Multiple four-wave mixing in optical fibers: 1.5–3.4-THz femtosecond pulse sources and real-time monitoring of a 20-GHz picosecond source
Résumé
In this work, we report recent progress on the design of all-fibered ultra-high repetition-rate pulse sources for telecommunication applications around 1550 nm. The sources are based on the non-linear compression of an initial beat-signal through a multiple four-wave mixing process taking place into an optical fiber. We experimentally demonstrate real-time monitoring of a 20 GHz pulse source having an integrated phase noise 0.01 radian by phase locking the initial beat note against a reference RF oscillator. Based on this technique, we also experimentally demonstrate a well-separated high-quality 110 fs pulse source having a repetition rate of 2 THz. Finally, we show that with only 1.4 m of standard single mode fiber, we can achieve a twofold increase of the repetition rate, up to 3.4 THz, through the self-imaging Talbot effect. Experimental results are supported by numerical simulations based on the generalized non-linear Schrödinger equation.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...