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Abstract

In order to assess the physical mechanisms at stake
when giant gas bubbles burst at the top of a
magma conduit, laboratory experiments have been
performed. An overpressurized gas cavity is initially
closed by a thin liquid film, which suddenly bursts.
The acoustic signal produced by the bursting is inves-
tigated. The key result is that the amplitude and en-
ergy of the acoustic signal strongly depend on the film
rupture time. As the rupture time is uncontrolled in
the experiments and in the field, the measurement of
the acoustic excess pressure in the atmosphere, alone,
cannot provide any information on the overpressure
inside the bubble before explosion. This could ex-
plain the low energy partitioning between infrasound,
seismic and explosive dynamics often observed on vol-
canoes.

1 Introduction

Volcanic explosions generate both seismic and acous-
tic waves propagating in the ground and in the atmo-

sphere, respectively. Monitoring the acoustic emis-
sions thus represents, together with the seismic sig-
nals monitoring, an attractive tool to investigate the
source of volcanic explosions. In particular, the si-
multaneous recording of the seismic and acoustic sig-
nals might provide clues to constrain the source pro-
cess (e.g. [[Vergniolle and Brandeis (1996)]). How-
ever, the link between the seismic and acoustic waves
and the explosive source dynamics is still poorly
understood. Some authors claim that seismic and
acoustic waves are generated by an unique shallow
process (< 500 m depth) [[Kobayashi et al. (2005),
:]ohnson i2007]. Others propose that the acoustic
waves are produced by the bursting of meter-sized
gas bubbles, while the seismic waves result from the
pressure variations, in the magma column, associ-
ated with the rise of the gas bubbles toward the
surface [Ripepe et al. (2001), [Chouet et al. (2003),
Uames et al. (2004)]. Nonetheless, almost all stud-
ies assert that acoustic waves are generated either by
the bursting of the gas bubbles [|[Ripepe et al. (1996),,
or by the oscillation of the magma

membrane covering the gas slug just before the burst-




ing [|[Vergniolle and Brandeis (1996)].

The acoustic wave characteristics, in the infrasonic
range, are commonly related to the properties of the
bursting bubble, such as its volume and overpressure
before bursting [[Vergniolle and Brandeis (1996)).
However, most of these analysis are theoretical and
numerical (e.g.  [Vergniolle and Brandeis (1996)]).
Only a few laboratory experiments were dedicated
to characterizing the acoustics of bubble bursting
in conditions that are relevant to volcanology
Uames et al. (2004), James et al. (2009)].

Here we investigate experimentally the bursting, in
static conditions, of a ’slug’ whose parameters (geom-
etry and overpressure) are accurately controlled. The
characteristics of the acoustic signal emitted at burst-
ing (frequency, energy) are compared with the initial
bubble geometry (volume) and overpressure. This ex-
periment focuses on the physical mechanisms at stake
when the overpressurized cavity suddenly opens. Be-
cause the dynamics of bubble bursting on volcanoes
is much more complex, we will not compare directly
our experiment with the field situation. However,
the physical processes we describe here are likely to
be involved when a large gas bubble explodes at the
top of a volcano vent (Figure 1la). We therefore com-
ment the results in regard to potential implications
for large bubbles bursting on volcanoes. We discuss
further (section 5) the limits of this application.

2 Experimental results

Our experimental setup consists of a cylindrical cav-
ity drilled in a plexiglas slab (Figure 1b). Following
([Vidal et al. (2006)], we close the cavity by stretch-
ing a thin soap film. Air is injected inside and, due to
the increase in the inner pressure, the thin soap film
deforms and bulges out. Injection is stopped when a
chosen overpressure AP is reached. The system then
remains in mechanical equilibrium, while the soap
film drains the liquid aside [[Mysels et al. (1959)] and
eventually bursts. This controlled experiment makes
possible to easily vary the length and volume of the
cavity, and the gas overpressure before the film burst-
ing. Different tube lengths L (from 2 to 23 cm) and
diameters d (6, 8 or 10 mm) have been used (aspect
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Figure 1: (a) Sketch of a slug exploding at the top of a
volcanic conduit. b) Experimental setup of a soap film
bursting at the surface of a cavity of well controlled ge-
ometry (length L, diameter d, volume V') and initial over-
pressure (AP).

ratio « = L/d ranging from 2 to 23) in order to quan-
tify the role of the conduit geometry.

The rupture of the film results in a sudden drop of
the inner overpressure, which excites resonant modes
inside the cavity. The inner standing waves are
damped due to dissipation along the walls and ra-
diation out of the open end of the cavity. A micro-
phone inside the tube (Figure 1b, bottom) records
the pressure variation at the cavity bottom (Pj,:)
while a microphone outside (Figure 1b, top) monitors
the radiated acoustic waves (P..t). As expected for
a resonating tube, both signals, inside and outside,
exhibit the same spectral content, with a fundamen-
tal frequency associated with the wavelength in air
Ao ~ 4L and odd harmonics [[Kinsler et al. (1982)].
Note that the location of the inner microphone is per-
tinent, as the amplitude of the pressure variation as-
sociated with all the harmonics is maximum at the
cavity bottom.

3 Partitioning of the acoustic
pressure

When the soap film breaks at the top of the cavity,
the overpressure recorded by the bottom microphone
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Figure 2: Normalized amplitude Pi:/AP of the acoustic
signal at bursting, inside the cavity, as a function of the
initial normalized overpressure AP/APnaz. Pint/AP <
1 (gray region) indicates a slow dynamics of the film open-
ing. [Symbol,a]: [0,2]; [e,8]; [A,23].

(Figure 1b) drops from +AP to —P;,;:. Before the
bursting, the overpressure AP inside the cavity is
constant. We thus expect, in the absence of signifi-
cant energy loss, to measure P;,; = AP. We found
that this is true only for long tubes (a = 23, large
gas volume) whereas for short tubes (o = 2, small
gas volume) a large scatter of the pressure drop is
observed, with P;,; < AP (Figure 2).

This scatter can be explained by taking into ac-
count the film rupture dynamics, and in particular
its typical rupture time Tpurse [[Vidal et al. (2006),
[Divouz et al. (2008)]. It is approximated, from the
experimental data, as the time necessary for the over-
pressure at the cavity bottom to drop from +AP to
—P;nt. The characteristic film rupture time is com-
pared to the propagation time 7,,,, of the acoustic
wave inside the tube, defined as

Tprop = 2L/c (1)
where ¢ is the sound velocity (¢ = 340 m/s). The
experiment indicates that the initial relative ampli-
tude Pj,: /AP is a strongly decreasing function of the
ratio Thurst/Tprop (Figure 3a). In other words, for a
given geometry, the larger the characteristic rupture

time is, the smaller is the amount of energy trans-
ferred to the resonant modes [[Vidal et al. (2006)].
For Tpyurst/Tprop > 1, we observe a drastic drop in the
amplitude P;,; of the signal inside the cavity. Long
cavities (large aspect ratio, e.g. « = 23) are not sen-
sitive to the film rupture time, as they always fulfill
the condition Tyyrst < Tprop. In this case, the acoustic
amplitude inside the tube well approaches the initial
overpressure, and Pj,:/AP ~ 1 (Figures 2 and 3a).
To the contrary, for short cavities, the system is sen-
sitive to the film rupture time, which is on the order
of Tprop, and a large scatter is observed. The un-
controlled bubble rupture time thus accounts for the
scatter of the acoustic energy measured outside the
cavity (Pezt, see section 4).

On volcanoes, we do not have access to the acous-
tic waves inside the slug, and we measure the acous-
tic signal propagating outside. When a slug bursts,
part of the energy is radiated as infrasonic waves in
the atmosphere, while part remains trapped in the
volcanic body and propagates as seismic waves. We
consider here that the overpressure recorded by the
internal microphone (Pj,:, Figure 1b) represents the
amplitude (and/or the energy) of the seismic signal
generated by the explosive process, while the pres-
sure outside the cavity (Pey:) is comparable to the
amplitude of the acoustic waves recorded in the at-
mosphere as infrasonic waves.

Therefore, by comparing the amplitude ratio be-
tween the internal and external pressure variations
(Figure 3b, inset), we assume to observe a process
similar to the amplitude (or energy) partitioning be-
tween seismic and acoustic waves associated with
the same explosive dynamics. Our experiment indi-
cates that the inside and outside pressure partition-
ing (P.yt/Pint) changes as function of the tube length
and hence, of the bubble volume. Longer tubes have
acoustic waves with long propagation time and with
large damping effects due to viscous dissipation. As
a consequence, the amplitude of the acoustic signal
outside the cavity will be much smaller than for short
tubes (Figure 3b, inset).

In other words, long tubes (e.g. L = 23 cm)
are more efficient in terms of acoustic wave energy
trapped inside the cavity (Figures 2 and 3a), but are
not efficient to transmit acoustic energy outside (Fig-




ure 3b, inset). In contrast, short tubes (e.g. L =
2 cm) are more efficient in radiating acoustic energy
outside (Figure 3b, inset), but are also more sensitive
to the rupture time (Tpyurst/Tprop > 1, Figure 3a).
If the energy loss for long tubes is mainly due to
the non-efficient radiation process (small Pey¢/Pint),
the energy loss for short tubes (higher P.yt/Pint) is
mainly due to the film rupture time (Tpurst/Tprop >
1). In both cases, energy is dissipated.

4 Energy balance

In order to quantify the total energy balance in the
system, we estimate the acoustic energy E, from the
signal measured outside:

2mr2 [
B, =" / P2 (t) dt
pPc Ji=o0

(2)

where 7 is the distance between the cavity aperture
and the microphone, p the gas density, and c the
sound velocity in air. The potential energy stored
inside the ’slug’ before bursting can be written as:

_1VAP?
2 pe?

Ep (3)
where V is the volume of the gas slug. Fig-
ure 4 displays the acoustic energy measured out-
side, as a function of the initial slug overpressure,
before bursting. The three different experimen-
tal conditions represent the field situation, where
the conduit radius is constant in time, but the
slug length can vary from one explosion to another
([Vergniolle and Brandeis (1996)]. We report in Fig-
ure 4 the maximum total acoustic energy estimated
from a series of 10 measurements, performed in sim-
ilar conditions (same AP). Each point then repre-
sents the acoustic energy obtained when the rupture
time is the smallest. Its effect is therefore considered
negligible (Tpyrst/Tprop < 1).

For small initial overpressure AP, the acoustic en-
ergy E, behaves as E, ~ AP2. When AP increases,
the bubble deforms and the soap film curvature in-
creases. Consequently, when the film bursts, the pres-
sure front entering the cavity is spherical, and thus no

longer matches the planar geometry of the resonant
modes. As a consequence, the efficiency of the en-
ergy transfer decreases and F, drops down when AP
is increased (Figure 4). Finally, we point out that this
simple bubble bursting cannot build up gas overpres-
sure above the maximum threshold. For a bubble
bursting in static condition, the threshold pressure
APz 18 given by APn., = 80/d (semispherical
film), where o represents the film surface tension.

In summary, two mechanisms limit the energy
tranfer to the acoustic waves. First, the characteristic
rupture time of the film breaking (section 3); Second,
the film curvature before bursting. Indeed, as the
film curvature increases, the pressure of the acoustic
wave front generated at bursting departs from a pla-
nar wavefield. It is therefore less efficient in exciting
the cavity resonant modes. This explains why, in the
experiment, the fraction of energy, E,/E,, measured
outside is small (~15%) [[Vidal et al. (2006)], and
points out the importance of the geometry and dy-
namics of the film rupture in controlling the amount
of energy released in the atmosphere as acoustic
waves.

On volcanoes, the velocity of the film rupture and
the film geometry itself are much more complex than
in our experiments performed in static conditions,
and depend largely on the dynamics of the bubble
rising and on viscosity, temperature and volatile con-
tent of the magma film layer above the bubble.

5 Discussion and Conclusion

This simple experiment provides an insight into the
physical mechanisms involved in the bursting of a
slug of well-controlled geometry and overpressure, in
static conditions. Even in a fully controlled labo-
ratory experiment, the amplitude and energy of the
pressure wave propagating into the atmosphere af-
ter bursting cannot be predicted from the initial slug
overpressure - and vice versa. We demonstrated that
two processes are responsible for this unpredictabil-
ity: (1) the rupture time of the bubble film, which
cannot be controlled in the experiments; and (2)
the energy loss due to the film curvature at burst-
ing, which excites more or less efficiently the cavity.



When the rupture time 7,5 is larger than the char-
acteristic propagation time 7., inside the cavity,
the acoustic signal amplitude (and, thus, the energy)
drops. The energy fraction (E,/E,) transferred into
the acoustic signal radiated outside decreases drasti-
cally when the rupture time 7y,,s; increases.

A quantitative comparison with the much more
complex field situation is out of the scope of this pa-
per. Indeed, when a slug bubble rises and bursts in a
volcanic conduit, viscous and inertial forces - two pro-
cesses not investigated in this work - play an impor-
tant role. On the one hand, by limiting the bubble ex-
pansion when rising, these forces are thought to be re-
sponsible for the large overpressure stored inside the
slug before bursting [James et al. (2008)]. On the
other hand, viscous effects may strongly affect the dy-
namics of the film aperture [[Debrégeas et al. (1995)].
Experiments investigating bubbles bursting in either
a Newtonian [[James et al. (2008)] or non-Newtonian
(Divouz et al. (2008)] fluids pointed out the impor-
tance of the rising velocity and, more generally, of
the bursting dynamics, on the acoustic wave ampli-
tude.

However, even if in static conditions, the physi-
cal mechanisms described here are likely to be at
stake in the field. Different rupture dynamics and
film thicknesses largely affect the rupture time, and
the acoustic signal emitted at bursting. In partic-
ular, we point out that any interpretation of the
measured acoustic amplitude, or energy, in terms of
gas overpressure in the bubble before bursting re-
quires a good knowledge of the physics controlling
the opening of the bubble at bursting. This suggests
that on volcanoes also, the amplitude of the acous-
tic waves generated by the bubble bursting strongly
depends on the thickness and on the rupture veloc-
ity of the bubble cap at bursting. Both features are
uncontrolled in the field, and could explain the low
correlation observed at Stromboli volcano between
the amplitude of the acoustic wave and the vigor of
the explosive event both in terms of mass of ejected
fragments [[Marchetti et al. (2009)] and gas volume
McGonigle et al. (2009).
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Figure 3: Normalized amplitude of the acoustic signal at
bursting, inside (a) and outside (b) the cavity, as a func-
tion of the ratio between the bursting time 7yyrst, and
the propagation time 7Tprop. Pest is recorded at r =5 cm
from the cavity aperture. The light gray region indicates
a slow rupture dynamics of the film (Tvurst/Tprop > 1,
same as Figure 2). Insets: (a) Semi-log plot of Pin:/AP
as a function of Tpurst/Tprop. The efficiency of the bubble
bursting to transmit pressure waves in the air drastically
drops for slow rupture dynamics (Tourst/Tprop > 1). (b)
Amplitude ratio Pegt/Pint. The most efficient energy par-
titioning occurs for the shorter tube (dark gray region).
[Symbol,a]: [0,2]; [e,8]; [A,23].
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Figure 4: Acoustic energy E, as a function of the ini-
tial overpressure AP (normalized to APpq.) for different
lengths (same diameter d = 8 mm). All data represent the
maximum pressure recorded outside over a series of ten
measurements. We assume that this value corresponds to
the signal recorded when the rupture time is negligible
(Tourst/Tprop < 1). [Symbol,a]: [0,2.5]; [A,5]; [¢,6.9].



