6 C(N)Λ1/24, this completes the proof of
(5.17) for n = k.

Notice the constant C(N,NN ) deteriorates when n increases. However, this is
not a problem since n is limited to the set {0, · · · , N}. Estimate (5.5) then follows
from (5.17), considering the case p = 0. This concludes the proof of Lemma 5.2. �

Appendix A. Auxiliary results on the Uehling multiplier U

A.1. Elementary properties of U . We gather in this section some important
properties of U , which will be useful for the proof of Lemma A.3 in the next section.

Lemma A.1. The function U defined in (2.10) is a non-negative, non-decreasing,
smooth function on R+ such that

(A.1) U(r) ∼
r→0

r2

15π
and U(r) ∼

r→∞

2

3π
log r.

Its derivative U ′ is positive on (0,∞), and it holds

(A.2) U ′(r) ∼
r→∞

2

3πr
and U ′′(r) ∼

r→∞
− 2

3πr2
.

Moreover, we have

(A.3) ∀r ∈ R+,
2

15π
(1 + logE(r)) 6 1 + U(r) 6 1 +

2

3π
logE(r).

Proof of Lemma A.1. For the convenience of the reader, let us recall the integral
and the explicit formulas (2.10) of U :

U(r) =
r2

4π

∫ 1

0

z2 − z4/3

1 + r2(1−z2)
4

dz(A.4)

=
12− 5r2

9πr2
+

√
4 + r2

3πr3
(r2 − 2) log

(√
4 + r2 + r√
4 + r2 − r

)
.

Most of the statements of Lemma A.1 are direct consequences of (A.4). As for
(A.3), we estimate, using (A.4),

U(r) 6
r2

12π

∫ 1

0

2z

1 + r2

4 − r2

4 z
2
dz =

1

3π
log
(
1 +

r2

4

)
6

2

3π
logE(r).
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For the lower bound, we notice similarly that

U(r) >
r2

4π
(
1 + r2

4

)
∫ 1

0

(
z2 − z4

3

)
dz =

r2

15π
(
1 + r2

4

) ,

for r ∈ R+, so that

(A.5) ∀0 6 r 6 1,
2

15π

(
1 + logE(r)

)
6

2 + r2

15π
6 1 + U(r).

On the other hand, we can also write

U(r) >
r2

6π

∫ 1

0

z2

1 + r2

2 (1− z)
dz =

4

3πr4

((
1 +

r2

2

)2
log
(
1 +

r2

2

)
− r2

2
− r4

8

)
,

thus when r > 1

1 + U(r) >
1

3π
log
(
1 +

r2

2

)
+ 1− 7

6π
>

1

3π

(
1 + logE(r)

)
.

The lower bound in (A.3) then follows from (A.5). �

A useful consequence of Lemma A.1 is the following

Lemma A.2. Let Φ be the function defined on R+ by

Φ(r) =
U ′(r)

1 + U(r)
,

There exist three positive numbers T−, T+ and Φ0 such that the function Φ is
an increasing diffeomorphism from (0, T−) onto (0,Φ0), respectively a decreasing
diffeomorphism from (T+,∞) onto (0,Φ0), and Φ−1

(
(0,Φ0)

)
= (0, T−) ∪ (T+,∞).

Moreover, we have

(A.6) Φ(r) ∼
r→0

2r

15π
, and Φ(r) ∼

r→∞

1

r log r
.

Proof of Lemma A.2. From Lemma A.1, we see that the function Φ is well-defined,
smooth on R+, and satisfies (A.6). Then we compute for r > 0:

Φ′(r) =
U ′′(r)(1 + U(r)) − U ′(r)2

(1 + U(r))2
.

By (A.1) and (A.2), we thus have Φ′(0) = 2
15π and Φ′(r) ∼r→∞ −1/(r2 log r).

Since Φ(0) = 0 and Φ(r) → 0 as r → ∞ by (A.1) and (A.2), there exist a, b, δ > 0
such that Φ is an increasing diffeomorphism from (0, a) onto (0, δ), respectively a
decreasing diffeomorphism from (b,∞) onto (0, δ). The function Φ is positive on
[a, b], so that m = min{Φ(t), a 6 t 6 b} > 0. Lemma A.2 follows by introducing
Φ0 = min{m/2, δ}, and T− < T+, the two positive numbers such that Φ(T−) =
Φ(T+) = Φ0. �

A.2. A useful bound involving U . We use here results from the previous section
to derive a bound useful for the proof of Proposition 3.2.

Lemma A.3. There exists a universal constant K > 0 such that

(A.7) 1 + U



∣∣∣

n∑

j=1

vj

∣∣∣


 6 K logn

n∏

j=1

(
1 + U(|vj |)

)

for all n > 1, and all (v1, · · · , vn) ∈ (R3)n.
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If we allow K to depend on n, the optimal constant in the above inequality
satisfies Kn → 1/3π when n→ ∞, as can be seen from the proof. The factor log n
in (A.7) is therefore optimal with regard to the large-n dependence.

Proof of Lemma A.3. By Lemma A.1, it holds

(A.8)

1 + U
(∣∣∣

n∑
j=1

vj

∣∣∣
)

n∏
j=1

(
1 + U(|vj |)

) 6

1 + U
( n∑
j=1

|vj |
)

n∏
j=1

(
1 + U(|vj |)

) 6 max
t1,...,tn∈R+

1 + U
( n∑
j=1

tj

)

n∏
j=1

(
1 + U(tj)

) := Jn.

It is clear that taking v1 = · · · = vn = v shows that the maximum of the left-
hand side of (A.8) is actually Jn. Next, we take t1 = ... = tn = τn in (A.8) with

τn =
√
15π/(n logn). Using (A.2), we see that Jn & (logn)/3π for n ≫ 1. We

will show that actually it holds Jn ∼ (log n)/(3π) when n → ∞. In the rest of the
proof, we assume n > n0 is such that Jn > 1.

Let us consider a maximizing sequence {(t(p)1 , · · · , t(p)n )}p∈N for the variational
problem defining Jn. If the sequence is unbounded, then by Lemma A.1,

Jn 6 lim
p→∞

1 + U
(
nmaxj{t(p)j }

)

1 + U
(
maxj{t(p)j }

) = 1

which contradicts Jn > 1 for n > n0. Therefore (t
(p)
1 , ..., t

(p)
n ) is bounded in (R+)

n.
In this case the variational problem on the right-hand side of (A.8) has a maximizer,
which satisfies the equation

(A.9) ∀1 6 k 6 n, Φ(tk) =
U ′(tk)

1 + U(tk)
=

U ′
( n∑
j=1

tj

)

1 + U
( n∑
j=1

tj

) = Φ




n∑

j=1

tj


 := Φ1.

Assume now that Φ1 > Φ0. By Lemma A.2, we have tk > T− and
∑n

j=1 tj 6 T+,

for all 1 6 k 6 n, hence n 6 T+/T−. In particular, for n > T+/T−, it must hold
0 6 Φ1 < Φ0. Note if Φ1 = 0, we infer from Lemma A.1 that t1 = · · · = tn = 0,
so that Jn = 1, a contradiction. Therefore, by Lemma A.2, there exist exactly two
numbers 0 < τn < T− and Tn > T+ such that Φ(τn) = Φ(Tn) = Φ1. By (A.9), the
unique possible maximizer is (τn, · · · , τn), where τn = Tn/n ∈ (0, T−) is such that

(A.10) Φ(τn) = Φ(nτn).

The corresponding value of Jn is

(A.11) Jn =
1 + U(nτn)

(1 + U(τn))n
.

By (A.10), we must have τn → 0 as n → ∞. Combining (A.10) with (A.6), it
follows that Φ(nτn) ∼ 2τn/(15π) → 0. By Lemma A.2 and since nτn = Tn > T+, it
holds nτn → ∞. Using (A.6) again, we deduce that nτn log(nτn) ∼n→∞ 15π/(2τn),

hence finally τn ∼
√
15π/(n logn). Inserting in (A.1) and (A.11), we finally arrive

at Jn ∼ (logn)/(3π). This ends the proof of Lemma A.3. �
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Appendix B. Proof of Proposition 3.1

We start by showing the following lemma which provides estimates on U − UΛ

on [0, 2Λ].

Lemma B.1. Let Λ > 1. For κ1 = 258/π, one has

(B.1) ∀0 6 r 6 2Λ, |UΛ(r) − U(r)| 6 κ1
r

2E(Λ)
.

Proof of Lemma B.1. Recall that (see (2.10) and (3.1))

(B.2) UΛ(r) − U(r) =
r2

4π

∫ 1

Λ
E(Λ)

z2 − z4

3

1 + r2

4 (1− z2)
dz − r

2π

∫ ZΛ(r)

0

z − z3

3

E(Λ)− rz
2

dz

+
1

π

∫ Λ
E(Λ)

ZΛ(r)

z2 − z4

3

(1 − z2)(1 + r2

4 (1− z2))
dz,

for 0 6 r 6 2Λ and where

(B.3) ZΛ(r) =
E(Λ)− E(Λ− r)

r
=

2Λ− r

E(Λ) + E(Λ− r)
6

Λ

E(Λ)
.

We will estimate all the terms of the right-hand side of (B.2). The first term is
treated as follows, for all 0 6 r 6 2Λ:

(B.4)

∣∣∣∣
r2

4π

∫ 1

Λ
E(Λ)

z2 − z4

3

1 + r2

6 (1− z2)
dz

∣∣∣∣ 6
r2

6π

(
1− Λ

E(Λ)

)
6

r2

6πE(Λ)2
.

Using (B.3) and |x| 6 E(x), we bound the second term by

(B.5)
r

2π

∣∣∣∣
∫ ZΛ(r)

0

z − z3

3

E(Λ)− rz
2

dz

∣∣∣∣ 6
rZΛ(r)

2

4π
(
E(Λ)− rZΛ(r)

2

) 6
r

2πE(Λ)
,

for 0 6 r 6 2Λ. In order to estimate the last term of the right-hand side of (B.2),
we distinguish the regions 0 6 r 6 Λ/2 and Λ/2 6 r 6 2Λ. We calculate
∣∣∣∣
∫ Λ

E(Λ)

ZΛ(r)

z2 − z4

3

(1 − z2)(1 + r2

4 (1− z2))
dz

∣∣∣∣ 6
2

3

∫ Λ
E(Λ)

ZΛ(r)

dz

1− z
=

2

3
log

(
1− ZΛ(r)

1− Λ
E(Λ)

)
.

On the other hand, by (B.3),

1− ZΛ(r)

1− Λ
E(Λ)

= 1 +
r(2Λ− r)(Λ + E(Λ))

(E(Λ) + E(Λ− r))((Λ − r)E(Λ) + ΛE(Λ− r))
6 1 +

6r

E(Λ)
,

as soon as 0 6 r 6 Λ/2. Hence using log(1 + x) 6 x we infer the bound

(B.6) ∀0 6 r 6 Λ/2,
1

π

∣∣∣∣
∫ Λ

E(Λ)

ZΛ(r)

z2 − z4

3

(1− z2)(1 + r2

4 (1− z2))
dz

∣∣∣∣ 6
4r

πE(Λ)
.

For Λ/2 6 r 6 2Λ, we write similarly as before
∣∣∣∣
∫ Λ

E(Λ)

ZΛ(r)

z2 − z4

3

(1− z2)(1 + r2

4 (1 − z2))
dz

∣∣∣∣ 6
8

3r2

∫ Λ
E(Λ)

ZΛ(r)

dz

(1− z)2
6

8

3r2
E(Λ)(Λ + E(Λ))

and deduce the estimate

(B.7) ∀Λ/2 6 r 6 2Λ,
1

π

∣∣∣∣
∫ Λ

E(Λ)

ZΛ(r)

z2 − z4

3

(1− z2)(1 + r2

4 (1− z2))
dz

∣∣∣∣ 6
128r

πE(Λ)
.
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Estimate (B.1) follows from (B.4), (B.5), (B.6) and (B.7), together with (B.2). This
ends the proof of Lemma B.1. �

We now use Lemma B.1 to finish the proof of Proposition 3.1. The pointwise
convergence of UΛ when Λ → ∞ is a direct consequence of (B.1). For (3.2), we first
use (A.3) and (B.1) to obtain

∀0 6 r 6 2Λ,

∣∣∣∣
UΛ(r)− U(r)

(1 + U(r))m+1

∣∣∣∣ 6 κ1

(15π
2

)m+1 E(r)

2E(Λ)(1 + logE(r))m+1
.

Optimizing x 7→ E(x)
(1+logE(x))m+1 on [0, 2Λ] yields

E(r)

(1 + logE(r))m+1
6 max

{
1,

E(2Λ)

(1 + logE(2Λ))m+1

}
.

Since E(2x) 6 2E(x) for any x > 0, we are led to

(B.8)

∣∣∣∣
UΛ(r) − U(r)

(1 + U(r))m+1

∣∣∣∣ 6 κ1

(15π
2

)m+1

max
{ 1

(1 + logE(2Λ))m+1
,

1

E(2Λ)

}
.

On the other hand, U is non-decreasing on R+, hence, using (A.3) we infer

∀r > 2Λ,

∣∣∣∣
UΛ(r) − U(r)

(1 + U(r))m+1

∣∣∣∣ =
∣∣∣∣

U(r)

(1 + U(r))m+1

∣∣∣∣ 6
(15π

2

)m 1

(1 + logE(2Λ))m
.

Using (B.8), we finally obtain

(B.9)

∥∥∥∥
UΛ − U

(1 + U)m+1

∥∥∥∥
L∞

6 κ1

(15π
2

)m+1

max
{ 1

(1 + logE(2Λ))m
,

1

E(2Λ)

}
.

We now recall that

(B.10) BΛ =
1

π

∫ Λ
E(Λ)

0

z2 − z4/3

1− z2
dz,

so that, for Λ > 1,

BΛ 6
2

3π

∫ Λ
E(Λ)

0

dz

1− z
dz =

2

3π
log [E(Λ)(Λ + E(Λ))] 6

4

3π
logE(2Λ).

Combining with (B.9), we finally derive (3.2). We end the proof of Proposition 3.1
by noting that (3.3) follows directly from the definition of UΛ and (B.1). �

Appendix C. Proof of Proposition 3.2

We may define F ǫ
n,Λ(µ) by duality as follows

∫

R3

ζF ǫ
n,Λ(µ) = Tr(Qǫ

n,Λζ),

for any smooth function ζ, and where

Qǫ
n,Λ =

1

2π

∫ ∞

−∞

1

D0 + iη

n∏

j=1

(
Π

(ǫj)
Λ µj ∗

1

|x|Π
(ǫj+1)
Λ

1

D0 + iη

)
dη.

We will use, like in [14, p. 547], the inequality

(C.1) |Tr(Qǫ
n,Λζ)| =

∣∣∣∣
∫

R3

TrC4

(
Q̂ǫ

n,Λζ(p, p)
)
dp

∣∣∣∣ 6
∫

R3

∣∣Q̂ǫ
n,Λζ(p, p)

∣∣dp.

The main idea is to derive a bound of the last integral in (C.1) in terms of the
norms ||(1 + U)−mζ||L2 and ||(1 + U)−mζ||L2+C′ , which provides an estimate of the
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form (3.6), by duality. The proof will depend whether we estimate the inte-
gral in the right-hand side of (C.1) by the norm ||(1 + U)−mζ||C′ or by the norm
||(1 + U)−mζ||L2 . For this reason, we split it into three steps.

Step 1. There exists a universal constant C1 such that for all n > 5

(C.2)
∣∣∣∣(1 + U)mF ǫ

n,Λ(µ)
∣∣∣∣
C
6

(C1)
n(K logn)m

Λ
n(ǫ)
2

n∏

j=1

||(1 + U)mµj ||C ,

for all µ = (µ1, · · · , µn) ∈ Cn.

We estimate Q̂ǫ
n,Λζ(p, p) as follows:

(C.3)

|Q̂ǫ
n,Λζ(p, p)| 6

1

(2π)
3n+5

2

∫ ∞

−∞

dη

∫

R3

· · ·
∫

R3

(
f
(ǫ1)
1
4

(p)|ϕ̂1(p− p1)|f (ǫ2)
1
4

(p1)
)
×

×
n−1∏

j=1

(
f
(ǫj+1)
1
4

(pj)|ϕ̂j+1(pj − pj+1)|f (ǫj+2)
1
4

(pj+1)
)
×

×
(
f
(ǫn+1)
1
4

(pn)|ζ̂(pn − p)|f (ǫ1)
1
4

(p)
)
dp1 · · · dpn,

where ϕj = µj ∗ | · |−1, and for any β > 0, f
(ǫ)
β = π

(ǫ)
Λ /(η2 + E2)β , with π

(ǫ)
Λ = 1, if

ǫ 6= −1, and π
(−1)
Λ (·) = 1|·|>Λ. Applying the following corollary of (A.7)

(1 + U(p− pn))
m 6 (K log n)m(1 + U(p− p1))

m
n−1∏

j=1

(1 + U(pj − pj+1))
m

to (C.3), we are led to estimating

∫

R3

|Q̂ǫ
n,Λζ(p, p)|dp 6

1

2π
(K log n)m

∫ ∞

−∞

Tr
( n∏

j=1

(
f
(ǫj)
1
4

(−i∇)ψj(x)×

× f
(ǫj+1)
1
4

(−i∇)
)(
f
(ǫn+1)
1
4

(−i∇)ξ(x)f
(ǫ1)
1
4

(−i∇)
))
dη,

where ψ̂j = (1+U)m|ϕ̂j | for 1 6 j 6 n, and ξ̂ = (1+U)−m|ζ̂|. Since n+1 > 6, we
deduce from Hölder’s inequality in Schatten spaces [25], and the fact that ‖ · ‖Sq

6
‖ · ‖Sr

, as soon as 1 6 r 6 q 6 ∞, that

(C.4)

∫

R3

|Q̂ǫ
n,Λζ(p, p)|dp 6

1

2π
(K logn)m

∫ ∞

−∞

( n∏

j=1

∥∥∥f (ǫj)
1
4

(−i∇)ψj(x)×

× f
(ǫj+1)
1
4

(−i∇)
∥∥∥
S6

∣∣∣
∣∣∣f (ǫn+1)

1
4

(−i∇)ξ(x)f
(ǫ1)
1
4

(−i∇)
∣∣∣
∣∣∣
S6

)
dη.

We now use the Kato-Seiler-Simon inequality (see [22] and [25, Thm 4.1]),

(C.5) ∀p > 2, ‖f(−i∇)g(x)‖Sp
6

1

(2π)
3
p

‖g‖Lp(R3)‖f‖Lp(R3),
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to bound all the terms of the product in the right-hand side of (C.4). This provides

∣∣∣
∣∣∣f (ǫ)

1
4

(−i∇)|h(x)|f (ǫ′)
1
4

(−i∇)
∣∣∣
∣∣∣
S6

6
∣∣∣
∣∣∣f (ǫ)

1
4

(−i∇)|h(x)| 12
∣∣∣
∣∣∣
S12

∣∣∣
∣∣∣|h(x)| 12 f (ǫ′)

1
4

(−i∇)
∣∣∣
∣∣∣
S12

6
1

(2π)
1
2

||h||L6

∣∣∣
∣∣∣f (ǫ)

1
4

∣∣∣
∣∣∣
L12

∣∣∣
∣∣∣f (ǫ′)

1
4

∣∣∣
∣∣∣
L12

,

for any ǫ and ǫ′ in {−1, 0, 1}, and any h ∈ L6(R3). In particular, by the critical

Sobolev inequality, we obtain for any function h in Ḣ1(R3),

(C.6)
∣∣∣
∣∣∣f (ǫ)

1
4

(−i∇)|h(x)|f (ǫ′)
1
4

(−i∇)
∣∣∣
∣∣∣
S6

6 A ||∇h||L2

∣∣∣
∣∣∣f (ǫ)

1
4

∣∣∣
∣∣∣
L12

∣∣∣
∣∣∣f (ǫ′)

1
4

∣∣∣
∣∣∣
L12

,

for some universal constant A. Given any q > 2 and β > 6/q, we then check that

∣∣∣
∣∣∣f (ǫ)

β

∣∣∣
∣∣∣
Lq

6 E(η)
3
q
−2β

(∫

R3

du

E(u)βq

) 1
q

6E(η)
3
q
−2β

(∫

|u|>1

du

|u|2βq
) 1

q

(C.7)

=
( 4π

2βq − 3

) 1
q

E(η)
3
q
−2β ,

for ǫ 6= −1, while similarly,

(C.8)
∣∣∣
∣∣∣f (−1)

β

∣∣∣
∣∣∣
Lq

6
( 4π

2βq − 3

) 1
q

min
{
E(η)

3
q
−2β ,Λ

3
q
−2β
}
.

The definition of the functions ψj gives

(C.9) ||(1 + U)m∇ψj ||L2 = 4π ||(1 + U)mµj ||C ,

which, combined with (C.4), (C.6), (C.7) and (C.8), leads to

∫

R3

|Q̂ǫ
n,Λζ(p, p)|dp 6 An+1(K logn)m

∣∣∣∣(1 + U)−mζ
∣∣∣∣
C′

n∏

j=1

||(1 + U)mµj ||C ×

×
∫ ∞

0

min
{ 1

E(η)
1
2

,
1

Λ
1
2

}nǫ dη

E(η)
n+1−nǫ

2

,

for some universal constant A. When nǫ = 0, we have
∫∞

0 E(η)−(n+1)/2 dη 6∫∞

0 E(η)−3 dη, whereas, for nǫ = 1,

∫ ∞

0

min
{ 1

E(η)
1
2

,
1

Λ
1
2

} dη

E(η)
n
2
6

1

Λ
1
2

∫ ∞

0

dη

E(η)
5
2

+
1

2Λ2
.

Inequality (C.2) then follows with C1 = A/2 +A
∫∞

0
E(η)−5/2dη.

Step 2. There exists a universal constant C2 such that, for n = 3 or n > 5,

(C.10)
∣∣∣∣(1 + U)mF ǫ

n,Λ(µ)
∣∣∣∣
L2(R3)

6
(C2)

n(K logn)m

Λ
n(ǫ)
7

n∏

j=1

||(1 + U)mµj ||C ,

for all µ = (µ1, · · · , µn) ∈ Cn.
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The proof is similar to the proof of (C.2). Since n/6 + 1/2 > 1, we can now

estimate Q̂ǫ
n,Λζ(p, p) by

(C.11)

∫

R3

|Q̂ǫ
n,Λζ(p, p)|dp 6

(K logn)m

2π

∫ ∞

−∞

( ∣∣∣
∣∣∣ψ1(x)f

(ǫ2)
3
8

(−i∇)
∣∣∣
∣∣∣
S6

×

×
∣∣∣
∣∣∣f (ǫ2)

1
8

(−i∇)ψ2(x)f
(ǫ3)
1
4

(−i∇)
∣∣∣
∣∣∣
S6

n−2∏

j=2

∣∣∣
∣∣∣f (ǫj+1)

1
4

(−i∇)ψj+1(x)f
(ǫj+2)
1
4

(−i∇)
∣∣∣
∣∣∣
S6

×
∣∣∣
∣∣∣f (ǫn)

1
4

(−i∇)ψn(x)f
(ǫn+1)
1
8

(−i∇)
∣∣∣
∣∣∣
S6

∣∣∣
∣∣∣f (ǫn+1)

3
8

(−i∇)ξ(x)f
(ǫ1)
1
2

(−i∇)
∣∣∣
∣∣∣
S2

)
dη,

where the functions f
(ǫ)
β , ψj and ξ are defined as in Step 1. Using Hölder’s inequality

and (C.5), we can bound each norm in the right-hand side of (C.11) similarly to
(C.6). This provides, for instance,

∣∣∣
∣∣∣f (ǫ2)

1
8

(−i∇)|h(x)|f (ǫ3)
1
4

(−i∇)
∣∣∣
∣∣∣
S6

6 A ||∇h||L2

∣∣∣
∣∣∣f (ǫ2)

1
8

∣∣∣
∣∣∣
L18

∣∣∣
∣∣∣f (ǫ3)

1
4

∣∣∣
∣∣∣
L9
,

and
∣∣∣
∣∣∣f (ǫn+1)

3
8

(−i∇)|h(x)|f (ǫ1)
1
2

(−i∇)
∣∣∣
∣∣∣
S2

6
1

(2π)
3
2

||h||L2

∣∣∣
∣∣∣f (ǫn+1)

3
8

∣∣∣
∣∣∣
L

14
3

∣∣∣
∣∣∣f (ǫ1)

1
2

∣∣∣
∣∣∣
L

7
2

.

Combining with (C.7), (C.8) and (C.9), we obtain

∫

R3

|Q̂ǫ
n,Λζ(p, p)|dp 6 An+1(K logn)m

∣∣∣∣(1 + U)−mζ
∣∣∣∣
L2

n∏

j=1

||(1 + U)mµj ||C ×

×
∫ ∞

0

min
{ 1

E(η)
,
1

Λ

}nǫ
7 dη

E(η)
3n−2

6 + 1−nǫ
7

,

for a universal constant A. Since∫ ∞

0

dη

E(η)
3n−2

6 + 1
7

6

∫ ∞

0

dη

E(η)
7
6

,

for nǫ = 0, whereas, for nǫ = 1,
∫ ∞

0

min
{ 1

E(η)
1
7

,
1

Λ
1
7

} dη

E(η)
3n−2

6

6
1

Λ
1
7

∫ ∞

0

dη

E(η)
7
6

+
6

Λ
1
6

,

we obtain (C.10) with C2 = 6A+A
∫∞

0
E(η)−7/6dη.

Step 3. Let n = 3. There exists a universal constant C3 such that

(C.12)
∣∣∣∣(1 + U)mF ǫ

3,Λ(µ)
∣∣∣∣
C
6

(C3)
3(K log 3)m

Λ
n(ǫ)
24

3∏

j=1

||(1 + U)mµj ||C ,

for all µ = (µ1, µ2, µ3) ∈ C3.

The proof of (C.12) follows ideas from [14, Section 4.3.4]. Contrarily to Steps 1

and 2, it relies on an explicit computation of Q̂ǫ
3,Λζ(p, p) by means of the residuum

formula for the integral with respect to the variable η. Indeed, it holds

(C.13) Q̂ǫ
3,Λζ(p, p) =

∑

δ∈{−1,1}4

̂
Qǫ,δ

3,Λζ(p, p).
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Here, the quantity ̂Qǫ,δ
3,Λζ(p, p) vanishes if δ = ±(1, 1, 1, 1), whereas, when δ =

(1,−1,−1,−1), it refers to the expression

̂
Qǫ,δ

3,Λζ(p, p) =
1

(2π)6

∫

R3

∫

R3

∫

R3

π
(ǫ1)
Λ (p)P 0

+(p)
ϕ̂1(p− p1)

E(p) + E(p1)
π
(ǫ2)
Λ (p1)P

0
−(p1)×

× ϕ̂2(p1 − p2)

E(p) + E(p2)
π
(ǫ3)
Λ (p2)P

0
−(p2)

ϕ̂3(p2 − p3)

E(p) + E(p3)
π
(ǫ4)
Λ (p3)P

0
−(p3)ζ̂(p3−p)dp1 dp2 dp3,

where P 0
±(p) = (E(p)± (α.p+ β))/2E(p). The expression of

̂
Qǫ,δ

3,Λζ(p, p) is similar
when δ contains exactly one δi = 1, respectively exactly one δi = −1. On the other

hand, for δ = (1, 1,−1,−1), the function
̂
Qǫ,δ

3,Λζ(p, p) is given by

̂
Qǫ,δ

3,Λζ(p, p) =
1

(2π)6

∫

R3

∫

R3

∫

R3

π
(ǫ1)
Λ (p)P 0

+(p)|ϕ̂1(p− p1)|π(ǫ2)
Λ (p1)P

0
−(p1)×

× |ϕ̂2(p1 − p2)|π(ǫ3)
Λ (p2)P

0
−(p2)|ϕ̂3(p2 − p3)|π(ǫ4)

Λ (p3)P
0
−(p3)ζ̂(p3 − p)×

×
(

1

(E(p) + E(p2))(E(p1) + E(p2))(E(p1) + E(p3))

+
1

(E(p) + E(p2))(E(p) + E(p3))(E(p1) + E(p3))

)
dp1 dp2 dp3.

We next estimate
̂
Qǫ,δ

3,Λζ(p, p) as above. For instance, when δ = (1,−1,−1,−1),

since E(p+ q) 6 E(p) + E(q) for any (p, q) ∈ R3, we can compute

∣∣̂Qǫ,δ
3,Λζ(p, p)

∣∣ 6 1

(2π)6

∫

R3

∫

R3

∫

R3

dp1dp2dp3
|P 0

+(p)ϕ̂1(p− p1)P
0
−(p1)|

E(p+ p1)
2
3

×

× π
(ǫ2)
Λ (p1)

|ϕ̂2(p1 − p2)|
E(p1)

1
6E(p2)

1
2

π
(ǫ3)
Λ (p2)

|ϕ̂3(p2 − p3)|
E(p2)

1
2E(p3)

1
2

π
(ǫ4)
Λ (p3)

|ζ̂(p3 − p)|
E(p3)

1
2E(p)

1
6

π
(ǫ1)
Λ (p),

so that, using (A.7) as above,

∫

R3

∣∣̂Qǫ,δ
3,Λζ(p, p)

∣∣dp 6 (K log 3)m ||Mϕ1 ||S2

∣∣∣∣∣

∣∣∣∣∣
π
(ǫ2)
Λ

E
1
6

(
− i∇

)
ψ2(x)

π
(ǫ3)
Λ

E
1
2

(
− i∇

)
∣∣∣∣∣

∣∣∣∣∣
S6

×
∣∣∣∣∣

∣∣∣∣∣
π
(ǫ3)
Λ

E
1
2

(
− i∇

)
ψ3(x)

π
(ǫ4)
Λ

E
1
2

(
− i∇

)
∣∣∣∣∣

∣∣∣∣∣
S6

∣∣∣∣∣

∣∣∣∣∣
π
(ǫ4)
Λ

E
1
2

(
− i∇

)
ζ(x)

π
(ǫ1)
Λ

E
1
6

(
− i∇

)
∣∣∣∣∣

∣∣∣∣∣
S6

,

(C.14)

where

M̂ϕ1(p, q) =
|ϕ̂1(p− q)|
E(p+ q)

2
3

|P 0
+(p)P

0
−(q)|.

The operator Mϕ1 was estimated in Lemma 14 of [14] by ||Mϕ1||S2
6 A‖∇ϕ1‖L2,

where A is some universal constant. By the definition of ϕ1, we obtain

(C.15) ||Mϕ1 ||S2
6 4πA‖(1 + U)mµ1‖C .
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As for the other terms in the right-hand side of (C.14), we argue as before and, by
(C.14) and (C.15), we obtain

∫

R3

∣∣̂Qǫ,δ
3,Λζ(p, p)

∣∣dp 6 A(K log 3)m

Λ
n(ǫ)
24

‖(1 + U)−mζ‖C′

3∏

j=1

‖(1 + U)mµj‖C ,(C.16)

where A denotes some universal constant. All the terms in the right-hand side of
(C.13) are similar to the one corresponding to δ = (1,−1,−1,−1). In particular,

(C.16) holds when Qǫ,δ
3,Λζ is replaced by Qǫ

3,Λζ. By duality, this completes the proofs

of (C.12) and of Step 3. This ends the proof of Proposition 3.2. �
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